
When Sequential Code
Meets Replicated Data

Programming Language Support to Simplify the
Development of Correct Replicated Data Types

Kevin De Porre

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

December 19, 2022

Promotor:
Prof. Dr. Elisa González Boix, Vrije Universiteit Brussel

Jury:
Prof. Dr. Bart de Boer, Vrije Universiteit Brussel, Belgium (chair)

Prof. Dr. Bas Ketsman, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Nikolaos Deligiannis, Vrije Universiteit Brussel, Belgium
Prof. Dr. Annette Bieniusa, Technische Universität Kaiserslautern,

Germany
Dr. Martin Kleppmann, Technische Universität München, Germany

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

c© 2022 Kevin De Porre

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel : +32 2 629 33 44
crazycopy@vub.be
www.crazycopy.be

ISBN 9789464443431
NUR 989
THEME UMA

All rights reserved. No part of this publication may be produced in any
form by print, photoprint, microfilm, electronic or any other means with-
out permission from the author.

Abstract

Many applications today run atop a geo-distributed system, that is, a sys-
tem that replicates data over several machines (called replicas) located at
strategic positions around the globe. Such systems typically ensure good
performance and high availability by allowing replicas to be updated inde-
pendently. However, replicas may execute concurrent updates in different
orders, which can lead to conflicts. Programmers must foresee and handle
these conflicts, which is extremely difficult, even for experts.

To avoid manual conflict resolution, researchers proposed replicated
variants for sequential data types, called Replicated Data Types (RDTs).
RDTs resemble common data structures but internally implement mech-
anisms to detect and solve conflicts. A data type may have several RDTs
exhibiting different semantics depending on how conflicts are solved.

In this dissertation, we argue that real-world applications require cus-
tom RDTs that are tailored to the needs of the application. However,
existing RDTs cannot be customized as they exhibit hardcoded conflict
resolution semantics. This leaves programmers no choice but to build
their own RDTs or modify existing RDTs using ad-hoc conflict detection
and resolution mechanisms. This is known to be error-prone and results
in brittle systems. Moreover, these new or modified RDTs are seldom
verified due to the complexity of software verification, and thus bugs are
likely to go unnoticed.

To address the aforementioned issues, this dissertation explores pro-
gramming language abstractions and techniques to support the design,
implementation, and verification of geo-distributed systems using RDTs.
This led to a solution that is twofold. First, we propose a general ap-
proach for replicating existing sequential data types instead of building
dedicated RDTs for every use case. Our approach lets programmers aug-
ment sequential data types with a declarative specification of the desired

i

conflict resolution semantics expressed through application invariants. We
statically analyze the data type to detect all conflicts and find solutions
that adhere to the desired semantics. At runtime, our novel replication
protocol efficiently serializes operations such that replicas converge to the
same state and maintain application-specific invariants with minimal co-
ordination. To validate our approach, we successfully built an extensive
portfolio of RDTs and several real-world applications that exhibit perfor-
mance similar to state-of-the-art approaches.

Second, we devise VeriFx, a novel high-level programming language
to implement and verify ad-hoc RDTs. Programmers implement custom
RDTs in VeriFx and automatically get a proof of correctness or a coun-
terexample if the implementation is wrong. Verified RDTs can be tran-
spiled to mainstream languages in order to deploy them in an existing
system. To demonstrate its effectiveness, we used VeriFx to implement
and verify a portfolio comprising more than 40 RDTs, distilled from the
literature on Conflict-free Replicated Data Types (CRDTs) and Opera-
tional Transformation (OT) and from industrial databases.

Our results show two important insights. First, it is possible to build
efficient RDTs with application-specific concurrency semantics, without
having to manually handle conflicts. Second, the implementation and
verification of RDTs can be unified in a high-level language such that
software engineers without deep knowledge of verification can nevertheless
implement RDTs and verify them automatically.

Samenvatting

Hedendaagse applicaties draaien veelal bovenop een geo-gedistribueerd
systeem, zijnde een systeem dat gegevens repliceert over meerdere ma-
chines (replica’s genaamd) die zich op strategische posities over de hele
wereld bevinden. Dergelijke systemen zorgen doorgaans voor goede
prestaties en hoge beschikbaarheid doordat replica’s onafhankelijk kun-
nen worden aangepast. Replica’s kunnen echter gelijktijdige updates in
verschillende volgordes uitvoeren, wat tot conflicten kan leiden. Pro-
grammeurs moeten deze conflicten voorzien en oplossen, hetgeen zeer in-
gewikkeld is.

Om te vermijden dat programmeurs conflicten handmatig moeten
oplossen, stelden onderzoekers gerepliceerde varianten voor sequentiële
datatypes voor, genaamd Replicated Data Types (RDT’s). RDT’s lijken
op traditionele datastructuren maar implementeren intern mechanismen
om conflicten op te sporen en op te lossen. RDT’s kunnen verschillende
semantiek hebben afhankelijk hoe conflicten worden opgelost.

In dit proefschrift argumenteren we dat geavanceerde toepassingen op
maat gemaakte RDT’s vereisen die zijn afgestemd op de behoeften van
de toepassing. Bestaande RDT’s kunnen echter niet worden aangepast
omdat conflictoplossing hardgecodeerd is. Dit dwingt programmeurs om
hun eigen RDT’s te bouwen of bestaande RDT’s aan te passen met behulp
van ad-hoc mechanismen voor conflictdetectie en -oplossing. Het is wel-
bekend dat ad-hoc mechanismen foutgevoelig zijn en resulteren in fragiele
systemen. Bovendien worden deze nieuwe of gewijzigde RDT’s zelden gev-
erifieerd vanwege de complexiteit van software verificatie, waardoor bugs
waarschijnlijk onopgemerkt blijven.

Om de aangehaalde problemen aan te pakken, onderzoeken we in deze
dissertatie programmeertaalabstracties en technieken voor de ontwikkeling
van correcte RDT’s. Dit leidde tot een tweeledige oplossing. Ten eerste

iii

stellen we een algemene aanpak voor om bestaande sequentiële datatypes
te repliceren zodat men geen gespecialiseerde RDT’s dienen te bouwen
voor elke use case. Met onze aanpak kunnen programmeurs sequentiële
datatypes uitbreiden met een declaratieve specificatie van de gewenste se-
mantiek voor conflictoplossing, uitgedrukt door applicatie specifieke in-
varianten. We analyseren deze datatypes statisch om alle conflicten op te
sporen en oplossingen te vinden die aansluiten bij de gewenste semantiek.
Tijdens de programma uitvoering serialiseert ons nieuwe replicatiepro-
tocol bewerkingen op een efficiënte manier zodat replica’s naar dezelfde
staat convergeren en toepassing specifieke invarianten behouden met mini-
male coördinatie. Om onze aanpak te valideren, hebben we een uitgebreid
portfolio aan RDT’s en verschillende applicaties gebouwd die gelijkaardige
prestaties als state-of-the-art oplossingen vertonen.

Ten tweede stellen we VeriFx voor, een high-level programmeertaal
om ad-hoc RDT’s te implementeren en te verifiëren. Programmeurs im-
plementeren nieuwe RDT’s in VeriFx en krijgen automatisch een bewijs
dat hun implementatie correct is of een tegenvoorbeeld indien dit niet het
geval is. Geverifieerde RDT’s kunnen worden vertaald naar mainstream
talen om ze in een bestaand systeem te integreren. Om de effectiviteit van
onze aanpak te demonstreren hebben we VeriFx gebruikt om een portfolio
van meer dan 40 RDT’s te implementeren en te verifiëren. Dit portfolio
bevat welgekende RDT’s uit de literatuur over Conflict-free Replicated
Data Types (CRDT’s) en Operational Transformation (OT) alsook uit
industriële databanken.

Onze resultaten leiden tot twee belangrijke inzichten. Ten eerste is
het mogelijk om efficiënte RDT’s te bouwen met toepassing specifieke
semantiek, zonder handmatig conflicten op te moeten lossen. Ten tweede
kan de implementatie en verificatie van RDT’s worden verenigd in een
high-level taal zodat software-ingenieurs zonder diepgaande kennis van
verificatie toch RDT’s kunnen implementeren en automatisch verifiëren.

Acknowledgements

Four years ago, I started this adventure, armed with an idea. Little did I
know about the rollercoaster I had just stepped in, which would bring me
to so many places to meet amazing people and occasionally would bring
me down to get back up shortly after. Luckily, the rollercoaster arrived
safely and well at its destination, resulting in this dissertation. Therefore,
I want to thank the jury members, Bart de Boer, Bas Ketsman, Nikos
Deligiannis, Annette Bieniusa, and Martin Kleppmann, for taking the
time to read this dissertation and for their valuable feedback.

Let me now take the time to thank my colleagues, friends, and family
who supported me over the years and gave me the strength to continue
even in difficult times. I would not be writing this today without the
unconditional support of my academic mommy, Elisa Gonzalez Boix. I
am very grateful for the freedom she gave me to explore my own path and
steer me at the right moments in time.

During my first conference in Dresden in 2019, I met Carla Ferreira,
another person that would become special to me as we would go on to
collaborate during the rest of my PhD. I now had two academic mothers
(an official one and an unofficial one) that perfectly managed co-parenting.

I would also like to thank the fellow DISCOers and ex-DISCOers (Scull,
Carmen, Isaac, Matteo, Jim, Carlos, Aäron, Dina) and the fellow SOFT-
ies for the fruitful presentations, discussions, and Friday drinks! Talking
about the latter, I should not forget to acknowledge Jonas De Bleser for
those memorable Fridays.

There is also a group of nerds called the “zware nerds” (Tony, Djorre,
Wito Mojito, and Mette1337) who deserve a special thank you. We met
during our studies at the VUB and became close friends.

Finally, I want to thank my mother and father for giving me all these
opportunities and always encouraging me. I also want to thank my little

v

brother, Mateo, which was always there to remind me to stop working
and play with him instead ;p Bedankt broertje, voor alle avonden die
wij samen al spelend doorbrengen! A special thanks also goes to my
Opa, Mami, Papy, Meme, and Tonton for always believing in me. And of
course, I kept the most important person as last. Ellen, my girlfriend, my
everything, who has given me infinite support and love this entire time.
A new chapter is unfolding for us, and I can’t wait to discover it!

Contents

1 Introduction 1
1.1 Geo-Replicated Systems . 2

1.1.1 The CAP Theorem 3
1.1.2 The Quest for High Availability and Low Latency . . 4
1.1.3 Problem Statement 5

1.2 Research Vision . 8
1.3 Approach and Contributions 9
1.4 Supporting Publications . 10
1.5 Dissertation Roadmap . 12

2 State of the Art in Geo-Replicated Systems 15
2.1 Consistency Models . 15

2.1.1 Strong Consistency 16
2.1.2 Weak Consistency 17
2.1.3 Hybrid Consistency 20

2.2 Programming Abstractions for Replication 23
2.2.1 Replicated Data Types 24

2.3 Distributed Systems Verification 30
2.3.1 Verification Languages 31
2.3.2 Verifying Correctness of Replicated Data Types . . . 32
2.3.3 Verifying Invariants 35
2.3.4 Overview . 36

2.4 Conclusion . 37

3 From Sequential to Replicated Data Types 39
3.1 State Convergence Without Coordination 40

vii

3.2 Strong Eventually Consistent Replicated Objects (SECROs) 41
3.2.1 Use Case: A Collaborative Text Editor 42
3.2.2 Replication Protocol 45

3.3 Performance Evaluation . 51
3.3.1 Methodology . 52
3.3.2 Memory Consumption 52
3.3.3 Latency of Operations 53
3.3.4 Effect of Commit on the Latency of Operations . . . 55

3.4 Notes on Related Work . 59
3.5 Conclusion . 60

4 Efficient Replicated Data Types from Sequential Code 61
4.1 The Need for Static Analysis 62
4.2 Building Geo-Distributed Applications, the ECRO Way . . 64

4.2.1 Overview . 65
4.2.2 Building Replicated Sets 66
4.2.3 Building a Geo-Distributed Auction System 68
4.2.4 Coping with Different Classes of Conflicts 70

4.3 Deriving Safe Serializations from Distributed Specifications 71
4.3.1 The ECRO Distributed Specification 71
4.3.2 Dependency Analysis 72
4.3.3 Concurrent Commutativity Analysis 74
4.3.4 Deriving Sequential Commutativity 75
4.3.5 Safety Analysis . 76

4.4 Explicitly Consistent Replicated Objects 78
4.4.1 Replication Protocol 79
4.4.2 Consistency Guarantees 83
4.4.3 Protocol Correctness 84
4.4.4 Implementation . 89

4.5 Qualitative Evaluation . 90
4.5.1 Portfolio of ECRO Data Types 90
4.5.2 Comparison of ECROs Against Related Approaches 95
4.5.3 Conclusion . 99

4.6 Performance Evaluation . 99
4.6.1 Methodology . 99

4.6.2 Feasibility of the Static Analysis Phase (RQ2) . . . 100
4.6.3 Scalability of the ECRO Protocol (RQ3) 100
4.6.4 Performance of a Geo-Distributed RUBiS Applica-

tion (RQ4) . 104
4.6.5 Impact of Causally Unstable Operations on Scala-

bility (RQ3) . 105
4.7 Notes on Related Work . 107
4.8 Conclusion . 108

5 A High-Level Programming Language for Efficient RDTs111
5.1 Motivation . 112

5.1.1 Shortcomings of Hybrid Approaches 112
5.1.2 The Need for a High-Level Analyzable Language . . 113

5.2 The EFx Language . 115
5.2.1 Overall Architecture 115
5.2.2 Syntax . 116
5.2.3 Replicated Data Types and Concurrency Contracts . 118
5.2.4 Functional Collections 119

5.3 Automated Analysis of EFx Programs 121
5.3.1 Core SMT . 122
5.3.2 Compiling EFx to Core SMT 123
5.3.3 Encoding Functional Collections Efficiently in SMT 126
5.3.4 Compilation Example 130

5.4 Synthesizing ECROs from Contracts 131
5.5 Qualitative Evaluation . 133

5.5.1 Portfolio of Replicated Data Types 134
5.5.2 Application-Specific RDTs 135
5.5.3 Application Case: A Distributed Voting Game . . . 136
5.5.4 Comparison to the Original ECRO Approach 139

5.6 Performance Evaluation . 146
5.6.1 Methodology . 146
5.6.2 Synthesis Evaluation 146
5.6.3 Feasibility of Analyzing High-Level EFx Programs . 148

5.7 Discussion . 149
5.8 Notes on Related Work . 150

5.9 Conclusion . 151

6 Automated Verification of Replicated Data Types 153
6.1 The Need for a Fully Verifiable Language 154

6.1.1 Design and Implementation 156
6.1.2 Verification . 156
6.1.3 Deployment . 158

6.2 The VeriFx Language . 160
6.2.1 Overall Architecture 160
6.2.2 Syntax . 162
6.2.3 Type System . 163

6.3 Automated Proof Verification 166
6.3.1 Compiling VeriFx to Core SMT 166
6.3.2 Deriving Proof Obligations 168
6.3.3 Constructing High-Level Counterexamples 169

6.4 Libraries for Implementing and Verifying RDTs 170
6.4.1 CRDT Library . 171
6.4.2 Operational Transformation Library 176
6.4.3 Encoding RDT-Specific Assumptions 182

6.5 Evaluation . 182
6.5.1 Methodology . 184
6.5.2 Verifying Conflict-free Replicated Data Types 184
6.5.3 Verifying Operational Transformation 192

6.6 Notes on Related Work . 194
6.6.1 Verification Languages 194
6.6.2 Verifying Conflict-free Replicated Data Types 195
6.6.3 Verifying Invariants of Replicated Data 196
6.6.4 Verifying Operational Transformation 197

6.7 Conclusion . 197

7 Conclusion 199
7.1 Programming Replicated Data Types 199
7.2 Overview of our Approach 200
7.3 Reviewing the Contributions 202
7.4 Avenues for Future Research 204

7.4.1 Multi-Object Invariants 204

7.4.2 Improving Automated Verification 204
7.4.3 Going Further with Automated Verification 206

7.5 Closing Remarks . 207

A Tree Organization of a Text Document 209

B Formal Definition of the Transitive Closure of Concurrent
Operations 213

C Scala DSL for First-Order Logic 215
C.1 Complete Set Specification 217
C.2 RUBiS Specification . 219

D Cycle Detection and Resolution in the ECRO Protocol 223

E Geo-Distributed RUBiS Benchmark on a Read-Mostly
Workload 227

F EFx’s Type System 229

G Core SMT Expressions 235

H EFx’s Complete Map Semantics 237

I Verification of the Buggy Map CRDT 241
I.1 Original Specification . 241
I.2 Implementation in VeriFx 244
I.3 Verification in VeriFx . 246

Acronyms

ADT Algebraic Data Type.

AST Abstract Syntax Tree.

CAL Combinatory Array Logic.

CmRDT Commutative Replicated Data Type.

CRDT Conflict-free Replicated Data Type.

CvRDT Convergent Replicated Data Type.

DAG Directed Acyclic Graph.

DC Data Center.

DSL Domain-Specific Language.

ECRO Explicitly Consistent Replicated Object.

FOL First-Order Logic.

IPA Invariant-Preserving Applications.

IT Inclusive Transformation.

IVL Intermediate Verification Language.

LAN Local Area Networks.

LoC Lines of Code.

xiii

LUB Least Upper Bound.

MRDT Mergeable Replicated Data Type.

OAC Observable Atomic Consistency.

OOP Object-Oriented Programming.

OT Operational Transformation.

PoR Partial Order-Restrictions.

RDT Replicated Data Type.

SEC Strong Eventual Consistency.

SECRO Strong Eventually Consistent Replicated Object.

SMT Satisfiability Modulo Theories.

UI User Interface.

VC Verification Condition.

VM Virtual Machine.

List of Figures

3.1 Memory usage of the collaborative text editors. Error bars
represent the 95% confidence interval for the average taken
from 30 samples. The experiments are performed on a sin-
gle worker node of the cluster. 53

3.2 Latency of character insertions in the collaborative text ed-
itors. Replicas are never committed. Error bars represent
the 95% confidence interval for the average taken from a
minimum of 30 samples. Samples affected by garbage col-
lection are discarded. 55

3.3 Detailed latency to append characters to the SECRO text
editor. The replica is never committed. The plotted la-
tency is the average taken from a minimum of 30 samples.
Samples affected by garbage collection are discarded. 56

3.4 Execution time of SECROs for different commit intervals,
performed on a single worker node of the cluster. Error
bands represent the 95% confidence interval for the average
taken from a minimum of 30 samples. Samples affected by
garbage collection were discarded. 57

4.1 Reordering operations in a replicated Add-Wins Set ECRO. 63
4.2 Overview of ECROs. 65
4.3 State equivalence. 75
4.4 Conflict that requires R2 to reorder the calls. 93
4.5 Latency of operations on an ECRO list. We disabled the

JIT compiler to better show the impact of the graph’s size
on the latency of operations. 102

4.6 Latency of RUBiS operations. 103

xv

4.7 Latency of operations on add-wins sets for ECROs, CRDTs,
and pure-op CRDTs. 103

4.8 Average latency of RUBiS operations as observed by users
at DC Paris. Error bars represent the 99.9% confidence
interval. 105

4.9 Time to stability for placeBid and closeAuction in func-
tion of the rate of operations in a geo-distributed RUBiS
deployment. 106

5.1 EFx’s architecture. 116
5.2 Syntax definition of EFx. 117
5.3 An overview of EFx’s built-in functional collections. 120
5.4 Core SMT syntax. 122
5.5 A polymorphic EFx class and its compiled Core SMT code. 131
5.6 A distributed voting game inspired by contemporary tv-

shows. 137
5.7 Overview of the distributed voting game in terms of LoC. . 138
5.8 Comparison of RDTs implemented in EFx against ECROs. 141
5.9 Comparison of RDT specifications implemented in EFx

against ECROs. 142
5.10 Synthesis time of RDTs implemented in EFx. 147
5.11 Breakdown of the compilation time. 148

6.1 Workflow for developing RDTs. 155
6.2 VeriFx’s architecture. 161
6.3 VeriFx syntax. 162
6.4 Judgments for well-formedness of enumerations and proofs

in VeriFx. 164
6.5 Typing rules for the new VeriFx expressions. 165
6.6 Compiling pattern match expressions to Core SMT. 167
6.7 Compiling logical expressions to Core SMT. 167
6.8 Counterexample for the MWS Set, found by VeriFx. 189

A.1 A text document and its tree representation. Numbers in-
dicate the characters’ indices. 209

A.2 A text document and its tree representation. Red numbers
indicate index changes compared to Fig. A.1. 210

A.3 A text document and its tree representation. Red number
is the identifier of the newly added character. 211

E.1 Average latency of RUBiS operations as observed by users
at DC Paris. Error bars represent the 99.9% confidence
interval. 227

F.1 Judgments for type well-formedness in EFx. 229
F.2 Judgments for well-formedness of classes and traits in EFx. 231
F.3 EFx’s type system. 233

G.1 All Core SMT expressions. 236

I.1 Counterexample for the buggy Map CRDT, found by VeriFx.247

List of Tables

2.1 Overview of state-of-the-art RDTs. 29
2.2 Overview of mechanised verification techniques for RDTs.

Thicks indicate if the technique has been applied to verify
SEC or application-specific invariants. 36

4.1 Portfolio of ECRO data types and their description. 91
4.2 Outcome of Ordana’s safety analysis for RUBiS. 94
4.3 Restrictions over the RUBiS operations enforced by Red-

Blue and PoR, taken from [LPR18] and extended with ECRO. 98
4.4 Average time for Ordana to analyze ECRO specifications. . 100
4.5 Average round trip latency and bandwidth between data

centers. 105

5.1 Portfolio of RDTs implemented in EFx together with a de-
scription and code metrics. The C column is the number
of classes, the M column the number of mutators exposed
by the RDT. 134

5.2 Comparison of the average analysis times (in milliseconds)
of RDTs implemented in EFx and ECROs. 149

6.1 Verification results for CRDTs implemented and verified in
VeriFx. S = state-based, O = op-based, P = pure op-
based CRDT. � = timeout, a© = adaptation of an existing
CRDT, i© = incomplete definition. 185

6.2 Verification results of OT functions in VeriFx. 192

C.1 Types supported by the DSL. 215
C.2 List of operators provided by the DSL. 216

xix

C.3 Logic building blocks provided by the DSL. 216

Listings

3.1 Structure of the text editor. 43
3.2 Inserting a character in a tree-based text document. 44
3.3 Deleting a character from a tree-based text document. . . . 45
4.1 Sequential set implementation. 66
4.2 Add-Wins and Remove-Wins Set ECROs. 67
4.3 Distributed specification of an auction system. 69
4.4 Storing ECROs in the Squirrel distributed key-value store. . 90
4.5 Implementation of an OR-Set CRDT in Scala. 96
4.6 Implementation of a 2P-Set CRDT in Scala. 96
5.1 Implementation of a Remove-Wins Set RDT in EFx. 114
5.2 Internal vector implementation in EFx. 130
5.3 Excerpt from the replicated Game data type in EFx. 139
5.4 Excerpt from the replicated RUBiS data type in EFx. . . . 144
5.5 Excerpt from the replicated RUBiS data type implemented

in Scala with ECROs. 145
6.1 2PSet implementation in VeriFx, based on Algorithm 6. . . 157
6.2 Transpiled 2PSet in Scala. 159
6.3 Modified 2PSet implementation for integration with Akka’s

distributed key-value store. 159
6.4 Trait for the implementation of CvRDTs in VeriFx. 172
6.5 Trait for the verification of CvRDTs in VeriFx. The arrow

function =>: implements logical implication. 173
6.6 Polymorphic CmRDT trait to implement op-based CRDTs in

VeriFx. 174
6.7 Trait to verify CmRDTs in VeriFx. 175

xxi

6.8 Traits to implement and verify pure op-based CRDTs in
VeriFx. 177

6.9 Polymorphic OT trait to implement and verify RDTs using
operational transformation in VeriFx. 179

6.10 Polymorphic ListOT trait to implement and verify OT
functions for collaborative text editing. 181

6.11 Excerpt from the implementation of the OR-Set
CRDT [Sha+11a] in VeriFx. 183

6.12 MWS Set implementation in VeriFx. 187
6.13 Computing k′ at the source. 187
6.14 Computing k′ downstream. 187
6.15 Excerpt from the implementation of Imine et al.’s transfor-

mation functions [Imi+03] in VeriFx. 193
7.1 Implementation of a PN-Counter CRDT in VeriFx by com-

posing two G-Counter CRDTs. 205
C.1 Overview of the interface of the Relation class. 217
C.2 Distributed specification of the Add-Wins Set. 218
C.3 Sequential RUBiS implementation. 220
C.4 Distributed specification for RUBiS ECRO. 221
I.1 Excerpt from the implementation of the buggy map CRDT

in VeriFx. 243
I.2 Encoding the assumptions of the Map CRDT in VeriFx. . . 245

List of Algorithms

1 Handling mutate messages. 49
2 Handling commit messages. 49
3 ECRO replication protocol main functions. 80
4 Committing causally stable calls. 82
5 Synthesizing ECROs from sequential data types and their

concurrency contract. 132
6 2PSet CRDT taken from Shapiro et al. [Sha+11a]. 157
7 Constructing high-level counterexamples in VeriFx from

low-level SMT models. 170
8 Op-based MWS Set CRDT taken from [Sha+11a]. 186
9 Remove with k′ defined at source. 186
10 Remove with k′ defined in downstream. 186
11 Detecting and solving cycles in the ECRO replication pro-

tocol. 225
12 The buggy map CRDT algorithm, taken from [Kle22]. . . . 242

xxiii

Chapter 1

Introduction

In the early days of computers, programmers exclusively wrote sequen-
tial programs that ran on a single machine. Such programs consist of
code representing instructions that are executed sequentially one after the
other. With the invention of Local Area Networks (LAN), machines could
be interconnected within some physical area (e.g. a building) and so the
first distributed systems saw the light of day.

A distributed system essentially is a collection of independent machines
that work together to accomplish a common goal but appears as a single
coherent system to its users [TV07]. For example, email - one of the most
successful distributed systems - consists of millions of mail servers and
clients that collaborate to exchange electronic messages over the internet.

Over the past decades, we witnessed an unprecedented evolution in
hardware technologies giving rise to countless distributed systems. Such
systems no longer constitute a niche but are truly mainstream. The ap-
plications that run atop them are diverse and span numerous application
domains. Examples include applications like Uber and Lyft, which coor-
dinate vehicles, bicycles, and steps to provide a form of transportation-as-
a-service, or contact tracing applications like Coronalert that warn users
about high-risk contacts based on the location and time of the users.

These hardware advances, especially improved network connectivity,
together with the ever-growing urge to be connected, modified the users’
expectations which now want applications to work anywhere at any time.
However, software technology - i.e. the programming languages and tools
that are used to build these applications - has not witnessed a similar evo-

1

CHAPTER 1. INTRODUCTION

lution. As a result, many distributed applications are written in languages
that were designed for sequential programming (e.g. C, Python, etc.) and
feature programming paradigms that are not adapted to distributed pro-
gramming1.

The lack of evolution in software technology is problematic because
distributed programming is intrinsically different from programming lo-
cal applications that run on a single machine. The main difference is the
fact that the independent entities - commonly referred to as nodes - that
make up the distributed system can only interact by exchanging messages
over a network. As explained by Waldo et al. [Wal+97] this introduces
numerous problems that must be addressed by the programmer. For in-
stance, communication between nodes is slow and often unreliable (i.e.
messages may arrive out-of-order or even be dropped). In addition, in-
dividual nodes or communication links may fail but these partial failures
should not take down the entire system. Furthermore, nodes may inter-
act concurrently with shared resources or data but care must be taken to
ensure data consistency and integrity. This is especially difficult in this
context because distributed systems lack a global clock and the clocks
of individual machines are unreliable as they are subject to clock drift
and skew [TV07]. Hence, the order of events (especially causal relations
between them) cannot be determined from their physical time.

In this thesis, we study programming languages, models, and tools for
the development and verification of distributed applications. In particular,
we focus on the challenges of data replication and consistency.

1.1 Geo-Replicated Systems

Distributed systems commonly replicate (i.e. copy) data to several nodes.
Each node is said to hold a “replica”. A replica is an abstract notion of a
copy. In practice, a replica may be a server in a client-server architecture,
a node of a peer-to-peer system, a client of a blockchain, etc.

Replication is crucial to ensure high availability, good scalability, and
fault tolerance. It improves fault tolerance because clients can access data
from several replicas when a node or communication link fails. Replication
also improves scalability as the system can load balance its workload over

1An exception is Erlang which was designed for fault-tolerant distributed program-
ming and has been used to build major distributed applications like WhatsApp.

2

1.1. GEO-REPLICATED SYSTEMS

the available replicas. Moreover, replication reduces user-observed laten-
cies by placing copies geographically closer to the clients, a technique that
is known as geo-replication. Sometimes, replicas are even placed on the
clients to ensure offline availability.

Although replication addresses common issues of distributed systems,
it increases the system’s overall complexity and raises potential consis-
tency problems. Users are under the illusion of a single coherent system
and thus expect to read the latest information but this is not always the
case. How often did one modify their profile picture on Facebook only to
find out it still uses the old picture for some time? The reason behind this
inconsistency is that the update modifies a single replica. Depending on
which replica users access they may read outdated information (e.g. their
old profile picture). However, the update will eventually be propagated
to all replicas such that they become consistent again.

Keeping replicas consistent is a difficult task because distributed sys-
tems provide very few guarantees; individual nodes may fail, communi-
cation is unreliable, there is no global clock to order events, etc. The
main difficulty consists in maintaining the system’s consistency guaran-
tees while tolerating network partitions. For example, how should the
system handle updates if some replicas are not reachable? The limits of
consistency and availability under network partitions are formulated by
the CAP theorem [Bre00].

1.1.1 The CAP Theorem

We first explain the different properties (C, A, and P) of this theorem.
Assume a model in which distributed components read and write to con-
ceptually shared memory. A distributed system is strongly consistent (C)
if every read observes the value of the latest write. It is highly available
(A) if components can always execute read and write operations and get
a meaningful response. This definition of availability does not allow op-
erations to timeout. Finally, the system is partition tolerant (P) if it is
resilient to network partitions; i.e. the system maintains its consistency
and availability guarantees under network partitions.

The CAP theorem [Bre00; GL02] states that replicated data in a dis-
tributed system cannot be strongly consistent (C), highly available (A),
and partition tolerant (P). Instead, the system can achieve only two of
these three properties (i.e. AC, AP, or CP). For example, social media

3

CHAPTER 1. INTRODUCTION

applications like Facebook allow users to post status updates and comment
on pictures even when they are offline. Such applications favor availability
over consistency and thus are AP. On the other hand, banking systems
may keep accounts strongly consistent to avoid overdrafts and thus favor
consistency over availability (CP).

Although, in theory, distributed systems can be available and consis-
tent (AC), network partitions are bound to occur in practice. For exam-
ple, mobile applications like Uber and Waze frequently face disconnec-
tions when users are driving through tunnels or poorly connected areas.
Such network partitions are inevitable since users are on the move and
have only intermittent connectivity. Therefore, every distributed system
must be partition tolerant. This essentially leaves programmers with a
trade-off between availability and consistency when network partitions
occur [Bre12]. This decision is made for every piece of shared data in a
distributed system, i.e. some data may be shared in a consistent manner
(CP) while another data item is shared in an available manner (AP).

It is important to note that highly available systems tolerate temporary
inconsistencies but do not have to completely give up on consistency. For
example, network partitions in a blockchain may cause accidental forks
but eventually, everyone agrees on the longest fork.

1.1.2 The Quest for High Availability and Low Latency

For decades CP was the preferred choice for distributed systems as strong
consistency was ought to be a requirement for any application. However,
strong consistency has a profound impact on the system’s performance
and availability because replicas need to agree on all updates.

With the rise in popularity of the Internet and increased access to
it, distributed systems started experiencing higher workloads, making CP
very costly and resulting in poor availability. Nowadays, it is common for
distributed systems to face millions of requests coming from users all over
the globe connected through a variety of devices (laptops, smartphones,
tablets, etc.). For such systems, high availability, low latency, and good
scalability are often more important than strong consistency.

For example, a former software engineer at Amazon explained that
every 100ms increase in page load time reduces Amazon’s sales by 1% [Lin]
which today would account for a $4.8 billion drop in annual revenues [mac]!

4

1.1. GEO-REPLICATED SYSTEMS

For the reasons mentioned above, modern distributed systems tend to
favor availability (AP) over consistency (CP). To this end, they relax the
consistency guarantees which improves availability and reduces latencies
but may lead to temporary inconsistencies between the replicas which
appear as anomalies to the users. For example, a highly available web
shop may face a situation where two or more users concurrently purchase
the last piece of a certain item. After detecting this problem the system
will ship the item to one of the users and inform the others that something
went wrong and that the item is no longer in stock. To apologize for the
inconvenience the shop may offer a discount code to the user. In contrast
to what early business models believed, we notice that, over the years,
users got used to these kinds of anomalies.

The key to building large-scale distributed systems consists of striking
the right balance between availability and consistency for the application
at hand. In essence, the system should maximize availability and only
choose for strong consistency if the cost to compensate for anomalies ex-
ceeds the advantages of high availability [BG13]. For example, web shops
like Amazon benefit from a highly available shopping cart because it gen-
erates additional sales (thanks to improved user experience) which largely
exceeds the cost of compensation (e.g. occasional discount codes). How-
ever, the payment system may need to be strongly consistent to ensure
that users have enough money to pay for their cart, that discount codes
are redeemed only once, etc.

Since the introduction of the CAP theorem in 2000, the landscape
of distributed systems significantly changed, and as argued by Klepp-
mann [Kle15], we should no longer classify distributed systems as fully
AP or CP. Nowadays, modern distributed systems often provide mixed
consistency guarantees and do not adhere to the C, A, and P properties
as defined in the CAP theorem.

1.1.3 Problem Statement

We explained that distributed systems strive for maximal availability
which can lead to anomalies (often called conflicts). Unfortunately, con-
flicts considerably increase the system’s complexity as programmers must
implement mechanisms to detect and solve them. For decades, program-
mers have implemented ad-hoc conflict resolution strategies but these are
error-prone and result in brittle systems [ASB15; KB17; Sha+11b].

5

CHAPTER 1. INTRODUCTION

Around 2010, researchers started developing Replicated Data Types
(RDTs) to free programmers from manual conflict resolution. RDTs ex-
pose an interface akin to a sequential data type but internally embed
conflict resolution mechanisms to ensure that all replicas eventually con-
verge to equivalent states (a property known as state convergence). Over
the years, researchers devised RDTs for common data structures such as
counters, sets, maps, graphs, etc.

Today, researchers are still actively developing new RDTs and improv-
ing existing designs. The workflow for the development of RDTs currently
consists of three phases: design, verification, and implementation. In the
first phase, experts design the RDT such that all conflicts are detected and
solved. In the second phase, experts formally verify the design to ensure
that it upholds the required consistency guarantees (e.g. state conver-
gence). In the third and final phase, application developers pick up these
RDT designs and implement them in their system.

Lately, RDTs are gaining a lot of traction as they are being integrated
in industrial databases (Riak, Redis, etc.) and commercial products. How-
ever, some problems remain that limit their wider adoption for the devel-
opment of geo-distributed systems. We identify three main problems:

Non-customizable semantics. The literature provides RDTs with
hardcoded concurrency semantics for common data structures, but
real-world applications must tailor the semantics to the application’s
needs. For example, concurrent bookings in a flight reservation sys-
tem may lead to two passengers reserving the same seat. The system
may solve this conflict by assigning the seat to the customer with
the most expensive ticket or by favoring customers that are part of
their loyalty program, or any other sensible conflict resolution pol-
icy. Currently, this requires building a new RDT from scratch for
this specific use case and thus exposes programmers to conflicts.

Limited support for application invariants. Most RDTs focus on
state convergence but do not support application-specific invariants.
The inability to maintain invariants comes from the fact that the
RDTs have hardcoded conflict resolution strategies and maintain-
ing application-specific invariants requires rethinking those strate-
gies completely.

6

1.1. GEO-REPLICATED SYSTEMS

Some recent approaches augment RDTs with invariants that are de-
scribed in a separate specification [Li+12; Bal+15; LPR18; Bal+18;
SKJ15; Got+16; Kak+18]. The specification is analyzed to detect
invariant-breaking operations and the system selectively strength-
ens the consistency requirements of those operations in order not to
break invariants. However, these approaches are conservative and
may impose too much coordination, affecting the system’s perfor-
mance and availability. Moreover, programmers have to write sepa-
rate specifications, often in logic, which is error-prone and hampers
software evolution because the specifications must evolve along with
the implementation.

Complexity of verification. We identify major threats to the correct-
ness of RDTs in each phase (design, verification, and implementa-
tion) of the development. During the design phase, experts may
miss subtle corner cases. This has happened even to the most ex-
perienced RDT designers [Kle22]. Hopefully, such flaws are caught
during the verification phase. However, in the verification phase,
RDTs are mostly verified using paper proofs which are subject to
reasoning flaws. Recently, researchers started mechanically verifying
RDT designs using interactive theorem provers [Gom+17; ZBP14]
but this requires additional expertise in formal methods and verifica-
tion and is extremely time-consuming [LM10]. Finally, programmers
are likely to make mistakes during the implementation phase because
they do not fully grasp the subtleties underlying RDT designs. Since
implementations are rarely verified, any bug in the implementation
is likely to go unnoticed. Moreover, real-world applications require
custom RDTs, but programmers currently do not have the tools and
techniques to design, implement, and verify their own RDTs.

A recent technical report [Kle22] elaborates on the difficulty of design-
ing correct RDT algorithms and the inability of experienced software en-
gineers to find subtle bugs in these algorithms. This confirms our personal
experience, therefore, we argue that the current programming techniques
and verification tools for the development of RDTs are insufficient.

7

CHAPTER 1. INTRODUCTION

1.2 Research Vision

To improve the programmability and verifiability of RDTs better program-
ming support and tooling are needed. We believe that every approach
must adhere to three fundamental principles:

Don’t Design for Replication, Replicate your Design. Designing
dedicated RDTs for each data structure and every possible concur-
rency semantics does not scale. Our vision is that developers should
be able to replicate existing data types and declaratively define the
concurrency semantics depending on the application’s needs.

Correct Replicated Data Types Out-of-the-Box. RDTs should be
correct out-of-the-box. Currently, RDT designers are responsible
for ensuring correctness, but this requires reasoning about all pos-
sible conflicts. Moreover, programmers often adapt existing RDT
designs to fit their applications but these changes may render the
resulting implementation incorrect. While humans may miss subtle
corner cases, machines are better at verifying all cases. We envision
specialized verification tools that enable programmers to automati-
cally verify high-level RDT implementations.

Programming Language Support. Solutions that aid the develop-
ment and verification of RDTs must be integrated into a suitable
programming abstraction that adheres to the software development
principles of code reuse, modularity, etc. For example, program-
mers may implement common RDT logic in an abstract class and
concretize it with application-specific invariants. We envision ap-
proaches for the development of RDTs to be integrated into high-
level programming languages such that programmers can design,
implement, and verify RDTs within the same language.

Besides adhering to the above principles, approaches for the develop-
ment of RDTs must be fast and scale to the needs of modern distributed
systems. These performance considerations form an important aspect that
drives the design of programming languages and abstractions for RDTs.

8

1.3. APPROACH AND CONTRIBUTIONS

1.3 Approach and Contributions

This dissertation starts from the observation that RDTs are difficult to
design and implement correctly. We explore novel approaches to design,
implement, and verify RDTs. We foresee a tension between efficiency and
simplicity; many RDTs have specialized implementations that are very
efficient but hard to understand, whereas generalized approaches are sim-
pler but cannot achieve the performance of specialized implementations.
Thus, approaches for implementing and verifying RDTs must strike a bal-
ance between simplicity and efficiency. Our goal is to devise principled
solutions that are simple enough to be used by regular software engineers
and performant enough for large-scale geo-distributed applications.

To achieve our goal, we explore a novel approach that turns sequential
data types into correct RDTs. Our approach combines user-defined spec-
ifications with a novel replication algorithm that governs the execution of
operations on weakly consistent replicated state to guarantee convergence
and maintain application invariants. Moreover, we develop a novel pro-
gramming language that automatically verifies the correctness properties
of RDT implementations, thereby simplifying verification.

Our journey toward a simple and efficient approach to implement and
verify RDTs resulted in three concrete contributions which we present in
this dissertation:

The ECRO family of RDTs. We devise ECROs, a new family of
RDTs that are derived by extending sequential data types with a
distributed specification describing the desired concurrency seman-
tics and the application’s invariants. Specifications are statically
analyzed to derive information about conflicts. This information is
then used at runtime by our novel replication protocol to serialize
operations in a way that guarantees state convergence and maintains
application invariants with minimal coordination between replicas.

Synthesizing RDT specifications. We propose EFx, a programming
language with a novel contract system for RDTs. Contracts extend
operations with preconditions and invariants. The language auto-
matically synthesizes distributed specifications from the data type’s
implementation and its contracts. EFx then combines the synthe-
sized specifications with the ECRO approach to derive application-

9

CHAPTER 1. INTRODUCTION

specific RDTs. Thus, EFx is a high-level language for developing
application-specific RDTs using the ECRO approach.

Automated verification of RDTs. We propose VeriFx, a program-
ming language for the implementation and automated verification of
RDTs. Programmers implement RDTs in VeriFx which then auto-
matically verifies the necessary correctness properties. VeriFx fea-
tures built-in correctness properties for well-known RDT families
(e.g. CRDTs [Sha+11b]) but programmers can also define custom
correctness properties using VeriFx’s novel proof construct. For each
proof, VeriFx derives the necessary proof obligations, which are en-
coded into first-order logic and discharged automatically by lever-
aging SMT solving. If a property does not hold, VeriFx returns a
high-level counterexample.

1.4 Supporting Publications

The ideas we realized throughout this dissertation led to several publica-
tions. We summarize the main publications supporting our contributions:

• Putting Order in Strong Eventual Consistency [De +19b]
Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe
Scholliers, Wolfgang De Meuter, Elisa Gonzalez Boix
In: Pereira, J., Ricci, L. (eds) Distributed Applications and Interop-
erable Systems. DAIS 2019. Lecture Notes in Computer Science(),
vol 11534. Springer, Cham.

This paper discusses our initial approach to turning sequential data
types into RDTs by means of a novel programming abstraction called
SECRO. At runtime, replicas search for an ordering of the operations
that maintains the application’s invariants. The protocol guarantees
that all replicas find the same ordering and thus converge to the same
state. This work laid the foundations for the ECRO family of RDTs
we developed later.

• CScript: A distributed programming language for building
mixed-consistency applications [De +20]

10

1.4. SUPPORTING PUBLICATIONS

Kevin De Porre, Florian Myter, Christophe Scholliers, Elisa Gonza-
lez Boix
Journal of Parallel and Distributed Computing, vol. 144, pp. 109-
123 (2020).

This article is a journal extension of our conference paper about
SECROs [De +19b] and focuses on CScript, a domain-specific lan-
guage that extends JavaScript with built-in support for data repli-
cation. CScript features consistent and available replicated objects
and regulates the interactions between those objects to avoid subtle
inconsistencies when mixing consistency models.

• ECROs: Building Global Scale Systems from Sequential
Code [De +21]
Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez
Boix
Proceedings of the ACM on Programming Languages, vol 5, OOP-
SLA, Article 107 (October 2021).

This work addresses the shortcomings of SECROs by introducing
the ECRO approach which features a slightly different programming
model and an improved replication protocol. Developers extend se-
quential data types with a distributed specification that is statically
analyzed to detect conflicts and unravel their cause ahead of time.
This information is then used at runtime to serialize concurrent op-
erations safely and efficiently. Thus, our approach derives correct
RDTs from sequential data types without changes to the data type
implementation and with minimal coordination. We implement our
approach in Scala and develop an extensive portfolio of RDTs.

• A Contract-Based Approach for Designing Highly Available
Replicated Data Types
Kevin De Porre, Carla Ferreira, Elisa Gonzalez Boix
In preparation

This paper is a journal extension of our work on ECROs. It in-
troduces EFx, a novel programming language with a contract sys-

11

CHAPTER 1. INTRODUCTION

tem that simplifies the development of RDTs using the ECRO ap-
proach. Programmers write concurrency contracts that associate
high-level preconditions and invariants to the operations of sequen-
tial data types. EFx then derives correct ECROs by synthesizing a
distributed specification from the data types and their contracts.

• VeriFx: Correct Replicated Data Types for the Masses
[DFGed]
Kevin De Porre, Carla Ferreira, Elisa Gonzalez Boix
Submitted to ACM Transactions on Programming Languages and
Systems (TOPLAS).

This paper proposes VeriFx, a high-level programming language
with automated proof capabilities. VeriFx lets programmers im-
plement RDTs atop functional collections and express correctness
properties that are verified automatically. Verified RDTs can be
transpiled to mainstream languages. VeriFx provides libraries that
implement the execution model and define the correctness proper-
ties of well-known RDT families. We used those libraries to verify
37 CRDTs and reproduce a study on the correctness of Operational
Transformation functions.

In addition to the publications highlighted above, we also published
two workshop articles that helped shape the ideas behind this disserta-
tion [DG19; De +19a].

1.5 Dissertation Roadmap

This dissertation seeks to facilitate the implementation and verification
of RDTs by means of suitable programming abstractions. In doing so, we
must strike a good balance between efficiency and simplicity as argued
before. This trade-off is reflected in the structure of this thesis which
starts by proposing a simple but inefficient approach and gradually
improves on it until a good balance is found. We briefly summarize the
remaining chapters that constitute this dissertation:

12

1.5. DISSERTATION ROADMAP

Chapter 2: State of the Art in Geo-Replicated Systems starts by
describing several data consistency models that are important to this dis-
sertation. Then, it reviews state-of-the-art techniques for designing and
implementing RDTs, thereby, making a distinction between traditional
RDTs that guarantee only state convergence, and invariant-preserving
RDTs that also consider application-specific invariants. The chapter
finishes by reviewing general verification languages and techniques for
the verification of RDTs.

Chapter 3: From Sequential to Replicated Data Types proposes
a general replication protocol that can execute arbitrary operations
without coordination while still guaranteeing state convergence and
maintaining application invariants. This protocol is integrated in a
language abstraction, called SECRO, which extends sequential data types
with application-specific invariants in order to get an RDT. The resulting
approach is simple as programmers only need to add the application’s
invariants to existing data types. Unfortunately, the underlying replica-
tion protocol is not efficient as it requires replicas to search for a correct
serialization among all possible permutations of the operations.

Chapter 4: Efficient Replicated Data Types from Sequen-
tial Code proposes a novel programming abstraction, called ECROs,
that extend sequential data types with a distributed specification describ-
ing the operations’ preconditions and postconditions and the application’s
invariants. We then statically analyze the specification to derive infor-
mation about non-commutative and invariant-breaking operations and
find solutions to these conflicts beforehand. Using this information, our
improved replication protocol can avoid the expensive search phase as it
now has all the information it needs to serialize the operations efficiently
(as opposed to searching for a valid serialization among all permutations).
While this approach yields excellent performance, programmers need to
provide first-order logic specifications that are disconnected from the
actual data type implementation.

Chapter 5: A High-Level Programming Language for Effi-
cient RDTs proposes EFx, a minimalist object-oriented programming
language whose core consists of a contract system for the development
of RDTs. EFx’s contract system allows programmers to define precon-

13

CHAPTER 1. INTRODUCTION

ditions and invariants atop sequential data types. EFx automatically
synthesizes correct ECRO specifications from sequential data types
and their contracts. This considerably simplifies the development of
ECROs since programmers no longer have to write tedious first-order
logic specifications. Furthermore, EFx improves correctness because the
synthesized specifications avoid mismatches between the specification and
the implementation.

Chapter 6: Automated Verification of Replicated Data Types
proposes VeriFx, a high-level programming language for the implementa-
tion and automated verification of RDTs. Programmers can implement
RDTs atop functional collections and define the necessary correctness
properties using VeriFx’s novel proof construct. VeriFx was designed
with automated verification in mind such that every language feature has
an efficient encoding in first-order logic. As a result, any VeriFx program
can be transpiled to first-order logic, and user-defined proofs can be
discharged automatically using traditional SMT solving.

Chapter 7: Conclusion concludes this dissertation. To this end,
we revisit the problem statement and provide an overview of our
contributions. Finally, we identify avenues for future research.

14

Chapter 2

State of the Art in
Geo-Replicated Systems

The previous chapter briefly described the complexity of building highly
available and efficient distributed systems. We argued that better pro-
gramming support is needed to implement these systems correctly and
identified three key principles that form the basis of our approach.

In this chapter, we discuss the state of the art that is needed to under-
stand our contributions. We start by reviewing the different families of
consistency models in Section 2.1. Then, we describe state-of-the-art ab-
stractions for replicated data in weakly consistent systems in Section 2.2.
Finally, we turn our attention to verification techniques for distributed
systems and discuss how existing approaches verify convergence proper-
ties and data integrity invariants for weakly consistent programs.

2.1 Consistency Models

Distributed systems replicate data to improve availability, scalability, and
fault tolerance. Users can access data from different sources, which im-
proves fault tolerance in the presence of partial failures. By placing repli-
cas at strategic places across the globe, distributed systems can drastically
reduce the access times observed by users. To improve scalability, incom-
ing requests can be spread over the available replicas and replicas may be
allocated dynamically depending on the load experienced by the system.

15

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Although users are oblivious to the fact that data is replicated, repli-
cation raises potential consistency problems that may affect them. For
example, a user may update their address in the system but later read
their old address from a replica that has not yet received the update. The
values that can possibly be read by users are described by consistency
models. For example, the aforementioned behaviour cannot occur in a
system whose consistency model guarantees “read your writes”.

In what follows we analyze three common families of consistency mod-
els. First, Section 2.1.1 describes strong consistency models which his-
torically were the models of predilection in databases. However, recent
advances in hardware technology reshaped the landscape of distributed
systems which now often face thousands or even millions of client requests
per second, coming from users all over the world. For such systems, high
availability and low latency are often more important than strong con-
sistency. Section 2.1.2 introduces weak consistency; a family of models
that fit these requirements as they are available under network partitions
and guarantee low latency. Finally, Section 2.1.3 introduces hybrid con-
sistency. This family of consistency models combines strong consistency
and weak consistency and is especially useful to maintain application-level
invariants without fully giving up on availability.

2.1.1 Strong Consistency

Strong consistency is a family of consistency models that provide users
with a consistent view on the data. Thus, users have the same view on
the shared data, independent of the replica they read from. This requires
writes to be made visible to everyone or to no one, but nothing in between.

Linearizability [HW90] is a well-known strong consistency model and
corresponds to the “C” of consistency in the CAP theorem [Bai] (cf. Sec-
tion 1.1.1). A distributed system is linearizable if operations appear to be
executed atomically and in an order that is consistent with their real-time
ordering [Jep]. Once a write completes, all subsequent reads will observe
the write (unless overwritten by a later write). To this end, writes are syn-
chronous and require synchronization between the replicas; i.e. replicas
communicate to decide whether to accept or reject writes, and writes re-
turn only when this decision has been made. However, network partitions
may hamper synchronization and lead to writes being aborted. Thus, a
linearizable system favors consistency over availability under network par-

16

2.1. CONSISTENCY MODELS

titions because availability requires every request (be it a read or a write)
to get a meaningful response (i.e. not a timeout).

Besides linearizability, other strong consistency models exist such as
serializability [BHG87] which requires the effects of concurrent transac-
tions in a (distributed) database to be equivalent to a serial execution of
those transactions. Independent of the model, guaranteeing strong con-
sistency comes at a cost. Network communication is slow and protocols
for strong consistency (e.g. consensus algorithms) typically require sev-
eral round trips. As a result, strong consistency models are not suited for
latency-critical applications or massively concurrent applications because
the time that is needed to synchronize replicas is high and affects the
amount of concurrency that can be reached.

2.1.2 Weak Consistency

Weak consistency is a family of consistency models that tolerate tempo-
rary inconsistencies in order to guarantee high availability, even under
network partitions. By relaxing the consistency guarantees, weak con-
sistency models drastically improve scalability and reduce user-observed
latencies. For example, clients can write to the nearest available replica
without having to wait for the other replicas to be updated.

Although early distributed systems were mostly strongly consistent,
some experimented with weak consistency. In 1982, the CAP theorem
was not yet formulated when researchers designed Grapevine [Bir+82], a
distributed system for message delivery, resource location, authentication,
and access control whose primary use case consisted of an improved mail
service. The mail service had to be available even if some Grapevine
servers failed, which resulted in Grapevine being the first widely used
weakly consistent distributed system.

Similarly, Bayou [Ter+95], a distributed storage system for mobile
computing environments, leveraged weak consistency to cope with the
unstable network connections of portable machines. Interestingly, Bayou
provided novel programming abstractions to detect and solve application-
specific consistency issues that arise from concurrent updates.

Nowadays, weak consistency has been adopted by many distributed
systems to improve user experience through offline availability, reduced la-
tencies, etc. Under weak consistency, replicas immediately apply updates
locally and asynchronously propagate the updates to the other replicas.

17

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

However, concurrent updates may conflict and cause replicas to diverge.
At some point, this conflict needs to be addressed in order to reconcile the
replicas. When and how this happens depends on the consistency model
at hand. We review common weak consistency models below:

Eventual Consistency. Eventual consistency is a form of weak con-
sistency that guarantees that in the absence of new writes, eventually,
all reads will return the value of the latest write [Vog09]. By tolerating
temporary inconsistencies, eventual consistency is able to move conflict
resolution off the critical path and reconcile replicas later in the back-
ground. Eventual consistency is often criticized for being vague [VV16]
as it does not specify when replicas converge or how to order operations.
For example, a system that ignores all updates and returns 42 on every
read is considered to be eventually consistent even though it is completely
useless.

Strong Eventual Consistency. Strong Eventual Consistency (SEC)
strengthens eventual consistency with an additional requirement, called
strong convergence, which requires replicas that received the same updates
(possibly in different orders) to be in the same state [Sha+11b]. Thus,
SEC precisely specifies when replicas converge.

SEC is a considerably stronger model than eventual consistency be-
cause the strong convergence property implies that replicas converge to
equivalent states as soon as they observed the same updates. Hence, repli-
cas do not require synchronization in order to converge.

Since SEC is a weak consistency model, replicas can issue updates
concurrently. Concurrent updates have no predefined ordering and repli-
cas may execute them in different orders. Thus, concurrent updates must
commute in order to guarantee strong convergence.

Session Guarantees for Weakly Consistent Data. The aforemen-
tioned weak consistency models focus exclusively on convergence but users
may still face counterintuitive behaviour due to inconsistencies between
replicas. As mentioned earlier, users may write to one replica and read
outdated information from another replica that has not yet observed the
write. This is confusing since users regard the system as a single entity
and are oblivious to the fact that data is replicated.

18

2.1. CONSISTENCY MODELS

To capture the users’ expectations, Terry et al. [Ter+94] propose four
client-centric consistency models, called session guarantees. A session
corresponds to the actions (i.e. reads and writes) performed by a user
of the application. The session guarantees aim at providing meaningful
consistency guarantees from the viewpoint of a user within their session
such that the illusion of a single centralized server is respected1. The four
session guarantees are:

Read Your Writes. After a write, all subsequent reads within the
same session must observe the write. Thus, the application must
ensure that reads reflect previous writes that occurred within the
same session unless they were overwritten by later writes.

Monotonic Reads. Reads do not go back in time within a session.
More precisely, when a read observes a set of writes, all subsequent
reads within that session will observe a superset of those writes.

Writes Follow Reads. All replicas execute writes after the reads
on which they depend. A write W1 may depend on a set of writes
W that were observed by a previous read R1. As a result, write W1
is dependent on all the writes inW due to read R1; thus, all replicas
should execute the writes in W before executing W1.

Monotonic Writes. Writes are executed only after all previous
writes of the same session were executed. This guarantee is only
concerned with prior session writes whereas in Writes Follow Reads
writes may depend on reads that observed writes from other sessions.

Interestingly, all session guarantees, except Read Your Writes, can be
achieved with high availability [Bai+13]. The problem with Read Your
Writes is that users can always write to one replica and read from another
replica that has not yet observed the write. Still, applications do not need
to completely give up on availability to guarantee Read Your Writes. It
suffices for clients to stick to the same replica in order to observe prior
session writes; such a system is said to be sticky available [Bai+13]. Many
systems are already sticky available. For example, users of peer-to-peer
systems read and write to a local replica which trivially guarantees Read

1The session guarantees were originally presented for client-server architectures but
can be generalized to any architecture; replicas do not have to be servers but could also
be peers in a peer-to-peer system.

19

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Your Writes and Monotonic Reads since any write made by a peer will
always be reflected by its local replica.

Causal and Causal+ Consistency. Causal consistency [Aha+95] re-
quires replicas to respect the order of causally-related operations. If an
operation o1 happened before an operation o2 then all replicas should
execute them in that order. As an example, causal consistency is used
by chat applications to ensure that all replicas receive the messages and
their replies in order; concretely, if Bob replies to Alice’s message, then
all users should receive Alice’s message before receiving Bob’s reply. Note
that causal consistency does not prescribe an ordering for concurrent op-
erations. Thus, users of a causally consistent chat application may receive
concurrent messages in different orders.

Causal consistency corresponds to the combination of the four session
guarantees outlined before [BSW04]. Although most session guarantees
are highly available, Read Your Writes is only sticky available. As a result,
causal consistency is also sticky available [Bai+13].

Causal consistency alone is not enough to ensure convergence since
replicas are free to execute concurrent operations in any order. To guar-
antee convergence, a causally consistent system must also ensure that
replicas deterministically solve conflicts between concurrent operations.
Such systems are said to guarantee causal+ consistency.

Other Weak Consistency Models. The weak consistency models de-
scribed above are by no means exhaustive. A plethora of weak consistency
models exist [VV16] but we focused this discussion on the models that are
important for this dissertation.

2.1.3 Hybrid Consistency

The consistency models reviewed so far can be categorized as strongly con-
sistent or weakly consistent and lay at opposite sides of the consistency
spectrum. However, some applications benefit from a hybrid model in
which some writes are weakly consistent while others are strongly consis-
tent. For example, banking applications may require balances to remain
positive. Some operations, such as deposits and transfers, are safe as they
cannot break this invariant. Safe operations can be weakly consistent in

20

2.1. CONSISTENCY MODELS

order to be available and fast. However, some operations, such as with-
drawals, are unsafe because concurrent invocations may render balances
negative. To avoid overdrafts, withdrawals must be strongly consistent.
Naturally, hybrid consistency models aim to minimize the number of oper-
ations that are strongly consistent because they are slow and unavailable
under network partitions [Ter+13].

We now present a number of hybrid consistency models which allow
safe operations to execute under weak consistency and require unsafe oper-
ations to execute under strong consistency. Hybrid consistency models are
often used to ensure state convergence by coordinating non-commutative
operations, and to uphold application-specific invariants by coordinating
unsafe operations.

RedBlue Consistency. RedBlue consistency [Li+12] partitions opera-
tions into strongly consistent (red) operations and weakly consistent (blue)
operations based on a static analysis of the data type. Operations that
do not commute or break invariants are unsafe and thus labeled red, the
remaining operations are safe and thus labeled blue. Blue operations are
fast because they execute locally. Red operations are slow because they
require coordination between the replicas.

In a RedBlue consistent system replicas may execute operations ac-
cording to any serialization that respects causality and totally orders the
red operations. In other words, replicas extend the partial order defined
by causality and agree on an ordering of concurrent red operations. Repli-
cas are free to execute concurrent blue operations in any order since those
commute and do not break invariants. Thus, RedBlue consistency ensures
state convergence and preserves application-specific invariants.

Explicit Consistency. Explicit consistency [Bal+15] is concerned with
maintaining application-specific invariants. A distributed system guaran-
tees explicit consistency if all causal serializations of the operations also
maintain the invariants. Explicit consistency does not prescribe an order-
ing for safe (i.e. invariant-preserving) concurrent operations. It is up to
the programmer to implement some form of conflict handling to ensure
convergence if concurrent operations do not commute (e.g. by relying on
conflict-free replicated data types, cf. Section 2.2.1.1).

21

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Partial Order-Restrictions Consistency. Partial Order-Restrictions
(PoR) consistency [LPR18] takes as input a set of restrictions over pairs
of operations and coordinates only those operations at runtime. Thus,
replicas are free to execute any causal serialization of the operations as
long as they agree on the order of restricted operations.

PoR consistency aims to be a general hybrid consistency model that al-
lows for fine-grained control over which operations are coordinated. Hav-
ing fine-grained control over coordination is important to minimize the
amount of coordination and thus ensure high availability and fast response
times. However, finding a minimal set of restrictions is nontrivial and
error-prone; imposing too few restrictions may lead to runtime anomalies
such as divergence or broken invariants, whereas too many restrictions
considerably degrade performance. Therefore, the authors propose an al-
gorithm for determining a minimal set of restrictions. However, they did
not implement the algorithm but instead manually identified restrictions
for the presented use case.

Many hybrid consistency models can be implemented on top of PoR.
For example, one can implement RedBlue consistency on top of PoR by
introducing a restriction for every pair of red operations.

Observable Atomic Consistency. Observable Atomic Consistency
(OAC) [ZH20] distinguishes between convergent operations and totally-
ordered operations. Convergent operations are expected to commute,
therefore, they are not coordinated and are fast. Totally-ordered oper-
ations are coordinated and are not allowed to execute concurrently with
any other operation (not even convergent operations). It is up to the
application programmer to decide which operations are convergent and
which operations must be totally-ordered. If some replica observes a con-
vergent operation p before a totally-ordered operation u (denoted p ≺ u)
then all replicas must execute p before u, and vice-versa, if u ≺ p at some
replica then all replicas must execute them in that order.

Although OAC resembles RedBlue consistency (convergent operations
are roughly equivalent to blue operations, and totally-ordered operations
are roughly equivalent to red operations), OAC is stronger because it also
imposes an ordering between convergent and totally-ordered operations
whereas RedBlue only requires red operations to be totally ordered. Thus,

22

2.2. PROGRAMMING ABSTRACTIONS FOR REPLICATION

under OAC, only the convergent operations between two totally-ordered
operations are allowed to execute in any order.

2.2 Programming Abstractions for Replication

When dealing with replicated data, strong consistency has long been the
preferred consistency model. Early distributed databases were strongly
consistent and even today most databases support strong consistency (e.g.
Google Cloud Spanner, MongoDB, Riak, etc.). Protocols that implement
strong consistency are general (i.e. data type independent) since they are
concerned only with the order of operations or transactions but not with
the semantics of those. For example, transactional databases often guar-
antee serializability which requires concurrent executions to be equivalent
to a serial execution of those transactions in order to avoid interleaving
anomalies. Thus, databases implement general mechanisms for strong
consistency which frees programmers from consistency issues.

While strong consistency is conceptually simple and can be achieved
by general and well-understood replication protocols, guaranteeing some
form of weak consistency (e.g. eventual consistency) is more difficult.
The added complexity comes from the fact that replicas may execute
updates concurrently (and in different orders) which can lead to conflicts.
Such conflicts are application specific and solving them is best done by
application programmers as they have the necessary domain knowledge.
Recall our flight reservation example from Section 1.1.3, where concurrent
bookings may lead to two or more passengers reserving the same seat. This
conflict can be solved in different ways, for instance by assigning the seat
to the customer with the most expensive ticket, by favoring customers that
are part of the company’s loyalty program, or any other sensible conflict
resolution policy. This example demonstrates that conflict resolution is
application dependent; hence, there are no general replication protocols
for weak consistency. For this reason, conflict detection and resolution is
often left to application developers.

Bayou [Ter+95], a weakly consistent storage system, allowed program-
mers to provide additional dependency checks and merge procedures for
every write to the database. Dependency checks are a mechanism for
detecting application-specific conflicts and merge procedures are used to
solve the detected conflicts.

23

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Despite early systems such as Bayou, highly available databases were
only popularized more recently by Dynamo [DeC+07], Amazon’s highly
available distributed key-value store. Dynamo was designed such that
writes never fail, thereby, moving conflict resolution to the reads. Pro-
grammers can let the store handle conflicts but, as noted by the authors,
the store can apply only simple (application independent) conflict reso-
lution policies such as last writer wins. Therefore, Dynamo also allows
programmers to manually solve conflicts by merging conflicting states.

2.2.1 Replicated Data Types

Since conflict resolution cannot be hidden behind weakly consistent dis-
tributed databases, programmers need to foresee all conflicts that may
arise from concurrent updates and implement appropriate conflict resolu-
tion strategies. Many systems implement ad-hoc approaches to detect and
solve conflicts but this is error-prone and results in brittle systems [ASB15;
KB17; Sha+11b].

To avoid the pitfalls of ad-hoc conflict resolution, researchers proposed
new programming abstractions, called RDTs, that serve as basic building
blocks for the development of highly available distributed systems. RDTs
are reminiscent of sequential data types but abstract the underlying con-
flict resolution algorithm. RDTs thus hide conflict resolution behind the
data type; this is possible since the implementation is aware of the data
type’s semantics. Lately, NoSQL databases - such as Riak KV, Redis,
Akka Distributed Data, and others - are adding support for RDTs.

RDTs can be categorized into two families: traditional RDTs and
invariant-preserving RDTs. Traditional RDTs focus exclusively on state
convergence, whereas invariant-preserving RDTs - sometimes called rich
RDTs - are also concerned with maintaining application-level invariants.

We review traditional RDTs in Section 2.2.1.1 and invariant-preserving
RDTs in Section 2.2.1.2. Then, we provide an overview of these state-
of-the-art RDTs and whether and how they guarantee convergence and
maintain application invariants in Section 2.2.1.3.

2.2.1.1 Traditional Replicated Data Types

More than three decades ago, Operational Transformation (OT) was
proposed as a technique to achieve state convergence in the face of con-

24

2.2. PROGRAMMING ABSTRACTIONS FOR REPLICATION

current operations on replicated data. Several control algorithms for OT
were proposed - dOPT [EG89], aDOPTed [RNG96], GOTO [Sun+98], etc.
- to keep replicated data consistent based on data type-specific Inclusive
Transformation (IT) functions. IT functions modify incoming operations
against previously executed concurrent operations such that the modified
operation preserves the intended effect. From now on, we will refer to
these IT functions as “transformation functions”.

Much work focused on designing transformation functions for collab-
orative text editing [EG89; Imi+03; RNG96; Sun+98; SCF97], but it
has been shown that all of them (even some with mechanized proofs) are
wrong [Imi+03; LL04; Ost+06; Ran+13].

Although most efforts focused on designing transformation functions
for collaborative text editing, the OT approach can also be used to de-
sign other data types such as replicated registers and stacks. In fact,
the resulting data types can be seen as RDTs avant la lettre since the
transformation functions hide conflict resolution behind the data type.

The failure to devise correct transformation functions led researchers
to abandon OT in favor of more principled approaches. Shapiro
et al. [Sha+11b] proposed Conflict-free Replicated Data Types
(CRDTs), a family of RDTs that are carefully designed around math-
ematical properties that ensure conflict freeness. By design, concurrent
updates cannot conflict and thus CRDTs trivially guarantee SEC.

CRDTs can be divided into two groups: state-based and operation-
based CRDTs. State-based CRDTs require the state to form a join semi-
lattice and update methods to result in monotonically non-decreasing
states (i.e. updates can only make the state go up in the lattice but
not down). Replicas periodically propagate their entire state which is
then merged into the other replicas by computing the Least Upper Bound
(LUB) of their states. It has been shown that replicas converge if the
merge function is associative, commutative, and idempotent [Sha+11b].

Operation-based CRDTs execute operations locally and asyn-
chronously propagate them to the other replicas (often times relying on a
communication mechanism that delivers messages in causal order). Still,
concurrent operations arrive in an arbitrary order that may be different
at all replicas. Therefore, operation-based CRDTs require concurrent op-
erations to commute in order to guarantee SEC.

25

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Although the mathematical rules are well established, designing new
CRDTs that obey those rules is difficult, even for experts [Kle22]. There-
fore, several composition techniques have been proposed but none allow
arbitrary compositions for all CRDTs. Lasp [MV15] enables programmers
to combine CRDTs using well-known operations from functional program-
ming, however, every CRDT must be defined in terms of transformations
over existing CRDTs. It is not clear if all CRDTs can be obtained this way
and how the transformations affect performance. JSON CRDTs [KB17] let
programmers define new CRDTs by nesting lists and maps that support
insertions, deletions, and assignments. However, those collections and
their interfaces are restricted and cannot define arbitrary CRDTs. For
example, one cannot define a counter CRDT by using their list CRDT to
count increments and decrements because 1) programmers cannot append
at the end of the list, and 2) the length of the list cannot be queried. Wei-
dner et al. [WMM20] leverage the mathematical properties of semidirect
products to combine CRDTs. However, composing CRDTs using semidi-
rect products is complex because programmers need to define arbitration
orders between the CRDTs’ operations, they also need to transform con-
current operations, and sometimes they even have to modify the original
CRDTs.

Burckhardt et al. [Bur+12] proposed cloud types, a collection of
RDTs that guarantee eventual consistency. In contrast to the original
CRDT model, programmers can define custom data schemas for their
applications by composing cloud integers, cloud arrays, etc. However, the
proposed cloud types have predefined merge semantics. If the application
requires different semantics, programmers are bound to implement new
cloud types and the accompanying merge procedures, which means they
are back into ad-hoc conflict resolution.

To free programmers from having to manually engineer merge func-
tions, Mergeable Replicated Data Types (MRDTs) leverage invert-
ible relational specifications defined by the programmer in order to derive
correct merge functions for inductive data types. Such specifications con-
sist of an abstraction function that transforms the data type to relations
over sets, and a concretization function that maps set relations back into
the data type. Replicas can then be merged automatically by transform-
ing their states to relations over sets, then merging those relations using a

26

2.2. PROGRAMMING ABSTRACTIONS FOR REPLICATION

pre-defined merge function for sets, and finally transforming the merged
set relations back into the data type.

Programmers of MRDTs can, however, not tweak the conflict resolu-
tion semantics as they are hardcoded by the underlying merge semantics
of sets. In addition, programmers need to translate high-level data types
to low-level set relations which is nontrivial.

2.2.1.2 Invariant-Preserving Replicated Data Types

While traditional RDTs guarantee some model of weak consistency, they
do not consider application-level invariants. Operations may maintain
invariants locally but break them when executed concurrently.

Several approaches have been proposed to extend existing RDTs with
mechanisms to maintain application-specific invariants. Sieve [Li+14] lets
programmers extend database schemas with annotations describing the
desired conflict resolution semantics and application-specific invariants.
Sieve analyzes database schemas (using a combination of static analysis
and runtime checks) to detect potential invariant violations and label oper-
ations as red or blue and thus guarantee RedBlue consistency. Internally,
Sieve leverages CRDTs to ensure convergence.

Indigo [Bal+15] lets programmers annotate classes with first-order
logic invariants in Java and requires operations to be annotated with their
effects. The specification is then statically analyzed to detect unsafe oper-
ations, i.e. operations that violate invariants when executed concurrently.
To cope with unsafe operations, programmers can choose between two
strategies: invariant repair and violation avoidance. The former allows
unsafe operations to execute concurrently but requires the conflict resolu-
tion code to be adapted to repair broken invariants. The latter strategy
coordinates unsafe operations such that they cannot execute concurrently
and hence cannot break invariants. In both cases, Indigo guarantees ex-
plicit consistency.

Invariant-Preserving Applications (IPA) [Bal+18] is a static analysis
tool that builds on the invariant repair strategy of Indigo. Like Indigo,
programmers write specifications for RDTs, which are then statically an-
alyzed by the tool to detect unsafe operations. However, IPA can also
suggest source code modifications to make operations invariant preserv-
ing. To this end, it returns an updated specification of the application
comprising the necessary modifications. It is the programmer’s responsi-

27

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

bility to modify the application according to this new specification. Note
that the proposed modifications affect only concurrent operations and thus
do not change the semantics of sequential operations. For example, in a
courseware system a student may enroll for some course while concur-
rently someone deletes the student’s account. In this case, the system
may end up in a state where the student is enrolled in the course but no
longer exists in the system. This breaks referential integrity, a common
database invariant. IPA can suggest a modification of the enroll operation
that first creates an account for the student if the student no longer has
one and only then enrolls the student in the course.

Quelea [SKJ15] is a declarative programming model that features con-
tracts for expressing application-specific consistency properties. Contracts
are first-order logic expressions that describe the set of legal executions
by means of primitive consistency relations. Quelea automatically maps
these contracts to an appropriate consistency level (eventual consistency,
causal consistency, or strong consistency).

Q9 [Kak+18] provides a library of RDTs and uses symbolic execution
to detect invariant violations in weakly consistent applications built atop
those RDTs. To avoid these violations, Q9 selectively strengthens the
consistency guarantees of specific operations to find the weakest model
under which the violations disappear. However, Q9’s symbolic execution
engine considers only a bounded number of concurrent operations.

Hamsaz [HL19] and Hampa [LHL20] statically analyze specifications of
sequential objects provided by the programmer in order to derive coordi-
nation protocols that guarantee state convergence and preserve invariants.
The derived protocols coordinate all non-commutative operations in order
to guarantee state convergence, and coordinate all unsafe method calls in
order to preserve application invariants. Hampa also provides additional
recency guarantees.

2.2.1.3 Overview

Table 2.1 provides an overview of state-of-the-art RDTs and how they
guarantee state convergence and preserve application invariants. The
traditional RDTs (OT, CRDTs, cloud types, MRDTs) exploit different
approaches to guarantee state converge but do not support application-
specific invariants. Indigo, IPA, Sieve, and Q9 leverage CRDTs to en-
sure state convergence and extend them with mechanisms to maintain

28

2.2. PROGRAMMING ABSTRACTIONS FOR REPLICATION

Model State Convergence Application Invariants

OT SEC By transforming
concurrent operations Not supported

CRDTs SEC By design Not supported

Cloud Types EC Using user-defined
merge procedures Not supported

MRDTs SEC Using derived three-way
merge procedures Not supported

Indigo Hybrid By relying on CRDTs Coordinates unsafe ops or
repairs broken invariants

IPA SEC By relying on CRDTs Suggests modifications of
the operations

Sieve Hybrid By relying on CRDTs Coordinates unsafe
operations

Q9 Hybrid By relying on CRDTs
Picks weakest consistency
model that upholds
contract/invariants

Quelea Hybrid
Guaranteed by the
underlying database
(Cassandra)

Picks weakest consistency
model that upholds
contract/invariants

Hamsaz & Hampa Hybrid By coordinating
non-commutative ops

Coordinates unsafe
operations

Table 2.1: Overview of state-of-the-art RDTs.

application-specific invariants. However, those approaches do not help
build the CRDTs in the first place. Thus, they do not simplify the devel-
opment of custom RDTs. Hamsaz and Hampa support the development of
custom RDTs by synthesizing the RDT from a specification of the sequen-
tial object and its invariants. However, these specifications are expressed
using low-level formalisms (often first-order logic) which makes them diffi-
cult to write and error-prone. This is problematic since correctness of the
synthesized RDT depends on the input specification. Similarly, Quelea
allows programmers to associate contracts describing application-specific
invariants to the objects of an eventually consistent data store, but re-
quires contracts to be written in a separate contract language that uses
low-level consistency relations such as visibility and session order.

As identified in our research vision (Section 1.2), we believe that RDT
solutions must 1) replicate existing data types with application-specific
logic instead of designing custom RDTs for each use case, 2) be correct
out-of-the-box, and 3) be integrated in a suitable programming language

29

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

abstraction. However, none of the aforementioned approaches adhere to all
three principles. OT, CRDTs, cloud types, and MRDTs infringe the first
principle because they require dedicated implementations for each data
type. The remaining approaches infringe the second and third principles
because correctness depends on a separate specification that is written
in some low-level formalism. For example, Indigo and IPA require pro-
grammers to annotate Java code with first-order logic postconditions and
invariants written as plain strings. Similarly, Sieve, Quelea, Hamsaz, and
Hampa require formal specifications written in a separate language. Q9
is the only approach that analyzes high-level RDTs instead of low-level
specifications and thus does not infringe the third principle.

2.3 Distributed Systems Verification

We explained that programmers of distributed systems leverage RDTs to
avoid ad-hoc conflict resolution which is hard and error-prone [ASB15;
KB17; Sha+11b]. Instead, RDTs hide these conflict resolution mecha-
nisms behind the data type. Thus, RDTs are exclusively designed by ex-
perts and are then picked up by application programmers who implement
those designs and sometimes even modify them to fit their application.

As identified in the problem statement (Section 1.1.3), the current
workflow for the development of RDTs is not bulletproof. Experts may for
instance miss subtle corner cases, or programmers may wrongly implement
RDT specifications as they do not understand the subtleties underlying
those designs. At runtime, such errors may lead to unintended behavior
(e.g. divergence), called bugs. To detect bugs it is common practice among
programmers to write tests that check that the system and its components
behave as expected. While tests are relatively easy to write, they do not
guarantee to uncover all bugs as they may for instance miss problematic
inputs. In fact, bugs in RDTs manifest because the RDT designer or
implementer missed a certain corner case, often a special combination of
sequential and concurrent operations. However, if they did not consider
that corner case during the design or implementation, they are unlikely
to consider it during testing, and thus will not detect the bug.

To ensure that programs are bug-free, they can be formally verified;
that is, they can be proven to guarantee certain properties. For example,
programmers may write pen-and-paper proofs to manually verify that

30

2.3. DISTRIBUTED SYSTEMS VERIFICATION

an RDT converges or upholds a certain invariant. Although most com-
puter scientists are somewhat familiar with paper proofs, such proofs are
still subject to reasoning flaws that render them obsolete. To avoid rea-
soning flaws, programmers can mechanically verify their programs and
algorithms. For example, programmers can formalize the RDT in a ver-
ification language and prove the necessary consistency properties. The
resulting proofs are then checked by the underlying language to ensure
that they do not contain (mathematical) reasoning flaws. For this reason,
mechanical proofs are more convincing, but they require significant pro-
grammer intervention which is time-consuming and reserved to verification
experts [LM10; OHe18].

In the remainder of this section, we review state-of-the-art verifica-
tion approaches for RDTs. Before we delve into verification of RDTs, we
review general-purpose verification languages, which can also be used to
verify RDTs. Then, we turn our attention to the verification of RDTs and
invariants for distributed systems in Sections 2.3.2 and 2.3.3, respectively.

2.3.1 Verification Languages

Verification tools, languages, and techniques can be classified into three
categories: interactive, auto-active, and automated [LM10]. Interactive
verification includes proof assistants like Coq and Isabelle/HOL in which
programmers define theorems and prove them manually using proof tac-
tics. Although some automation tactics exist, proving complex theorems
requires considerable manual proof efforts since every step of the proof
has to be written explicitly and seemingly trivial properties have to be
proven explicitly in turn. A recent example is Liquid Haskell [Vaz+14] in
which programmers specify correctness properties using refinement types
and write proofs using plain Haskell functions. Proofs can be assisted or
in some cases even fully discharged by the underlying Satisfiability Mod-
ulo Theories (SMT) solver. However, advanced proofs require significant
manual proof efforts because programmers need to manually prove the
parts where the SMT solver fails. For example, mainstream SMT solvers
do not apply inductive reasoning, a common proof technique. Therefore,
programmers need to manually write inductive proofs in Liquid Haskell.

Auto-active verification aims to automate the verification process such
that programmers do not have to manually write proofs, but requires ad-
ditional information from the programmer. For example, languages like

31

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Dafny [Lei10] and Spec# [BLS05] verify programs for runtime errors and
user-defined invariants but require programmers to annotate the code with
preconditions, postconditions, loop invariants, etc. These annotations es-
sentially form a specification of the code which the verification language
uses to verify the program by leveraging the automated verification capa-
bilities of Intermediate Verification Languages (IVLs).

Finally, mainstream automated verification techniques consist of IVLs
and SMT solvers. IVLs like Boogie [Bar+06] and Why3 [FP13] automate
the proof task by generating Verification Conditions (VCs) from the source
code and discharging them using one or more SMT solvers. However, fully
automated verification of programs written in IVLs may fail due to the
way how they are encoded in SMT solvers; e.g. verifying properties about
recursive functions will fail due to the need for inductive reasoning. Sim-
ilarly, verification of programs written directly in SMT may also fail due
to the use of undecidable theories. Instead of using IVLs or SMT solvers
directly, programmers use auto-active verification languages, which, inter-
nally, translate the program to IVLs to verify the VCs.

The aforementioned verification languages are general such that pro-
grammers can use them to verify arbitrary properties of any program. As
a result, these languages require significant programmer intervention be-
cause they cannot automate the verification of arbitrary language features.
For example, imperative programs may mutate variables in a loop to com-
pute the sum of an array of integers. One may use Dafny to verify that
the loop does not index the array out of bounds, but this requires them
to specify an appropriate loop invariant. Otherwise, Dafny is not able to
handle the loop. Even automated verification tools such as SMT solvers
may fail to verify certain programs as not all logic theories supported by
those solvers are decidable.

2.3.2 Verifying Correctness of Replicated Data Types

We now review existing approaches that verify the correctness properties
of RDTs. In particular, Section 2.3.2.1 focuses on verifying convergence
properties for OT, and Section 2.3.2.2 focuses on verifying SEC for well-
known RDTs such as CRDTs.

32

2.3. DISTRIBUTED SYSTEMS VERIFICATION

2.3.2.1 Verifying Convergence for Operational Transformation

We explained that OT transforms incoming operations against previously
executed concurrent operations. Operations are functions from state to
state: Op : Σ→ Σ and are transformed using a type-specific transforma-
tion function T : Op×Op→ Op. Thus, T (o1, o2) denotes the transforma-
tion of o1 against a previously executed concurrent operation o2.

Ressel et al. [RNG96] proved that replicas eventually converge if the
IT function satisfies two properties. The first property, TP1 , requires
concurrent operations oi and oj to commute after transforming them:

∀oi, oj ∈ Op,∀s ∈ Σ : T (oj , oi)(oi(s)) = T (oi, oj)(oj(s))

The second property, TP2 , requires that the transformation of incoming
operations ok does not depend on the order in which previously observed
operations oi and oj are transformed:

∀oi, oj , ok ∈ Op,∀s ∈ Σ : T (T (ok, oi), T (oj , oi)) = T (T (ok, oj), T (oi, oj))

Unfortunately, the original transformation functions proposed by Ellis
and Gibbs [EG89] do not satisfy the aforementioned properties [Sun+98;
RNG96; SCF98]. Over the years, several transformation functions were
proposed [RNG96; Sun+98; SCF97] to address the problems of prior func-
tions. Imine et al. [Imi+03] used SPIKE [BR95], an automated theorem
prover, to verify TP1 and TP2 for all these transformation functions, and
found counterexamples for each of them, except for the transformation
functions of Suleiman et al. [SCF97]. They then proposed a simplified set
of transformation functions but Li and Li [LL04] later found a manual
counterexample that shows that the transformation functions of Imine et
al. [Imi+03] and Suleiman et al. [SCF97] do not satisfy TP2. In turn, Li
and Li [LL04] proposed their own transformation functions but Oster et
al. [Ost+06] found a counterexample with the help of SPIKE.

2.3.2.2 Verifying SEC for Replicated Data Types

With the widespread of strong eventually consistent RDTs, such as CRDTs
and MRDTs, several verification techniques have been proposed. Some
are used in paper proofs, while others are mechanised and fall into our
earlier classification of interactive, auto-active, and automated verification
techniques. We discuss several mechanised RDT verification approaches

33

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

that fall into the categories of interactive and automated techniques, but
we are not aware of any auto-active verification techniques for RDTs.

Formal techniques for paper proofs. [Bur+14] proposes a formal
framework to specify and manually verify RDTs using replication-aware
simulations in paper proofs. [Att+16] uses a variation on this framework
to provide precise specifications of replicated lists - which form the basis
of collaborative text editing - and prove the correctness of an existing text
editing protocol on paper. [LF21] proposes a new correctness criterion for
CRDTs that extends SEC with functional correctness and enables manual
verification of CRDT implementations and client programs. Their focus
is mainly on functional correctness and they provide paper proofs. [JR18]
introduces a notion of validity for RDTs and manually proves validity
for some CRDTs. Although these formalisms are useful to reason about
RDTs, we believe that RDTs should be verified mechanically to avoid
subtle reasoning flaws from creeping into the proofs.

Interactive verification techniques. [Gom+17] and [ZBP14] pro-
pose formal frameworks in the Isabelle/HOL theorem prover to interac-
tively verify SEC for CRDT implementations. [Liu+20] extends Liquid
Haskell [Vaz+14] with typeclass refinements which are used to prove SEC
for several CRDT implementations. While simple proofs can be discharged
automatically by the underlying SMT solver, advanced CRDTs often can-
not be verified automatically. This requires programmers to manually
write proofs using Liquid Haskell’s theorem proving facilities. [Nie+22]
developed libraries to implement and verify operation-based CRDTs in
separation logic and used them to verify a number of operation-based
CRDTs. Their approach requires programmers to write Coq specifica-
tions atop the provided libraries and manually prove correctness.

Automated verification techniques. [Wan+19] proposes replication-
aware linearizability, a criterion that enables sequential reasoning to ver-
ify the correctness of CRDT implementations. The authors manually
encoded the CRDTs in the Boogie IVL in order to get automated cor-
rectness proofs. Those encodings are, however, non-trivial and differ from
real-world CRDT implementations. [NJ19] developed a proof rule that is
parametrized by the consistency model and automatically checks conver-

34

2.3. DISTRIBUTED SYSTEMS VERIFICATION

gence for CRDTs. The framework operates on a first-order logic specifi-
cation of the CRDT but due to imprecisions the framework may reject
correct CRDTs.

2.3.3 Verifying Invariants

Researchers are also actively devising formal techniques to reason about
data integrity invariants in weakly consistent distributed systems and ver-
ify them. Again, we classify mechanised verification techniques as inter-
active, auto-active, or automated. While some of these techniques are
auto-active or automated, we are not aware of interactive techniques to
verify invariants in weakly consistent distributed systems.

Auto-active verification of invariants. Repliss [ZBP20] is an auto-
active verification tool to verify highly available programs written in their
Domain-Specific Language (DSL). Programmers write additional specifi-
cations defining functional properties using invariants that refer to the
state and to the history of operations. Using symbolic execution, these
properties are verified per operation, by assuming that the invariants hold
in the initial state and then proving that they also hold after applying
the operation. However, if the provided invariants are too weak the tool
may fail to verify the properties for the post-state, in which case the pro-
grammer must provide stronger invariants. The authors used Repliss to
verify invariants such as referential integrity for a weakly consistent chat
application built atop CRDTs.

Automated verification of invariants. Invariant confluence [Bai+14]
is a correctness criterion for coordination avoidance. In essence, invariant
confluent operations maintain application invariants even when executed
concurrently. Thus, invariant confluent operations are safe and do not
require coordination. In follow-up work, [WH18] devise a decision proce-
dure for invariant confluence that can be checked automatically by their
interactive system written in Python. Programmers can write specifica-
tions of objects and their invariants in a DSL in Python and interact with
the decision procedure to check invariant confluence. Internally, the deci-
sion procedure compiles the object and its invariants into a formula whose
satisfiability is checked using the Z3 [MB08] SMT solver. Soteria [NPS20]

35

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

automatically verifies program invariants for state-based replicated ob-
jects based on the invariant confluence criterion. Soteria is written in the
Boogie [Bar+06] IVL and requires programmers to provide a specification
of the object written in Boogie together with some additional domain-
specific annotations. Similarly, CISE [Got+16] proposes an automated
proof rule to check if a given consistency model maintains a particular
data integrity invariant. To this end, programmers write low-level SMT
specifications for the data type operations and invariants. The tool then
generates the necessary proof obligations and checks them using Z3. The
aforementioned approaches focus on data integrity invariants and assume
that the system guarantees convergence.

2.3.4 Overview

We reviewed techniques to verify RDTs and invariants in weakly consistent
distributed systems. Some formal techniques are used in paper proofs
while others are mechanised. Although formalisms for paper proofs are
useful to reason about RDTs, they are prone to subtle reasoning flaws.
Therefore, we argue that verification techniques should be mechanised.

Tool Category SEC Inv Input

[Gom+17] interactive 3
Implementation and proofs in
Isabelle/HOL

[ZBP14] interactive 3
Specifications and proofs in
Isabelle/HOL

[Liu+20] interactive 3
Refinement types and proofs in Liquid
Haskell

[Nie+22] interactive 3 Specifications and proofs in Coq
Repliss [ZBP20] auto-active 3 Specifications written in DSL
RA linearizabil-
ity [Wan+19] automatic 3 Specifications written in Boogie

[NJ19] automatic 3 Specifications in first-order logic
[WH18] automatic 3 Specifications written in Python DSL
Soteria [NPS20] automatic 3 Specifications written in Boogie
CISE [Got+16] automatic 3 Specifications written in SMT

Table 2.2: Overview of mechanised verification techniques for RDTs.
Thicks indicate if the technique has been applied to verify SEC or
application-specific invariants.

36

2.4. CONCLUSION

Table 2.2 provides an overview of the mechanised verification ap-
proaches discussed in this section. The discussed interactive tools are
integrated in proof assistants and were used to manually verify SEC for a
number of CRDTs. However, writing interactive proofs requires advanced
knowledge of proof assistants and is very time-consuming. We discussed
two automated approaches to verify SEC for CRDTs but they operate
on low-level specifications that are disconnected from actual implemen-
tations. Similarly, auto-active and automated approaches have been pro-
posed for verifying application-specific invariants in weakly consistent dis-
tributed systems but all of them operate on disconnected specifications.

We conclude that verification of RDTs is gaining a lot of traction, but
there is still no approach that can derive correctness proofs automatically
for high-level RDT implementations. All approaches require manual proof
efforts or operate on a disconnected specification. In order for verification
approaches to be effective, we argue that they should be automated and
integrated into high-level programming languages such that programmers
can verify RDT implementations directly without having to go through
an additional verification step in a separate language.

2.4 Conclusion

This chapter reviewed the state of the art in distributed systems and
started with an overview of data consistency models and their guarantees.
We then introduced RDTs and categorized them into traditional RDTs
that only guarantee state convergence, and invariant-preserving or rich
RDTs that also maintain application invariants. Afterward, we reviewed
formal verification techniques and how they are applied to distributed
systems, in particular to RDTs and program invariants.

Although distributed systems and formal verification are often re-
garded as disconnected, they are closely related. In fact, formal verifi-
cation should be applied during the development of distributed systems
to verify key properties such as convergence, invariant preservation, etc.
However, these two fields often operate on different levels of abstraction
and require different skills, which leads to thinking they are disconnected.
For example, distributed systems are implemented in mainstream lan-
guages (C++, Java, Erlang, Go, etc.) whereas formal verification often con-
sists of abstract specifications in specialized verification languages (Coq,

37

CHAPTER 2. SOTA IN GEO-REPLICATED SYSTEMS

Isabelle, etc.) that do not resemble traditional implementations. The
difference in abstraction level blurs the connection between those fields.

In this dissertation, we unify both fields by enabling programmers
to build distributed systems and formally verify them, without requiring
expertise in verification. We first present principled approaches for the
development of custom RDTs that support application invariants and are
correct out-of-the-box. Afterward, we integrate formal verification into a
high-level programming language such that the implementation and veri-
fication of RDTs both operate on the level of executable implementations
which feels familiar to programmers.

38

Chapter 3

From Sequential to
Replicated Data Types

As explained in Section 1.1, distributed systems replicate data under weak
consistency to ensure high availability and low latencies, and to improve
the system’s overall scalability and fault tolerance. However, program-
ming under weak consistency is difficult due to conflicts that arise from
concurrent updates. To avoid manual conflict resolution, programmers
rely on RDTs when building collaborative applications.

Unfortunately, the literature proposes only a limited portfolio of RDTs
exhibiting hardcoded conflict resolution semantics. When that portfolio
falls short, programmers can resort to two solutions. One is to fall back to
manual conflict resolution which requires programmers to completely re-
think their data structures. This cannot be reasonably expected from pro-
grammers as even experts make mistakes when designing basic RDTs such
as maps [Kle22]. Alternatively, programmers can try to compose exist-
ing RDTs, but, as explained in Section 2.2.1.1, current techniques [MV15;
KB17; WMM20] do not support arbitrary compositions.

In this chapter, we develop a new and radically different programming
abstraction that allows programmers to extend sequential data types with
application-specific information in order to derive custom RDTs. Our ap-
proach is called Strong Eventually Consistent Replicated Object (SECRO)
and results in a novel family of RDTs that guarantee SEC by computing
a conflict-free serialization of the operations. Programmers can tailor the
semantics of SECROs by restricting the set of valid serializations through

39

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

concurrent pre and postconditions defined over the data type’s operations.
Our approach embraces the idea that conflict resolution depends on the
semantics of the application [Ter+95].

The remainder of this chapter is organised as follows. First, we discuss
several possibilities to guarantee state convergence without coordination
between replicas, in Section 3.1. Second, we define SECROs in Section 3.2,
use it to build a collaborative text editor, and discuss its replication pro-
tocol in depth. Third, we evaluate our approach with regard to memory
consumption and latency of operations, in Section 3.3. Finally, we com-
pare our approach to related work and conclude.

3.1 State Convergence Without Coordination

As explained in Section 2.1.2, SEC requires replicas that received the
same operations to be in equivalent states. This implies that replicas
solve conflicts independently and converge without coordination.

There are two ways to achieve convergence without coordination. The
first consists of solving the conflicts that arise when concurrent operations
are executed in different orders by the replicas. By solving these conflicts,
concurrent operations are made commutative and the RDT effectively con-
verges independently of the order in which concurrent operations are ex-
ecuted. This approach corresponds to what most RDT families do (cloud
types, CRDTs, etc.) but puts additional burden on the RDT designers
because they must identify all possible conflicts and tweak the data type
implementation such that replicas deterministically solve them.

The second approach consists of imposing a total order on concurrent
operations such that all replicas execute concurrent operations in the same
order. As a result, concurrent operations do not need to commute. When
rollbacks are allowed, replicas can reorder already executed operations to
achieve this total order without coordination. In contrast to the first ap-
proach, it is possible to devise a general replication protocol that serializes
concurrent operations according to a total order and thus works on arbi-
trary data types. In fact, IceCube [Ker+01] leverages this idea to build a
general-purpose reconciliation engine for diverged replicas (cf. Section 3.4
for a more detailed discussion).

The SECRO approach presented in this chapter also explores the sec-
ond option; its replication protocol ensures that all replicas execute oper-

40

3.2. STRONG EVENTUALLY CONSISTENT REPLICATED
OBJECTS (SECROS)

ations according to a total order that 1) respects causality between oper-
ations, and 2) respects application-specific invariants defined by the pro-
grammer. Central to SECROs is the idea of employing application-specific
information to restrict the set of valid serializations to only those that ex-
hibit the desired concurrency semantics. The resulting approach is general
and automatically derives custom RDTs from sequential data types.

In the next section, we define the SECRO data type, demonstrate its
use through the implementation of a collaborative text editor, and present
the underlying replication protocol that serializes operations.

3.2 Strong Eventually Consistent Replicated
Objects (SECROs)

A SECRO is an object representing a data type that can be replicated to
a group of devices. Like objects in Object-Oriented Programming (OOP),
SECROs contain state in the form of fields, and behaviour in the form of
methods. These methods form the SECRO’s public interface and can be
categorized into accessors (i.e. query methods) andmutators (i.e. methods
that update the internal state).

Mutators can have associated state validators which define the data
type’s behaviour in the event of concurrent operations. State validators
restrict the set of valid operation serializations and come in two forms:

Preconditions. A predicate that must be true before its associated op-
eration can be executed. If the predicate is false, the operation is
aborted and this specific serialization of the operations is invalidated.

Postconditions. A predicate that must hold after its associated opera-
tion and all concurrent operations executed. Postconditions verify
the state that results from a group of concurrent, potentially con-
flicting, operations. If the postcondition of an operation is false it
invalidates the entire serialization which will then be discarded.

SECRO replicas execute operations locally and propagate them asyn-
chronously. When receiving an operation, replicas compute the set of all
operations that are directly or transitively concurrent to the received op-
eration (because those may conflict) and search for a valid serialization

41

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

of those operations. A serialization is valid if it respects the causality of
operations1 and passes the state validators described above.

3.2.1 Use Case: A Collaborative Text Editor

We now demonstrate how to build RDTs using SECROs by means of
a real-world example. All code snippets are in CScript [De +20], our
JavaScript extension for distributed programming that features built-in
support for data replication and embodies our implementation of SECROs.

Consider the case of a collaborative text editor that organizes text
documents as a balanced tree of characters in order to ensure logarithmic
time insertions and deletions. Documents are replicated and support in-
sertions and deletions of characters at specification positions in the text.
To ensure good user experience and offline availability, the editor should
be eventually consistent. However, building such a text editor is challeng-
ing because most tree RDTs are not balanced or require coordination to
rebalance (e.g. [Néd+13]). Moreover, it does not seem possible to effi-
ciently implement a balanced tree RDT by composing existing RDTs such
as lists and maps. Instead, we will use SECROs to turn an existing AVL
tree data type into a replicated text editor.

Listing 3.1 shows the structure of the replicated Document which ex-
tends the SECRO class (Line 1). Internally, the Document class has one field,
called _tree, which holds a balanced tree of characters (Lines 2 to 4). We
did not implement our own tree data structure but instead use an existing
AVL tree data structure provided by the Closure library2 which handles
insertions and deletions in the tree as well as rebalancing the tree for us.

The Document SECRO defines three accessors (containsId,
generateId and indexOf) and two mutators (insertAfter and delete).
containsId returns a boolean that indicates the presence or absence of
a certain identifier in the document tree. generateId uses a boundary
allocation strategy [Néd+13] to compute stable identifiers based on the ref-
erence identifiers. This ensures that the identifiers reflect the position in
the document and do not change throughout the lifetime of the document
(see Appendix A for a detailed explanation). indexOf returns the index of

1Since concurrency is not a transitive relation some operations in the set may exhibit
causal relations which must be respected.

2https://developers.google.com/closure/library/

42

https://developers.google.com/closure/library/

3.2. SECROS

Listing 3.1: Structure of the text editor.

1 class Document extends SECRO {
2 constructor (tree = new AvlTree ((c1 ,c2) => c1.id -c2.id)){
3 this . _tree = tree;
4 }
5 @accessor
6 containsId (id) {
7 const dummyChar = {char: ’’, id: id };
8 return this . _tree . contains (dummyChar);
9 }

10 @accessor
11 generateId (prev) { /* see Appendix A */ }
12 @accessor
13 indexOf (char) {
14 return this . _tree . indexOf (char);
15 }
16 // operations to manipulate the tree
17 insertAfter (id , char) { /* see Listing 3.2 */ }
18 delete (id) { /* see Listing 3.3 */ }
19 // State validators
20 pre insertAfter (doc , args) { /* see Listing 3.2 */ }
21 post insertAfter (ogDoc , doc , args , newChar) {
22 /* see Listing 3.2 */
23 }
24 post delete (ogDoc , doc , args , res) {/* see Listing 3.3 */}
25 }

a character in the document tree3. Note that the accessors are side-effect
free and are annotated with @accessor, otherwise, CScript treats them as
mutators. The insertAfter mutator inserts a new character char after
an existing character identified by id (called the reference character). The
delete mutator deletes the character identified by the given id.

Listing 3.2 shows the implementation of the insertAfter mutator.
The mutator generates a new stable identifier for the character based on
the identifier of the reference character (Line 2). The character is then
tagged with this new identifier (Line 3). Finally, the tagged character is
inserted in the tree and returned from the mutator (Lines 4 and 5).

The insertAfter operation has two state validators:

A precondition (Lines 7 to 10) that checks that either the reference
character is null (in order to prepend a character to the document)
or it exists in the document tree (Line 9). This precondition ensures
that if a concurrent delete removes the reference character, the

3All characters in the tree are unique because they are tagged with unique identifiers.

43

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

Listing 3.2: Inserting a character in a tree-based text document.

1 insertAfter (id , char) {
2 const newId = this . generateId (id),
3 newChar = new Character (char , newId);
4 this . _tree .add(newChar);
5 return newChar ;
6 }
7 pre insertAfter (doc , args) {
8 const [id , char] = args;
9 return id === null || doc. containsId (id);

10 }
11 post insertAfter (originalDoc , newDoc , args , newChar) {
12 const [id , char] = args ,
13 refChar = {char: " dummy ", id: id };
14 if (id === null) // we prepended ‘newChar ‘ to the document
15 return doc. _tree . contains (newChar);
16 else // ‘newChar ‘ must occur after ‘refChar ‘
17 // if ‘refChar ‘ was deleted , ‘indexOf ‘ will return -1
18 return doc. indexOf (refChar) < doc. indexOf (newChar);
19 }

replica will first insert this character before deleting the reference
character. Preconditions have the same name as their associated
mutator and take as parameters the object’s current state followed
by an array containing the arguments of the call. In this case, args
is an array containing two values: the id and char that are passed
to the call of insertAfter (Line 8).

A postcondition (Lines 11 to 19) that checks that the newly added char-
acter occurs at the correct position in the resulting tree, i.e. after
the reference character that is identified by id. According to this
postcondition, any interleaving of concurrent character insertions is
valid, e.g. two users may concurrently write “foo” and “bar” result-
ing in one of: “foobar”,“fboaor”, etc. If the programmer only wants
to allow the interleavings “foobar” and “barfoo” the SECRO must
operate on the granularity of words instead of characters. Note that
postconditions in CScript take 4 arguments: 1) the object’s state
before the call to the mutator, 2) the state that results from apply-
ing the mutator, 3) an array with the arguments of the call, and 4)
the mutator’s return value (newChar in this case).

44

3.2. SECROS

Listing 3.3: Deleting a character from a tree-based text document.

1 delete (id) {
2 return this . _tree . remove (id);
3 }
4 post delete (originalDoc , doc , args , res) {
5 const [id] = args;
6 return !doc. containsId (id);
7 }

Listing 3.3 shows the implementation of the delete mutator and its
associated postcondition. Lines 1 to 3 delete a character by removing
it from the underlying AVL tree using the character’s unique identifier.
The postcondition ensures that the character no longer occurs in the tree
(Lines 4 to 7).

3.2.2 Replication Protocol

As exemplified by the collaborative text editor, SECROs extend sequential
data types with state validators in order to get an RDT that guarantees
SEC and maintains application-specific invariants. To provide these guar-
antees SECROs implement a dedicated optimistic replication protocol.

Every replica runs the SECRO protocol and propagates update op-
erations asynchronously to the other replicas. In contrast to CRDTs,
the operations of a SECRO do not necessarily commute. Therefore, the
replication protocol totally orders the operations at all replicas without
requiring coordination between them. This order may not violate any of
the operations’ pre or postconditions.

Intuitively, replicas maintain their initial state and a sequence of oper-
ations called the operation history. Each time a replica receives an opera-
tion, it is added to the replica’s history. This may require reordering parts
of the history which boils down to finding an ordering of the operations
that fulfils two requirements. First, the order must respect the causality
of operations. Second, applying all the operations in the given order may
not violate any of the state validators. An ordering that adheres to these
requirements is called a valid execution. As soon as a valid execution is
found each replica resets its state to the initial one and executes the op-
erations in order. Note that replicas must deterministically reorder the

45

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

history such that replicas that received the same operations find the same
valid execution. How this is done will be explained later.

The existence of a valid execution cannot be guaranteed. For example,
pre and postconditions may contradict. It is the programmer’s responsi-
bility to provide correct pre and postconditions.

The replication protocol provides the following guarantees:

1. Eventually, all replicas converge towards the same valid execution
(i.e. eventual consistency).

2. Replicas that received the same updates have identical operation
histories (i.e. strong convergence).

3. Replicas eventually perform the operations of a valid execution if
one exists, or issue an error if none exists.

The operation histories of replicas may grow unboundedly as they
perform operations. In order to alleviate this issue replicas periodically
commit their state. To this end, replicas maintain a version number.
Whenever a replica commits, it clears its operation history and incre-
ments its version number. The replication protocol then notifies all other
replicas of this commit, which adopt the committed state and also empty
their operation history. From that point on, all incoming operations that
apply to a previous version number will be ignored. As we will explain
later, commits commute with all operations (including other commits)
and thus do not require coordination between the replicas which ensures
high availability. However, commits may cause concurrent operations to
be dropped to keep the history bounded.

3.2.2.1 Algorithm

We now detail the algorithm behind the SECRO replication protocol. The
algorithm makes the following assumptions:

• Operations are propagated using causal order broadcasting, i.e. a
communication medium that delivers messages in an order that is
consistent with the happened-before relation [Lam78]. Still, concur-
rent operations may arrive in arbitrary orders at the replicas.

• Nodes in the network may contain any number of replicas.

46

3.2. SECROS

• Nodes maintain vector clocks to timestamp the operations of a
replica.

• Nodes generate globally unique identifiers.

• Reading the state of a replica happens side-effect free and mutators
solely affect the replica’s state (i.e. the side effects are confined to
the replica itself).

• Eventually all messages are delivered, i.e. reliable communication:
no message loss nor duplication (e.g., TCP/IP).

• There are no byzantine failures, i.e. no malicious nodes.

A replica r is a tuple r = (vi , s0 , si , h, idc) consisting of the replica’s
version number vi , its initial state s0 , its current state si , its operation
history h, and the id of the latest commit operation idc. A mutator m
is represented as a tuple m = (o, p, a) consisting of the update operation
o, precondition p, and postcondition a. The operation is a function that
takes the current state, executes the operation, and returns the updated
state. Similarly, the precondition and postcondition are functions that
take the current state and return a boolean that indicates whether or not
the precondition, respectively, the postcondition holds. We denote that a
mutation m1 happened before m2 using m1 ≺ m2 . Similarly, we denote
that two mutations happened concurrently using m1 ‖m2 . Both relations
are based on the clocks carried by the mutators [Jua+16].

We now discuss in detail the three kinds of operations that are possible
on replicas: reading, mutating, and committing state.

1. Reading Replicas Reading the value of a replica (vi , s0 , si , h, idc)
simply returns its latest local state si .

2. Mutating Replicas When a mutator m = (o, p, a) is applied to a
replica a mutate message is broadcast to all replicas4. Such a mes-
sage is an extension of the mutator (o, p, a, c, id) which additionally
contains a logical timestamp c and a globally unique identifier id.

As explained before, operations on SECROs do not need to commute.
Operations are timestamped with logical clocks which exhibit a partial

4In practice, we do not send the o, p, and a functions but only the name of the
mutator and the arguments.

47

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

order defined by causality. All replicas run Algorithm 1 which ensures
that they execute operations according to some total order that extends
the partial order and respects the operations’ state validators.

Algorithm 1 starts when a replica receives a mutate message. The
algorithm consists of two parts. First, it adds the mutate message to the
operation history, sorts the history according to the >> total order, and
then, generates all serializations that respect causality (see Lines 1 and 2).
We say that m1 = (o1 , p1 , a1 , c1 , id1) >> m2 = (o2 , p2 , a2 , c2 , id2) iff
c1 � c2 ∨ (c1 ‖ c2 ∧ id1 > id2). The generated serializations are all the
permutations of h′ that respect the causal relations between the opera-
tions. Since replicas use the same deterministic algorithm to compute
causal permutations and start from the same sorted operation history, the
resulting algorithm is deterministic. This ensures that all replicas generate
the same sequence of permutations.

Second, the algorithm searches for the first valid permutation. In other
words, for each operation within such a permutation the algorithm checks
that the preconditions (Lines 9 to 12) and postconditions (Lines 13 to
15) hold. Remember that postconditions are checked only after all concur-
rent operations executed since they happened independently (e.g. during
a network partition) and may thus conflict. For this reason, Line 8 com-
putes the transitive closure of concurrent operations5 for every operation
in the linear extension. This transitive closure corresponds to the set of
operations that could affect each other and thus may introduce conflicts.

Even though concurrency is not transitive, we consider operations that
are not directly concurrent. To understand why this is important, consider
a replica r1 that executes operation o1 followed by o2 (o1 ≺ o2) while
concurrently replica r2 executes operation o3 (o3 ‖ o1 ∧ o3 ‖ o2). Since o3
may affect both o1 and o2, the algorithm needs to take into account all
three operations. This corresponds to the transitive closure {o1, o2, o3}.

Finally, the algorithm returns the replica’s updated state as soon as a
valid execution is found, otherwise, it throws an exception.

3. Committing Replicas A commit operation clears the replica’s op-
eration history h, increments the replica’s version and updates the
initial state s0 with the replica’s current state si . Every commit has

5The transitive closure of a mutate message m with respect to an operation history
h is denoted TC(m,h) and is the set of all operations that are directly or transitively
concurrent with m. A formal definition is provided in Appendix B.

48

3.2. SECROS

Algorithm 1 Handling mutate messages.
arguments: A mutate message m = (o, p, a, c, id), a replica = (vi , s0 , si , h, idc)
1: h′ = h ∪ {m}
2: for ops ∈ CausalPermutations(sort>>(h′)) do
3: len = |ops|
4: s′i = s0
5: pre = 0
6: post = 0
7: for m ∈ ops do
8: concurrentClosure = TransitiveClosure(m, h′) ∪ {m}
9: for (o, p, a, c, id) ∈ concurrentClosure do

10: if p(s′i) then
11: pre += 1
12: s′i = o(s′i)
13: for (o, p, a, c, id) ∈ concurrentClosure do
14: if a(s′i) then
15: post += 1
16: ops = ops \ concurrentClosure
17: if pre == len ∧ post == len then
18: return (vi , s0 , s′i , h′, idc)
19: throw NoSolutionException

a unique identifier in order to deterministically break ties in case of
concurrent commits. By periodically committing state, replicas can
avoid unbounded growth of their operation history, but operations
concurrent with the commit will be discarded.

When a replica is committed a commit message is broadcast to all
replicas (including the committed one). This message is a quadruple
(si , vi , clock, id) containing the committed state, the replica’s version num-
ber, the current logical clock time, and a unique id.

Algorithm 2 Handling commit messages.
arguments: A commit message = (sc, vc, clock, id), a replica = (vi , s0 , si , h, idc)
1: if vc = vi then
2: return (vi + 1 , sc, sc, ∅, id)
3: if vc = vi − 1 ∧ id < idc then
4: return (vi , sc, sc, ∅, id)

49

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

To ensure that replicas converge in the face of concurrent commits
we design commit operations to commute. As a result, commit does not
compromise availability. Algorithm 2 dictates how replicas handle commit
messages. The algorithm distinguishes between two cases. The first case
considers committing the current state (Line 1). The replica’s version is
then incremented, its initial and current state are set to the committed
state, the operation history is cleared, and the id of the last performed
commit is updated. The second case considers committing the previous
state (Line 3). This means that the commit operation applies to the pre-
vious version vi−1. Thus, the received commit message is concurrent with
the last performed commit (i.e. the one that caused the replica to update
its version from vi−1 to vi). To ensure convergence, the commit with the
smallest ID wins. This ensures that replicas deterministically break ties
such that concurrent commits commute. Note that the algorithm does
not need to tackle the case of committing an older state since it cannot
happen under the assumption of causal order broadcasting.

3.2.2.2 Time Complexity

We now elaborate on the worst-case time complexity of the SECRO repli-
cation protocol. Consider a replica with a history of size n. In the worst
case, all operations in the history are concurrent. As a result, there are
no causal relations between the operations and there are n! permutations
to consider. For every permutation, the SECRO protocol tests it validity.
In the worst case, only the last permutation is valid. Testing for validity
implies that for every operation its precondition is tested, the operation
is executed, and the postcondition is tested. Since the preconditions, op-
erations, and postconditions are data-type specific there time complexity
may vary, hence, we introduce additional variables p, o, and a that de-
note the worst-case time complexity of the preconditions, operations, and
postconditions respectively. The total worst-case time complexity thus
becomes: O(n! ∗ (p+ o+ a)).

For example, if the preconditions and postconditions are constant-time
operations (i.e. O(1)) but the operations’ time complexity is linear to the
length of the history, the time complexity becomes O(n! ∗ n).

50

3.3. PERFORMANCE EVALUATION

3.2.2.3 Consistency Guarantees

We previously explained the SECRO replication protocol in detail. We
now elaborate on the consistency guarantees provided by SECROs.

The replication protocol behind SECROs ensures that replicas that
received the same operations find and execute the same serialization and
thus converge to the same state. For this reason, SECROs guarantee SEC.

Although SECROs were originally designed to guarantee SEC, they
provide the stronger guarantee of causal+ consistency which is the combi-
nation of convergence and the four session guarantees (cf. Section 2.1.2).

If clients are sticky, SECROs guarantee the four session guarantees:
Read Your Writes, Monotonic Reads, Writes Follow Reads, and Monotonic
Writes. Read Your Writes and Monotonic Reads follow from the fact that
clients are sticky and the protocol’s operation history grows monotonically;
i.e. once an operation is observed it will be in the history forever and thus
will be observed by all future reads.

Writes Follow Reads and Monotonic Writes follow from the fact that
replicas propagate operations (i.e. writes) in causal order and execute a
causal serialization of the operations. If a write w is issued after a set
of writes W were observed (by a read), then all writes w′ ∈ W causally
precede w and thus all replicas will execute a serialization of the operations
that respects these causal relations.

3.3 Performance Evaluation

We now conduct a performance evaluation of our approach. To this end,
we compare SECROs to JSON CRDTs [KB17], the closest related work
for designing custom RDTs without manual conflict resolution. JSON
CRDTs enable programmers to build custom CRDTs by nesting lists and
maps in a JSON-like data format. Our experiments quantify the memory
usage and latency of operations for collaborative text editing applications
that use these approaches. To ensure a fair comparison, we implemented
both approaches in JavaScript. The JSON CRDT implementation of the
text editor represents text documents as a linked list of characters. The
SECRO implementation features two variants: one that uses a list of
characters and one that uses a balanced tree of characters.

51

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

3.3.1 Methodology

The experiments reported in this chapter were performed on a cluster
consisting of 10 worker nodes which are interconnected through a 10 Gbit
twinax connection. Each worker node has an Intel Xeon E3-1240 proces-
sor at 3.50 GHz and 32 GB of RAM. Depending on the experiment, the
benchmark is either run on a single worker node or on all ten nodes. We
specify this for each benchmark.

To get statistically sound results we repeat each benchmark at least
30 times. Each benchmark starts with a number of warmup iterations to
account for virtual machine warmup. Furthermore, we disable NodeJS’
just-in-time compiler optimisations to obtain more stable execution times.

We perform statistical analysis over our measurements as follows.
First, we discard samples that are affected by garbage collection (only
for the latency benchmark). Then, for each measurement including at
least 30 samples we compute the average value and the corresponding
95% confidence interval.

3.3.2 Memory Consumption

To compare the memory usage of the SECRO and JSON CRDT text
editors, we perform an experiment in which 1000 operations are executed
on a single replica of the text editors. We continuously alternate between
100 character insertions followed by the deletion of those 100 characters
to showcase the effect of deletions on memory usage. We force garbage
collection after each operation6 and measure the heap usage. The resulting
measurements are shown in Fig. 3.1. Green and red columns indicate
character insertions and deletions respectively.

Figure 3.1a confirms our expectation that the SECRO implementa-
tions are more memory efficient than the JSON CRDT implementation.
The memory usage of the JSON CRDT text editor grows unbounded be-
cause it cannot delete characters but merely marks them as deleted. This
is a common CRDT-technique that is known as tombstones. Conversely,
SECROs support true deletions by reorganising concurrent operations in
a non-conflicting order. Hence, all 100 inserted characters are deleted by
the following 100 deletions. This results in lower memory usage.

6Forcing garbage collection is needed to get the real-time memory usage. Otherwise,
the memory usage keeps growing until garbage collection is triggered.

52

3.3. PERFORMANCE EVALUATION

20

40

60

80

0 100 200 300 400 500 600 700 800 900 1000
Executed Operations

H
ea

p
U

sa
ge

 in
 M

B

 Json CRDT Tree SECRO List SECRO insert delete

(a) Comparison between the memory
usage of the SECRO and JSON CRDT
text editors.

10

11

12

13

0 100 200 300 400 500 600 700 800 900 1000
Executed Operations

H
ea

p
U

sa
ge

 in
 M

B

 Tree List Measured Regression line insert delete

(b) Comparison between the list and
tree implementations of the SECRO
text editor.

Figure 3.1: Memory usage of the collaborative text editors. Error bars rep-
resent the 95% confidence interval for the average taken from 30 samples.
The experiments are performed on a single worker node of the cluster.

Figure 3.1b compares the memory usage of the list and tree-based
implementations using SECROs. We conclude that the tree-based im-
plementation consumes more memory than the list implementation. The
reason is that nodes of a tree maintain pointers to their children, whereas
nodes of a singly linked list only maintain a single pointer to the next node.
Interestingly, we observe a staircase pattern. This pattern indicates that
memory usage grows when characters are inserted (green columns) and
shrinks when characters are deleted (red columns). Overall, memory us-
age increases linearly with the number of executed operations, even though
we delete the inserted characters and commit the replica after each oper-
ation. Hence, SECROs cause a small memory overhead for each executed
operation. This linear increase is shown by the dashed regression lines.

3.3.3 Latency of Operations

We now measure the latency of character insertions at the end of a text
document. Although this is not a realistic editing pattern, it showcases the
worst-case performance of SECROs. From Fig. 3.2a we notice that both
the list-based and tree-based SECRO implementations exhibit quadratic
performance, whereas the JSON CRDT list-based implementation ex-
hibits linear performance. The reason for this is that reordering the SE-

53

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

CRO’s history (cf. Algorithm 1) induces at least a linear overhead on top
of the operations themselves. Since inserting in a linked list is also a lin-
ear operation, the overall performance of the text editor’s insert operation
becomes quadratic.

Figure 3.2a also shows that the SECRO implementation that uses a
linked list is faster than its tree-based counterpart. To determine the cause
of this counterintuitive observation, we measure different parts that make
up the total execution time:

Execution time of operations. Time spent in append operations.

Execution time of preconditions. Time spent in preconditions.

Execution time of postconditions. Time spent in postconditions.

Copy time. Since JavaScript objects are mutable, replicas take a copy
of their state before tentatively executing a serialization of the op-
erations. The time spent copying the state is the copy time.

Figures 3.3a and 3.3b depict the detailed execution time for the list
and tree implementations respectively. The results show that the total
execution time is dominated by the copy time. We observe that the tree
implementation spends more time copying the document than the list
implementation. The reason being that copying a tree entails a higher
overhead than copying a linked list as more pointers need to be copied.
Furthermore, the tree implementation spends considerably less time ex-
ecuting operations, preconditions and postconditions, than the list im-
plementation. This results from the fact that the balanced tree provides
logarithmic time operations.

Unfortunately, the time overhead incurred by copying the document
kills the speedup we gain from organising the document as a tree. This is
because each insertion inserts only a single character but requires the en-
tire document to be copied. To validate this hypothesis, we re-execute the
benchmark shown in Fig. 3.2a but insert 100 characters per operation.
Figure 3.2b shows the resulting latencies. As expected, the tree imple-
mentation now outperforms the list implementation. This means that the
speedup obtained from 100 logarithmic insertions exceeds the overhead of
copying the tree. In practice, this means that single character manipula-
tions are too fine-grained. Manipulating entire words, sentences or even
paragraphs is more beneficial for performance.

54

3.3. PERFORMANCE EVALUATION

0

100

200

300

0 100 200 300 400 500
Document Length

Ti
m

e
in

 m
ill

is
ec

on
ds

 Tree SECRO List SECRO Json CRDT

(a) Latency of an operation that ap-
pends a single character to a document.

0

250

500

750

1000

0 1000 2000 3000 4000 5000
Document Length

Ti
m

e
in

 m
ill

is
ec

on
ds

 List SECRO Tree SECRO Json CRDT

(b) Latency of an operation that ap-
pends 100 characters to a document.

Figure 3.2: Latency of character insertions in the collaborative text edi-
tors. Replicas are never committed. Error bars represent the 95% con-
fidence interval for the average taken from a minimum of 30 samples.
Samples affected by garbage collection are discarded.

From the latency benchmarks discussed in this section, we conclude
that 1) the SECRO algorithm introduces at least a linear overhead because
the history needs to be reordered, and 2) copying the state (i.e. the entire
document) induces a considerable additional overhead. To address the
reordering overhead, replicas can periodically commit their state such that
the history remains small. The effect of commit on the latency of insert
operations is analyzed in Section 3.3.4. Regarding the copying overhead,
we believe that it is not inherent to SECROs, but rather a consequence of
its implementation on top of a mutable language such as JavaScript. In
an immutable language, there would be no need to copy the state.

3.3.4 Effect of Commit on the Latency of Operations

We now conduct two benchmarks that analyze the effect of commit on
the latency of operations. The first benchmark measures the latency of
constant time operations on SECROs in order to analyze how commit
reduces the reordering overhead. The second benchmark illustrates the
effect of commit on the latency of insertions in the collaborative text
editor for different commit intervals.

55

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

0

100

200

300

0
100

200
300

400
500

D
ocum

ent Length

Time in milliseconds

C
opying

O
peration

P
ostcondition

P
recondition

(a)
List

im
plem

entation

0

100

200

0
100

200
300

400
500

D
ocum

ent Length

Time in milliseconds

C
opying

O
peration

P
ostcondition

P
recondition

(b)
Tree

im
plem

entation.

Figure
3.3:

D
etailed

latency
to

append
characters

to
the

SEC
R
O

text
editor.

T
he

replica
is

never
com

m
itted.

T
he

plotted
latency

is
the

average
taken

from
a
m
inim

um
of30

sam
ples.

Sam
ples

affected
by

garbage
collection

are
discarded.

56

3.3. PERFORMANCE EVALUATION

0

100

200

300

400

0 100 200 300 400 500
Executed Operations

T
im

e
in

 m
ill

is
ec

on
ds

Commit Interval Infinite 50 1

(a) Execution time of a constant time
operation in function of the number of
executed operations.

0

100

200

0 250 500 750 1000
Document Length

T
im

e
in

 m
ill

is
ec

on
ds

Commit Interval Infinite 100 1

(b) Time to append a character to the
text document using the list implemen-
tation of the SECRO text editor.

Figure 3.4: Execution time of SECROs for different commit intervals,
performed on a single worker node of the cluster. Error bands represent
the 95% confidence interval for the average taken from a minimum of 30
samples. Samples affected by garbage collection were discarded.

Benchmark 1. To quantify the performance overhead of SECROs we
measure the latency of 500 constant time operations, for different com-
mit intervals. We cannot use the text editor for this purpose because
its operations are not constant. Moreover, the constant time operation
needs to execute long enough to allow for accurate latency measurements.
Therefore, we designed the constant time operation to compute 10 000
tangents. We did not associate any pre- or postcondition to this oper-
ation. As a result, any serialization of the operations is valid and this
experiment reflects the best-case performance of SECROs.

Figure 3.4a depicts the latency of the aforementioned constant time
operation. If we do not commit the replica (red curve), the operation’s
latency increases linearly with the number of operations. Hence, SECROs
induce a linear overhead. This results from the fact that the replica’s
operation history grows with every operation. Each operation requires the
replica to reorganise the history. To this end, the replica generates linear
extensions of the history until a valid ordering of the operations is found
(see Algorithm 1 in Section 3.2.2.1). Since we defined no preconditions
or postconditions, every order is valid. The replica thus generates exactly

57

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

one linear extension and validates it. To validate the ordering, the replica
executes each operation. Therefore, the operation’s latency is linear to
the size of the operation history.

As mentioned previously, commit implies a trade-off between concur-
rency and performance. Small commit intervals lead to better performance
but less concurrency, whereas large commit intervals support more con-
current operations at the cost of performance. Figure 3.4a illustrates this
trade-off. For a commit interval of 50 (blue curve), we observe a sawtooth
pattern. The operation’s latency increases until the replica is commit-
ted, whereafter it falls back to its initial latency. This is because commit
clears the operation history. When choosing a commit interval of 1 (green
curve), the replica is committed after every operation. Hence, the history
contains a single operation and does not need to be reorganised. This
results in a constant latency.

Benchmark 2. We now analyse the latency of insert operations on the
collaborative text editor. Figure 3.4b shows the time it takes to append
a character to a text document in function of the document’s length, for
various commit intervals. If we do not commit the replica (red curve),
append exhibits quadratic latency. This is because the SECRO induces a
linear overhead and append is a linear operation. For a commit interval
of 100 (blue curve) we again observe a sawtooth pattern. In contrast
to Fig. 3.4a the peaks increase linearly with the size of the document,
since append is a linear operation. If we choose a commit interval of 1
(green curve) we effectively get a latencies that are linear to the size of the
document. This results from the fact that we do not need to reorganise
the replica’s history. Hence, we execute a single append operation.

Conclusion. Based on the results above, we draw two conclusions.
First, SECROs induce a linear overhead on the latency of operations. Sec-
ond, commit is a pragmatic solution to keep the performance of SECROs
within reasonable bounds. Determining the optimal rate at which replicas
should be committed depends on the application at hand. If operations
are slow the history is best kept small through regular commits, whereas,
if operations are fast replicas can commit less frequently to accommodate
more concurrency.

58

3.4. NOTES ON RELATED WORK

3.4 Notes on Related Work

We now review influential ideas related to our approach. Bayou [Ter+95]
was the first system to use application-level semantics for conflict detection
and resolution by means of user-provided dependency checks and merge
procedures. SECROs, however, do not require manual conflict detection
or resolution. Instead, programmers specify application-specific invariants
and the underlying replication protocol serializes operations accordingly.

IceCube [Ker+01] is a general-purpose engine that reconciles diverged
replicas using semantic information provided by programmers in the form
of constraints. Constraints can be static or dynamic and are defined over
serializations of concurrent operations. Expressing appropriate constraints
is nontrivial as it requires reasoning about the order of operations. In
contrast, SECROs detect conflicts using data-oriented invariants which
are easier to express. Like SECROs, IceCube’s dynamic constraints may
lead to rollbacks which represent a performance hit.

As explained in Section 2.2.1.1, traditional RDTs rely on commuta-
tive operations or user-defined merge procedures to solve conflicts (e.g.
cloud types, CRDTs, MRDTs, etc.). To free programmers from manual
conflict resolution, some approaches [MV15; KB17; WMM20] let program-
mers build custom RDTs by composing existing ones. Lasp [MV15] lets
programmers define new CRDTs by applying functional transformations
over existing CRDTs. It is not clear if all CRDTs can be obtained this
way. JSON CRDTs [KB17] let programmers build new CRDTs using a
JSON-like data format that allows arbitrary nestings of lists and maps.
Unfortunately, the lists and maps expose only a limited API (only inser-
tions, deletions, and assignments). [WMM20] leverage semidirect prod-
ucts to combine CRDTs. However, this requires expertise from the pro-
grammers because they need to define arbitration orders for concurrent
operations, transform concurrent operations, etc. While the aforemen-
tioned approaches start from existing CRDTs and compose them in a
conflict-free way, the SECRO approach is different in that it starts from
a sequential data type and totally orders operations instead of designing
them specially to be conflict-free.

59

CHAPTER 3. FROM SEQUENTIAL TO REPLICATED DATA
TYPES

3.5 Conclusion

In this chapter we proposed SECROs, a novel approach to design RDTs
by extending sequential data types with state validators. The replication
protocol behind SECROs totally orders operations such that causality is
respected and application-specific invariants defined by the operations’
state validators are maintained. Since the protocol is deterministic, repli-
cas that observed the same operations compute the same serialization and
thus converge without coordination between the replicas.

SECROs are a first step to broaden the scope of RDTs to data types
with non-commutative operations. This adheres to our first principle of
replicating existing designs instead of designing for replication. Further-
more, the underlying replication protocol guarantees convergence out-of-
the-box and is fully integrated in CScript, which respectively adheres to
our second and third principles outlined in Section 1.2.

Our evaluation showcases the perpetual tension between performance
and expressiveness. SECROs improve the expressiveness of RDTs by al-
lowing arbitrary data types to be replicated and thus lifting the traditional
commutativity requirement, but need to give in on performance.

In the next chapter, we describe an improved approach to build RDTs
from sequential data types. The approach still leverages application-
specific semantics described by programmers, but analyzes them before-
hand to reduce the algorithm’s runtime overhead.

60

Chapter 4

Efficient Replicated Data
Types from Sequential Code

We previously proposed SECROs, a programming abstraction that en-
ables programmers to build RDTs by extending sequential data types with
invariants. Although SECROs guarantee SEC and uphold application in-
variants, they do not scale well because replicas have to search for a valid
serialization of the operations at runtime. To keep the performance ac-
ceptable, replicas need to periodically commit their state but finding a
good commit rate is challenging.

We now explore an alternative approach that keeps the essence of
SECROs, namely, application-specific invariants, but statically analyzes
the data type and its invariants to make informed decisions at runtime that
ensure good performance. We revisit the replication protocol to build
a serialization guided by the analysis results instead of searching for a
serialization among all permutations.

This chapter introduces the Explicitly Consistent Replicated Object
(ECRO) programming model, which lets programmers define RDTs by
extending sequential data types with a distributed specification describ-
ing the desired semantics through application-specific invariants, akin to
SECRO’s state validators. The specification is statically analyzed to de-
rive information about conflicting operations. At runtime, replicas use
this information to build a Directed Acyclic Graph (DAG) of operations
that represents a partial ordering of the operations. The DAG is carefully
constructed such that all topological orders of the DAG (i.e. all serializa-

61

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

tions of the partial order) converge to equivalent states and maintain the
application’s invariants.

We evaluate the applicability of our approach in two ways. First, in
Section 4.5, we conduct a qualitative evaluation to assess if ECROs sim-
plify the development of RDTs compared to state-of-the-art approaches.
Second, in Section 4.6, we conduct a performance evaluation to assess
the feasibility of the static analysis phase and measure the latency and
scalability of the replication protocol.

4.1 The Need for Static Analysis

As mentioned before, SECROs provide a simple way for programmers
to replicate existing data types, but reordering operations at runtime is
inefficient and limits the applicability of the approach. This inefficiency
comes from the fact that, at runtime, replicas potentially have to generate
and test all causal permutations of the operations. This is needed because
replicas have no information about the operations, hence, all serializations
have to be tested one by one until a valid one is found. Generating all
serializations is subject to the problem of combinatorial explosion.

To make this approach practical, we revisit SECRO’s replication pro-
tocol such that replicas independently build a serialization of the opera-
tions instead of searching for a serialization in a huge search space. Since
replicas may receive (concurrent) operations in different orders they may
construct different serializations, however, those serializations should be
equivalent (i.e. lead to equivalent states) and maintain all invariants.

Section 3.1 described two possibilities to achieve convergence without
coordination. The first possibility consists in solving the conflicts that oc-
cur from concurrent operations, while the second consists in totally order-
ing concurrent operations across replicas. The replication protocol behind
ECROs adheres to the second option but only totally orders concurrent
operations that are not commutative (whereas SECROs totally order all
concurrent operations). Since all replicas execute non-commutative con-
current operations in the same order, they are guaranteed to converge
to the same state. Thus, replicas may execute operations according to
different serializations, but those serializations are equivalent. Equiva-
lent serializations exhibit a total order for non-commutative operations
but commutative operations may be executed in any order. This requires

62

4.1. THE NEED FOR STATIC ANALYSIS

add(5)
rA

rB

remove(5){ } { }

{ } { 5 }

A1 A2

add(5)
B1

(a) Concurrent operations issued by rA

and rB .

add(5)
rA

rB

remove(5)

add(5)

{ } { 5 }

{ } { 5 }

A1 A2

B1

add(5)
B1

(b) Operation B1 is propagated to
replica rA.

add(5)
rA

rB

remove(5)

add(5)

{ }

{ } { 5 }

A1 A2

B1

{ 5 }

add(5)
A1

add(5)
B1

reorder B1 after A2

(c) Operation A1 is propagated to
replica rB .

add(5)
rA

rB

remove(5)

add(5)

{ }

{ } { 5 }

A1 A2

B1

{ 5 }

add(5)
A1

remove(5)
A2

add(5)

reorder B1 after A2

add(5)
B1

B1

(d) Operation A2 is propagated to
replica rB which reorders operation B1
to ensure add-wins semantics.

Figure 4.1: Reordering operations in a replicated Add-Wins Set ECRO.

replicas to execute non-commutative operations in causal order and im-
pose some artificial but deterministic order on concurrent operations if
they do not commute.

Additionally, operation serializations must maintain the application’s
invariants. Oftentimes, concurrent operations break invariants because
they are executed in a conflicting order (e.g. placing a bid on an auc-
tion after it was closed concurrently). Such conflicts can be solved by
reordering the operations. If no safe ordering exists, ECROs coordinate
the problematic operations to ensure that they do not run concurrently.
In contrast, SECROs would fail to find a valid serialization for those prob-
lematic operations and thus raise a runtime exception.

To build an improved replication protocol for ECROs, that efficiently
serializes operations and maintains application-specific invariants, the pro-
tocol needs additional information about the operations. Concretely,
the protocol needs to know which operations commute, which operations
break invariants, under which conditions operations commute or conflict,
etc. A key insight of our work is that this information can be automati-
cally derived by statically analyzing the data type and its invariants. At
runtime, replicas use the information derived by the static analysis to
serialize operations according to the application’s invariants.

63

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Consider for example a replicated add-wins set and how information
about this data type can be used to serialize operations. Clearly, add(x)
and remove(y) operations on a set do not commute if x = y and thus
replicas need to execute these operations in the same order to ensure con-
vergence. Moreover, add-wins semantics requires adds to win over con-
current deletes of the same element, which can be achieved by executing
add(x) operations after concurrent delete(y) operations when x = y.
This information can be statically derived from the set’s implementation
and its add-win invariant, and be used at runtime to serialize the opera-
tions. Figure 4.1 depicts two replicas of an add-wins set that initially is
empty {}. In Fig. 4.1a, replica rA adds 5 to the set (operation A1) and
later removes it from the set (operation A2). Concurrently, replica rB
also adds 5 to the set (operation B1). Operation B1 is concurrent with
operations A1 and A2. Then in Fig. 4.1b, operation B1 is propagated to
replica rA which adds 5 to the set. Similarly, in Fig. 4.1c, operation A1 is
propagated to replica rB which adds 5 to the set. This operation leaves
the state unchanged since 5 was already in the set. When operation A2
is propagated to replica rB (cf. Fig. 4.1d), rB cannot immediately apply
A2 since removing 5 from the set would violate the desired add-wins se-
mantics. Instead, based on the information from the analysis, rB could
reorder the concurrent add(5) (operation B1) such that it is executed
after remove(5) (operation A2) and thus guarantees add-wins semantics.
This is exactly what the ECRO replication protocol does.

Note how, at runtime, replica rB knew from the static analysis that
it had to reorder B1 after A2 in order to ensure add-wins semantics,
whereas, SECROs would have to search through all causal serializations
(B1;A1;A2, A1;B1;A2, and A1;A2;B1) in order to find the valid serial-
ization (A1;A2;B1).

4.2 Building Geo-Distributed Applications, the
ECRO Way

We now present ECROs, our improved approach to programming RDTs
from sequential data types. The approach is implemented in Scala. We
provide an overview of the approach, demonstrate its use by implementing
two set RDTs and an auction system RDT, and discuss how it differs from
state-of-the-art approaches.

64

4.2. BUILDING DISTRIBUTED APPLICATIONS, THE ECRO WAY

4.2.1 Overview

Figure 4.2 depicts a high-level overview of the ECRO approach. Program-
mers build RDTs by extending sequential data types with a distributed
specification defining the data type’s semantics through invariants over
replicated state. Together, the sequential data type and its distributed
specification form an ECRO. The state of an ECRO is replicated across
machines, each of which is said to hold a replica. Programmers interact
with ECROs by calling methods on a replica. Method calls are propagated
between replicas using a broadcasting mechanism that guarantees even-
tual and causal delivery. Under these assumptions, ECRO’s replication
protocol guarantees safety and strong convergence. Safety is the property
that the replicated state respects the application’s invariants. Strong con-
vergence [Sha+11b] is the property that correct replicas that processed
the same calls (possibly in a different order) are in equivalent states.

Key to guaranteeing the above properties is our analysis tool, called
Ordana, that statically analyzes distributed specifications to detect con-
flicting operations and find solutions beforehand. At runtime, the ECRO
replicas use the information inferred by Ordana to serialize calls efficiently
(i.e. with minimal coordination) while upholding safety and strong con-
vergence. To this end, every replica keeps a tentative serialization of the
calls which may be affected by concurrent calls. When a prefix of calls
is causally stable at a replica, the replica knows that every other replica
has observed those operations. Thus, no more concurrent operations can
arrive and the prefix is committed. Similarly to SECROs, commit updates

ECRO Data Type
Data type implementation

Translation
(compilation/interpretation)

Source Code Runtime Representation
Machine 1

Replicated Objects

Machine 2

Replicated Objects

Object’s State

ECRO Replication Algorithm

5 12 8 17

hb hb
co

Add-Wins Set Replica

Object’s State

ECRO Replication Algorithm

5 12 8 17

hb hb
co

Add-Wins Set Replica

Method Call
Propagation

SMT
Solver

Ordana
Analysis

Tool

trait ESet[V] extends ECRO{
// see listing 1
 val set: Set[V]
 def copy(…): …
 def add(…)= …
 def remove(…)= …
 def contains(…)= …}
case class AWSet[V]
(set: Set[V]) extends ESet[V]

object AWSet extends SetSpec{
// see listing 2
 inv = (_: OldState,
 res: NewState) =>
 contains(x, res)))
 }}}

Distributed Specification

 val set:Set[V] val set:Set[V]

Figure 4.2: Overview of ECROs.

65

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

the replica’s internal state to the state that results from applying the
prefix of operations, after which those operations are garbage collected.

4.2.2 Building Replicated Sets

We now illustrate the ECRO approach by implementing a set RDT which
lies at the core of many geo-distributed applications. A set RDT differs
from a sequential set as multiple users may add and remove the same ele-
ment concurrently. When these updates have been received by all replicas,
the element must be present in all replicas (add-wins semantics) or ab-
sent from all replicas (remove-wins semantics). Hence, a sequential data
type may have several replicated counterparts, each exhibiting different
semantics when facing concurrent operations.

Like SECROs, ECROs let programmers turn any sequential data type
into an RDT by defining the desired semantics in the data type’s dis-
tributed specification. The specification describes the operations that
modify the internal state by means of three components: a precondition,
a postcondition, and an invariant. Each component (detailed later in Sec-
tion 4.3.1) is a function that is parametrized by the data type’s state(s)
and returns a first-order logic predicate used by Ordana to analyze the
operations.

Listing 4.2 shows part of the implementation of the add-wins AWSet
and remove-wins RWSet ECROs in Scala. The syntax is simplified for pre-
sentation purposes. The complete implementation of the sets is provided
in Appendix C.1. Both sets extend the ESet trait1 (shown in Listing 4.1)
which wraps Scala’s built-in immutable set and offers the typical set op-

1Scala traits are similar to Java interfaces with default implementations. Moreover,
classes can extend multiple traits in Scala.

Listing 4.1: Sequential set implementation.

1 trait ESet[V] extends ECRO {
2 val set: Set[V]
3 def copy(set: Set[V]): ESet[V]
4 def add(x: V) = copy(set + x)
5 def remove (x: V) = copy(set - x)
6 def contains (x: V) = set. contains (x)
7 }

66

4.2. BUILDING DISTRIBUTED APPLICATIONS, THE ECRO WAY

Listing 4.2: Add-Wins and Remove-Wins Set ECROs.

1 case class AWSet [V](set: Set[V]) extends ESet[V]
2 case class RWSet [V](set: Set[V]) extends ESet[V]
3 object AWSet {
4 val x: Identifier = ..; val y: Identifier = .. // Appendix C.1
5 val contains : Relation = ... // see Appendix C.1
6 postcondition of add {
7 (old: OldState , res: NewState) =>
8 contains (x, res) /\
9 // old -> res copies relations from ‘old ‘ to ‘res ‘

10 contains . copyExcept (old -> res , elem === x)
11 }
12 postcondition of remove {
13 (old: OldState , res: NewState) =>
14 not (contains (x, res)) /\
15 contains . copyExcept (old -> res , elem === x)
16 }
17 invariant on add {
18 (_: OldState , res: NewState) => contains (x, res))
19 } }
20 object RWSet {
21 // contains & postconditions same as AWSet
22 invariant on remove {
23 (_: OldState , res: NewState) =>
24 not (contains (x, res))))
25 } }

erations. The sets’ distributed specifications use an embedded Scala DSL
that we built for programming with first-order logic (cf. Appendix C).

By convention, the specification is defined in the class’ companion
object2. The postconditions for add(x) and remove(x) state that after
adding/removing x, the element is present/absent from the resulting state
res, and that all other elements are unchanged (lines 11 and 16). The
AWSet contains an invariant on the add(x) operation to force element x
to be present in the resulting state res and thus guarantees add-wins
semantics (lines 17-19). Similarly, the RWSet contains an invariant on the
remove(x) operation to force element x to be absent from the resulting
state and thus guarantees remove-wins semantics (lines 22-25).

This example demonstrates the flexibility of ECROs: to switch be-
tween add-wins and remove-wins semantics, only the invariant defined in
the distributed specification was changed (one line of code). In contrast,
traditional RDT solutions like CRDTs require two different data type im-

2A class’ companion object is an object that is defined in the same file and has the
same name as the class. It can be used to group static variables and methods.

67

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

plementations each engineered to yield the desired semantics (as we will
further discuss in Section 4.5.2.1). Other works, like RedBlue consistency,
do not require changes to the data type but would synchronize all add
and remove operations due to the possibility of an add-remove conflict.
In contrast, Ordana finds a solution to add-remove conflicts that does not
require coordination (as shown in Fig. 4.1).

4.2.3 Building a Geo-Distributed Auction System

We now show how to use the ECRO approach to build a custom RDT
for which no ready-made RDT design exists. To this end, we develop a
geo-distributed auction system akin to the RUBiS system [EJ09], where
users first register, whereafter they can open auctions, bid on auctions,
and close auctions. Moreover, users can sell a number of items for a fixed
price and buy such items. RUBiS requires usernames to be unique, bids
to be linked to one existing user, items to have a non-negative stock, etc.

In an attempt to develop RUBiS, one may compose a set RDT of users
with a map RDT from auction IDs to auctions where an auction consists
of a set RDT of bids and an enable-once flag RDT indicating whether
the auction is open or closed. However, traditional RDTs (CRDTs, Cloud
Types, etc.) require programmers to manually uphold application invari-
ants. For example, each bid must be linked to an existing user. This is a
common invariant, known as referential integrity. However, if a user places
a bid on an auction and concurrently the user is deleted, some replica may
first delete the user and then place the bid, which violates referential in-
tegrity because the user no longer exists. It is not clear how to ensure
this invariant with traditional RDTs because it requires an atomic update
across the set RDT of users and the auction’s set RDT of bids, but this
is not supported by traditional RDTs.

We now discuss how to implement a replicated RUBiS system starting
from a sequential implementation, using ECROs. We focus the discussion
on the auction operations. The complete implementation of the auction
operations is provided in Appendix C.2. The sequential implementation
keeps a set of users and a map from auction IDs to auctions containing
a set of bids, a status (open or closed), and a winner. When a user bids
on an auction, it is added to the set of bids. Bids may only be placed
on open auctions. Listing 4.3 shows the distributed specification of the
placeBid and closeAuction methods. The precondition of placeBid

68

4.2. BUILDING DISTRIBUTED APPLICATIONS, THE ECRO WAY

Listing 4.3: Distributed specification of an auction system.

1 case class Rubis (users : Set[User], auctions : Map[AID , Auction])
extends ECRO {

2 def placeBid (auctionId :AID , userId :User , price :Int): Rubis = ...
3 def closeAuction (auctionId : AID): Rubis = ...
4 }
5 object Rubis {
6 // see Appendix C.2 for the definition of the relations
7 val auction : Relation = ...
8 val user: Relation = ...; val bid: Relation = ...
9 precondition of placeBid {

10 (state : CurrentState) =>
11 auction (auctionId , Open , state) /\
12 user(userId , state) /\ (price >> 0)
13 }
14 postcondition of placeBid {
15 (old: OldState , res: NewState) =>
16 old + bid(auctionId , userId , price , res) /\
17 bid.copy(old -> res)
18 }
19 postcondition of closeAuction {
20 (old: OldState , res: NewState) =>
21 old + auction (auctionId , Closed , res) /\
22 not (auction (auctionId , Open , res)) /\
23 auction . copyExcept (old -> res , id === auctionId)
24 } }

(line 9 to 13) requires the auction to be open, the user to exist, and the
bid to be bigger than zero. The postcondition of placeBid (line 14 to 18)
extends the state with the new bid and copies all bids from the old state
to the new state. The postcondition of closeAuction (line 19 to 24) puts
the auction’s status on closed, states that it can no longer be open, and
copies all other auctions from the old state to the new one.

By statically analyzing the distributed specification, Ordana detects
operations that violate application invariants. For example, concurrent
placeBid and closeAuction calls may lead to a bid being placed on a
closed auction if closeAuction is executed before placeBid, which vio-
lates the precondition of placeBid. ECROs solve this conflict by impos-
ing an order on the operations (cf. Section 4.5.1). In contrast, invariant-
preserving RDTs such as Redblue, PoR, Hamsaz, etc. (cf. Section 2.2.1.2)
coordinate all calls to these operations because of this potential conflict.
Clearly, they are too conservative since only concurrent calls to placeBid
and closeAuction that modify the same auction are conflicting, yet no
calls to placeBid and closeAuction are allowed to run concurrently.

69

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

4.2.4 Coping with Different Classes of Conflicts

ECROs start from the observation that many conflicts are due to a “bad”
ordering of concurrent operations, and solve those conflicts by reordering
the operations, rather than coordinating them. We briefly categorize four
types of conflicts and explain how ECROs cope with them.

The first category of conflicts arises when replicas concurrently execute
non-commutative operations, which are then exchanged and applied in dif-
ferent orders at different replicas, yielding diverged states. To ensure state
convergence, ECROs deterministically order concurrent non-commutative
operations at all replicas. In contrast, existing approaches [Li+12; LPR18;
SKJ15; Kak+18; HL19; LHL20] coordinate these operations unnecessarily.

The second category of conflicts arises when some operation leads to
a state transition, which renders concurrent operations unavailable in the
new state (e.g. closeAuction closes an auction and may render concur-
rent placeBid operations unavailable). ECROs solve those conflicts by
safely reordering unavailable operations before transitioning to the new
state (e.g. reorder placeBid before closeAuction), whereas existing ap-
proaches coordinate those operations.

The third category of conflicts involves numeric invariants. For ex-
ample, a banking application may implement the account balance as a
non-negative counter (aka a bounded counter). However, concurrent with-
drawals may overdraw the account, and reordering the withdrawals does
not solve this problem. For such conflicts, ECROs coordinate the prob-
lematic operations, and so does related work.

The last category of conflicts is due to replicas executing mutually
exclusive operations concurrently. For example, if usernames must be
unique, then the registerUser(username) operation must take a lock
on username to avoid that someone else registers the same username con-
currently. These conflicts break invariants and thus require coordination
between the operations. Like most approaches, ECROs coordinate mutu-
ally exclusive operations. Some applications may however allow temporary
invariant violations to avoid coordination and instead repair the invariant
after the facts [GPS16].

70

4.3. DERIVING SAFE SERIALIZATIONS FROM DISTRIBUTED
SPECIFICATIONS

4.3 Deriving Safe Serializations from Distributed
Specifications

We previously explained that ECRO replicas compute a serialization of the
method calls that respects application invariants and guarantees strong
convergence. Key to efficiently computing such serializations is a static
analysis phase that answers four questions:

1. Which sequential method calls commute?

2. Which concurrent method calls commute?

3. When are concurrent method calls safe or unsafe?

4. If two concurrent method calls are unsafe, does a safe ordering of
the calls exist? If yes, which order?

To answer these questions, we developed Ordana: a static analysis
tool that implements three analyses on distributed specifications. The
first is a dependency analysis based on [HL19] that detects dependencies
between sequential method calls3. The second is a commutativity analysis
based on [Bal+15] that detects commutativity of concurrent calls. The
dependency analysis and commutativity analysis are combined to detect
commutativity of sequential calls. The third is a novel safety analysis that
detects conflicts and finds solutions by reordering calls locally.

Before detailing the analyses, we define the components of an ECRO’s
distributed specification. To this end, we use the RUBiS auction system
(cf. Section 4.2.3) as running example.

4.3.1 The ECRO Distributed Specification

Every ECRO data type consists of two parts: the data type’s implemen-
tation and a distributed specification. The implementation encapsulates
replicated state (e.g. class fields) and exposes a number of methods, some

3Two method calls are sequential if one happened before the other (i.e. one was
observed and only then was the other generated) [Lam78]. If neither call happened
before the other, the calls are concurrent.

71

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

of which mutate the replicated state4. The distributed specification de-
scribes three aspects of every call to a mutating method m:

Precondition pre(m(a), σ) Predicate that checks ifm can be called with
arguments5 a on state σ. The precondition must be true before apply-
ing the call at any replica.

Postcondition post(m(a), σi, σj) Predicate describing the effects of ap-
plying m with arguments a on state σi which results in state σj . The
predicate is true iff σj contains the effects of applying m(a) on σi.

Invariant inv(m(a), σi, σj) Predicate describing the behavior that is ex-
pected from (concurrent) calls to method m on state σi. The predicate
is true iff the result state σj respects the invariants that are expected
from applying m with arguments a on state σi. For example, referen-
tial integrity requires bids to be linked to existing users. This can be
expressed as follows:

inv(bid(auction, usr, amount), σi, σj) = user(usr) ∈ σj

Preconditions and postconditions are similar to those in Hoare triples
and are used to describe operations using first-order logic predicates that
can be analyzed by Ordana. Invariants are used to define the concurrency
semantics that is expected from concurrent operations. Thus, invariants
correspond to the postconditions in SECROs. In the remainder of this
section, we explain how preconditions, postconditions, and invariants are
used by Ordana’s analyses to answer the aforementioned questions.

4.3.2 Dependency Analysis

This section details how to detect dependencies between method calls.
We borrow the notion of dependency from [HL19] and tailor it to meet
ECROs’ needs. Recall that users invoke methods on a replica and that
method calls (or calls for short) are propagated to all replicas. Calls are
allowed to execute at a replica only if their precondition holds, in which
case we say they are enabled.

4Our implementation in Scala uses immutable collections. Methods return a modified
copy of the state that replaces the old state.

5An overline, e.g. a, means zero or more.

72

4.3. DERIVING SAFE SERIALIZATIONS

Definition 1: Enabled call

A call c is enabled by a given state σ iff its precondition holds in
that state. Formally, ∀c, σ � enabled(c, σ) ⇐⇒ pre(c, σ). Two
calls c1 and c2 are enabled by a state σ iff both are enabled by σ:
∀c1, c2, σ � enabled(c1, c2, σ) ⇐⇒ enabled(c1, σ) ∧ enabled(c2, σ).

Sequential calls may exhibit dependencies. Intuitively, a call c2 de-
pends on a prior call c1 if c2 cannot execute before c1.

Definition 2: Independent and dependent calls

Let c1 be a call that is enabled by state σ0, σ1 the state that re-
sults from executing c1 on σ0, and c2 a call that is enabled by
σ1. We say that c2 is independent of c1 iff c2 is also enabled by
σ0. Otherwise, c2 depends on c1, written as dep(c2, c1). Formally,
∀c1, c2 �dep(c2, c1) ⇐⇒ ∃σ0, σ1 �enabled(c1, σ0)∧post(c1, σ0, σ1)∧
enabled(c2, σ1) ∧ ¬enabled(c2, σ0).

Ordana’s dependency analysis detects potential dependencies between
pairs of methods and determines under which conditions these dependen-
cies occur. Let 〈m1,m2〉 be the method pair we want to analyze. To
determine whether m2 could depend on m1, the analysis checks the satis-
fiability of the following formula using an SMT solver:

∃a1, a2 � c1 = m1(a1) ∧ c2 = m2(a2) ∧ dep(c2, c1)

If the formula is unsatisfiable, this constitutes a proof that no call to m2
exists that is dependent on a call to m1. If it is satisfiable, a counterex-
ample exists in which a call to m2 depends on a call to m1. Ordana
then restarts the analysis with equality relations between the methods’
arguments to determine the root cause of this dependency. Although our
approach cannot unravel the cause of all dependencies, it works well in
practice since dependencies often occur due to calls referring to an ar-
gument introduced by a previous call. For example, bid(auction2,20)
depends on open(auction1) only when auction2 = auction1.

The dependency analysis returns a function dep :: C× C→ B that
takes two calls and returns true if the first call depends on the second,
false otherwise.

73

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

4.3.3 Concurrent Commutativity Analysis

Many RDTs leverage commutativity to ensure state convergence without
coordinating concurrent method calls. This led researchers to design static
analyses capable of detecting methods that commute when executed con-
currently, based on some specification [Got+16; Li+12; Bal+15; Kul+11;
Dim+14].

However, commutativity is a property of method calls, not of concur-
rency. ECROs leverage commutativity for both concurrent and sequential
calls. In this section, we focus on commutativity of concurrent calls, Sec-
tion 4.3.4 elaborates on commutativity of sequential calls.

Definition 3: Concurrent commutativity

Let c1 be a method call generated in some state σa and c1 a concur-
rent method call generated in some state σb. We say that c1 and c2

concurrent commute, written as c1
c

 c2, iff they commute on every

state σ0. Formally:

∀c1, c2 � c1
c

 c2 ⇐⇒

∀σa � enabled(c1, σa) ∧ ∀σb � enabled(c2, σb)∧
∀σ0, σ1 � post(c1, σ0, σ1) ∧ ∀σ2 � post(c2, σ0, σ2)∧
∀σ12 � post(c2, σ1, σ12) ∧ ∀σ21 � post(c1, σ2, σ21) =⇒

enabled(c1, σ0) ∧ enabled(c2, σ0)∧
enabled(c2, σ1) ∧ enabled(c1, σ2) ∧ σ12 ≡ σ21

To detect non-commutative method calls, Ordana analyzes all method
pairs. For every method pair 〈m1,m2〉, the analysis checks whether two
concurrent calls to these methods exist that do not commute. To this end,
it checks the satisfiability of the following formula using an SMT solver:

∃a1, a2 � c1 = m1(a1) ∧ c2 = m2(a2)∧
∃σa � enabled(c1, σa) ∧ ∃σb � enabled(c2, σb)∧
∃σ0, σ1 � post(c1, σ0, σ1) ∧ ∃σ2 � post(c2, σ0, σ2)∧
∃σ12 � post(c2, σ1, σ12) ∧ ∃σ21 � post(c1, σ2, σ21)∧

¬(enabled(c1, σ0) ∧ enabled(c2, σ0) ∧ enabled(c2, σ1)∧
enabled(c1, σ2) ∧ σ12 ≡ σ21)

74

4.3. DERIVING SAFE SERIALIZATIONS

If the above formula is unsatisfiable, this constitutes a proof that any
two concurrent calls to m1 and m2, that are enabled by their respec-
tive initial states σa and σb, are enabled and commute. On the other
hand, if it is satisfiable, concurrent calls to m1 and m2 exist that are not
enabled (i.e. they cannot be applied one after the other) or do not com-
mute. Ordana then restarts the analysis with equality relations between
the calls’ arguments to determine when this occurs. For example, con-
current bid(auction1,10) and close(auction2) calls always commute
except when auction1 = auction2. The output of the analysis is a func-
tion commutative :: C×C→ B that takes two calls and returns true if the
calls concurrent commute, false otherwise.

!0
c1 !1

!0
c2 !2

c1 !21

c2 !12c2
c1

Figure 4.3: State equivalence.

Note that we did not yet define state
equivalence because it can be implemented
in several ways. We may introduce a pred-
icate that tests for state equivalence. How-
ever, this requires programmers to care-
fully define state equivalence and thus
complicates the development of ECROs.

Instead, Ordana derives state equivalence from the methods’ postcon-
ditions. The states that result from applying the calls, in different or-
ders, are equivalent iff they preserve the same effects: σ12 ≡ σ21 ⇐⇒
post(c2, σ1, σ21)∧post(c1, σ2, σ12). This is visualized in Fig. 4.3, horizon-
tal lines stand for sequential executions. The calls concurrent commute iff
swapping their order leads to the same states (diagonal lines).

4.3.4 Deriving Sequential Commutativity

Sequential method calls differ from concurrent method calls because they
can contain additional dependencies. If a call c2 depends on a call c1, then
it follows that c1 happened before c2 (denoted c1 ≺ c2). However, the
inverse does not hold: causal relations do not necessarily imply dependen-
cies. For example, suppose a user opens an auction a1, and then someone
closes auction a2. The closing of a2 does not depend on the opening of a1
because they affect different auctions. ECROs leverage this principle and
allow sequential calls to be executed out of order if they commute and are
independent; we say that those calls sequentially commute.

75

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Definition 4: Sequential commutativity

Let c1 and c2 be sequential calls such that c1 ≺ c2. We say that c2

sequentially commutes with c1, written as c2
s

 c1, iff c2 does not

depend on c1 and they concurrent commute:
∀c1, c2 � c2

s

 c1 ⇐⇒ ¬dep(c2, c1) ∧ c2

c

 c1.

Ordana derives sequential commutativity based on the dependency
analysis and the concurrent commutativity analysis presented in Sec-
tions 4.3.2 and 4.3.3. Since dependencies between calls are asymmetric,
sequential commutativity is also an asymmetrical relation. The output of
Ordana is a function seqCommutative :: C × C → B that takes two calls
and returns true if the first call sequentially commutes with the second
call, false otherwise.

4.3.5 Safety Analysis

ECROs guarantee that no method call leaves the replicas in a conflicting
state, i.e. a state that violates the invariants defined in the data type’s
distributed specification. To this end, Ordana implements a safety analysis
that detects pairs of concurrent methods that could infringe invariants,
similar to [Bal+15; Got+16; HL19]. Moreover, Ordana introduces a novel
technique to find coordination-free solutions to these conflicts. Before
delving into the analysis, we define safety.

Definition 5: Safe calls

Two concurrent method calls are safe iff applying them (i.e. their
postconditions) in any order preserves the methods’ preconditions
and invariants, otherwise, they are unsafe.

Definition 6: Safe methods

Two methods are safe iff all pairs of concurrent calls to those meth-
ods are safe.

Definition 7: Safe serialization

A serialization of enabled calls is safe iff all pairs of concurrent calls
are safe or the ordering of concurrent calls preserves their invariants.

76

4.3. DERIVING SAFE SERIALIZATIONS

To identify unsafe methods, Ordana analyzes the invariants of all
method pairs, and checks if some serialization of concurrent calls to these
methods could violate the invariants. Given a method pair 〈m1,m2〉, the
safety analysis checks the satisfiability of the following formula:

∃a1, a2 � c1 = m1(a1) ∧ c2 = m2(a2)∧
∃σ0 � enabled(c1, c2, σ0)∧

∃σ1 � post(c1, σ0, σ1) ∧ ∃σres � post(c2, σ1, σres)∧
¬(enabled(c2, σ1) ∧ inv(c1, σ0, σres) ∧ inv(c2, σ1, σres))

If the above formula is unsatisfiable, any two calls, c1 to methodm1 and c2
to method m2, that are enabled by some initial state σ0 preserve the calls’
preconditions and invariants when applied one after the other (c1 < c2) on
σ0. This constitutes a proof that c1 followed by c2 is a safe serialization.
On the other hand, if the formula is satisfiable, applying c1 and c2 in order
on σ0 violates a precondition or an invariant. Ordana then restarts the
analysis with equality relations between the arguments to determine the
cause of the conflict.

The output of the described safety analysis are two functions:
restrictions :: C → R and resolution :: C × C → {<,>,>,⊥}. The
former, restrictions, takes a call c and returns a set R of restrictions.
These are all the methods that require coordination because they may vio-
late invariants when executed concurrently with c and no safe serialization
exists. The set of restrictions informs the replication protocol which locks
to acquire before executing a call c. These restrictions are fine-grained and
take into account the argument of c that causes the conflict (if detected),
in order to lock only part of the data. Consider again the RUBiS appli-
cation, concurrent calls to registerUser may violate the invariant that
usernames must be unique. Therefore, the analysis places a restriction on
registerUser that locks the username passed to the call. As a result,
users cannot register the same username concurrently because only one of
the users will acquire the lock for the chosen username.

The latter function, resolution, takes two concurrent calls and re-
turns > if the calls are safe. If the calls (say c1 and c2) are unsafe but
a safe serialization exists it will return an ordering of the calls that is
safe (c1 < c2 or c1 > c2). Otherwise, it returns ⊥ since the calls require
coordination, i.e. restrictions(c1) 6= ∅ ∨ restrictions(c2) 6= ∅.

77

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

4.4 Explicitly Consistent Replicated Objects

We now formally define ECROs and explain how the replication protocol
uses the information inferred by Ordana to serialize method calls safely
while minimizing coordination.

We represent an ECRO as a tuple 〈Σ, σ0, M, G, t, F〉, where Σ is the set
of possible states, σ0 is the initial state, M is the set of methods, G is the
object’s execution graph, t is the current topological order of graph G,
and F is the set of functions produced by Ordana (cf. Section 4.3). The
execution graph G = 〈C, E〉 is a labeled DAG where vertices (C) are method
calls, and edges (E) express relations between calls. The protocol operates
on this graph. In a nutshell, it considers three types of edges:

happened-before edges (hb-edges) enforce causality. For every pair
of causally related calls a corresponding hb-edge is added to the graph
if they do not commute. Causal relations between sequentially commu-
tative calls are ignored since their order does not affect the outcome.

conflict-order edges (co-edges) enforce the invariants defined in the
distributed specification (i.e. safety). For every two unsafe concurrent
calls, the algorithm checks if a safe serialization of the calls exists. If
that is the case, the corresponding co-edge is added between the calls.
Consider again the add-wins set from Section 4.2.2. The protocol adds
a co-edge from remove(x) to concurrent add(x) calls since Ordana
proves that applying remove(x) before add(x) guarantees adds to win.

arbitration order edges (ao-edges) enforce state convergence. In
some cases, concurrent calls are safe but do not commute. All repli-
cas must execute those calls in the same order to guarantee strong
convergence. Replicas order these calls deterministically by adding an
ao-edge between them, whose direction is based on the globally unique
identifiers of the calls.

By combining these three types of edges, any topological ordering of
graph G is a safe serialization that preserves dependencies and guarantees
strong convergence. Several topological orders may exist because the pro-
tocol does not add edges between safe calls that commute. However, dif-
ferent topological orderings only interchange commutative calls and thus
lead to equivalent states. We prove this later in Section 4.4.3.

78

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

4.4.1 Replication Protocol

Algorithm 3 presents an overview of the replication protocol that is run
by each ECRO replica. When the user invokes a method on a replica, it
is handled by the replica’s execute_local function, and later integrated
at remote replicas using the execute_remote function.

Local Method Calls. Upon receiving a local request to execute method
m with arguments a, the execute_local function creates a new call c con-
taining the method and its arguments m(a), a globally unique identifier6,
and a logical timestamp7. If the call is unsafe, it is coordinated by acquir-
ing the necessary locks (line 6). The restrictions function (returned
by the safety analysis) leverages the call’s arguments to ensure the right
lock granularity. Since c is a new local request, all calls already contained
by the replica’s execution graph happened before c. Thus, call c is added
to the graph and an hb-edge is added between c and every call that does
not sequentially commute with c (line 10); these edges do not affect the
topological ordering. Next, local call c is appended to the end of the cur-
rent topological order (line 11), c is applied on the current state σ (line
12), and causally stable calls are committed to keep the graph small (line
13) as will be explained later. Lastly, the call is propagated to the other
replicas and acquired locks are released after receiving confirmation from
remote replicas that the call has been applied (line 17).

Integrating Remote Method Calls. Upon receiving a (safe or un-
safe) remote call c, the execute_remote function adds c to the vertices
(line 19) and adds the necessary edges to the graph (lines 20-32). For calls
that happened before c the approach is the same as for local calls. For
concurrent calls (line 23) we distinguish two cases. In the first case, calls
c and v are unsafe, but a safe serialization exists. The algorithm then
uses the resolution function returned by the safety analysis to determine
the direction of the co-edge (i.e. how to order calls, lines 24-27). In the
second case, calls c and v are safe but do not commute (line 28). To
ensure convergence, the function uses the calls’ identifiers to deterministi-
cally add an ao-edge between c and v. A dynamic topological sort [PK07]

6We combine Lamport clocks [Lam78] with unique replica identifiers to generate
globally unique identifiers that are totally ordered.

7We use vector clocks but any logical timestamp that tracks causality can be used.

79

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Algorithm 3 ECRO replication protocol main functions.
1: 〈Σ, σ0, M, G, t, F〉, with G = 〈C,E〉 . ECRO’s internal state
2: σ: Σ . object current state σ
3: function execute_local(m(a)) . exec method m with args a at origin replica
4: c ← 〈m(a), uniqueId(), timestamp() 〉 . tag call with id and timestamp
5: if restrictions(c) 6= ∅ then . call c may be unsafe
6: acquire_locks(restrictions(c))
7: C← C ∪ { c } . add call c to the graph vertices
8: for v ∈ C ∧ v 6= c do . determine relevant hb-edges for call c
9: if not seqCommutative(c, v) then . seq calls c and v do not commute
10: E← E ∪ {〈v, hb, c〉} . add hb-edge from call v to call c
11: t← t + c . local call c has no impact on topological order
12: σ ← apply(σ, c) . execute call c on current state σ
13: commitStableCalls() . commits previous calls if there is a single replica
14: propagate(c) . propagate to remote replicas with eventual and causal delivery
15: if hasLocks() then
16: wait_ack() . wait until all replicas executed the call
17: release_locks(restrictions(c))
18: function execute_remote(c) . execution of call c at remote replica
19: C← C ∪ { c } . add call c to the graph vertices
20: for v ∈ C ∧ v 6= c do . determine relevant edges (relations) for call c
21: if v ≺ c ∧ not seqCommutative(c, v) then . call c and v do not commute
22: E← E ∪ { 〈v, hb, c〉} . add hb-edge between call v and call c
23: else if v ‖ c then . call v is concurrent with call c
24: if resolution(c, v) = < then . conflict solved by ordering c before v
25: E← E ∪ { 〈c, co, v〉} . add co-edge from call c to call v
26: else if resolution(c, v) = > then . solve by ordering v before c
27: E← E ∪ { 〈v, co, c〉} . add co-edge from call v to call c
28: else if resolution(c, v) = > ∧ . calls are safe but non-commutative
29: not commutative(c, v) then
30: if Id(c) < Id(v) then . impose a deterministic order based on ids
31: E← E ∪ { 〈v, ao, c〉} . add ao-edge from call c to call v
32: else E← E ∪ { 〈v, ao, c〉} . add ao-edge from call v to call c
33: t← dynamicTopologicalSort(G) . dynamically compute new serialization
34: σ ← apply(σ0, t) . execute calls on initial state σ0

35: commitStableCalls() . commit prefix of causally stable calls

80

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

is performed on the execution graph to recompute only the subgraph that
changed (line 33); these changes are limited to calls that are concurrent
to c. Line 34 updates the state by applying, in order, the calls from the
topological order on the initial state. Finally, on line 35, causally stable
calls are committed to keep the execution graph small (discussed later in
Section 4.4.1.1). Although not shown in the algorithm, if c is an unsafe
call an acknowledgment is sent to the origin replica.

4.4.1.1 Optimizations

To keep the protocol efficient and avoid replaying the entire operation
history for every incoming call, two optimizations were applied. First,
causally stable calls are committed to keep the graph small. Second,
snapshots of intermediate states are stored to minimize the calls that have
to be recomputed. We now briefly elaborate on these optimizations.

Causal stability. A call c is causally stable [BAS17] at a replica r if
r knows that all other replicas also observed c. Causal stability can be
derived from the logical timestamps carried by calls when they are prop-
agated to replicas; a call c with timestamp ts is causally stable at replica
r, if ts happened before or is equal to the latest timestamp received from
every other replica8. Based on this observation, r knows that no more
calls that are concurrent to c can arrive. Replicas can thus - locally and
without coordination - commit a prefix of causally stable calls as their
positions are known to be fixed within the serialization.

How to commit a prefix of stable calls is defined by the
commitStableCalls function in Algorithm 4. The initial state σ0 is up-
dated by applying the longest prefix of stable calls (line 9), whereafter,
those calls and their incoming and outgoing edges can safely be removed
from the graph (line 10 and 11).

Snapshots. Even if replicas commit causally stable calls, they need to
replay the entire serialization of calls to compute the current state (line
34 in Algorithm 3). To address this issue, replicas take snapshots of
intermediate states which enables efficient rollbacks to prior states. For

8Replicas can periodically send a no-op to ensure that calls stabilize even if some
replicas do not generate calls.

81

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Algorithm 4 Committing causally stable calls.
1: 〈Σ, σ0, M, G, t, F〉, with G = 〈C,E〉 . ECRO’s internal state
2: function commitStableCalls
3: stablePrefix ← true
4: i ← 0 . number of causally stable calls
5: while i < |t| ∧ stablePrefix do . iterate over a prefix of stable calls
6: call ← t[i]
7: stablePrefix ← isStable(call) . determine stability from timestamp
8: if stablePrefix then
9: σ0 ← apply(σ0, call) . update initial state
10: C← C \ { call }
11: E← (E \ in(call)) \ out(call) . remove incoming & outgoing edges
12: i ← i + 1
13: t ← drop(i, t) . remove the prefix of stable calls from the topological order

example, if the topological sort (line 33) results in t = t1.t2 where t1 is
unchanged and t2 is the part of the serialization that changed, then the
replicas can roll back to the snapshot of the state after t1 such that only
the calls in t2 need to be replayed9. Note that if there is no snapshot
available that corresponds to the state after t1, the algorithm needs to roll
back to an older snapshot (ideally the one that corresponds to the longest
prefix of t1). ECROs let programmers configure the snapshot interval,
i.e. after how many calls a snapshot must be taken. This interval is a
trade-off between latency and memory. The more snapshots replicas take,
the less calls they need to replay but the more memory they use. The
less snapshots replicas take, the less memory they consume but the more
calls need to be replayed. We argue that the snapshot interval should be
smaller (i.e. take more snapshots) if operations are costly and bigger if
operations are fast.

4.4.1.2 Cycle Detection and Resolution

In some cases, reordering concurrent operations may introduce cycles. For
instance, consider three operations a, b, and c such that a ≺ b, c ‖ a, and
c ‖ b. If a and b do not commute, replicas add an hb-edge from a to b. If b
and c are unsafe, replicas may introduce a co-edge from b to c if that solves

9Note that dynamic topological sorting algorithms can return the index of the first
change in the topological order such that we do not have to compute it manually based
on the old ordering, which would be costly.

82

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

the conflict. Similarly, c and a may be unsafe and replicas may introduce
a co-edge from c to a to solve the conflict. However, this introduces a
cycle: a hb−→ b

co−→ c
co−→ a.

To keep the graph acyclic, we implement an efficient and determinis-
tic approach that detects and solves cycles. The complete specification is
in Appendix D. In a nutshell, when a newly added edge c1 → c2 causes
a cycle, at least one path from c2 to c1 exists. The protocol computes
all paths from c2 to c1 and breaks them by removing one ao-edge on
each path. These edges can be removed without putting convergence at
risk as they impose an artificial ordering between non-commutative calls.
Hence, we solved the cycle while keeping all non-commutative calls or-
dered. Occasionally, the cycle is caused by a combination of hb-edges and
co-edges. These cannot be removed without violating convergence and
safety. Instead, the algorithm deterministically discards a call that breaks
the cycle. Information about discarded ao-edges and calls is propagated
between replicas to ensure that all replicas eliminate the same ao-edges
and/or calls and thus still converge. Note that discarding the operation
that causes a cycle may cause anomalies observed by the clients. Future
work could explore alternative ways to solve or avoid cycles.

4.4.2 Consistency Guarantees

The ECRO replication protocol described in Algorithm 3 ensures that ev-
ery replica executes a serialization of the calls that respects dependencies
between calls, totally orders non-commutative calls, and upholds the in-
variants defined by the specification. Thus, ECROs guarantee Explicit
Consistency [Bal+15], a form of eventual consistency that is strengthened
with application-level invariants (cf. Section 2.1).

With regard to the four session guarantees for weak consistency (cf.
Section 2.1.2), ECROs guarantee Writes Follow Reads because for any
write w that has a set of relevant writes (i.e. dependencies) W , the repli-
cation protocol orders all the relevant writes w′ ∈W before w (cf. Line 21
and 22 in Algorithm 3).

If clients are sticky and cycles cannot occur, then ECROs also guar-
antee Read Your Writes and Monotonic Reads because all previously ob-
served writes are part of the graph (if they are unstable) or part of the state
(if they are stable and were committed). However, in our current imple-

83

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

mentation, cycles may cause ECROs to discard previously observed calls
and thus no longer guarantee Read Your Writes and Monotonic Reads.

To circumvent these problems, Monotonic Reads can be guaranteed by
reading only committed state since those calls are stable and will not be
discarded. Similarly, ECROs can guarantee Read Your Writes by delaying
calls (i.e. writes) until they are stable; from that point on, reads reflect
prior writes. While delaying calls may seem unreasonable at first, our eval-
uation (cf. Section 4.6.5) shows that in geo-replicated systems, calls often
stabilize faster than the time it takes to coordinate them. Still, delaying
calls may affect the system’s availability under network partitions.

Strictly speaking, ECROs do not guarantee Monotonic Writes be-
cause that requires writes to execute only after all previous writes within
the same session were executed, but ECRO’s replication protocol ignores
causal relations if the calls commute. Thus, if c1 ≺ c2 but the calls com-
mute then ECROs may apply c2 before c1. Nevertheless, the outcome is
the same because the operations commute. Thus, in practice, users do
observe Monotonic Writes.

4.4.3 Protocol Correctness

We now prove that ECROs guarantee convergence and safety with respect
to the data type’s distributed specification. Since the replication protocol
does not order pairs of calls that commute and are safe, several topological
orders of the execution graph may exist. We prove that all topological
orderings are safe (Theorem 1) and that replicas that received the same
method calls converge to equivalent states (Theorem 2).

Theorem 1: Safe execution graphs

All topological orderings of an execution graph G of an ECRO replica
are safe serializations.

Proof. By induction on the length of the topological ordering.
Base case. In the base case no calls occurred, so the topological ordering
is empty and trivially safe.
Induction step. Assume replica r1 has a topological order of dimension n
that is safe. If a new call c is executed at replica r1 two cases are possible:
either c is a local call or a remote call.

84

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

Case 1. If c is a local method call, we distinguish two new cases de-
pending on the information derived by Ordana. In the first case, the call
is unsafe and Ordana determined a set of restrictions depending on the
method calls that are conflicting. Algorithm 3 acquires the necessary locks
to ensure that no unsafe call can execute concurrently, thereby guarantee-
ing safety. In the second case, Ordana found that c is safe with respect to
all other possible calls. Hence, the replica can execute c and the resulting
topological order(s) are safe serializations.

Case 2. If call c was propagated by replica r2, then its execution
was locally safe at replica r2. We distinguish three cases depending on
the information derived by Ordana. In the first case, the call is unsafe
and the analysis did not find a solution. The originating replica r2 then
coordinated the call such that no conflicting call can execute concurrently,
thereby, guaranteeing safety. In the second case, the call is unsafe but
the analysis found a solution. If a conflicting call occurs concurrently
to c, all replicas add the same co-edge between those calls. This co-
edge guarantees safety since the analysis determined that this ordering
preserves the invariants. In the third and final case, the call is safe with
regard to all possible concurrent calls and thus cannot violate safety.

Thus, starting from an execution graph with a safe topological order
of dimension n and a new call c, Algorithm 3 builds an expanded graph
whose topological order of dimension n+ 1 is also a safe serialization.

Before we can prove that replicas converge to equivalent states, we
introduce a number of auxiliary lemmas and definitions.

Lemma 1: Convergent execution graphs

Two replicas of an ECRO that observed the same calls have the
same execution graph:

∀r1 = 〈Σ, σ0, M, G1, t1, F〉, r2 = 〈Σ, σ0, M, G2, t2, F〉�
G1 = 〈C1, E1〉 ∧ G2 = 〈C2, E2〉 ∧ C1 = C2 =⇒ E1 = E2 =⇒ G1 = G2

Proof. For every local or remote method call c, Algorithm 3 adds c to the
replica’s execution graph. Therefore, if both replicas observed the same
calls, both execution graphs contain the same vertices. We now show that
even if the (concurrent) calls were processed in a different order by these

85

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

replicas, their execution graphs contain the same edges. When a (local
or remote) call c is received, Algorithm 3 checks the relation between c

and every other call. Hence, independent of the order in which calls are
processed, every call is eventually compared to every other call. For every
pair of calls 〈c1, c2〉, we distinguish two cases. In the first case, c1 ≺ c2
or c2 ≺ c1. If the operations sequentially commute, their order is not
important. If the operations do not sequentially commute, their order is
important and the algorithm ensures that both replicas add an hb-edge
consistent with causality. In the second case, c1 and c2 are concurrent.
Again, if the operations commute, their order is not important. However,
if the operations do not commute, we consider two new cases. In the
first case, Ordana’s resolution function imposes an ordering between
the calls. Both replicas will then add the same co-edge. In the second
case, Ordana does not impose an ordering on these non-commutative calls.
Both replicas will then add the same ao-edge between these calls based
on the calls’ globally unique identifiers. Thus, the algorithm ensures that
both replicas add the same edges to the graph, therefore both graphs G1

and G2 are the same.

Definition 8: Equivalent serializations

Two serializations t1 and t2 of a set of method calls C are equivalent
iff every pair of non-commutative calls appears in the same order in
both t1 and t2:

∀t1, t2 � t1 ≡ t2 ⇐⇒ ∀c1, c2 ∈ C � ¬commutative(c1, c2) =⇒
(t1[c1]<t1[c2] ⇐⇒ t2[c1]<t2[c2]) ∧ (t1[c1]>t1[c2] ⇐⇒ t2[c1]>t2[c2])

where t[c] returns the position of call c in serialization t.

Definition 9: Equivalent replicas

Two replicas r1 and r2 of an ECRO are equivalent iff they have the
same execution graph G (i.e. observed the same calls) and their
topological orderings of G are equivalent:

∀r1 =〈Σ, σ0, M, G1, t1, F〉, r2 =〈Σ, σ0, M, G2, t2, F〉 �
r1 ≡ r2 ⇐⇒ G1 = G2 ∧ t1 ≡ t2

86

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

Lemma 2: Maximum one edge between method calls

The execution graph G = 〈C, E〉 of ECRO replicas contains at most
one edge between any two method calls.

Proof. When a method is called on a replica, it is handled by the
execute_local function and later integrated at remote replicas using
the execute_remote function (Algorithm 3). At the origin replica,
execute_local adds an hb-edge from every previous non-commutative
call v in C to c (line 10). Hence, there cannot be an hb-edge from c to
v or any other type of edge between them. For every incoming call c,
execute_remote considers two disjoint cases: v ≺ c and v ‖ c. The case
where c ≺ v cannot occur because calls are propagated in causal order
and we already observed v.

Case 1 (v ≺ c): if v and c sequentially commute the algorithm does
nothing, else, it adds an hb-edge from v to c (line 22). Hence, there cannot
be an hb-edge from c to v, nor can there be any other type of edge (co-edge
or ao-edge) between v and c since case 1 and 2 are disjoint.

Case 2 (v ‖ c): Calls v and c can be safe or unsafe. We thus distinguish
two disjoint subcases.

Case 2.1: If v and c are unsafe then Ordana found an ordering of the
calls that solves the conflict (either c < v or v < c), otherwise Ordana
would have restricted the calls and they cannot have executed concurrently
(line 6). If resolution(c, v) = < then every replica adds a co-edge from
c to v (line 25), and there cannot be an edge from v to c, nor can there
be any other type of edge between them since case 1 and 2 are disjoint
as well as case 2.1 and 2.2. The case where resolution(c, v) = > is
analogous.

Case 2.2: In this case, calls v and c are safe. If v and c commute the
algorithm does nothing, else, it deterministically adds an ao-edge from the
call with the smallest ID to the call with the biggest ID (line 28 to 32).
Since the identifiers are globally unique, all replicas add the same ao-edge
between v and c and there cannot be an edge in the opposite direction.
There also cannot be any other type of edge (hb-edge or co-edge) between
v and c because case 1 and 2 are disjoint as well as case 2.1 and 2.2.

We thus proved that there can be at most one edge between any two
method calls in the graph.

87

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Theorem 2: ECROs guarantee strong convergence

Two ECRO replicas that observed the same calls C converge to
equivalent states. Formally:

∀r1 = 〈Σ, σ0, M, 〈C1, E1〉, t1, F〉, r2 = 〈Σ, σ0, M, 〈C2, E2〉, t2, F〉 �
C1 = C2 =⇒ r1 ≡ r2

Proof. We follow a proof by contradiction. Since both replicas r1 and r2
observed the same calls C, we know from Lemma 1 that they have the
same execution graph, G1 = G2 (where G1 = 〈C1, E1〉 and G2 = 〈C2, E2〉).
This graph is constructed by successive applications of Algorithm 3. Now,
assume that their states diverge, i.e. apply (σ0, t1) 6≡ apply (σ0, t2). Since
r1 and r2 diverge we know that at least two non-commutative calls c1 and
c2 occur in a different order in t1 and t2. Let’s consider the case where
t1[c1] < t1[c2] and t2[c1] 6< t2[c2]. Since calls c1 and c2 do not commute we
have to consider three distinct cases.

Case 1: the calls c1 and c2 are unsafe and Ordana found no safe
ordering. The algorithm then coordinates the calls to avoid that they
execute concurrently (line 6 in Algorithm 3), thus imposing a happened-
before relation (hb-edge) between c1 and c2 (leading to t2[c1] < t2[c2]).
We reach a contradiction since in t2, by hypothesis, these calls appear in
a different order (t2[c1] 6< t2[c2]) but from Lemma 2 it follows that there
is at most one edge between any two calls, i.e. there cannot be an edge
from c2 to c1 since there is already an hb-edge from c1 to c2.

Case 2: the calls c1 and c2 are unsafe but Ordana found a safe ordering
of the calls (line 23 to 27 in Algorithm 3). Assuming that the resolution
places c1 before c2, we again reach a contradiction since in t2 these calls
occur in a different order and there can be at most one edge between
them. If the resolution places c2 before c1 we reach a similar contradiction
because t1 already has an edge from c1 to c2.

Case 3: the calls c1 and c2 are safe. Since the calls do not commute,
the algorithm uses the calls’ globally unique identifiers to deterministically
order c1 and c2 using an ao-edge (line 28 to 32 in Algorithm 3). Assuming
the arbitration relation orders c1 before c2, we reach a contradiction since
in t2 these calls occur in a different order and there can be at most one
edge between them. If the arbitration relation orders c2 before c1, we
reach a similar contradiction since in t1 there is already an edge from c1

88

4.4. EXPLICITLY CONSISTENT REPLICATED OBJECTS

to c2. The other case where t1[c1] > t1[c2] and t2[c1] 6> t2[c2] can be argued
likewise.

We showed that both topological orderings t1 and t2 keep the relative
order of all non-commutative calls. It follows from Definitions 8 and 9
that the replicas converge.

4.4.4 Implementation

We implemented a prototype of the ECRO approach in Scala. Ordana, our
analysis tool, consists of two parts: a parser and an analyzer. The parser
is based on Indigo [Bal+15] and translates the first-order logic formulas
from an ECRO’s distributed specification to Z3 formulas. The analyzer
implements the analyses presented in Section 4.3, and executes them using
a Java binding for Z3. The information derived by Ordana is written to
a file and used at runtime by the ECRO replication protocol.

The implementation of the replication protocol uses a dynamic topo-
logical sort algorithm [PK07] provided by the JGraphT library10 and takes
snapshots of intermediate states to efficiently roll back concurrent calls
when they are reordered. Snapshots are garbage collected once their state
is stable. We also remove calls from the replica’s execution graph once
they are causally stable [BAS17]. As explained in Section 4.4.1.1, these
optimizations are safe since no more concurrent calls can arrive, i.e. the
order of the call in the serialization is stable across all replicas.

We integrated ECROs in Squirrel [DG19], our distributed in-memory
key-value store for Scala built atop Akka. Listing 4.4 shows how to store
ECROs in Squirrel. First, we set up Squirrel by piggybacking on an ex-
isting Akka actor system and cluster (Lines 2 to 4). Then, we define a
key and an instance of an add-wins set ECRO (Lines 7 to 8). Afterward,
we add the set to the store and Squirrel returns a future that resolves to
a replica of the set (Line 11). In the background, Squirrel automatically
replicates the set to all instances of the database. Finally, we use our
local replica (which is always available) to add 5 to the set (Line 13) and
register a callback that prints the elements of the set every time it changes
(Line 15), i.e. every time a replica adds or removes an element.

10https://jgrapht.org/

89

https://jgrapht.org/

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Listing 4.4: Storing ECROs in the Squirrel distributed key-value store.

1 // Setup Squirrel
2 val system : ActorSystem = ... // an existing Akka actor system
3 val squirrel = Squirrel (system)
4 val store = squirrel . store
5
6 // Make a key and an add -wins set ECRO of integers
7 val key = Key[AWSet [Int]]("my -add -wins -set")
8 val awset = AWSet [Int]() // add -wins set ECRO
9

10 // Store the object in Squirrel
11 val replicaF : Future [AWSet] = store .add(key , awset)
12 replicaF . foreach (replica => {
13 replica .add (5) // add 5 to the set
14 // print the set every time it changes
15 store . onChange (key , _ => println (replica . elements))
16 })

4.5 Qualitative Evaluation

We now conduct a qualitative evaluation of our work to assess if the ECRO
approach is suitable for building geo-distributed applications. This leads
to our first research question:

RQ1. Do ECROs simplify the development of RDTs compared to state-of-
the-art approaches?

To answer RQ1, we first design and implement an extensive portfolio of
RDTs using the ECRO approach. Then, we compare the implementation
of two representative RDTs against implementations in state-of-the-art
approaches.

4.5.1 Portfolio of ECRO Data Types

To demonstrate the applicability of the ECRO approach we implemented
an extensive portfolio of RDTs and integrated them in Squirrel. Our port-
folio covers existing RDTs (counters, flags, sets, maps, lists), new RDTs for
which no prior (C)RDT design exists as they require coordination (stacks
and queues), and RUBiS, a geo-distributed auction system that is built
from sequential data types (i.e. without devising ad-hoc RDTs). We pub-
lished a software artifact comprising the implementation of the complete
portfolio. It is available at https://doi.org/10.5281/zenodo.5410793.

90

https://doi.org/10.5281/zenodo.5410793

4.5. QUALITATIVE EVALUATION

Data Type Description and distributed semantics

Counter Supports increments and decrements.

EW-Flag Flag that can be enabled and disabled. Guarantees enable-wins
semantics in case the flag is enabled and disabled concurrently.

DW-Flag Similar to EW-Flag but guarantees disable-wins semantics.

AW-Set Wrapper around Scala’s built-in immutable set. Provides add-wins
semantics similar to the OR-Set CRDT [Sha+11a].

RW-Set Similar to AW-Set but provides remove-wins semantics.

AW-Map

Wrapper around Scala’s built-in immutable map. Values can be
complex objects and are updated by overriding the key with the new
value. Provides add-wins semantics when the same key is added and
removed concurrently, and last-writer-wins semantics for concurrent
adds of the same key.

RW-Map Similar to AW-Map but provides remove-wins semantics when a key is
added and removed concurrently.

Stack

Stack allowing push, pop, and top operations. Push operations
execute optimistically and are totally ordered. Pop operations are
coordinated in order not to pop more elements than there are on the
stack.

Queue

Wrapper around Scala’s built-in immutable queue. Enqueue
operations run optimistically and are totally ordered. Dequeue
operations are coordinated to avoid dequeueing more elements than
there are in the queue.

List Provides operations to prepend, insert, and delete elements, and to
map a function over the list.

RUBiS eBay-like auction system similar to the RUBiS benchmark [EJ09].

Table 4.1: Portfolio of ECRO data types and their description.

91

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Table 4.1 provides an overview of all the data types included in the
portfolio, accompanied by a brief description. In the remainder of this
section, we elaborate on the different data types included in the portfolio,
except sets as they were already discussed in Section 4.2.2.

Counter. The counter data type stores a single integer value that can be
incremented and decremented. Since those operations naturally commute
they do not require coordination and are never reordered.

Flags. The flag data types store a boolean value that can be enabled
and disabled. Enable sets the flag to true, while disable sets it to false.
These two operations do not commute, hence, concurrent calls to enable
and disable are totally ordered depending on the flag’s semantics. The
enable-wins flag requires enable to win over concurrent disables. To this
end, it associates an invariant to the enable operation which states that the
flag must be enabled after the enable operation and any concurrent oper-
ations executed. Similarly, the disable-wins flag ensures that disable wins
over concurrent enables by means of a similar invariant atop the disable
operation. Ordana found that enable-wins semantics (resp. disable-wins
semantics) can be achieved by ordering enable (resp. disable) operations
after concurrent disable (resp. enable) operations.

Maps. Similarly to sets, we implemented add-wins and remove-wins
maps. If a key is added and removed concurrently, the key will still
be in the add-wins map but not in the remove-wins map. If two repli-
cas concurrently add the same key with different values, one of the two
will win, ensuring last-writer-wins semantics. To achieve add-wins and
remove-wins behavior, we add invariants to the add and remove methods,
similar to those of sets, which state that the added/removed key must be
present (or not) in the resulting map. Since concurrent additions of the
same key with different values do not commute, the ECRO algorithm au-
tomatically enforces a total order of these updates, thereby guaranteeing
last-writer-wins semantics out of the box.

Stack and queue. We discuss the implementation of stacks and queues
together since their distributed behavior is analogous. Stacks and queues
allow elements to be pushed (or enqueued) and popped (or dequeued).

92

4.5. QUALITATIVE EVALUATION

New elements are pushed (or enqueued) asynchronously and concurrent
calls to push (or enqueue) are totally ordered across all replicas since
they do not commute. However, concurrent pops (or dequeues) require
coordination otherwise there may be more concurrent pop (or dequeue)
calls than there are elements on the stack. To the best of our knowledge
these are the first replicated stack and queue data types that preserve the
operation’s sequential semantics.

List. The list data type provides methods to prepend elements to the
list, insert elements after other elements in the list, delete elements from
the list, and map functions over the list. We added a precondition to
insert to ensure that the element after which to insert (called the ref-
erence element) exists. We also added an invariant to insert to ensure
that the inserted element occurs in the resulting list and is not overwritten
by a concurrent map. All methods are allowed to run optimistically, i.e.
they do not require coordination. If two elements are inserted at the same
position concurrently, the algorithm totally orders them across all replicas
as those calls do not commute.

!1: insert(e3, e4)

"init = [e1, e2, e3]
"res = [e1, e2, e3, e4]

R1

R2

!2: delete(e3)

!2: delete(e3) !1: insert(e3, e4)

"init = [e1, e2, e3, e4]
"res = [e1, e2, e4]

"init = [e1, e2, e3]
"res = [e1, e2]

"init = [e1, e2]
pre(!1, "init) = false

Figure 4.4: Conflict that requires
R2 to reorder the calls.

Concurrent insertions and dele-
tions may lead to conflicts. Fig-
ure 4.4 shows the case where replica
R1 inserts a new element e4 behind e3
while concurrently replica R2 deletes
e3. After exchanging the calls, R2
cannot insert e4 because e3 is no
longer present in the list, thereby vi-
olating insert’s precondition. R2 can
solve this conflict by reordering the
calls such that e4 is inserted before
deleting e3. As detected by Ordana, this reordering is safe and only needed
when deleting the reference element (e3 in the previous example) of one or
more concurrent insertions. Similarly, map operations are reordered be-
fore concurrent insertions in order not to modify newly inserted elements
(as this would violate the invariant of insert).

RUBiS. Our RUBiS data type implements the eBay-like auction system
introduced in Section 4.2.3. The RUBiS ECRO provides methods for

93

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

registering users, selling items, buying items, opening auctions, bidding
on auctions, and closing auctions. Users must be unique, the stock of an
item may not go below zero, and bids can only be placed on open auctions.

We associated a precondition to the registerUser operation that
checks that the chosen username does not yet exist. The sellItem(item,
amount) operation has a precondition that requires the amount that is sold
to be strictly positive and an invariant that checks that the stock after
applying sell and any concurrent operations contains at least the amount
that is put for sale. The storeBuyNow(item, quantity) operation buys
a certain quantity of a given item. Its precondition requires the quantity to
be bigger than zero and smaller or equal to the number of items there are
in stock. Its invariant requires the resulting state to have a non-negative
stock for that item, i.e. concurrent storeBuyNow operations may not buy
more items than there are in stock.

The openAuction operation creates an auction with a certain identi-
fier. Its precondition requires that the auction does not yet exist, or if
it already exists the auction must still be open. Thus, this precondition
allows users to concurrently open the same auction. The placeBid and
closeAuction operations have been discussed in detail in Section 4.2.3.
The precondition of placeBid requires the auction to be open, the user
to exist, and the bid to be bigger than zero. The closeAuction operation
has no precondition or invariant. One could consider adding a precondi-
tion to closeAuction that requires the auction to be open. However, this
would preclude users from concurrently closing an auction because only
the first closeAuction operation would be enabled.

Table 4.2 shows the result of Ordana’s safety analysis for the RUBiS
RDT. The upper triangle of the matrix is omitted as the relations are

registerUser rU µ(u)
sellItem sl
storeBuyNow sBN µ(i)
openAuction oA
placeBid pB
closeAuction cA pB’<cA

rU’ sl’ sBN’ oA’ pB’ cA’
µ(i) = lock(item), µ(u) = lock(user)
pB’ < cA when auction = auction’

Table 4.2: Outcome of Ordana’s safety analysis for RUBiS.

94

4.5. QUALITATIVE EVALUATION

symmetrical. Most method pairs are safe (colored green). placeBid and
closeAuction, however, do not commute and may lead to conflicts when
a bid is placed on an auction that is closed concurrently (colored orange).
Ordana found a solution to this conflict by ordering placeBid calls before
concurrent closeAuction calls, and can uphold the invariants without co-
ordination. Finally, storeBuyNow and registerUser are unsafe (colored
red) because concurrent calls may lead to a negative stock or duplicate
users. These conflicts cannot be avoided by reordering the calls, hence,
ECROs coordinate them. To buy an item or register a user, the replica
must first acquire a lock on the given item or user. This lock only restricts
buying/registering the same item/user concurrently.

4.5.2 Comparison of ECROs Against Related Approaches

We now evaluate the impact of ECROs on the design and implementation
of applications involving RDTs. We first compare the implementation
of replicated sets with ECROs against well-known CRDT implementa-
tions [Sha+11a]. Then, we compare the RUBiS ECRO (cf. Section 4.2.3)
against existing solutions such as PoR [LPR18] and RedBlue [Li+12].

4.5.2.1 Replicated Sets

We now compare the design and implementation of sets implemented with
CRDTs and ECROs. The ECRO implementations have been discussed in
detail in Section 4.2.2. Since ECROs exchange operations they are best
compared to operation-based CRDTs. Therefore, we focus this discussion
on operation-based set CRDTs. We implemented the CRDT designs de-
scribed by Shapiro et al. [Sha+11a] in Scala. We do not compare to Akka’s
CRDT implementations because they only provide state-based CRDTs.

Operation-based CRDTs split every operation in two phases: a phase
that prepares a message to be broadcast to every replica including itself
(prepare method), and a downstream phase that applies such incoming
messages (downstream method).

Listing 4.5 shows our implementation of an Observed-Removed Set
(OR-Set) CRDT in Scala, which ensures add-wins semantics by associat-
ing a globally unique tag to every element it adds (lines 8-12). When some
replica removes an element, it tells all replicas to remove only the tags it
observed for that element (line 14). An element is part of the set if its set

95

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

of tags is non-empty (line 5). Since this design assumes that messages are
delivered in causal order and replicas cannot remove the tags of elements
that are added concurrently, the OR-Set guarantees add-wins semantics.

Listing 4.5: Implementation of an OR-Set CRDT in Scala.

1 case class Tag[ID](replica : ID , ctr: Int)
2 case class ORSet [V, ID](myID: ID , counter : Int ,
3 elements : Map[V, Set[Tag[ID]]]) {
4 def contains (e: V) =
5 elements . getOrElse (e, Set. empty [Tag[ID]]). nonEmpty
6 def prepareAdd (e: V): (V, Tag[ID]) =
7 (e, Tag(myID , counter + 1))
8 def addDownstream (tup: (V, Tag[ID])) = {
9 val (e, tag) = tup; val tags = elements . getOrElse (e, Set ())

10 val newCtr = if (tag. replica == myID) tag.ctr else counter
11 ORSet (myID , newCtr , elements + (e -> (tags + tag)))
12 }
13 def prepareRemove (e: V): (V, Set[Tag[ID]]) =
14 (e, elements . getOrElse (e, Set ()))
15 def removeDownstream (tup: (V, Set[Tag[ID]])) = {
16 val (e, tags) = tup
17 val knownTags = elements . getOrElse (e, Set ())
18 ORSet (myID , counter , elements + (e -> (knownTags -- tags)))
19 } }

Listing 4.6: Implementation of a 2P-Set CRDT in Scala.

1 case class TwoPSet [V](added : Set[V], removed : Set[V]) {
2 def contains (element : V) =
3 added . contains (element) && ! removed . contains (element)
4
5 def prepareAdd (element : V) = element
6 def addDownstream (element : V) =
7 TwoPSet (added + element , removed)
8
9 def prepareRemove (element : V) = element

10 def removeDownstream (element : V) =
11 TwoPSet (added , removed + element)
12 }

Providing remove-wins set semantics requires a completely different
CRDT design. Shapiro et al. [Sha+11a] describe a Two-Phase Set (2P-
Set) CRDT that guarantees remove-wins semantics. Listing 4.6 shows
our implementation of the 2P-Set CRDT in Scala. It is a combination
of two grow-only sets: added and removed (line 1). Elements are added
by adding them to the added set and removed by adding them to the

96

4.5. QUALITATIVE EVALUATION

removed set (lines 7 and 11). An element is considered in the set if it is
in the added set and not in the removed set (line 3). A consequence of
this design is that a removed element can never be added again.

Comparison. In contrast to CRDTs, ECROs allow developers to change
the semantics of the set by modifying the specification instead of the im-
plementation. This enables (1) RDT implementations to be reused, and
(2) RDTs can exhibit different distributed semantics based on the applica-
tion’s needs, without rethinking the data type. As shown in Section 4.2.2,
the add-wins and remove-wins set ECROs share the same sequential im-
plementation (cf. Listing 4.1) and only differ in their specification (cf.
Listing 4.2): the former associates an invariant to the add operation that
guarantees add-wins semantics, while the latter associates an invariant to
the remove operation that guarantees remove-wins semantics. In contrast,
the OR-Set and 2P-Set CRDTs described in this section are completely
different.

4.5.2.2 RUBiS Auction System

We now compare the implementation of RUBiS with ECROs (cf. Sec-
tion 4.2.3) against its implementation with two state-of-the-art solutions:
RedBlue and PoR consistency.

RedBlue and PoR require programmers to manually identify all con-
flicts that may violate application invariants and determine a set of re-
strictions that avoid these conflicts in order to guarantee state convergence
and invariant preservation.

Table 4.3 shows that RedBlue requires 10 restrictions for the RUBiS
system because it coordinates all unsafe shadow operations (i.e. all red
operations are restricted pairwise). For example, the registerUser op-
eration is labeled red because concurrent registerUser operations may
violate the invariant that usernames must be unique. As a result, RedBlue
imposes a restriction between registerUser and every other red opera-
tion, even though only concurrent registerUser operations are unsafe!

On the other hand, PoR only requires restrictions between pairs of op-
erations that do not commute or are unsafe. Thus, PoR restricts concur-
rent registerUser operations but does not restrict registerUser from
running concurrently with other operations. This results in only 3 restric-
tions for RUBiS.

97

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

RedBlue consistency PoR consistency
r(registerUser, registerUser) r(registerUser, registerUser)
r(storeBuyNow, storeBuyNow) r(storeBuyNow, storeBuyNow)
r(placeBid, placeBid) r(placeBid, closeAuction)
r(closeAuction, closeAuction)
r(placeBid, closeAuction)
r(registerUser, storeBuyNow) ECRO
r(registerUser, placeBid) r(registerUser, registerUser, <user>)
r(registerUser, closeAuction) r(storeBuyNow, storeBuyNow, <item>)
r(storeBuyNow, placeBid)
r(storeBuyNow, closeAuction)

Table 4.3: Restrictions over the RUBiS operations enforced by RedBlue
and PoR, taken from [LPR18] and extended with ECRO.

Comparison. In contrast to RedBlue and PoR, ECROs automatically
derive a minimal set of restrictions based on the results of Ordana’s safety
analysis shown in Table 4.2. This results in only two restrictions (also
shown in Table 4.3) because Ordana finds a solution for the conflict
between placeBid and closeAuction and hence does not impose a re-
striction on those operations (cf. Section 4.5.1).

Similarly, Sieve [Li+14] automatically derives the restrictions for Red-
Blue consistency, based on a static analysis of a first-order logic specifica-
tion of the operations. However, ECROs derive more fine-grained restric-
tions thanks to Ordana’s novel safety analysis. For example, ECROs only
restrict specific registerUser and storeBuyNow operations such that a
single username or item is locked, whereas RedBlue and PoR restrict all
registerUser and storeBuyNow operations from running concurrently,
thus effectively locking all usernames or items.

We now compare ECROs to related work based on the complex-
ity of programming RDT specifications. Automated approaches such as
Sieve [Li+14], CISE [Got+16], and Explicit Consistency [Bal+15] require
programmers to write plain strings containing first-order logic formulas
describing the application invariants. In contrast, ECROs simplify this
task by providing an embedded DSL for first-order logic in Scala. Our
DSL simplifies the development of the specifications since (1) it provides
support for common tasks (e.g. copying relations between states, express-
ing uniqueness constraints), (2) syntax errors and type errors are caught

98

4.6. PERFORMANCE EVALUATION

by the compiler, and (3) programmers can leverage Scala’s existing ab-
straction and modularization mechanisms (e.g. classes, traits, etc.).

4.5.3 Conclusion

The variety of RDTs comprised in our portfolio demonstrates that the
ECRO approach is suited to implement RDTs from sequential code. More-
over, our comparison of replicated set implementations shows that the
separation between the data type’s implementation and its semantics (i.e.
the distributed specification) facilitates the development and evolution of
RDTs as one can modify the semantics without changing the implementa-
tion. The comparison of RUBiS implementations shows that our DSL for
first-order logic simplifies the development of RDT specifications because
programmers can leverage Scala’s built-in abstraction mechanisms.

Based on the above observations, we conclude that the ECRO ap-
proach simplifies the development of RDTs when compared to state-of-
the-art approaches (RQ1).

4.6 Performance Evaluation

We now shift our attention to the performance of the ECRO approach. We
conduct several experiments to answer the following research questions:

RQ2. Can the static analyses, described in Section 4.3 and included in
Ordana, be used in practice?

RQ3. Does the ECRO algorithm scale?

RQ4. How do ECRO-enabled geo-distributed applications perform com-
pared to other approaches?

4.6.1 Methodology

The performance experiments reported in this section were conducted on
Amazon EC2 m5.xlarge Virtual Machine (VM) instances. Each VM has 4
virtual CPUs and 16GiB of RAM. All benchmarks are implemented using
JMH [Ope], a benchmarking library for the JVM that helps avoid common
pitfalls, such as loop optimizations and dead code elimination [Pon14].

99

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

Each benchmark starts with a warmup phase, followed by the actual mea-
surement phase consisting of 20 iterations. To avoid run-to-run variance
we use the default setting of 5 JVM forks, which repeats the benchmark
5 times in fresh JVMs. This yields a total of 100 samples per benchmark.

4.6.2 Feasibility of the Static Analysis Phase (RQ2)

We measure the execution time of Ordana on the distributed specification
of each data type in our portfolio of ECROs, presented in Section 4.5.1.
The results, presented in Table 4.4, show that most data types are stat-
ically analyzed in less than 200ms. This results from the fact that their
specifications are rather simple and concise. The execution times for the
list data type and RUBiS applications are considerably higher. For lists,
this is due to the complexity of the specification as operations manipulate
references between the elements. For RUBiS, this comes from the fact that
the data type has a bigger interface and thus more operations to analyze.

Counter EW-Flag DW-Flag AW-Set RW-Set
Time (ms) 58 67 73 93 95

AW-Map RW-Map Stack Queue List RUBiS
Time (ms) 120 117 199 175 1732 4175

Table 4.4: Average time for Ordana to analyze ECRO specifications.

Based on these results, we conclude that Ordana is suited to analyze
the distributed specifications of ECROs, as even the RUBiS application is
analyzed in less than 5 seconds. Note that the analyses run at compile-
time and only reanalyze distributed specifications that changed, thus, en-
abling their adoption within integrated development environments.

4.6.3 Scalability of the ECRO Protocol (RQ3)

The ECRO protocol maintains a DAG of tentative operations. We eval-
uate the scalability of the protocol with regard to the size of the DAG
(i.e. the number of causally unstable operations [ASB15]) for three types
of operations: (1) side-effect free operations, (2) operations that are safe
and commute, and (3) unsafe operations that do not commute.

100

4.6. PERFORMANCE EVALUATION

4.6.3.1 Comparison to Sequential Data Types

We now measure the latency of three operations on lists (last, delete,
and map) which characterize the aforementioned types of operations.
The benchmark runs on a single Amazon EC2 m5.xlarge instance
and measures the latency of the three operations on an ECRO list
containing 50K elements that is constructed by successive insertions:
insert(e1, e2); insert(e2, e3); ...; insert(en−1, en). We use Scala’s built-in
list as baseline and normalize the measurements. Figure 4.5 shows the
relative latency of each operation.

Last. Returns the last element of the list. Since the operation has no
side-effects, it executes immediately (no need to add it to the graph). As
a result, we observe no significant performance difference compared to
Scala’s built-in list; the relative latency is approximately 1.

Delete. Removes the last element of the list. Recall from Section 4.5.1
that delete(elem) and insert(ref, newElem) commute when elem 6=
ref . Since the list is built by successive insertions and this operation
deletes the last element en, there are no dependent insert(en, _) opera-
tions in the graph. Hence, delete is safe and commutes with all operations
from the graph. The ECRO algorithm adds the operation to the graph
(O(1)) whereafter it executes the operation (lines 7 to 12 in Algorithm 3).
As a result, the relative latency is also approximately 1.

Map. Maps a function over all elements of the list and does not
commute with the insert operations that precede it. Algorithm 3 thus
adds the operation to the graph (line 7) and adds an hb-edge between
every existing insert operation and the new map operation (lines 8 to 10),
before executing the operation (line 12). As a result, the performance of
map decreases with the number of non-commutative operations in the
graph (i.e. the number of edges that must be added).

The results show that ECROs exhibit latency similar to their sequen-
tial implementation for side-effect free operations and commutative oper-
ations. For non-commutative operations the latency decreases with the
number of non-commutative operations in the graph. The experiment
varied the size of the graph from 0 to 100 operations. In practice, the

101

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

1.0

1.5

2.0

2.5

3.0

0 25 50 75 100
Graph size

R
el

at
iv

e
la

te
nc

y
(lo

w
er

 is
 b

et
te

r)

Operation delete last map

Figure 4.5: Latency of operations on an ECRO list. We disabled the JIT
compiler to better show the impact of the graph’s size on the latency of
operations.

graph will rarely contain as much as 100 operations since the implementa-
tion detects causally stable operations and safely removes them from the
graph (cf. Algorithm 4). Causal stability was disabled for this experiment
in order to study the impact of unstable operations on the algorithm.

RUBiS. The previous list benchmark showcased the worst-case perfor-
mance of the ECRO protocol since map did not commute with any opera-
tion in the execution graph. To get a better understanding of the proto-
col’s scalability we conduct a similar experiment for RUBiS. We measure
the latency of RUBiS operations on an ECRO and compare it to a sequen-
tial Scala implementation. In RUBiS, most operations commute, except
when they affect the same auction, e.g. openAuction, placeBid, and
closeAuction. The getHighestBid operation fetches the highest bid for
a given auction and thus has no side effects. We measure the latency for
each of these operations on a RUBiS system populated with 100 users,
1000 auctions, and 1000 items. Each operation is executed by a randomly
selected user on a random auction.

Figure 4.6 shows that all operations exhibit constant latencies, with
a negligible constant time difference between ECROs and Scala for mu-
tating operations, which corresponds to the overhead of the ECRO proto-
col. The operations have constant latencies because only a fraction of the
operations affect the same auction (i.e. do not commute). Based on this
experiment, we conclude that the latency of ECRO operations depends on
the number of non-commutative operations in the graph, which in prac-

102

4.6. PERFORMANCE EVALUATION

openAuction closeAuction placeBid getHighestBid

0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0 0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0
0

10

20

30

Graph sizeLa
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Implementation Ecro Scala

Figure 4.6: Latency of RUBiS operations.

tice is often small, especially if network connectivity is good and replicas
commit causally stable operations.

4.6.3.2 Comparison to State-of-the-Art Set RDTs

We now compare the latency of operations for an add-wins set ECRO
with the OR-Set CRDT (cf. Section 4.5.2.1) and our implementation of
the pure operation-based add-wins set CRDT [BAS17] in Scala. Recall
that add(x) and remove(y) operations commute, except when x = y.

add remove contains

0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0 0 50 10
0

15
0

20
0

25
0

0

10

20

30

Graph/Log size

La
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Implementation Crdt Ecro Pure

Figure 4.7: Latency of operations on add-wins sets for ECROs, CRDTs,
and pure-op CRDTs.

We vary the size of the execution graph (for ECROs) and log (for
pure-op CRDTs) by executing a random workload before measuring the
latency of operations. Figure 4.7 depicts the results. The latencies remain
constant for all operations of the add-wins set ECRO and the OR-Set
CRDT. The add and remove operations have a negligible constant time

103

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

difference between those implementations (less than 0.03ms). In the pure
add-wins set CRDT, the latency of operations is linear to the size of the
log. This is because the pure operation-based approach checks new op-
erations against all operations in the log in order to compact the log,
whereas ECROs only check new operations against non-commutative op-
erations in the graph. When the set’s cardinality is big enough and the
set operations are distributed uniformly across this space, the number of
non-commutative operations is small and thus yields constant latency for
ECROs.

4.6.4 Performance of a Geo-Distributed RUBiS Applica-
tion (RQ4)

Besides the number of non-commutative operations contained by the
graph, the performance of the ECRO algorithm also depends on factors
such as the load experienced by the system, the latency between replicas,
etc. We now compare ECROs with PoR and RedBlue on RUBiS by means
of a variation on the RUBiS benchmark described in [LPR18].

Setup. The benchmark includes three RUBiS replicas and an indepen-
dent lock server that coordinates unsafe operations. The RUBiS repli-
cas run on Amazon EC2 m5.xlarge VM instances located in three geo-
distributed Data Centers (DCs): Paris, Ohio, and Tokyo. The lock server
runs on an m5.xlarge instance located in São Paulo.

The DC in Paris measures the latency of operations, while the DCs
in Ohio and Tokyo execute an update-heavy workload consisting of 100
user requests11 per second with 50% reads (side-effect free operations, e.g.
getStatus) and 50% writes (mutating operations, e.g. openAuction).
Workloads are generated from a probabilistic distribution of the opera-
tions. Table 4.5 shows the latencies and bandwidth between DCs.

Results. Figure 4.8 shows the average latency of RUBiS operations as
observed by the user at DC Paris. The getStatus and openAuction oper-
ations are safe, hence, they are not coordinated, resulting in low latencies.
The storeBuyNow and registerUser operations are unsafe and require
coordination in all implementations (see Table 4.3), inducing high laten-

11In this context a user request corresponds to a method call on a replica.

104

4.6. PERFORMANCE EVALUATION

0

500

1000

1500

ge
tS

ta
tu

s

op
en

Auc
tio

n

sto
re

Buy
Now

re
gis

te
rU

se
r

pla
ce

Bid

clo
se

Auc
tio

n

La
te

nc
y

(in
 m

s)

ECRO
PoR
RedBlue

Figure 4.8: Average latency of RUBiS
operations as observed by users at DC
Paris. Error bars represent the 99.9%
confidence interval.

Paris 44.3 us
4.78 Gbps

Ohio 44.4 ms
140 Mbps

66.2 us
4.31 Gbps

Tokyo 122 ms
49.5 Mbps

79.2 ms
77.9 Mbps

56.2 us
4.75 Gbps

São Paulo 99.3 ms
61.8 Mbps

66.2 ms
97.5 Mbps

135 ms
46.3 Mbps

100 us
4.38 Gbps

Paris Ohio Tokyo São Paulo

Table 4.5: Average round trip
latency and bandwidth between
data centers.

cies. Nevertheless, the ECRO implementation reduces latency by more
than 10% when compared to PoR and RedBlue. This speedup comes
from the fact that ECROs use fine-grained locks on a single user/item,
whereas PoR and RedBlue use coarse-grained locks on all users/items
thereby preventing any registerUser/storeBuyNow operations from run-
ning concurrently. The placeBid and closeAuction operations exhibit
high latencies for PoR and RedBlue because they are unsafe and require
coordination (see Table 4.3). ECROs do not coordinate these operations
because Ordana found a solution to the conflict, which consists of locally
ordering placeBid operations before concurrent closeAuction operations
when they affect the same auction (see Table 4.2 in Section 4.5.1). As a
result, ECROs achieve low latency (less than 1ms).

We performed the same experiment with a read-mostly workload con-
sisting of 1000 user requests per second with 95% reads and 5% writes.
The results are similar and are explained in Appendix E.

4.6.5 Impact of Causally Unstable Operations on Scalabil-
ity (RQ3)

As explained in Section 4.6.3, the latency of ECRO operations is related
to the number of non-commutative operations in the execution graph.

105

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

The graph contains tentative operations, i.e. operations that are not yet
causally stable and may be reordered (cf. Section 4.4.1.1).

We now turn our attention back to RQ3 and investigate the impact of
causally unstable operations on the scalability of the ECRO algorithm. To
this end, we measure the time to causal stability using the geo-distributed
RUBiS deployment from Section 4.6.4. Recall that the RUBiS ECRO
avoids coordination between the placeBid and closeAuction operations.
Thus, users may close an auction and concurrently place a bid on that
same auction. Upon delivery of the bid, closeAuction is reverted, the bid
is placed, and the auction is closed again. Hence, there is a time window
between closing the auction and declaring the winner, during which new
bids may still arrive. Only when closeAuction becomes causally stable,
the replica declares a winner. This is possible because our implementation
exposes a hook that programmers can use to be notified when an operation
stabilizes.

500

1000

3000

5000

0.2 10.0 25.0 50.0 75.0 100.0
Operation rate (ops/s)

T
im

e
to

 s
ta

bi
lit

y
(in

 m
s) placeBid

closeAuction

Figure 4.9: Time to stability for placeBid and closeAuction in function
of the rate of operations in a geo-distributed RUBiS deployment.

Figure 4.9 shows the time to stability for the placeBid and
closeAuction operations in function of the rate at which replicas gen-
erate operations. The time to stability quickly decreases with the rate of
operations because ECROs derive stability from the logical timestamps of
incoming operations. If replicas generate an operation every 5 seconds (0.2
ops/s), it takes on average 5 seconds for any operation to stabilize. When
replicas generate 5 operations per second, the time to stability decreases
to 550ms. Further increasing the rate of operations does not decrease the

106

4.7. NOTES ON RELATED WORK

time to stability due to network latencies, the load experienced by the
system, etc.

Based on the aforementioned results, we conclude that the time to sta-
bility is inversely related to the rate at which replicas generate operations.
When the rate is high enough (at least a few operations per second), oper-
ations stabilize faster than a coordinated execution. Indeed, at a rate of 5
ops/s and more, operations stabilize within 680ms whereas a coordinated
execution of placeBid or closeAuction takes at least 880ms (cf. Fig. 4.8).
In a cloud computing context, we can reasonably assume that DCs are
well interconnected and generate operations regularly. Therefore, opera-
tions stabilize quickly and the replicas’ execution graphs remain reason-
ably small which yields low latency and good scalability. If some replicas
do not generate operations regularly, the time to stability can be reduced
by sending acknowledgements for incoming operations, or, by having each
replica periodically broadcast its logical clock. For our deployment, repli-
cas could broadcast their clock every 140ms which corresponds roughly to
the maximum latency between our DCs (cf. Table 4.5).

4.7 Notes on Related Work

As explained in Section 2.2.1.2, invariant-preserving RDTs such as Ham-
saz [HL19] and Quelea [SKJ15] guarantee state convergence by coordi-
nating non-commutative operations. The ECRO approach is different as
it does not coordinate non-commutative operations, but instead, deter-
ministically orders them at each replica, in a way that respects causality
between dependent operations. Similarly, most invariant-preserving RDTs
coordinate unsafe operations to avoid conflicts (i.e. invariant violations) at
runtime. In contrast, ECROs allow unsafe operations to run concurrently
if a safe reordering of the calls exists.

To enable the ECRO replication protocol, our static analysis tool, Or-
dana, incorporates several static analyses. The first is a commutativity
analysis that detects pairs of non-commutative operations and is similar
to well-known analyses [Got+16; Li+12; Bal+15; Kul+11; Dim+14]. The
second is a dependency analysis that detects dependencies between se-
quential operations. To this end, it extends the work of Hamsaz [HL19] by
taking into account relations between parameters which enables the detec-
tion of fine-grained dependencies between operations. The last is a safety

107

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

analysis that detects pairs of operations that may infringe application-
level invariants when executed concurrently (similar to [Bal+15; Got+16;
HL19]), and incorporates a novel technique to find solutions without im-
posing coordination, based on fast local reorderings of conflicting calls.

Quelea [SKJ15], CISE [Got+16], and Q9 [Kak+18] statically assign
a consistency level to each operation of an RDT. Sieve [Li+14] combines
static and dynamic analyses to detect invariant-breaking operations and
execute them under strong consistency. These approaches may strengthen
the consistency level of many operations, thereby, increasing the latency
of user requests and deteriorating the system’s scalability and availability.

Several programming languages and programming models [MM18; De
+20; Köh+20; ZN16; MSD18; Hol+16] support mixing consistency levels
safely to some extent. Indigo [Bal+15] coordinates unsafe operations or
requires programmers to provide a deterministic and monotonic algorithm
to repair broken invariants. IPA [Bal+18] detects operations that break
invariants whereafter programmers must incorporate a suitable conflict
resolution and/or coordination technique. While both, Indigo and IPA,
start from existing RDTs providing state convergence (e.g. CRDTs) and
extend them with invariants, the ECRO approach focuses on deriving
those RDTs automatically from a sequential implementation and its dis-
tributed specification.

4.8 Conclusion

ECROs provide a principled approach to implement RDTs by augment-
ing sequential data types with a distributed specification that describes
the semantics of concurrent operations through invariants over replicated
state. Our static analysis tool Ordana analyzes distributed specifications
to detect conflicts, unravel their cause, and find appropriate solutions.
This suffices to automatically derive a replicated version of the data type
that guarantees convergence and preserves program invariants efficiently.

Key to making this approach efficient is the static analysis phase that
derives additional information about the data type. Replicas leverage
this information to construct a conflict-free serialization of the operations
without coordination. ECROs can solve certain types of conflicts by lo-
cally reordering the calls instead of coordinating them. This reduces the

108

4.8. CONCLUSION

latency of operations by several orders of magnitude when compared to
state-of-the-art approaches such as RedBlue and PoR.

The ECRO approach partially adheres to the principles outlined in
our research vision (cf. Section 1.2). Existing data types are turned into
RDTs instead of designing dedicated RDTs from scratch (principle 1).
Thanks to the underlying replication protocol, the resulting RDTs con-
verge and preserve application-specific invariants out-of-the-box (principle
2), assuming the specifications are correct. Although programmers need
to augment the data types with an additional specification, we built a
DSL to program these specifications. The DSL is embedded in Scala and
provides language support to implement these specifications by leveraging
Scala’s traditional abstraction mechanisms (principle 3).

ECROs exemplify the tension between simplicity and efficiency. The
ECRO approach achieves excellent performance by introducing a static
analysis phase, but this burdens the programmer, who needs to write a
separate specification for each RDT.

109

CHAPTER 4. EFFICIENT RDTS FROM SEQUENTIAL CODE

110

Chapter 5

A High-Level Programming
Language for Efficient RDTs

To simplify the development of RDTs, programming abstractions must
strike a good balance between simplicity and efficiency such that they
can be used by mainstream software engineers and scale to the workloads
experienced by real-world applications.

In our search for programming abstractions for the development of
RDTs, we proposed two approaches: SECRO (cf. Chapter 3) and ECRO
(cf. Chapter 4). The SECRO approach is simple but inefficient: program-
mers extend sequential data types with application invariants written in
the same language as the RDT implementation, but the replication proto-
col has to consider all possible serializations of the operations at runtime.
In contrast, the ECRO approach is efficient thanks to a static analysis
phase that detects conflicts and finds solutions beforehand. However, pro-
grammers must write more complicated specifications for their RDTs, us-
ing a DSL for first-order logic.

In this chapter, we reconcile both approaches in order to design a
simple yet efficient programming abstraction for RDTs. The result is
EFx, a simple programming model for the development of RDTs that is
inspired by SECRO and is combined with ECRO’s replication protocol.

The remainder of this chapter is structured as follows. Section 5.1 kicks
off with a discussion on the programming efforts that are needed to write
ECROs, in particular their distributed specification. Then, we introduce
the envisioned solution to simplify the development of those specifications.

111

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Section 5.2 introduces EFx and its SECRO-like programming model for
the development of efficient RDTs. Section 5.3 defines the semantics of
EFx and Section 5.4 details its integration with ECROs. In Section 5.5,
we conduct a qualitative evaluation that assesses the programmability of
RDTs built atop EFx compared to the original ECRO approach. We eval-
uate the performance of EFx in Section 5.6. Finally, we discuss the main
design decisions behind EFx and its limitations in Section 5.7, compare it
to related work in Section 5.8, and conclude in Section 5.9.

5.1 Motivation

We previously introduced the ECRO approach to programming RDTs.
This section starts by discussing the shortcomings of hybrid approaches
such as ECROs with respect to the problems identified in the introduction
(cf. Section 1.1.3). This motivates the need for an improved programming
model. We then show how we envision the resulting programming model
to be integrated into a novel programming language, called EFx, that
enables the development of ECROs without first-order logic specifications.

5.1.1 Shortcomings of Hybrid Approaches

We previously proposed the ECRO programming model which lets pro-
grammers build custom RDTs by extending sequential data types with
application-specific invariants described in a separate specification. Al-
though ECROs address the problems of non-customizable semantics and
limited application invariants (cf. Section 1.1.3), they still feature dis-
connected specifications much like existing hybrid approaches. This is
problematic because programmers need to write separate specifications,
typically in first-order logic, such that SMT solvers can analyze them.

Even though ECROs provide a DSL for the development of distributed
specifications, writing such specifications for advanced RDTs is cumber-
some and error-prone. Moreover, the specifications must evolve along
with the data type implementation which complicates software evolution.
For example, the ECRO specification of the RUBiS auction system (cf.
Section 4.5.1) consists of 110 Lines of Code (LoC) while the data type’s
implementation is only 73 LoC. Furthermore, ECROs assume that an op-
eration’s postcondition captures all effects of that operation but this is

112

5.1. MOTIVATION

never verified. Subtle errors in the postcondition may cause the analy-
sis to derive wrong information which at runtime may cause replicas to
diverge or break invariants.

We believe that the disconnected specifications complicate the devel-
opment of RDTs with the ECRO approach. Even though ECROs provide
excellent performance, having to write specifications in first-order logic
hampers mainstream programmers from building custom RDTs.

5.1.2 The Need for a High-Level Analyzable Language

To remove the need for separate specifications, our vision consists of build-
ing a novel programming language, called EFx, that can be completely
encoded in first-order logic. If every language construct can be encoded
in logic, it follows that any program built atop these constructs can also
be encoded in that logic. As a result, EFx programs are analyzable out
of the box since they can be compiled to first-order logic in order to au-
tomatically analyze them using SMT solving.

Based on our experience writing ECRO RDTs, we noticed that the
biggest part of their specification consists of the definition of first-order
logic relations and the definition of postconditions that describe the effects
of operations. However, this information is redundant as the postcondi-
tions are a repetition of the operations’ implementation but then in logic.

EFx enables programmers to develop RDTs without having to encode
the effects of operations in a separate specification because the data type
implementation (i.e. the EFx program) itself is the specification. Pro-
grammers can mark data types as “replicated” and attach concurrency
contracts consisting of application-specific preconditions and invariants on
the operations. Such contracts are similar to state validators in SECROs
but are fully analyzable. Programmers do not need to write postcondi-
tions describing the effects of operations because they are automatically
derived from the operations themselves. Like SECROs, the contracts are
written in EFx itself and not in a separate language. EFx compiles the
data type implementation and its concurrency contract to a distributed
specification in first-order logic in order to synthesize a correct ECRO.

To exemplify the EFx approach, consider again the implementation
of a remove-wins set RDT, akin to the remove-wins set ECRO from Sec-
tion 4.2.2, but this time using concurrency contracts in EFx. Listing 5.1
depicts the implementation of the RWSet class which defines a field set

113

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Listing 5.1: Implementation of a Remove-Wins Set RDT in EFx.

1 @replicated
2 class RWSet [V](set: Set[V]) {
3 def contains (x: V) = this.set. contains (x)
4 def add(x: V) = new RWSet (this.set.add(x))
5 inv remove (x: V) { !this. contains (x) }
6 def remove (x: V) = new RWSet (this.set. remove (x))
7 }

containing the elements and defines methods to check if an element is
in the set (contains), to add elements to the set (add), and to remove
elements from the set (remove). The class attaches an invariant to the
remove operation (Line 5) to specify that removed elements should not
re-appear, even if the element is added concurrently. The RWSet class is
marked as @replicated which tells EFx to synthesize an ECRO for it.
The resulting ECRO can be deployed in distributed systems; e.g. on top
of Squirrel [DG19], our distributed-key value store for Scala.

When comparing the implementation of the RWSet with the ECRO
implementation from Section 4.2.2 we notice two major differences. First,
the ECRO distributed specification had to define postconditions for the
add and remove operations in order to encode these operations in first-
order logic such that they can be analyzed. In contrast, EFx no longer
requires programmers to define postconditions for the operations because
it can infer them directly from the implementation. EFx thus avoids
the need for postconditions which was the most cumbersome part of the
specification since programmers had to define them for all operations.
Second, the ECRO distributed specification defined an invariant for the
remove operation which was expressed in first-order logic. In EFx, this
invariant is implemented in EFx itself, thereby, alleviating the need for
low-level (and disconnected) specifications in first-order logic. We thus
designed a remove-wins set RDT in only 7 LoC!

The set implementation in EFx reminds us of the original SECRO pro-
gramming model in which programmers extend sequential data types with
preconditions and invariants (called postconditions in SECROs) written
in the same high-level language. However, EFx’s integrated analysis ca-
pabilities enable it to synthesize correct ECROs from high-level data type
implementations. Thus, the resulting RDTs are fully verified and efficient.

114

5.2. THE EFX LANGUAGE

5.2 The EFx Language

This section describes EFx, our novel programming language that com-
bines a SECRO-like programming model based on concurrency contracts
with automated analyses of those contracts to synthesize correct ECROs.

EFx was designed with three goals in mind: simplicity, efficiency, and
correctness. First, EFx must be simple such that mainstream program-
mers can use it to build custom RDTs. To ensure simplicity, we designed
EFx to be reminiscent of Scala and integrated a SECRO-like programming
model based on concurrency contracts for the development of RDTs. Sec-
ond, the resulting RDTs must be efficient such that they can be used in
real-world applications. To this end, we integrated EFx with the ECRO
analyses and replication protocol. Third, the resulting RDTs must be
correct. To this end, we removed the need for separate specifications
and instead automatically derive correct distributed specifications from
the data type’s high-level concurrency contracts. This avoids subtle mis-
matches between the data type implementation and its specification.

We introduce EFx’s overall architecture in Section 5.2.1. Afterward,
we present its syntax in Section 5.2.2 and define concurrency contracts
in Section 5.2.3. Finally, Section 5.2.4 describes EFx’s built-in collections
which form the basis for the development of custom RDTs. EFx’s type
system is defined in Appendix F.

5.2.1 Overall Architecture

Figure 5.1 provides an overview of EFx’s architecture. EFx uses Scala
Meta1 to parse EFx source code into an Abstract Syntax Tree (AST)
representing the program. This is possible because every piece of EFx
code is valid Scala syntax (but not necessarily semantically correct).

RDTs written in EFx or any other EFx program can be analyzed to
check certain properties (e.g. commutativity) and can be transpiled to
mainstream languages in order to be integrated into existing applications.
Transpilation is done by the compiler which features compiler plugins.
These plugins dictate the compilation of the AST to the target language.
Currently, EFx comes with compiler plugins for Scala, JavaScript, and
SMT-LIB2, a standardized language for SMT solvers. Support for other

1https://scalameta.org/
2http://smtlib.cs.uiowa.edu/

115

https://scalameta.org/
http://smtlib.cs.uiowa.edu/

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Analyzer

EFx AST

SMT-LIB
 code

RDT
info

EFx

Compiler

Synthesizer

Specderive
analyze

transpile
EFx

source
code

Parser

Scalameta
transform

EFx AST

parse

imperative construct

Ordana

Scala plugin

SMT plugin JS plugin

...

concurrency contract

analysis

Scala
Pgm

ECRO

Figure 5.1: EFx’s architecture.

languages can be added by implementing a compiler plugin for them.
Program analyses are done by the analyzer which uses the SMT compiler
plugin to compile the program’s AST to SMT-LIB. The resulting SMT-
LIB program can then be analyzed using traditional SMT solvers.

Together, EFx’s analysis and transpilation capabilities enable the de-
velopment of efficient RDTs by leveraging ECROs. RDTs written in EFx
are compiled to SMT-LIB and the resulting SMT-LIB program is passed
to Ordana, our static analysis tool for ECROs. Recall from Section 4.3
that Ordana applies various analyses to derive information about the com-
mutativity and safety of operation pairs. This information is then written
to a file. In addition, EFx compiles the RDT’s AST to Scala. The synthe-
sizer uses the resulting Scala code and the information derived by Ordana
to derive a distributed specification for the data type. The specification
is combined with the compiled Scala program in order to synthesize a
corresponding ECRO in Scala. The resulting ECRO is equivalent to a
manual implementation but the specification’s postconditions are derived
automatically. At the time of writing, EFx cannot yet generate ECROs
in JavaScript because we do not have a JavaScript implementation of the
ECRO protocol.

5.2.2 Syntax

As mentioned before, the syntax of EFx is inspired by Scala. Figure 5.2
defines the syntax rules of EFx. The metavariable C ranges over class
names; I ranges over trait names; T , P and Q range over types; X and

116

5.2. THE EFX LANGUAGE

A ::= @replicated
F ::= trait I 〈X <: T 〉 {B }
| trait I 〈X <: T 〉 extends I 〈P 〉 {B }

L ::= A class C 〈X〉 (v : T) {D }
| A class C 〈X〉 (v : T) extends I 〈P 〉{D }

B ::= valDecl | methodDecl | M
D ::= M | Pre | Inv
M ::= def m 〈X〉 (x : T) : T = e

Pre ::= pre m 〈X〉 (x : T) { e }
Inv ::= inv m 〈X〉 (x : T) { e }

e ::= num | str | true | false
| e + e | e − e | e ∗ e | e /e | e && e | e || e | e == e
| e != e | e < e | e <= e | e > e | e >= e
| !e | x | e.v | e.m 〈T 〉 (e)
| val x : T = e in e | if e then e else e
| (x : T)⇒ e | e(e) | new C 〈T 〉(e)

valDecl ::= val x : T
methodDecl ::= def m 〈X〉(x : T) : T

T ::= int | string | bool | C 〈T 〉 | I 〈T 〉 | T → T

Figure 5.2: Syntax definition of EFx.

Y range over type variables; v ranges over field names; x and y range
over parameter and variable names; m ranges over method names; and e
ranges over expressions.

EFx programs can define classes C 〈X〉 and traits I 〈X〉 which can be
polymorphic and may inherit from a single trait. Classes contain zero or
more3 fields and (polymorphic) methods. The body of a method must
contain a well-typed expression e. Traits can define methods with default
implementations and declare values and abstract methods that must be
provided by concrete classes extending the trait. Traits can express upper
type bounds on their type parameters to restrict the possible extensions.

EFx supports a variety of expressions, including literal values, arith-
metic and boolean operations, field accesses e.v and method calls
e.m 〈T 〉 (e), variable definitions, if tests, anonymous functions, function
calls, and class instantiations. Functions are first-class and take at least
one argument because nullary functions are constants.

3An overline, e.g. X , denotes zero or more. A dashed overline, e.g. X , denotes one
or more.

117

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

EFx supports single inheritance from traits to foster code re-use but
imposes some limitations. For example, the arguments of a class method
must be concrete (i.e. cannot be a trait type) because Ordana must be able
to reason about these methods but supertypes require reasoning about all
subtypes and these may not necessarily be known at compile time.

5.2.3 Replicated Data Types and Concurrency Contracts

We previously defined EFx’s core syntax. We now explain how EFx sup-
ports the development of RDTs by means of concurrency contracts.

EFx features an @replicated annotation that can be used to mark
sequential data types for which EFx must generate an ECRO. Annotated
classes can have methods with associated preconditions and invariants
which form the data type’s concurrency contract. Preconditions (resp.
invariants) are defined using the keyword pre (resp. inv) followed by
the name of the method, its parameter list, and a body consisting of a
well-typed boolean expression.

Preconditions and invariants are essentially predicates that accept or
reject method calls based on the object’s state and the arguments of the
call, much like SECRO’s state validators. Preconditions must hold right
before the call to the associated method, while invariants must hold after
the associated method call (and possible concurrent calls) executed. Pre-
conditions and invariants can access the object’s current state using the
this keyword. Invariants can also refer to the state of the object as it was
before the call using the old keyword.

The use of preconditions and invariants is similar to ECROs but they
are defined in EFx instead of in a first-order logic specification. For ex-
ample, the below class C is marked as replicated and defines a number of
fields v, methods M , preconditions Pre, and invariants Inv.

@replicated class C 〈X〉 (v : T) {M | Pre | Inv }

We use the notation PreM and InvM to refer to the precondition, respec-
tively, the invariant of a method M .

Given the above class, EFx can derive a sequential implementation of
the data type and a concurrency contract. The sequential implementation
consists of a class containing only the fields and the methods:

L = class C 〈X〉 (v : T) {M }

118

5.2. THE EFX LANGUAGE

The contract maps methods to their precondition and invariant:

C(M) = 〈PreM , InvM 〉

If a method does not have an associated precondition or invariant it is
assumed to be true, i.e. pre m 〈X〉 (x : T) { true }. Thus, RDTs in EFx
consist of a sequential implementation L and a concurrency contract C.

5.2.4 Functional Collections

EFx features built-in collections including tuples, sets, maps, vectors, and
lists. Remarkably, these collections are completely analyzable and can
be arbitrarily composed to build custom RDTs. All collections are im-
mutable, “mutators” thus return an updated copy of the object.

Figure 5.3 provides an overview of the interface exposed by EFx’s
collections, which is heavily inspired by functional programming. We now
discuss each data type in this collection in more detail.

Tuples group two values that can be accessed using the fst and snd fields.

Sets support the typical set operations and can be mapped over or
filtered using user-provided functions. The forall and exists methods
check if a given predicate holds for all (respectively for at least one)
element of the set.

Maps associate keys to values. Programmers can add key-value pairs,
remove keys, and fetch the value that is associated to a certain key. The
keys (resp. values) method returns a set containing all keys (resp.
values) contained by the map. The bijective method checks if there
is a one-to-one correspondence between the keys and the values. Maps
support many well-known functional operations; zip returns a map of
tuples containing only the keys that are present in both maps and stores
their values in a tuple; combine returns a map containing all entries from
both maps, using a user-provided function f to combine values that are
present in both maps.

Vectors represent a sequence of elements which are indexed from 0 to
size-1. Elements can be written to a certain index which will overwrite

119

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Figure 5.3: An overview of EFx’s built-in functional collections.

the existing value at that index. One can append a value to the vector
which will write that value at index size, thereby, making the vector
grow. Like sets and maps, programmers can map functions over vec-
tors, zip vectors, and check predicates for all or for one element of a vector.

Lists represent a sequence of elements in a linked list. Unlike vectors,
insert does not overwrite the existing value at that index. Instead, the
existing value at that index and all subsequent values are moved one po-
sition to the right. Elements can also be deleted from a list, making the
list shrink.

120

5.3. AUTOMATED ANALYSIS OF EFX PROGRAMS

5.3 Automated Analysis of EFx Programs

As explained in Section 5.2.1, EFx transpiles RDTs to SMT-LIB4, a stan-
dardized language for SMT solvers, and leverages Ordana’s analyses from
Section 4.3 to derive additional information about the operations. It then
uses this information to generate distributed specifications and synthesize
correct ECRO data types.

The analyses performed by Ordana on the specification are a form of
program verification as they verify commutativity and safety properties
of the RDT’s operations. For instance, Ordana’s commutativity analysis
analyzes pairs of operations to check if they commute or not (cf. Sec-
tion 4.3.3). Given a pair of operations, the analysis tries to prove that
all calls to those operations commute. If the proof is rejected, the SMT
solver returns a concrete counterexample in which the operations do not
commute.

Modern SMT solvers support various specialized theories (for bitvec-
tors, arrays, etc.) and are very powerful if care is taken to encode programs
efficiently using these theories. Thus, in order for Ordana’s analyses to
work properly, the generated specifications must be encoded efficiently.
However, SMT-LIB is low-level and is not meant to be used directly by
programmers to verify high-level programs. Therefore, we carefully de-
signed EFx such that every language feature has an efficient SMT encod-
ing; leaving out features that break automated verification. For example,
EFx does not support traditional loop statements but instead provides
higher-order operations (map, filter, etc.) on top of its functional col-
lections. The resulting language is surprisingly expressive given its auto-
mated verification capabilities.

In the remainder of this section, we show how EFx compiles programs
to a core of SMT-LIB. Afterward, we explain how EFx leverages a special-
ized theory of arrays to efficiently encode its functional collections. These
encodings are key to our approach because they enable fully automated
analyses of RDTs built atop EFx’s functional collections. To exemplify
the compilation rules we finish this section with a concrete example.

4http://smtlib.cs.uiowa.edu/

121

http://smtlib.cs.uiowa.edu/

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

5.3.1 Core SMT

The semantics of EFx are defined using translation functions from EFx
to Core SMT, a reduced version of SMT-LIB that suffices to analyze EFx
programs. For brevity, we may refer to SMT-LIB as just SMT.

T ::= int | string | bool G ::= adt A〈X〉{K (v : T)}
| Array〈T ,T 〉 | A〈T 〉 | S〈T 〉 e ::= e[e] | e[e] := e | λ(x : T).e

C ::= const x T | ∀(x : T).e | ∃(x : T).e | . . .
D ::= sort S i R ::= assert e
F ::= fun f 〈X〉(x : T) : T = e H ::= check()

Figure 5.4: Core SMT syntax.

Figure 5.4 defines the syntax of Core SMT. The metavariable S ranges
over user-declared sorts5; A ranges over names of Algebraic Data Types
(ADTs); K ranges over ADT constructor names; X ranges over type vari-
ables; v ranges over field names; f ranges over function names; T ranges
over types; x ranges over variable names; e ranges over expressions; and
i ranges over integers. Valid types include integers, strings, booleans, ar-
rays, ADTs A〈T 〉, and user-declared sorts S〈T 〉. Arrays are total and
map values of the key types to a value of the element type. Arrays can be
multidimensional and map several keys to a value.

Core SMT programs consist of one or more statements which can be
the declaration of a constant or sort, assertions, the definition of a function
or ADT, or a call to check. Constant declarations take a name and a type.
Sort declarations take a name and a non-negative number i representing
their arity, i.e. how many type parameters the sort takes. Declared con-
stants and sorts are uninterpreted and the SMT solver is free to assign
any valid interpretation. Assertions are boolean formulas that constrain
the possible interpretations of the program, e.g. assert age >= 18.

Function definitions consist of a name f , optional type parameters
X , formal parameters x : T , a return type T , and a body containing an
expression e. Valid expressions include array accesses e[e], array updates
e[e] := e, anonymous functions, quantified formulas, etc6. Updating an

5The literature on SMT solvers uses the term “sort” to refer to types and type
constructors.

6The complete set of expressions is described in Appendix G.

122

5.3. AUTOMATED ANALYSIS OF EFX PROGRAMS

array returns a modified copy of the array. It is important to note that
arrays are total and that anonymous functions define an array from the
argument types to the return type. For example, λ(x : int, y : int).x + y

defines an Array〈int, int, int〉 that maps two integers to their sum. Since
arrays are first-class values in SMT, it follows that lambdas are also first-
class.

ADT definitions consist of a name A, optional type parameters X , and
one or more constructors. Every constructor has a name K and optionally
defines fields with a name v and a type T . Constructors are invoked like
regular functions and return an instance of the data type.

The decision procedure (check) checks the satisfiability of the SMT
program. If the program’s assertions are satisfiable, check returns a con-
crete model, i.e. an interpretation of the constants and sorts that satisfies
the assertions. A property p can be proven by showing that the negation
¬p is unsatisfiable, i.e. that no counterexample exists.

Note that our Core SMT language includes lambdas and polymor-
phic functions which are not part of SMT-LIB v2.6. Nevertheless, they
are described in the preliminary proposal for SMT-LIB v3.07 and Z3 al-
ready supports lambdas. For the time being, EFx monomorphizes poly-
morphic functions when they are compiled to Core SMT. For example,
given a polymorphic identity function id<X> :: X -> X, EFx creates a
monomorphic version id_int :: int -> int when encountering a call
to id with an integer argument.

5.3.2 Compiling EFx to Core SMT

Similar to Dafny (cf. Section 2.3.1), we describe the semantics of EFx by
means of translation functions that compile EFx programs to Core SMT.
Types are translated by the JKt function:

JboolKt = bool JintKt = int JstringKt = string
JC 〈T〉Kt = C 〈JTKt〉 JT → PKt = Array〈JTKt, JPKt〉

Primitive types are translated to the corresponding primitive type in
Core SMT. Class types keep the same type name and their type arguments
are translated recursively JTKt. Functions are encoded as arrays from the
argument types to the return type. Trait types do not exist in the compiled

7http://smtlib.cs.uiowa.edu/version3.shtml

123

http://smtlib.cs.uiowa.edu/version3.shtml

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

SMT program because traits are compiled away by EFx, i.e. only the types
of the classes that implement the trait exist.

We now take a look at the translation function def JK which compiles
classes. Classes are encoded as ADTs with one constructor and methods
become regular functions:

def JA class C 〈X〉 (v : T) {M } extends I 〈P〉K =
adt C 〈X〉{K (v : JTKt) } ; methodJC ,X ,M K ; methodJC ,X ,M ′[P/Y]K
where K = str_concat(C , “_ctor”)
and I is defined as trait I 〈Y 〉 {M ′ ; . . . }

methodJC ,X , def m 〈Y 〉 (x : T) : Tr = eK =
fun f 〈X ,Y 〉(this : C 〈X〉, x : JTKt) : JTrKt = JeK
where f = str_concat(C , “_”,m)

The ADT keeps the name of the class and its type parameters, and
defines one constructor containing the class’ fields. Since the name of
the constructor must differ from the ADT’s name, the compiler defines
a unique name K which is the name of the class followed by “_ctor”.
The class’ methods M are compiled to regular functions by the methodJK
function. Furthermore, the class inherits all concrete methods M ′ that are
defined by its super trait and are not overridden by itself. This requires
substituting the trait’s type parameters Y by the concrete type arguments
P provided by the class. As a result, traits do not exist in the resulting
SMT program.

For every method, a function is created with a unique name f that
is the name of the class followed by an underscore and the name of the
method (this avoids name clashes between methods of different classes
that have the same name). In the argument list, the body, and the return
type of a method, programmers can refer to type parameters of the class
or method. Therefore, the compiled SMT function takes both the class’
type parameters X and the method’s type parameters Y . Without loss
of generality we assume that a method’s type parameters do not override
the class’ type parameters which can be achieved through α-conversion.
The method’s parameters become parameters of the function. In addition,
the function takes an additional parameter this referring to the receiver
of the method call which should be of the class’ type. The types of the
parameters and the return type are translated using function JKt. The
body of the method must be a well-typed expression. Expressions are

124

5.3. AUTOMATED ANALYSIS OF EFX PROGRAMS

compiled by the translation function JK:

JxK = x
Je1 ⊕ e2K = Je1K⊕ Je2K
Je1 ⊗ e2K = Je1K⊗ Je2K
J!eK = ¬JeK
Jval x : T = e1 in e2K = let x = Je1K in Je2K
Jif e1 then e2 else e3K = if(Je1K, Je2K, Je3K)
J(x : T)⇒ eK = λ(x : JTKt).JeK
Je1(e2)K = Je1K[Je2K]

Primitive values, variable references, and parameter references remain
unchanged in Core SMT. The operands of binary operators (i.e. arith-
metic ⊕ and boolean operators ⊗) are compiled recursively. A negated
expression is compiled to the negation of the compiled expression. The def-
inition of an immutable variable is translated to a let expression. Anony-
mous functions remain anonymous functions in Core SMT, the type of
the parameters and the body are compiled recursively. Remember that
anonymous functions in SMT define (multidimensional) arrays from one
or more arguments to the function’s return value. Hence, function calls
are translated to array accesses.

Jnew C 〈T 〉(e)K = C ′〈JTKt〉(JeK)
where C ′ = str_concat(C , “_ctor”)

Je.vK = JeK.v
Je1.m 〈T 〉 (e)K = m′〈JPKt, JTKt〉(Je1K, JeK)
where typeof (e1) = C 〈P〉
and m′ = str_concat(C , “_”,m) and P ∩ T = ∅

To instantiate a class or ADT, the compiler calls the data type’s con-
structor function. For classes, the constructor’s name is the name of the
class followed by “_ctor”. To access a field, the compiler translates the
expression and accesses the field on the translated expression. To invoke
a method m on an object e1 the compiler calls the corresponding function
m′ which by convention is the name of the class followed by an underscore
and the name of the method. Recall that the function takes both the
class’ type arguments T and the method’s type arguments P as well as
an additional argument e1 which is the receiver of the call.

125

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

5.3.3 Encoding Functional Collections Efficiently in SMT

Unique to EFx is its efficient encoding of functional collections in SMT.
Some Intermediate Verification Languages (IVLs) feature collections with
rich APIs (e.g. Why3 [FP13]) but encode operations on these collections
recursively. Unfortunately, traditional SMT solvers fail to verify recursive
definitions automatically because they require inductive proofs, which is
beyond the capabilities of most solvers.

However, many SMT solvers support specialized array theories. A key
insight of our work consists of efficiently encoding the collections and their
operations using the Combinatory Array Logic (CAL) [MB09] which is
decidable. As a result, EFx can automatically analyze RDTs that are built
by arbitrary compositions of functional collections. In the remainder of
this section, we describe the encoding of the different functional collections
in this array logic.

5.3.3.1 Set Encoding

Sets are encoded as arrays from the element type to a boolean type that
indicates whether the element is in the set:

JSet 〈T 〉Kt = Array〈JTKt, bool〉

An empty set corresponds to an array containing false for every element.
We can create such an array by defining a lambda that ignores its argu-
ment and always returns false:

Jnew Set 〈T 〉()K = λ(x : JTKt).false

Operations on sets are compiled as follows:

Je1.add(e2)K = Je1K[Je2K] := true
Je1.remove(e2)K = Je1K[Je2K] := false
Je1.contains(e2)K = Je1K[Je2K]

An element e2 is added to a set e1 by setting the entry for e2 in the array
that results from transforming e1 to true. Similarly, an element is removed
by setting its entry in the array to false. An element is in the set if its
entry is true.

126

5.3. AUTOMATED ANALYSIS OF EFX PROGRAMS

Je1.filter(e2)K = λ(x : JT Kt).Je1K[x] ∧ Je2K[x]
where typeof (e1) = Set〈T 〉 and typeof (e2) = T → bool

Je1.map(e2)K = λ(y : JPKt).∃(x : JTKt).Je1K[x] ∧ Je2K[x] = y
where typeof (e1) = Set〈T 〉 and typeof (e2) = T → P

The filter method filters a set e1 containing elements of type T in order
to retain only the elements that fulfill a given predicate e2 : T → bool.
Calls to filter are compiled to a lambda that defines a set (i.e. an array
from elements to booleans) containing only the elements x that are in
the original set e1 (i.e. Je1K[x]) and fulfil predicate e2 (i.e. Je2K[x]).
Similarly, when calling map with a function e2 : T → P on a set e1 of
T s, the method yields a set of Ps. Calls to map are compiled to a lambda
that defines a set containing elements y of type JPKt such that an element
x exists that is in the original set e1 (i.e. Je1K[x]) and maps to y (i.e.
Je2K[x] = y).

Je1.union(e2)K = λ(x : JT Kt).Je1K[x] ∨ Je2K[x]
where typeof (e1) = Set〈T 〉 ∧ typeof (e2) = Set〈T 〉

Je1.intersect(e2)K = λ(x : JT Kt).Je1K[x] ∧ Je2K[x]
where typeof (e1) = Set〈T 〉 ∧ typeof (e2) = Set〈T 〉

Je1.diff (e2)K = λ(x : JT Kt).Je1K[x] ∧ ¬Je2K[x]
where typeof (e1) = Set〈T 〉 ∧ typeof (e2) = Set〈T 〉

The union method computes the set union of two sets e1 and e2. To this
end, calls to union are compiled to a lambda that defines an array of
elements x of type JT Kt containing only elements that are in at least one
of the two sets, i.e. Je1K[x] ∨ Je2K[x]. Similarly, calls to the intersect
method are compiled to a lambda which defines an array containing only
elements that are in both sets, i.e. Je1K[x] ∧ Je2K[x]. For set difference,
calls to diff are compiled to a lambda that defines an array containing
only elements that are in e1 and not in e2.

Je1.subsetOf (e2)K = ∀(x : JT Kt).Je1K[x] =⇒ Je2K[x]
where typeof (e1) = Set〈T 〉 ∧ typeof (e2) = Set〈T 〉

Je.nonEmpty()K = ∃(x : JT Kt).JeK[x] where typeof (e) = Set〈T 〉
Je.isEmpty()K = ∀(x : JT Kt).¬JeK[x] where typeof (e) = Set〈T 〉

The subsetOf method checks if e1 is a subset of e2. To this end, it checks
that all elements from e1 are also in e2. The nonEmpty method returns
true for a set e if at least one element x exists that is in the set, i.e. JeK[x].

127

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Similarly, the isEmpty method returns true for a set e if every element x
is not in the set.

Je.forall(ep)K = ∀(x : JT Kt).JeK[x] =⇒ JepK[x]
where typeof (e) = Set〈T 〉 and typeof (ep) = T → bool

Je.exists(ep)K = ∃(x : JT Kt).JeK[x] ∧ JepK[x]
where typeof (e) = Set〈T 〉 and typeof (ep) = T → bool

When calling forall with a predicate ep : T → bool on a set e of type
T , the method checks that for every element x that is in the set, the
predicate holds, i.e. JeK[x] =⇒ JepK[x]. Similarly, the exists method
checks that at least one element x exists that is in the set and fulfills the
predicate, i.e. JeK[x] ∧ JepK[x].

5.3.3.2 Map Encoding

Maps are encoded as arrays from the key type to an optional value:

JMap 〈T ,P〉Kt = Array〈JTKt,Option〈JPKt〉〉

Optional values indicate the presence or absence of a value for a cer-
tain key. The option type is defined as an ADT with two constructors:
Some(value) which holds a value and None() indicating the absence of a
value. An empty map corresponds to an array containing None() for every
key and is created by a lambda that returns None() for every key:

Jnew Map 〈T ,P〉()K = λ(x : JTKt).None〈JPKt〉()

Operations on maps are compiled as follows:

Jem.add(ek, ev)K = JemK[JekK] :=Some(JevK)
Jem.remove(ek)K = JemK[JekK] :=None〈JV Kt〉()
Jem.contains(ek)K = JemK[JekK] 6= None〈JV Kt〉()
Jem.get(ek)K = JemK[JekK].value
Jem.getOrElse(ek, ev)K =

if(JemK[JekK] = None〈JV Kt〉(), JevK, JemK[JekK].value)

A key-value pair ek 7→ ev is added to a map em by updating the entry
for the compiled key JekK in the compiled array JemK with the compiled
value, Some(JevK). A key ek is removed from a map em by updating the
corresponding entry to None〈JV Kt〉(), thereby indicating the absence of a
value. Note that None is polymorphic but the type parameter cannot be

128

5.3. AUTOMATED ANALYSIS OF EFX PROGRAMS

inferred from the arguments; therefore it is passed explicitly. A key ek is
contained by a map em if the value that is associated to the key is not
None〈JV Kt〉(). The get method fetches the value that is associated to a
key ek in a map em. To this end, the compiled key JekK is accessed in the
compiled map JemK and the value it holds is then fetched by accessing the
value field of the Some constructor. Even though the entry that is read
from the array is an option type (i.e. a None or a Some) we can access the
value field because the interpretation of value is underspecified in SMT.
If the entry is a None, the SMT solver can assign any interpretation to
the value field. Hence, the get method on maps should only be called if
the key is known to be present in the map, e.g. after calling contains.
EFx also features a safe variant, getOrElse, that takes a default value
and returns that default value it if the key is not present in the map.

We now show how to compile a selection of advanced map operations:

Jem.keys()K = λ(x : JKKt).JemK[x] 6= None〈JV Kt〉()
where typeof (em) = Map〈K,V 〉

Jem.values()K = λ(x : JV Kt).∃(k : JKKt).JemK[k] = Some(x)
where typeof (em) = Map〈K,V 〉

The keys method returns a set containing only the keys that are present
in the map. Calls to keys on a map em of type Map 〈K, V〉 are compiled to
a lambda that defines a set of keys x of the compiled key type JKKt such
that a key is present in the set iff it is present in the compiled map, i.e.
JemK[x] 6= None〈JV Kt〉(). The values method returns a set containing
all values of the map em. To this end, it defines an array containing all
values for which at least one key exists that maps to that value in em.

Jem.map(ef)K = λ(x : JKKt). if(JemK[x] 6= None〈JV Kt〉(),
Some(Jef K[x, JemK[x].value]),
None〈JW Kt〉())

where typeof (em) = Map〈K,V 〉 and typeof (ef) = (K,V)→W

Jem.mapValues(ef)K = λ(x : JKKt). if(JemK[x] 6= None〈JV Kt〉(),
Some(Jef K[JemK[x].value]),
None〈JW Kt〉())

where typeof (em) = Map〈K,V 〉 and typeof (ef) = V →W

When calling the map method with a function ef of type (K,V)→W on a
map em of type Map〈K,V 〉, it returns an updated map of type Map〈K,W 〉
whose values are the result of applying ef on the key-value pairs. The

129

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

map method is encoded as a lambda that defines an array containing only
the keys that are present in the compiled map JemK and whose values
are the result of applying ef on the key and its associated value, i.e.
Some(Jef K[x, JemK[x].value]). The mapValues method is similar except
that it applies the provided function only on the value. The remaining
operations on maps are encoded similarly and are defined in Appendix H.

5.3.3.3 Vectors and Lists

Sets and maps are very useful to build new data structures in EFx without
having to encode them manually in SMT. For example, vectors and lists
are implemented on top of maps in EFx itself.

Listing 5.2 shows an excerpt from the implementation of vectors. The
implementation of lists follows a similar strategy. Internally, every vector
keeps a dictionary, called positions, that maps indices between 0 and
size − 1 to their value in the vector. The vector data type then defines
a traditional interface - containing methods such as e.g. get, write, map,
etc. - on top of the underlying map.

The presented implementation of vectors and lists on top of maps is
only used for analyses in SMT. When compiling to languages such as Scala
or JavaScript, EFx leverages the target language’s built-in vector and list
data structures.

5.3.4 Compilation Example

We now provide a concrete example of a polymorphic set implemented in
EFx and its compiled code in Core SMT. Figure 5.5a shows the MSet class

Listing 5.2: Internal vector implementation in EFx.

1 class Vector [V](size: Int = 0,
2 positions: Map[Int , V] = new Map[Int , V]()) {
3 def get(idx: Int) = this. positions .get(idx)
4 def write (idx: Int , elem: V) =
5 new Vector (this.size , this. positions .add(idx , elem))
6 def map[W](f: V => W) =
7 new Vector (this.size , this. positions . mapValues (f))
8 // ...
9 }

130

5.4. SYNTHESIZING ECROS FROM CONTRACTS

class MSet[V](set: Set[V]) {
def map[W](f: V => W) =

new MSet(this.set.map(f))
}

(a) A polymorphic class in EFx.

adtMSet〈V 〉{MSet_ctor(set : Array〈V, bool〉) }
funMSet_map〈V, W 〉(this : MSet〈V 〉,

f : Array〈V,W 〉) : MSet〈W 〉 =
MSet_ctor(
λ(y : W).∃(x : V).this.set[x] ∧ f [x] = y)

(b) Compiled Core SMT code.

Figure 5.5: A polymorphic EFx class and its compiled Core SMT code.

in EFx which defines one type parameter V corresponding to the type of
elements it holds. It also contains one field set of type Set[V] and defines
a polymorphic method map that takes a function f of type V => W and
returns a new MSet that results from applying f on every element.

Figure 5.5b shows the compiled Core SMT code for the MSet class.
The compiled code defines an ADT MSet with one type parameter V and
one constructor MSet_ctor. The constructor defines one field set of sort
Array〈V, bool〉 which is the compiled sort for sets. In addition, a polymor-
phic MSet_map function is defined which takes two type parameters V and
W which correspond to MSet’s type parameter and map’s type parameter
respectively. The function takes two arguments, the object that receives
the call and the function f. The function’s body calls the MSet constructor
with the result of mapping f over the set.

5.4 Synthesizing ECROs from Contracts

EFx allows programmers to build custom RDTs by augmenting sequential
data types with concurrency contracts that associate preconditions and
invariants to the operations. We now explain how EFx compiles sequential
data types and their concurrency contract to ECROs.

Recall from Section 5.2.1 that EFx features compiler plugins that tran-
spile EFx code to other languages. Every plugin implements a translation
function JKL that compiles EFx code to the target language L. The com-
piler plugin for SMT-LIB is denoted JKs and implements the translation
functions defined in Section 5.3.

Algorithm 5 shows how to synthesize an ECRO from a sequential data
type (i.e. a class L = class C 〈X〉 (v : T) {M }) and its concurrency con-
tract (i.e. a mapping from the class’ methods to their preconditions and

131

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Algorithm 5 Synthesizing ECROs from sequential data types and their
concurrency contract.
1: function synthesize(L, C, L)
2: IL ← JLKL . transpile class L to L using compiler plugin
3: Is ← JLKs . transpile class L to SMT
4: 〈sorts, S〉 ← makeSpec(L, C) . make an SMT specification
5: F ← analyze(sorts, Is, S) . apply ECRO analyses
6: return 〈IL, F 〉
7: function compilePre(Pre,P)
8: pre m 〈Y 〉 (x : T) { e } ← Pre . deconstruct Pre
9: return λ(this : JPKs, x : JTKs).JeKs

10: function compileMethod(M ,P)
11: def m 〈Y 〉 (x : T) : T = e ← M . deconstruct M
12: return λ(this : JPKs, x : JTKs).JeKs

13: function compileInv(Inv,P)
14: inv m 〈Y 〉 (x : T) { e } ← Inv . deconstruct Inv
15: return λ(old : JPKs, this : JPKs, x : JTKs).JeKs

16: function makeSpec(L, C)
17: S ← {} . define an empty spec
18: sorts← ∅ . accumulator for uninterpreted sorts
19: class C 〈X〉 (v : T) {M } ← L . deconstruct L
20: for Tx ∈ X do
21: sorts← sorts ∪ { sort JTxKs 0 }
22: for def m 〈Y 〉 (x : T) : T = e ∈ M do
23: M ← def m 〈Y 〉 (x : T) : T = e
24: 〈Pre, Inv〉 ← C(M) . lookup in contract
25: for Ty ∈ Y do
26: sorts← sorts ∪ { sort JTyKs 0 }
27: pre← compilePre(Pre,C 〈X〉)
28: post← compileMethod(M ,C 〈X〉)
29: inv ← compileInv(Inv,C 〈X〉)
30: S ← S + m → 〈pre, post, inv〉 . store in spec
31: return 〈sorts, S〉

132

5.5. QUALITATIVE EVALUATION

invariants, C(M) = 〈PreM , InvM 〉). The synthesize function compiles
the sequential data type L and its concurrency contract C to an ECRO in
some target language L. To this end, EFx first transpiles the sequential
data type L to an equivalent data type IL in the target language (Line 2).
Similarly, it transpiles the data type to SMT (Line 3). Then, EFx derives
an SMT specification S from the data type L and its concurrency contract
C (Line 4). To this end, it first declares uninterpreted sorts for the class’
type parameters (Line 21). For each method, it fetches the method’s pre-
condition and invariant8 (Line 24) and declares uninterpreted sorts for the
method’s type parameters (Line 26). Then, it compiles the precondition,
the method itself, and the invariant to SMT and stores them in the specifi-
cation S (Line 30). Note that the postcondition is automatically compiled
from the actual implementation of the method, whereas ECROs required
programmers to manually define the effects of operations using first-order
logic postconditions. Finally, on Line 5, the compiled SMT data type,
its SMT specification, and the uninterpreted sorts are analyzed using the
ECRO analyses from Chapter 4. The analysis result, F , together with the
compiled data type IL, form the synthesized ECRO.

Currently, our prototype implementation of EFx compiles RDTs writ-
ten in EFx to ECROs in Scala. This could be extended to any language
for which EFx has a compiler plugin and that features an implementation
of the ECRO protocol. For example, EFx features a compiler plugin for
JavaScript but we do not yet have a JavaScript implementation of ECROs.

5.5 Qualitative Evaluation

We now present a qualitative evaluation of our approach to assess whether
EFx simplifies the development of RDTs in distributed systems. Sec-
tion 5.5.1 presents a broad portfolio of RDTs implemented in EFx. Sec-
tion 5.5.2 goes into more detail about the implementation of application-
specific RDTs based on real-world use cases. Then, Section 5.5.3 focuses
on the implementation of a complete distributed voting game inspired by
modern TV shows. Finally, Section 5.5.4 compares our portfolio of RDTs
written in EFx against their original ECRO counterpart in order to assess
EFx’s improvement compared to the traditional ECRO approach.

8If the method has no associated precondition or invariant it defaults to a function
that always returns true.

133

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

5.5.1 Portfolio of Replicated Data Types

Data Type LoC C M Description and distributed semantics

Counter 6 1 2 Supports increments and decrements.

EW-Flag 13 1 2 Flag that can be enabled and disabled. Enable wins over
concurrent disable operations.

DW-Flag 13 1 2 Similar to EW-Flag but guarantees disable-wins semantics.

AW-Set 12 1 2 Set providing add-wins semantics for concurrent adds and
removes of the same element.

RW-Set 12 1 2 Set providing remove-wins semantics.
LWW-Set 11 1 2 Set providing last-writer-wins semantics.

LWW-Array 21 1 1 Array providing last-writer-wins semantics for concurrent
writes on the same index.

Sync-Array 24 1 1 Array with coordinated writes (locks index before writing).

AW-Map 16 1 2
Map with add-wins semantics for concurrent adds and
removes of the same key, and last-writer-wins semantics for
concurrent adds of the same key.

RW-Map 16 1 2 Similar to AW-Map but remove-wins semantics for
concurrent adds and removes of the same key.

Stack 14 1 2

Stack allowing push, pop, and top operations. Push
operations execute optimistically and are totally ordered.
Pop operations are coordinated in order not to pop more
elements than there are on the stack.

Queue 12 1 2
Enqueue operations run optimistically and are totally
ordered. Dequeue operations are coordinated to avoid
dequeueing more elements than there are in the queue.

VotingGame 53 3 2 A distributed voting game inspired by contemporary
TV-shows [Cet+14].

SmallBank 90 2 4 Banking application corresponding to the SmallBank
benchmark [Alo+08].

RUBiS 87 2 6 Auction system similar to the RUBiS benchmark [EJ09].
Airline 285 9 9 An airline reservation system inspired by Acme Air [TS].

Table 5.1: Portfolio of RDTs implemented in EFx together with a de-
scription and code metrics. The C column is the number of classes, the
M column the number of mutators exposed by the RDT.

To assess the applicability of our approach we implemented an exten-
sive portfolio of RDTs using concurrency contracts in EFx. We will later
compare them to the original ECRO portfolio in Section 5.5.4. Table 5.1
provides an overview of all RDTs included in our portfolio, accompanied
by some code metrics and a brief description of the data types’ semantics.
Our portfolio includes all RDTs from the original ECRO approach, except

134

5.5. QUALITATIVE EVALUATION

lists due to their recursive nature9. In addition, the portfolio also contains
other RDTs such as a Last-Writer-Wins Set, two variations on arrays, and
application-specific RDTs for a distributed voting game, the SmallBank
application, and an airline reservation system. In the remainder of this
section we elaborate on the set and array RDTs. Next section focuses
on two application-specific RDTs, namely, the SmallBank application and
the airline reservation system.

Sets. As explained in Section 4.2.2, concurrent adds and removes on
a replicated set conflict if they try to add and remove the same element
because the operations do not commute. The add-wins set solves such
conflicts by letting adds win over concurrent removes of the same element.
Similarly, the remove-wins set lets removes win over concurrent adds. The
Last-Writer-Wins (LWW) set solves conflicts differently as it arbitrarily
but deterministically lets one operation win over the other based on the
unique IDs of the operations. As a result, sometimes adds may win and
sometimes removes may win depending on the ID of the operations.

Arrays. The LWW-Array and Sync-Array are initialized with a fixed
length and an initial value. Programmers can write a value at a cer-
tain index in the array, which overwrites the previously stored value at
that index. Concurrently writing different values to the same index leads
to a conflict because the operations do not commute. Therefore, the
LWW-Array deterministically picks one write over the other, whereas, the
Sync-Array locks the index before writing which avoids the conflict.

5.5.2 Application-Specific RDTs

We now move our attention to two application-specific RDTs, one for a
banking application and one for an airline reservation system. We im-
plemented these RDTs in EFx and tailored them to the needs of the
applications.

SmallBank. The SmallBank RDT implements the operations de-
scribed by the SmallBank benchmark [Alo+08]. Customers have a check-
ing and a savings account and can fetch their balance, deposit money on
their checking account, deposit or withdraw money from their savings ac-
count, move all funds to another customer, and write a cheque to another
account. If the customer’s balance is less than the amount of the cheque,

9EFx cannot analyze RDTs with recursive operations because those require inductive
reasoning which is hard to automate with SMT solving.

135

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

the customer is charged an extra fee for the overdraft. All operations run
without coordination, except withdrawals on the same account because
customers may not withdraw more money than they have.

Airline. The airline reservation system, inspired by Acme Air [TS],
keeps track of users and flights. Users can register, update their profile,
deposit money, withdraw money, and book flights. Flights have a limited
capacity but overbookings are allowed. New flights can be added to the
system and existing flights can be modified. When users book a seat on a
flight it is reserved, whereafter, the user proceeds to the payment. Once
the booking is paid the seat is confirmed and can no longer be canceled
(not even by a concurrent cancel operation). The payment system ensures
that the user’s account is debited exactly once. If the user does not pay
within a certain time frame, the booking is canceled. While a user can
book several flights concurrently, the payments are coordinated to avoid
overdrafts.

5.5.3 Application Case: A Distributed Voting Game

We now report on the design and implementation of a full-fledged dis-
tributed voting game inspired by contemporary TV-shows [Cet+14]. The
game features a number of candidates performing live acts (e.g. singing,
dancing, etc.). Viewers at home can vote for their favorite candidate but
can cast only a single vote. Periodically the candidate with the least
amount of votes is eliminated. The viewers that voted on that candidate
regain the right to vote. The game continues until a single candidate
remains, which is the winner.

We build a variation of this game that runs atop a weakly consistent
distributed system. Figure 5.6 shows the two main user interfaces of the
application. One node acts as the producer of the tv show (Fig. 5.6a),
while the remaining nodes are viewers (Fig. 5.6b). The producer can start
new games and decides after how many votes candidates are eliminated.
Viewers can participate in games and vote on candidates even if the pro-
ducer is temporarily unreachable.

The application is implemented in Scala and consists of four main
parts: a user interface, the game logic, a replicated game object, and a
distributed system. Figure 5.7 provides an overview of these parts in terms

136

5.5. QUALITATIVE EVALUATION

(a) User interface of the producer. (b) User interface of the viewer.

Figure 5.6: A distributed voting game inspired by contemporary tv-shows.

of LoC. The User Interface (UI) is built on top of the Swing UI library10

and accounts for the biggest part of the application. The game logic
mainly consists of the implementation of the producer and the viewers and
is concerned with creating and discovering new games, casting votes and
reacting to incoming votes, eliminating candidates, etc. The distributed
part of the game uses Squirrel [DG19], our distributed key-value store,
in order to setup a cluster of machines and replicate objects across the
cluster. Finally, we implemented a custom Game RDT in EFx, compiled
it to an ECRO in Scala, and deployed the resulting ECRO on top of our
distributed system. Every node has a local replica of the game on which it
can apply operations (i.e. the Game RDT is highly available). The state
of the replica is visualized in the UI and replicas eventually converge when
all updates are propagated.

We now briefly discuss the implementation of the Game RDT in EFx,
shown in Listing 5.3. The Game class defines two fields: votes which maps
candidates to a set of viewers that voted on them, and voted which is a set
containing all the viewers that already voted. The game’s main operations
are cast and eliminate. The cast method registers a vote from a viewer
v on a candidate c. If the viewer did not yet vote, they are added to
the set of viewers that voted on the candidate (Line 10) and to the set

10https://index.scala-lang.org/scala/scala-swing

137

https://index.scala-lang.org/scala/scala-swing

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

53 (8%)

245 (37%)

80 (12%)

279 (42%)
Part

Distribution
ECRO
Logic
User Interface

Figure 5.7: Overview of the distributed voting game in terms of LoC.

of viewers that already voted (Line 11). The eliminate method is called
by the producer to eliminate a candidate. The candidate is removed from
the map of votes (Line 16) and the viewers that voted on the candidate
are removed from the voted set such that they regain the right to vote
(Line 16).

As found by ECRO’s concurrent commutativity analysis (cf. Sec-
tion 4.3.3), concurrent cast and eliminate methods do not commute
when the candidate that is eliminated is the same as the one on which a
vote is cast. For example, a candidate c may have 5 votes; then, a user
votes on c while concurrently c is eliminated. If replicas first cast the vote
and then eliminate c, c is no longer part of the game. However, if replicas
first eliminate c and then cast the vote, c reappears in the game. The
situation where c reappears is undesirable for this application, therefore,
the Game class adds an invariant on eliminate which states that once
eliminate and all concurrent operations are executed, the candidate may
not be part of the game. This ensures custom “eliminate-wins” semantics.

Interestingly, ECRO’s safety analysis (cf. Section 4.3.5) detects the
aforementioned anomaly and finds a coordination-free solution that con-
sists of reordering concurrent cast and eliminate operations such that
replicas always first cast the votes on a candidate before eliminating that
candidate.

Based on the implemented Game RDT, EFx automatically synthesizes
a corresponding ECRO.We integrated the ECRO in our voting application
in Scala. When a producer starts a new game, a Game RDT is created and
stored in Squirrel. Squirrel automatically replicates the object across all
machines of the cluster. When the viewers discover this new Game object,

138

5.5. QUALITATIVE EVALUATION

Listing 5.3: Excerpt from the replicated Game data type in EFx.

1 @replicated
2 class Game(votes: Map[Candidate , Set[Viewer]],
3 voted: Set[Viewer]) {
4 def getVotesFor (c: Candidate) =
5 this. votes . getOrElse (c, new Set[Viewer]())
6 def cast(v: Viewer , c: Candidate) = {
7 if (this. viewerAlreadyVoted (v))
8 this // ignore the vote
9 else {

10 val newVotes = this. getVotesFor (c).add(v)
11 new Game(this. votes .add(c, newVotes), this. voted .add(v))
12 }
13 }
14 def eliminate (c: Candidate) = {
15 val viewers = this. getVotesFor (c)
16 new Game(this. votes . remove (c), this. voted .diff(viewers))
17 }
18 inv eliminate (c: Candidate) {
19 !this. votes . contains (c)
20 }
21 // ...
22 }

they acquire a local replica and can start voting on candidates. The votes
are automatically propagated to all replicas and the replicas will converge
to the same state when the updates are fully propagated across the cluster.

5.5.4 Comparison to the Original ECRO Approach

EFx was designed to simplify the development of RDTs by leveraging
the ECRO protocol and combining it with an automated analysis of the
RDT’s implementation. To assess EFx’s improvements, we compare the
implementations of the RDTs that are shared between the original ECRO
portfolio (cf. Table 4.1) and EFx’s portfolio (cf. Table 5.1). We only focus
on the programming efforts needed to implement these RDTs because the
synthesized ECROs have the same performance as the original approach.

We compare the implementation of RDTs in EFx against their original
ECRO implementation in terms of absolute code size and the distribution
of code across components11. This is visualized by the stacked bar charts

11To improve the readability of the plots we only plot one variant of each RDT because
variants of the same RDT have similar code sizes.

139

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

in Figs. 5.8a and 5.8b. The code is categorized into three components:
the data type, its specification, and boilerplate.

In the ECRO approach, the implementation is dominated by the
RDT’s specification (often 50% or more!) and the data type itself only
forms a small part (mostly around 20% to 30%) of the overall implemen-
tation. A considerable part of the implementation consists of boilerplate
code. In contrast, the EFx implementations are much smaller and mainly
consist of the implementation of the data type itself. EFx and ECROs
require approximately the same number of LoC for the implementation of
the data types. However, EFx’s concurrency contracts are much smaller
than the ECRO specifications because programmers do not need to de-
fine postconditions. Moreover, boilerplate code is completely compiled
away by EFx. Based on these observations, we conclude that EFx allows
programmers to focus on the data type logic instead of the specification.

We now compare the ECRO specifications and their equivalent EFx
contracts in more detail. Figures 5.9a and 5.9b depict the specifications
and contracts and split them into four distinct parts: First-Order Logic
(FOL) definitions, preconditions, postconditions, and invariants. The
ECRO specifications are dominated by the definition of FOL relations
which are needed to define the operations’ preconditions, postconditions,
and invariants. These relations are not needed in EFx because the con-
tracts are integrated into the language; hence, there is no need for a sep-
arate specification language. Another significant part of the ECRO speci-
fications consists of postconditions that must be defined for every update
operation. In contrast, EFx does not require postconditions because they
are automatically inferred from the operations which is possible since the
operations are assumed to be correct. Hence, EFx contracts exclusively
consist of RDT-specific preconditions and invariants while in the ECRO
implementations these form only a small part of the specification.

Based on these observations, we believe that EFx simplifies the imple-
mentation of RDTs when compared to the original ECRO approach be-
cause the concurrency contracts expressed in EFx are considerably smaller
than the ECRO specifications and let programmers focus on RDT-specific
code instead of developing a complete FOL specification. To further vali-
date this claim, Section 5.5.4.1 compares the implementation of an RDT
for the RUBiS auction system (cf. Section 4.2.3) in EFx against an equiv-
alent implementation with ECROs in Scala.

140

5.5. QUALITATIVE EVALUATION

15
6

7

6

17

11

7

1
12

28

12

7

1
11

35

13

8

1
15

49

7

8

4
10

45

11

9

2
10

110

73

18

25

62

Counter EWFlag AWSet AWMap Stack Queue RUBiS

ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx

0

50

100

150

200

Li
ne

s
of

 C
od

e

Component Boilerplate Specification/Contract Data type

(a) Absolute code size of the RDT implementations.

54%

21%

25%

100%
49%

31%

20%

8%

92%

60%

26%

15%
8%

92%

62%

23%

14%
6%

94%
77%

11%

12%

29%

71%

69%

17%

14% 17%

83%

55%

36%

9%

29%

71%

Counter EWFlag AWSet AWMap Stack Queue RUBiS

ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx

0

25

50

75

100

R
el

at
iv

e
C

od
e

S
iz

e
(in

 p
er

ce
nt

)

Component Boilerplate Specification/Contract Data type

(b) Distribution of code across RDT components.

Figure 5.8: Comparison of RDTs implemented in EFx against ECROs.

141

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

6

9

21 1

14
8
1

1

19

9
3

1

23

10

15

2

13

22

10

14

2

21

20

35

6

19

6

49

Counter EWFlag AWSet AWMap Stack Queue RUBiS

ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx

0

30

60

90

Li
ne

s
of

 C
od

e

Part FOL definitions Invariants Postconditions Preconditions

(a) Absolute code size of the different parts of the specifications.

40%

60%

12%

6%

100%

82%

29%

4%

100%

68%

26%

9%

100%

66%

20%

31%

4%

25%

75%

45%

22%

31%

100%

47%

18%

32%

5%

76%

24%

45%

Counter EWFlag AWSet AWMap Stack Queue RUBiS

ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx ECRO EFx

0

25

50

75

100

R
el

at
iv

e
C

od
e

S
iz

e
(in

 p
er

ce
nt

)

Part FOL definitions Invariants Postconditions Preconditions

(b) Distribution of code across the different parts of the specifications.

Figure 5.9: Comparison of RDT specifications implemented in EFx against
ECROs.

142

5.5. QUALITATIVE EVALUATION

5.5.4.1 RUBiS Auction System

To further investigate the differences between EFx and ECROs, we now
implement the RUBiS auction system in EFx and compare it to its original
ECRO implementation. We chose the RUBiS application because it is a
real-world application involving several invariants, it requires an RDT
that is tailored to the needs of the application, and it has previously been
adapted for geo-distributed systems [LPR18].

Recall from Section 4.2.3 that the RUBiS auction system allows users
to create auctions, bid on auctions, and close auctions. Usernames should
be unique, and every bid must be linked to an existing user (an invariant
known as “referential integrity”).

Listing 5.4 shows an excerpt from the implementation of a custom RDT
for RUBiS in EFx. The code snippet depicts the implementation of the
registerUser and placeBid operations. Similarly to the original ECRO
implementation discussed in Section 4.2.3, we associate a precondition to
each operation. The precondition of registerUser checks that the user
does not yet exist (Line 4). If the precondition holds, the registerUser
operation adds the user to the set of all users (Line 6). The precondition
of placeBid requires the user to exist, the auction to exist, and the bid
to be bigger than zero (Line 9). If the precondition holds, the placeBid
operation fetches the list of bids for the given auction and appends the
new bid to the list (Lines 11-16).

Listing 5.5 shows the implementation of the same RDT but imple-
mented with ECROs. The RDT is split in two parts, a class named
Rubis that implements the data type’s operations in a sequential man-
ner (Lines 1-17), and the class’ companion object (Lines 20-50). The
Rubis class extends the ECRO trait which requires some boilerplate code
such as specifying the type of the class, its interface, and providing a
method to create new replicas (Lines 15-16). The class’ companion ob-
ject defines the data type’s distributed specification. The specification
defines three first-order logic predicates: auction, user, and bid. The
auction(auctionId, status, state) predicate relates the id of an auc-
tion to its status (true if it is open, false if it is closed) in a given state. The
user(username, state) predicate indicates whether or not the username
exists in the given state. The bid(auction, user, amount, state)
predicate represents a bid of some amount from a user on an auction
in a given state. These predicates are used to define the preconditions,

143

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Listing 5.4: Excerpt from the replicated RUBiS data type in EFx.

1 @replicated
2 class Rubis (users: Set[String], auctions: Map[String , Status],
3 bids: Map[String , List[Bid]]) {
4 pre registerUser (user: String) { !this. users . contains (user) }
5 def registerUser (user: String) =
6 new Rubis (this. users .add(user), this.auctions , this.bids)
7
8 pre placeBid (auction: String , user: String , price: Int) {
9 this. auctions . contains (auction) && this. isOpen (auction) &&

this. users . contains (user) && price > 0
10 }
11 def placeBid (auction: String , user: String , price: Int) = {
12 val theBids = this.bids. getOrElse (auction , new List[Bid]())
13 val newBids = theBids . append (new Bid(user , price))
14 new Rubis (this.users , this.auctions ,
15 this.bids.add(auction , newBids))
16 }
17 // ...
18 }

postconditions, and invariants of the operations. The preconditions of the
registerUser and placeBid operations are similar to those of the EFx
implementation but are expressed in terms of the aforementioned relations.
Since auctions are encoded as predicates, all preconditions must explicitly
state that auctions cannot be open and closed at the same time (Line 27-
29); a consequence of the way how the status is encoded in the auction
predicate. In addition, the specification also needs to define a postcon-
dition for every update operation. The postcondition of registerUser
extends the old state with a new user and explicitly copies all the other
user predicates, i.e. the copyExcept statement on Line 38 copies all the
user predicates from the old state to the new state except the one for usr.
The postcondition of placeBid extends the state with the new bid.

Comparison. Although both implementations are equivalent, we ob-
serve that the ECRO implementation is more cumbersome because pro-
grammers have to build a complete first-order logic specification for the
data type. Building such specifications is non-trivial and error-prone. For
instance, the RUBiS specification had to define the necessary first-order
logic relations and describe the effects of operations on the state in terms
of these relations, whereas the EFx implementation derives all this in-
formation from the data type’s implementation. We conclude that EFx’s

144

5.5. QUALITATIVE EVALUATION

Listing 5.5: Excerpt from the replicated RUBiS data type implemented
in Scala with ECROs.

1 case class Rubis (users : Set[String],
2 auctions : Map[String , Status],
3 bids: Map[String , SortedSet [Bid]]) extends ECRO{
4 // main operations
5 def registerUser (usr: String) = copy(users + usr)
6 def placeBid (auct: String , usr: String , price : Int) = {
7 val theBids =
8 bids. getOrElse (auct , SortedSet . empty [Bid](bidOrdering))
9 val newBids = theBids + Bid(usr , price)

10 copy(bids = bids + (auct -> newBids))
11 }
12 // ...
13
14 // boilerplate code required by ECRO trait
15 override type T = Rubis ; override type I = RubisInterface
16 def replicate () = () => Rubis (users , auctions , bids)
17 }
18
19 // Companion object that defines the distributed specification
20 object Rubis extends DistributedSpec {
21 // Define the necessary FOL relations
22 val auction : Predicate = ...;
23 val user: Predicate = ...; val bid: Predicate = ...
24 val relations : Set[Relation] = Set(auction , user , bid)
25
26 // auctions are open xor closed
27 def openOrClosed (state : State) =
28 not(exists (x :: Stringg) :-
29 auction (x, open , state) /\ auction (x, closed , state))
30
31 // define preconditions , postconditions , and invariants
32 val preRegisterUser =
33 (s: CurrentState) =>
34 openOrClosed (s) /\ not (user(username , s))
35 val postRegisterUser = (oldS: OldState , newS: NewState) => {
36 oldS +
37 user(usr , newS) /\ // register user
38 user. copyExcept (oldS -> newS , user.name === usr)
39 }
40 val prePlaceBid = (state : CurrentState) => {
41 auction (auct , open , state) /\ // auction is open
42 user(usr , state) /\ // user exists
43 (price >> 0) /\ openOrClosed (state)
44 }
45 val postPlaceBid = (oldS: OldState , newS: NewState) => {
46 oldS +
47 bid(auct , usr , price , newS) /\ // add bid
48 bid.copy(oldS -> newS) // copy all bid relations
49 }
50 }

145

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

contract system greatly reduces the burden that is put on the programmer
because the preconditions and invariants are integrated into the language
and programmers no longer have to define additional postconditions.

5.6 Performance Evaluation

We now conduct a performance evaluation to assess the practical feasi-
bility of our approach. In particular, we evaluate the EFx compiler in
Section 5.6.2 by measuring the time it takes to synthesize ECROs from
RDTs implemented in EFx. In Section 5.6.3, we compare the analysis
times for RDTs implemented in EFx against the analysis times of the
original ECRO implementations. Note that the synthesized ECROs are
equivalent to their manually implemented counterparts, therefore we do
not repeat a performance evaluation against related work.

5.6.1 Methodology

Similarly to Chapter 4, all experiments reported in this section were con-
ducted on AWS using an m5.xlarge VM with 4 virtual CPUs and 16
GiB of RAM, and all benchmarks are implemented with JMH [Ope]. We
configured JMH to execute 20 warmup iterations followed by 20 measure-
ment iterations for every benchmark. To avoid run-to-run variance JMH
repeats every benchmark in 5 fresh JVM forks, yielding a total of 100
samples per benchmark.

5.6.2 Synthesis Evaluation

To assess if the EFx compiler is fast enough to be used in practice, we
measure the total synthesis time for all RDTs implemented in EFx. The
results are depicted by the boxplots in Fig. 5.10. Most RDTs (counters,
flags, sets, maps, arrays, stacks and queues) are synthesized in less than 6
seconds. The synthesis times of custom RDTs for real-world applications
(colored pink) are higher, which is to be expected since their implemen-
tations are also bigger (cf. Table 5.1).

Remember that EFx synthesizes ECROs in three steps. First, the
RDT and its contract are compiled to SMT. Then, the resulting SMT
code is used to analyze the RDT using the ECRO analyses presented in
Chapter 4. Finally, the EFx implementation of the RDT is compiled to

146

5.6. PERFORMANCE EVALUATION

5

10

20

Cou
nt

er

EW
Flag

AW
Set

LW
W

Set

AW
M

ap

LW
W

Arra
y

Sta
ck

Que
ue

Vo
tin

gG
am

e

Sm
all

Ban
k

RUBiS

Airli
ne

C
om

pi
la

tio
n

T
im

e
(in

 s
ec

on
ds

)

Family Counters Flags Sets Maps Arrays (F/L)IFO Applications

Figure 5.10: Synthesis time of RDTs implemented in EFx.

Scala and transformed into an ECRO using the information derived from
the analyses.

Figure 5.11 breaks down the total compilation time in those three
phases. For most RDTs, the total compilation time is dominated by the
compilation step to SMT and the time spent analyzing the RDT is only a
fraction of the total compilation time. However, the portion of the total
compilation time that is spent on analyzing the data type increases with
the complexity of the RDT. For example, the analysis of the RDTs for
the SmallBank and RUBiS applications approximately takes up 30% of
the total compilation time and 50% for the airline reservation system, in
contrast to only 5% to 10% for the other (simpler) RDTs. This can be
explained by the fact that the advanced RDTs expose more operations
and the analysis has to consider all operation pairs. We further discuss
the analysis times in Section 5.6.3.

Based on the aforementioned observations, we conclude that EFx is
suited to implement RDTs because the absolute compilation times are low
(in the order of seconds), even for advanced RDTs.

147

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

57%58%

26%

61% 59% 61%59% 56%

39%

39%

55% 55%

8%7%

51%

7% 7% 3%7% 7%

31%34%
8% 11%

35%34%

23%

32% 33% 36%34%
36%

30%

26%

37% 34%

0

5

10

15

20

Cou
nt

er

EW
Flag

AW
Set

LW
W

Set

AW
M

ap

LW
W

Arra
y

Sta
ck

Que
ue

Vo
tin

gG
am

e

Sm
all

Ban
k

RUBiS

Airli
ne

T
im

e
(in

 s
ec

on
ds

)
Part Compilation to Scala Compilation to SMT Analysis in Z3

Figure 5.11: Breakdown of the compilation time.

5.6.3 Feasibility of Analyzing High-Level EFx Programs

Recall from Section 5.1.2 that EFx analyzes high-level implementations
rather than abstract specifications. We now assess the feasibility of ana-
lyzing RDT implementations directly instead of analyzing abstract specifi-
cations, as is traditionally the case with hybrid approaches such as ECRO,
PoR, and RedBlue.

Table 5.2 compares the analysis times of RDTs implemented in EFx
against the original ECROs. For most RDTs, we notice an increase in the
analysis times by approximately 200ms for EFx compared to the original
ECRO approach, which corresponds to a 2 to 4 times increase in the
analysis times. This can be explained by the fact that the analyses execute
on the complete RDT implementation which is more complex than an
abstract specification (that often ignores implementation details).

For example, consider the remove-wins set. In the ECRO approach,
the specification of this set consists of a single predicate contains and
operations are described in terms of this predicate (cf. Section 4.2.2).
However, in EFx, the implementation is analyzed which involves method
calls, set operations, and class instantiations (cf. Section 5.1.2).

148

5.7. DISCUSSION

Counter EW-Flag DW-Flag AW-Set RW-Set
EFx 252 303 323 330 325
ECRO 58 67 73 93 95
∆ in ms +194 +236 +250 +237 +230
∆ in % +334% +352% +342% +255% +242%

AW-Map RW-Map Stack Queue RUBiS
EFx 367 379 458 398 3290
ECRO 120 117 199 175 4175
∆ in ms +247 +262 +259 +223 -885
∆ in % +206% +224% +130% +127% -21%

Table 5.2: Comparison of the average analysis times (in milliseconds) of
RDTs implemented in EFx and ECROs.

Interestingly, the analysis of the RUBiS RDT implemented in EFx is
21% faster than the ECRO implementation. We believe that this comes
from the fact that the RUBiS RDT is considerably more complex than
the other RDTs. As a result, the first-order logic specification that was
manually developed in Chapter 4 is suboptimal and it is faster to directly
analyze the implementation.

We conclude that EFx is suited to analyze RDT implementations di-
rectly since the absolute analysis times are low (in the order of milliseconds
and seconds) and are close to the analysis times of the abstract specifi-
cations in the original ECRO approach. For advanced RDTs like RUBiS
the analysis times are even improved.

5.7 Discussion

We now elaborate on the main design choices behind EFx. In particular,
we focus on the limitations of EFx’s traits and functional collections.

Traits. For simplicity, EFx currently supports single inheritance from
traits. This could, however, be extended to support multiple inheritance.
Traits are not meant for subtyping because subtyping complicates analyses
as every subtype needs to be analyzed but these are not necessarily known
at compile time. Hence, class fields, method parameters, local variables,
etc. cannot be of a trait type.

149

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

Note that traits can define type parameters with upper type bounds.
These type bounds are only used by the type checker to ensure that every
extending class or trait is well-typed. The compiled SMT program does
not contain traits as they are effectively compiled away (cf. Section 5.3).
Classes and class methods cannot have type parameters with type bounds
because the compiler does not know all subtypes.

Functional collections. EFx encodes higher order functions on col-
lections (e.g. map, filter, etc.) using arrays, which are treated as func-
tion spaces in the Combinatory Array Logic (CAL) [MB09]. Hence, anony-
mous functions (lambdas) merely define arrays which are first-class. SMT
solvers can efficiently reason about EFx’s functional collections and their
higher order operations because CAL is decidable. However, some oper-
ations are encoded using universal or existential quantifiers which may
hamper decidability. In practice, we were able to analyze RDTs involving
complex functional operations.

Unfortunately, EFx’s collections do not provide aggregation methods
(e.g. fold and reduce) because this is beyond the capabilities of CAL.
Instead, programmers need to manually aggregate the collection by writ-
ing recursive methods that loop over the values of the collection. While
looping over finite collections works, most SMT solvers will not provide
inductive proofs which are needed to analyze recursive functions.

5.8 Notes on Related Work

A lot of work is being put into designing RDTs that serve as basic build-
ing blocks for the development of highly available distributed systems.
Traditionally, RDTs only guaranteed state convergence. Recently, new
approaches have extended RDTs with application-specific invariants.

Hybrid approaches. Indigo [Bal+15] coordinates unsafe operations
or requires programmers to provide a deterministic and monotonic algo-
rithm to repair broken invariants. IPA [Bal+18] detects invariant-breaking
operations and proposes modifications to the operations in order to pre-
serve the invariants. Q9 [Kak+18] leverages symbolic execution of RDTs
built atop their CRDT library to detect anomalies with regard to ap-
plication invariants. However, these approaches start from existing RDTs
which are assumed to be correct, while EFx lets programmers build correct
RDTs from sequential data types. PoR [LPR18] requires programmers to

150

5.9. CONCLUSION

specify restrictions over operations to guarantee convergence and main-
tain invariants. Sieve [Li+14] statically analyzes RDTs and automatically
classifies operations as red (unsafe) or blue (safe) in order to guarantee
RedBlue Consistency [Li+12]. Hamsaz [HL19] and Hampa [LHL20] derive
suitable coordination protocols from the data type’s specification.

The aforementioned hybrid approaches require programmers to pro-
vide abstract specifications describing the data types’ operations and in-
variants and thus suffer from the problem of disconnected specifications.
In contrast, EFx leverages automated analyses of high-level RDT imple-
mentations which alleviates the need for separate specifications.

Quelea [SKJ15] supports application-level invariants through contracts
that can be associated with individual operations or span several objects.
Contracts are first-order logic expressions that use primitive consistency
relations to restrict the set of legal executions. Contracts are statically an-
alyzed and mapped to an appropriate consistency level. In contrast, EFx
does not require low-level logic expressions since concurrency contracts
are integrated into the language.

Mixed-consistency approaches. Several programming languages
and models [MM18; De +20; Köh+20; ZN16; MSD18; Hol+16] support
mixing consistency levels safely to some extent. However, they cannot au-
tomatically derive commutative operations (or custom merge procedures)
from sequential data types without programmer intervention. Observ-
able Atomic Consistency [ZH18; ZH20] requires programmers to choose
an appropriate consistency level for RDT operations. In contrast, EFx
automatically derives correct RDTs from sequential data types based on
a concurrency contract.

5.9 Conclusion

This chapter explored a high-level programming language that is powerful
enough to implement RDTs, yet simple enough to analyze them automat-
ically without requiring annotations or programmer intervention of any
kind. EFx shows that automated analyses of RDTs based on SMT solv-
ing removes the need for abstract specifications and thus avoids subtle
mismatches that could lead to runtime anomalies.

EFx enables programmers to build custom RDTs from sequential data
types by writing concurrency contracts that describe the desired seman-

151

CHAPTER 5. A HIGH-LEVEL LANGUAGE FOR EFFICIENT RDTS

tics. The data types and their contracts are compiled to SMT where they
are analyzed using the ECRO analyses from Chapter 4. The resulting
information is used to synthesize correct ECROs for the RDTs.

Our evaluation shows that EFx strikes a good balance between simplic-
ity and efficiency. RDTs written in EFx implement high-level concurrency
contracts that are considerably smaller than the low-level ECRO specifi-
cations. Moreover, our experiments show that RDT implementations and
their concurrency contracts can be analyzed directly and efficiently (as op-
posed to analyzing abstract specifications which is traditionally the case).
The resulting information is used to synthesize ECROs in a matter of sec-
onds. At runtime, the RDTs execute the ECRO protocol which guarantees
high availability and low latency.

EFx effectively solves the problems outlined in the introduction ac-
cording to our vision (cf. Section 1.1.3 and Section 1.2). Programmers
can replicate existing data types with custom concurrency semantics and
application-specific invariants. EFx analyzes the data type implementa-
tion to synthesize an ECRO that is correct out-of-the-box.

The key insight behind EFx consists of designing the language such
that every feature has an efficient SMT encoding. As such, any EFx
program can be compiled to SMT and analyzed using traditional SMT
solvers without requiring separate specifications. In the next chapter, we
exploit this idea to implement and verify other RDTs beyond ECROs.

152

Chapter 6

Automated Verification of
Replicated Data Types

So far, we proposed several principled approaches (SECRO, ECRO, and
EFx) for the development of application-specific RDTs. Nevertheless,
there are many ad-hoc designs [Sha+11b; Sha+11a; ASB15; KB17;
BAS17; Kak+19; Bur+12; Sha17; Bie+12], and programmers still find
themselves modifying these designs to fit their applications. However, de-
signing new RDTs is difficult, as demonstrated by the fact that even sea-
soned researchers miss subtle corner cases when designing basic replicated
data structures such as maps [Kle22]. Therefore, as argued in Chapter 1,
it is essential to not only support the development of RDTs but also their
verification in order to avoid anomalies.

Although most RDT papers include correctness proofs, those are
mostly paper proofs and are subject to reasoning flaws. To avoid the
pitfalls of paper proofs, Zeller et al. [ZBP14] and Gomes et al. [Gom+17]
propose formal frameworks to verify CRDTs using proof assistants. Such
interactive proofs are more convincing because the proof logic is machine-
checked. However, these frameworks verify abstract specifications that are
disconnected from actual implementations (e.g. Akka’s CRDT implemen-
tations in Scala). Hence, a particular implementation may be flawed, even
though the specification was proven correct. Moreover, interactive proofs
require significant programmer intervention, which is time-consuming and
reserved to verification experts [LM10; OHe18].

153

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Recent research efforts try to automate (part of) the verification pro-
cess of CRDTs. Nagar and Jagannathan [NJ19] automatically verify
CRDTs under different consistency models but require a first-order logic
specification of the CRDTs’ operations which is cumbersome and error-
prone. Liu et al. [Liu+20] leverage an SMT solver to automate part of the
verification process, but significant parts still need to be proven manually
due to the way how the language constructs are encoded in SMT. For
example, their Map CRDT required more than 1000 lines of proof code.

To simplify the design and implementation of correct RDTs, this chap-
ter introduces VeriFx: a high-level programming language that features
a novel proof construct that enables programmers to express custom cor-
rectness properties that are verified automatically. VeriFx borrows EFx’s
idea of a fully SMT-encodable language to automate the verification of
RDTs. We argue that the ability to implement RDTs and automatically
verify them in the same language without requiring separate specifica-
tions allows programmers to catch mistakes early during the development
process and remedy them.

6.1 The Need for a Fully Verifiable Language

To motivate the need for VeriFx, consider a distributed application in
Scala with replicated data on top of Akka’s highly-available distributed
key-value store1. The store provides built-in CRDTs, e.g. sets, coun-
ters, etc. However, our application requires a Two-Phase Set (2PSet)
CRDT [Sha+11a] that is not provided by Akka. We thus need to imple-
ment it and verify our implementation.

For the implementation, we can take the specification from Shapiro
et al. [Sha+11a]. For the verification, we typically need a complete for-
malization of the implementation and its correctness conditions which
can then be proven manually using proof assistants. The resulting in-
teractive proofs are complex and require considerable expertise. For ex-
ample, Nieto et al.’s [Nie+22] implementation of a 2PSet in OCaml is
only 25 LoC but its specification in Coq is 80 LoC and requires an addi-
tional 73 LoC to verify. Alternatively, programmers could resort to Liu
et al.’s [Liu+20] extension of Liquid Haskell [Vaz+14] which automates
part of the verification process. However, non-trivial RDTs still require

1https://doc.akka.io/docs/akka/current/distributed-data.html

154

https://doc.akka.io/docs/akka/current/distributed-data.html

6.1. THE NEED FOR A FULLY VERIFIABLE LANGUAGE

significant manual proof efforts: 200+ LoC for a replicated set and 1000+
LoC for a replicated map [Liu+20]. Thus, we cannot reasonably assume
that programmers have the time nor the skills to manually verify their
implementation [LM10; OHe18].

Implement RDT in VeriFx

Automated verification

correct?

Interpret
counterexample

Transpile

yes

Deploy in
system

Design RDT

Modify RDT
implementation

no

Figure 6.1: Workflow for
developing RDTs.

We argue that verification needs to be
fully automatic in order to be accessible to
non-experts. Figure 6.1 depicts our envi-
sioned workflow for developing RDTs. Pro-
grammers start from a new or existing RDT
design and implement it in VeriFx which ver-
ifies the implementation automatically with-
out requiring a separate formalization. If
the implementation is not correct, VeriFx re-
turns a concrete counterexample in which the
replicas diverge. In contrast, Liquid Haskell
would raise a type error without providing
additional information as to why the refine-
ment type is not met. After interpreting the counterexample, the pro-
grammer needs to correct the RDT implementation and verify it again.
This iterative process repeats until the implementation is correct. Verified
RDT implementations can be transpiled to mainstream languages (e.g.
Scala or JavaScript) where they can be deployed in an actual system.

Our envisioned workflow thus verifies RDT implementations right be-
fore deployment. In contrast, the traditional workflow only verifies the
initial design (cf. Section 1.1.3) but programmers may introduce subtle
errors in the implementation phase because they do not always understand
the subtleties underlying RDT designs. Moreover, our workflow benefits
from a feedback loop allowing programmers to correct implementations
based on concrete counterexamples. In contrast, traditional verification
techniques such as interactive theorem provers do not provide such feed-
back; when programmers fail to verify a property, they do not know if
the implementation is flawed or if the chosen proof strategy is not suited.
To alleviate this issue, counterexample generators based on SAT solving
exist [Web08; BN10] some of which are integrated in Isabelle/HOL [BN10].

In the remainder of this section we illustrate each step of our work-
flow by implementing and verifying an existing 2PSet design in VeriFx,
transpiling it to Scala, and deploying it on top of Akka.

155

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.1.1 Design and Implementation

Algorithm 6 shows the design of the 2PSet CRDT taken from Shapiro et
al. [Sha+11a]. The 2PSet is a state-based CRDT whose state (the A and
R sets) thus forms a join semilattice, i.e. a partial order ≤v with a least
upper bound (LUB) tv for all states. Elements are added to the 2PSet
by adding them to the A set and removed by adding them to the R set.
An element is in the 2PSet if it is in A and not in R. Hence, removed
elements can never be added again. Replicas are merged by computing
the LUB of their states, which in this case is the union of their respective
A and R sets.

The compare(S,T) operation checks if S ≤v T and is used to define
state equivalence: S ≡ T ⇐⇒ S ≤v T ∧ T ≤v S. Note that state
equivalence is defined in terms of ≤v on the lattice so that replicas may be
considered equivalent even though they are not identical. This is relevant
for CRDTs that keep additional information. For example, CRDTs often
use Lamport clocks together with unique replica identifiers to generate
globally unique IDs. The replica identifier is different at every replica and
is not part of the lattice even though it is part of the state.

Listing 6.1 shows the implementation of the 2PSet CRDT in VeriFx,
which is a straightforward translation of the specification. The TwoPSet
class is polymorphic in the type of values it stores. It defines the added
and removed fields which correspond to the A and R sets respectively.
The add and remove methods return an updated copy of the state. The
class extends the CvRDT trait that is provided by VeriFx’s CRDT library
for building state-based CRDTs (explained later in Section 6.4.1). This
trait requires the class to implement the compare and merge methods.

6.1.2 Verification

We now verify our 2PSet implementation in VeriFx. State-based CRDTs
converge if the merge function is idempotent, commutative, and asso-
ciative [Sha+11b]. VeriFx’s CRDT library includes several CvRDTProof
traits which encode these correctness conditions (explained later in Sec-
tion 6.4.1). To verify our TwoPSet, we define a TwoPSetProof object that
extends the CvRDTProof1 trait and passes the type constructor of the
CRDT we want to verify (i.e. TwoPSet) as a type argument to the trait:
object TwoPSetProof extends CvRDTProof1 [TwoPSet]

156

6.1. THE NEED FOR A FULLY VERIFIABLE LANGUAGE

Algorithm 6 2PSet CRDT taken from Shapiro et al. [Sha+11a].
1: payload set A, set R
2: initial ∅, ∅
3: query lookup (element e) : boolean b
4: let b = (e ∈ A ∧ e /∈ R)
5: update add (element e)
6: A := A ∪ {e}
7: update remove (element e)
8: pre lookup(e)
9: R := R ∪ {e}
10: compare (S, T) : boolean b
11: let b = (S.A ⊆ T.A ∨ S.R ⊆ T.R)
12: merge (S, T) : payload U
13: let U.A = S.A ∪ T.A
14: let U.R = S.R ∪ T.R

Listing 6.1: 2PSet implementation in VeriFx, based on Algorithm 6.

1 class TwoPSet [V](added: Set[V],
2 removed: Set[V]) extends CvRDT [TwoPSet [V]] {
3 def lookup (element: V) =
4 this. added . contains (element) &&
5 !this. removed . contains (element)
6 def add(element: V) =
7 new TwoPSet (this. added .add(element), this. removed)
8 def remove (element: V) =
9 new TwoPSet (this.added , this. removed .add(element))

10 def compare (that: TwoPSet [V]) =
11 this. added . subsetOf (that. added) ||
12 this. removed . subsetOf (that. removed)
13 def merge (that: TwoPSet [V]) =
14 new TwoPSet (this. added . union (that. added),
15 this. removed . union (that. removed))
16 }

157

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

The TwoPSetProof object inherits an automated correctness proof for the
polymorphic TwoPSet CRDT. When executing this object, VeriFx will
automatically try to verify this proof. In this case, VeriFx proves that the
TwoPSet guarantees convergence (independent of the type of elements it
holds) according to the notion of state equivalence that is derived from
compare. However, VeriFx raises a warning that this notion of equivalence
does not correspond to structural equality. As explained before, this may
be normal in some CRDT designs but it requires further investigation.

VeriFx provides a counterexample consisting of two states S =
TwoPSet({x},{}) and T = TwoPSet({x},{x}) which are considered
equivalent S ≡ T but are not identical S 6= T . These two states should
indeed not be considered equivalent since x ∈ S but x /∈ T according to
lookup. Looking back at Algorithm 6, we notice that compare defines
replica S to be smaller or equal to replica T iff S.A ⊆ T.A or S.R ⊆ T.R.
Since S.A = T.A it follows that S ≤v T ∧ T ≤v S and thus they are
considered equal (S ≡ T) without even considering the removed elements
(i.e. the R sets). Thus, after further investigation of the counterexample
returned by the warning, we notice that the implementation of compare
is wrong and we modify it such that it considers both the A and R sets
as follows:
def compare (that: TwoPSet [V]) =

this. added . subsetOf (that. added) &&
this. removed . subsetOf (that. removed)

We verify the implementation again to check that it still guarantees con-
vergence according to this modified definition of equivalence. VeriFx au-
tomatically proves that the modified implementation is correct and the
warning about equivalence is now gone. Thus, the definition of equality
that is derived from compare now corresponds to structural equality, i.e.
s1 ≡ s2 ⇐⇒ s1 = s2.

This example showcases the importance of automated verification as
it detected an error in the specification that would have percolated to the
implementation. We successfully completed the verification of the 2PSet
CRDT in VeriFx without providing any verification-specific code.

6.1.3 Deployment

The final step in our envisioned workflow consists of automatically tran-
spiling the CRDT implementation from VeriFx to Scala and integrating

158

6.1. THE NEED FOR A FULLY VERIFIABLE LANGUAGE

the CRDT in our distributed application which uses Akka’s distributed
key-value store.

Listing 6.2: Transpiled 2PSet in Scala.

1 case class TwoPSet [V](
2 added : Set[V], removed : Set[V]) extends CvRDT [TwoPSet [V]] {
3 def lookup (element : V) = this. added . contains (element) &&
4 !this. removed . contains (element)
5 def add(element : V): TwoPSet [V] =
6 TwoPSet [V](this. added + element , this. removed)
7 def remove (element : V): TwoPSet [V] =
8 TwoPSet [V](this.added , this. removed + element)
9 def compare (that: TwoPSet [V]): Boolean =

10 this. added . subsetOf (that. added) &&
11 this. removed . subsetOf (that. removed)
12 def merge (that: TwoPSet [V]): TwoPSet [V] =
13 TwoPSet [V](this. added . union (that. added),
14 this. removed . union (that. removed))
15 }

Listing 6.3: Modified 2PSet implementation for integration with Akka’s
distributed key-value store.

1 @ SerialVersionUID (1L)
2 case class TwoPSet [V](added : Set[V], removed : Set[V]) extends

CvRDT [TwoPSet [V]] with ReplicatedData with Serializable {
3 type T = TwoPSet [V]
4 // The remainder of the implementation is unchanged
5 }

Listing 6.2 shows the transpiled implementation of the 2PSet in Scala.
In order to store the RDT in Akka’s distributed key-value store, we need
two manual modifications which are shown in Listing 6.3. First, the RDT
must extend Akka’s ReplicatedData trait (Line 2) which requires at least
the definition of a type member T corresponding to the actual type of the
CRDT (Line 3) and a merge method for CRDTs of that type (which we al-
ready have). Second, the RDT must be serializable. For simplicity, we use
Java’s built-in serializer2. Hence, it suffices to extend the Serializable
trait (Line 2) and to annotate the class with a serial version (Line 1).
After applying these modifications, our verified TwoPSet can be stored in

2In production it is safer and more efficient to implement a custom serializer [Lig],
for example with Protobuf [Goo].

159

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Akka’s distributed key-value store and will automatically be replicated
across the cluster and be kept eventually consistent.

6.2 The VeriFx Language

VeriFx aims to be a familiar high-level programming language that is
suited to implement and automatically verify RDTs. The main challenge
consists of efficiently encoding every feature of the language without break-
ing automatic verification, much as we did in the previous chapter.

We designed VeriFx to be a functional object-oriented programming
language with Scala-like syntax and a type system that extends EFx’s type
system. VeriFx advocates for the object-oriented programming paradigm
as it is widespread across programmers and fits the conceptual represen-
tation of replicated data as “shared” objects. The functional aspect of the
language, in particular its extensive immutable collections akin to those of
EFx (cf. Section 5.2.4), make the language suitable for implementing and
integrating RDTs in distributed systems, as argued by Helland [Hel15].

VeriFx features a novel proof construct to express application-specific
correctness properties. For every proof construct, a proof obligation is
derived that is discharged automatically through SMT solving (cf. Sec-
tion 6.3).

While EFx was designed specifically to simplify the development of
ECROs, VeriFx is more general as it is designed to implement and verify
RDTs from any family. For instance, we used VeriFx to verify RDTs from
the CRDT [Sha+11b] and OT [EG89] approaches (cf. Section 6.5).

The remainder of this section is organized into three parts. First, we
give an overview of VeriFx’s architecture. Second, we define its syntax.
Third, we describe its type system.

6.2.1 Overall Architecture

VeriFx can be seen as an extension of EFx that targets the development
of RDTs that go beyond ECROs and features automated verification ca-
pabilities to check that the implemented RDTs are correct. Figure 6.2
provides an overview of VeriFx’s architecture. VeriFx programs consist of
imperative code and proof code (i.e. logic statements).

160

6.2. THE VERIFX LANGUAGE

Verifier

VeriFx AST
derive

SMT-
LIB

 code

Compiler

parse
Model

VeriFx

verify

transpile

Scala plugin

SMT plugin JS plugin

...

VeriFx
source
code

Parser

Scalameta
transform

VeriFx AST

parse

imperative construct

Counter-
example

...

Proof
Obligations

logical construct

query

Scala

construct

Figure 6.2: VeriFx’s architecture.

Source code is parsed into an AST representing the program. The
AST can be verified or transpiled to other languages (currently Scala
and JavaScript). Transpilation to mainstream languages is done by the
compiler which features a plugin architecture akin to that of EFx. Support
for other languages can be added by implementing a compiler plugin for
them.

To verify the proofs that are defined by a VeriFx program, the verifier
derives the necessary proof obligations from the AST. VeriFx then tran-
spiles the program to SMT-LIB and automatically discharges the proof
obligations using the Z3 SMT solver [MB08]. For every proof, the out-
come is: accepted, rejected, or unknown. Accepted means that the prop-
erty holds, rejected means that a counterexample was found for which
the property does not hold, and unknown means that the property could
not be verified within a certain time frame (which is configurable). When
a proof is rejected by Z3, VeriFx constructs a high-level counterexample
that consists of a concrete assignment of values to variables that violates
the given property.

Note that VeriFx can automatically verify application-specific proper-
ties because it derives the necessary proof obligations from the program
itself. In contrast, EFx leverages Ordana which hardcodes the proof obli-
gations that are needed for the ECRO analyses presented in Chapter 4.

161

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.2.2 Syntax

Figure 6.3 defines the syntax of VeriFx which is an adaption of EFx.
Changes and extensions are marked in blue. We use the same meta vari-
ables as in EFx (cf. Section 5.2.2) and introduce some new ones: O ranges
over object names; E ranges over enumeration names; K ranges over con-
structor names of enumerations; p ranges over proof names.

VeriFx programs consist of one or more statements which can be the
definition of an object O, a class C 〈X〉, a trait I 〈X〉, or an enumeration
E〈X〉. Objects, classes, enumerations, and traits can be polymorphic and
inherit from a single trait (except enumerations). Objects define zero or
more methods and proofs. Classes contain zero or more fields and (poly-
morphic) methods. The body of a method must contain a well-typed
expression e. Traits can declare values and methods that need to be pro-
vided by concrete classes extending the trait, and define (polymorphic)
methods and proofs with default implementations. Traits can express
upper type bounds on their type parameters to restrict the possible ex-
tensions. Enumerations (enums for short) define one or more constructors,
each of which contains zero or more fields.

Unique to VeriFx is its proof construct which defines a name for the
proof p and whose body must be a well-typed boolean expression e rep-
resenting the property to verify. A proof is accepted if VeriFx can show
that its body always evaluates to true. It is rejected if VeriFx found a
concrete counterexample for which the property does not hold. It may
also timeout in which case we do not know if the property holds.

Proofs can be polymorphic, which means that they verify a property
for all possible type instantiations of the proof’s type parameters. Poly-

L ::= class C 〈X〉 (v : T) {M } M ::= def m 〈X〉 (x : T) : T = e
| class C 〈X〉 (v : T) extends I 〈P 〉{M } T ::= int | string | bool | C 〈T 〉 | I 〈T 〉

J ::= object O {D } | E 〈T 〉 | T → T

| object O extends I 〈T 〉 {D } e ::= num | str | true | false
F ::= trait I 〈X <: T〉 {B } | e ⊕ e | e ⊗ e | !e | x | e.v | e.m 〈T〉 (e)
| trait I 〈X <: T〉 extends I 〈P 〉 {B } | val x : T = e in e | if e then e else e

N ::= enum E 〈X〉 {K (v : T) } | (x : T)⇒ e | e(e)
D ::= M | R | new C〈T〉(e) | new K〈T〉(e)
B ::= valDecl | methodDecl | M | R | e match {case r ⇒ e}
R ::= proof p 〈X〉 { e } | forall (x : T) � e | exists (x : T) � e

valDecl ::= val x : T | e =⇒ e
methodDecl ::= def m 〈X〉(x : T) : T r ::= K(x) | x | _

Figure 6.3: VeriFx syntax.

162

6.2. THE VERIFX LANGUAGE

morphic proofs are useful to verify that a polymorphic RDT converges
independent of the type of values it operates on. For example, a polymor-
phic proof can verify that a set RDT converges independent of the type
of values (integers, strings, etc.) it holds. This avoids having to define a
proof for every type instantiation of the set.

Compared to EFx, VeriFx introduces three new expressions. The first
is the instantiation of enumerations E by calling one of the enumeration’s
constructors K . The second is a match expression to pattern match on
enumerations. The third consists of logic expressions such as quantified
boolean formulas and logical implication.

Similar to EFx, VeriFx does not support true subtyping because that
requires proofs about supertypes to verify the property for all subtypes
but those are not necessarily known at compile time when translating the
program to SMT-LIB. As a result, traits merely serve for code reuse by
moving recurring code to an abstract trait that is inherited (i.e. mixed-
in) by all extending traits and classes. In contrast, enumerations are
supported because their constructors are fixed and known at compile time.

6.2.3 Type System

VeriFx’s type system is an extension of EFx’s type system (cf. Ap-
pendix F) with typing rules for the aforementioned new constructs such
as proofs, enumerations, logic expressions, etc.

We extend the judgment for type well-formedness with a rule for enu-
meration types (WF-Enum). An enumeration type is well-formed if a
corresponding definition exists and the type arguments are well-formed.

∆ ` T ok
enum E 〈X〉 { . . . }

∆ ` E〈T 〉 ok
(WF-Enum)

We now introduce two auxiliary functions that are used by the typing
rules. The ftypes function takes an enumeration type and the name of one
of its constructors and returns the type of the fields of that constructor:

enum E 〈X〉 {K (v : T), . . . }
ftypes(E〈P 〉,K) = [P/X] T

(FT-enum)

163

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

The ctors function takes an enumeration type and returns the names of
its constructors:

enum E 〈X〉 {K (x : T) }
ctors(E〈P 〉) = K

(C-enum)

Figure 6.4 extends EFx’s well-formedness judgment (cf. Fig. F.2) with
rules for enumerations and proofs. Enumerations are well-formed if the
types of the fields of its constructors are well-formed. Proofs are well-
formed if the body is a well-typed boolean expression. We also modify the
rules for classes (T-class1 and T-class2) because, unlike EFx, VeriFx
does not feature preconditions and invariants. Those were only used in
EFx to analyze and synthesize ECROs which is not the goal of VeriFx.
A class definition is well-formed if it implements the fields and methods
required by its hierarchy of super traits and all methods are well-formed.

∆ = X ∆ ` T ok
enum E 〈X〉 {K (v : T) } OK

(T-enum)

∆ = X ∆; ∅ ` e : bool

proof p 〈X〉 { e } OK
(T-proof)

∆ = X ∆ ` T ok
M OK IN C 〈X〉

class C 〈X〉 (v : T) {M } OK
(T-class1)

∆ = X ∆ ` T ok ∆ ` I 〈P〉 ok
trait I 〈. . .〉 {B } or trait I 〈. . .〉 extends . . . {B }

M OK IN C 〈X〉
valNames(I 〈P〉) ⊂ v declaredMethods(I 〈P〉) ⊂ M

class C 〈X〉 (v : T) extends I 〈P〉{M } OK
(T-class2)

Figure 6.4: Judgments for well-formedness of enumerations and proofs in
VeriFx.

Figure 6.5 extends EFx’s type system with typing rules for the new
VeriFx expressions, namely: logic expressions, enumeration instantiations,
and pattern matching. We introduce three typing rules for logic expres-
sions. Quantified formulas are well-typed boolean expressions if their body

164

6.2. THE VERIFX LANGUAGE

types to a boolean expression in the environment that is extended with
the quantified variables (T-uni and T-exi rules). Logical implication is a
well-typed boolean expression if both the antecedent and the consequent
are boolean expressions (T-impl rule).

When instantiating an enumeration through one of its constructors
new K 〈P〉(e), the provided arguments e need to match the types of the
constructor’s fields, and the resulting object is of the enumeration type
E〈P〉.

Programmers can pattern match on enumerations but the cases must
be exhaustive, i.e. every constructor must be matched by at least one
case. In addition, all cases must have the same type T in order for the
pattern match expression to be well-typed and also have type T .

∆ ` T ok ∆; Γ, x : T ` e : bool

∆; Γ ` forall (x : T) � e : bool
(T-uni)

∆ ` T ok ∆; Γ, x : T ` e : bool

∆; Γ ` exists (x : T) � e : bool
(T-exi)

∆; Γ ` e1 : bool ∆; Γ ` e2 : bool

∆; Γ ` e1 =⇒ e2 : bool
(T-impl)

ctors(E〈P〉) = K K ∈ K
ftypes(E〈P〉,K) = T

∆ ` E〈P〉 ok ∆; Γ ` e : T
∆; Γ ` new K〈P〉(e) : E〈P〉

(T-new-enum)

∆; Γ ` e0 : E〈P〉
(ctors(E〈P〉) \ c = ∅) ∨ (case x ⇒ e ∈ c) ∨ (case _ ⇒ e ∈ c)

for each c ∈ c : ∆; Γ ` c : T IN e0 match {. . .}
∆; Γ ` e0 match {c} : T

(T-match)

∆; Γ ` e0 : E〈P〉
ftypes(E〈P〉,K) = Q

∆; Γ, x : Q ` e : T
∆; Γ ` case K(x) ⇒ e : T IN e0 match {. . .}

(T-ctor-ptn)

∆; Γ ` e0 : E〈P〉
∆; Γ, x : E〈P〉 ` e : T

∆; Γ ` case x ⇒ e : T IN e0 match {. . .}
(T-named-ptn)

∆; Γ ` e : T
∆; Γ ` case _ ⇒ e : T IN e0 match {. . .}

(T-wcard-ptn)

Figure 6.5: Typing rules for the new VeriFx expressions.

165

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.3 Automated Proof Verification

Like EFx, VeriFx leverages SMT solving to enable automated verification
of user-defined proofs. To this end, VeriFx programs are compiled to SMT-
LIB, the language of SMT solvers. As explained in Section 5.3, SMT-LIB
is low-level and is not meant to be used directly by programmers to verify
high-level programs. Instead, SMT-LIB is often used internally by IVLs
to discharge proof obligations using an appropriate SMT solver. IVLs
like Dafny [Lei10], Spec# [BLS05], and Why3 [FP13]) are designed to
be general-purpose but this breaks automated verification and forces pro-
grammers to specify preconditions and postconditions on methods, loop
invariants, etc. (cf. Section 2.3.1).

VeriFx can be regarded as a specialized high-level IVL, that like EFx,
was carefully designed such that all language features have an efficient
SMT encoding; leaving out features that break automated verification.

In the remainder of this section we show how to compile VeriFx to
Core SMT and how to derive proof obligations that can be discharged
automatically by SMT solvers.

6.3.1 Compiling VeriFx to Core SMT

Similar to EFx, we define the semantics of VeriFx by means of translation
functions that compile VeriFx programs to Core SMT (cf. Section 5.3.1).
We extend the translation functions of EFx (cf. Section 5.3.2) with ap-
propriate rules for VeriFx’s new language features.

First, we extend the translation function for types JKt with a rule
for enumeration types that keeps the enumeration’s name and recursively
compiles the provided type arguments:

JE〈T〉Kt = E〈JTKt〉

We also extend the translation function def JK with a rule for compiling
enumeration definitions. For every enumeration an ADT is constructed
with the same name, type parameters, and constructors. The types of the
fields are translated recursively:

def Jenum E 〈X〉 {K (v : T) }K = adt E〈X〉{K (v : JTKt)}

VeriFx allows programmers to instantiate enumerations by using the
new keyword with one of the enumeration’s constructors. Since enumera-

166

6.3. AUTOMATED PROOF VERIFICATION

tions are represented by ADTs in Core SMT, the enumeration’s construc-
tors are plain SMT functions. Thus, instantiations are compiled to a call
of the corresponding constructor function:

Jnew K 〈T 〉(e)K = K 〈JTKt〉(JeK)

To use values of an enumeration type, programmers must first pattern
match the value against the possible constructors. Figure 6.6 extends the
translation function for expressions JK, originally defined in Section 5.3.2,
with a rule for pattern match expressions that compiles the expression to a
similar pattern match expression in Core SMT. To this end, every pattern
is compiled using a new patJK function. Core SMT supports two types of
patterns: constructor patterns K (x) that match an algebraic data type
constructor K and bind its fields to the provided names x, and wildcard
patterns x that match any value and give it a name x. A wildcard pattern
may use an underscore to match any value without binding it to a name.
Every VeriFx pattern is compiled to the corresponding Core SMT pattern.

Je match {case r ⇒ ec}K = match(JeK, patJcase r ⇒ ecK)
patJcase K (x) ⇒ eK = case(K (x), JeK)
patJcase x ⇒ eK = case(x, JeK)
patJcase _ ⇒ eK = case(_, JeK)

Figure 6.6: Compiling pattern match expressions to Core SMT.

In addition to enumerations, VeriFx also introduces logical expressions
such as quantified formulas and logical implication. Figure 6.7 defines the
compilation rules for each expression. Quantified formulas are compiled to
the corresponding SMT formula and the types of the variables T and the
formula e are compiled recursively. Similarly, logical implication is com-
piled to logical implication in SMT and the antecedent and the consequent
are compiled recursively.

Jforall (x : T) � eK = ∀(x : JTKt).JeK
Jexists (x : T) � eK = ∃(x : JTKt).JeK
Je1 =⇒ e2K = Je1K =⇒ Je2K

Figure 6.7: Compiling logical expressions to Core SMT.

167

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Finally, objects are singletons that can define methods and proofs, and
are compiled as follows:

def Jobject O extends I 〈T 〉 {M ; R }K =
def Jclass O′() {M} extends I 〈T 〉K ; const O O′ ; assert O == O′() ; def JRK

The object is compiled to a regular class with a fresh name O′. Then, a
single instance of that class is created and assigned to a constant named
after the object O. The proofs defined by the object are compiled to
functions. How to translate proofs into functions is the subject of the
next section.

6.3.2 Deriving Proof Obligations

VeriFx features libraries for CRDTs [Sha+11b] and OT [EG89] which
internally use our novel proof construct to define the necessary correctness
properties (discussed later in Section 6.4). However, programmers can also
define custom proofs themselves, for instance, to verify data invariants.

We now explain how proof obligations are derived from user-defined
proofs in VeriFx programs. Proofs are compiled to regular functions with-
out arguments. The name and type parameters remain unchanged and
the body of the proof is compiled and becomes the function’s body. Proofs
always return a boolean since the body is a logical formula whose satisfi-
ability must be checked.

def Jproof p 〈X〉 { e }K = fun p〈X〉() : bool = JeK

To check if the property described by a proof holds, the negation of the
proof must be unsatisfiable. In other words, if no counterexample exists,
it constitutes a proof that the property is correct. A (polymorphic) proof
called p with i type parameters is checked as follows:

prove(p, i) = sort S1 0 ; . . . ; sort Si 0 ;
assert¬p〈S1, . . . ,Si〉() ;
check() == UNSAT

For every type parameter i an uninterpreted sort with a unique name
Si is declared. Then, the proof function is called with those sorts as type
arguments and we check that the negation is unsatisfiable. If the negation
is unsatisfiable, the (polymorphic) proof holds for all possible instantia-
tions of its type parameters. The underlying SMT solver can generate an

168

6.3. AUTOMATED PROOF VERIFICATION

actual proof which could be reconstructed by proof assistants as shown in
[Böh+11; BW10]. On the other hand, if the negation is satisfiable that
means that a model (i.e. an assignment of values to variables) exists for
which the property does not hold. In the next section, we explain how Ver-
iFx queries this low-level model returned by the SMT solver to construct
a high-level counterexample that VeriFx programmers can understand.

6.3.3 Constructing High-Level Counterexamples

We now detail how VeriFx constructs high-level counterexamples for re-
jected proofs. Remember that VeriFx introduces an uninterpreted sort for
every type parameter of a generic proof. When a proof is rejected, the un-
derlying SMT solver returns a concrete model that violates the property
we are trying to verify. Such a model M consists of two parts:

• An interpretation for the uninterpreted sorts: Sorts =
{〈S1, V1〉, . . . , 〈Si, Vi〉} where Si corresponds to the i-th declared sort
and Vi = {v1, v2, . . . , vn} is the set of all values belonging to Si.

• A set of assignments of values to variables: V ars = {〈var, val〉, . . .}.

For a generic proof, Sorts corresponds to the interpretation of the
proof’s type parameters and V ars assigns values to the proof’s variables
such that the proof does not hold. For example, consider the generic proof
below which states that for any type, any two values are always equal:
proof alwaysEquals [A] {

forall (x: A, y: A) {
x == y

}
}

Clearly, this property does not hold for types that contain at least two dis-
tinct values. Thus, the proof is rejected and the underlying SMT solver re-
turns a concrete model: M = 〈Sorts, V ars〉 where Sorts = {〈A, {a0, a1}〉}
and V ars = {〈x, a0〉, 〈y, a1〉}. This model defines the type parameter A
to be a sort containing two values a0 and a1, and assigns these two dis-
tinct values to the variables x and y defined by the universally quantified
formula. Although the model represents a counterexample for the proof,
it is hard to understand for programmers because the model is in Core
SMT format, i.e. the sorts and values are represented in Core SMT which
does not match the high-level VeriFx code written by the programmer.

169

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

To provide programmers with high-level counterexamples, VeriFx
translates low-level SMT models to VeriFx. To this end, it uses a transla-
tion function JK−1 that transforms Core SMT code back to VeriFx. Note
that JK−1 is the inverse of the translation function JK that compiles VeriFx
code to Core SMT and was defined in Section 5.3.2.

Algorithm 7 Constructing high-level counterexamples in VeriFx from
low-level SMT models.
1: function constructCounterExample(M)
2: 〈Sorts, V ars〉 ←M

3: tparams← ∅
4: vars← ∅
5: for 〈tparam, values〉 ∈ Sorts do
6: v1, . . . , vn ← values

7: tparams← tparams ∪ { enum E { v1 | . . . | vn } }
8: for 〈var, val〉 ∈ V ars do
9: vars← vars ∪ { 〈var, JvalK−1〉 }
10: return 〈tparams, vars〉

Algorithm 7 defines how VeriFx constructs a high-level counterexample
from a low-level SMT model M . Every uninterpreted sort corresponds to
a type parameter of the proof. For every such sort, the algorithm defines
a corresponding enumeration containing the values defined by the model
(line 7). Then, for every variable assignment 〈var, val〉 in the model,
the algorithm creates a corresponding assignment to var but translates
the assigned SMT value val back to VeriFx using the inverse translation
function JvalK−1 (line 9). Finally, the algorithm returns a tuple containing
the translated sorts and variable assignments.

6.4 Libraries for Implementing and Verifying
Replicated Data Types

VeriFx aims to simplify the development of correct RDTs by integrating
automated verification capabilities in the language. Based on our expe-
rience with implementing RDTs, we noticed that RDTs need to fulfill
specific correctness properties that are well-defined for each RDT family.
Therefore, we built libraries for the development and automated verifica-
tion of two well-known RDT families: CRDTs [Sha+11b] and OT [EG89].

170

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

These libraries are written in VeriFx and define proofs that encode the
necessary correctness properties such that programmers do not need to
redefine these proofs for every RDT they implement.

The remainder of this section discusses the aforementioned libraries.
For each library, we formally define the correctness properties that must
be verified for that specific RDT family. Section 6.4.1 describes the im-
plementation of a general execution model for CRDTs and its verification
library in VeriFx. Then, Section 6.4.2 focuses on the OT library and the
verification of transformation functions. Finally, Section 6.4.3 explains
how to encode common assumptions such as causal delivery in VeriFx
since the CRDT and OT libraries do not make specific assumptions.

6.4.1 CRDT Library

CRDTs guarantee SEC, a consistency model that strengthens eventual
consistency with the strong convergence property which requires replicas
that received the same updates, possibly in a different order, to be in the
same state (cf. Section 2.1.2). VeriFx’s CRDT library supports several
families of CRDTs, including state-based [Sha+11b], op-based [Sha+11b],
and pure op-based CRDTs [BAS17]. The remainder details each family.

6.4.1.1 State-Based CRDTs

State-based CRDTs - also known as Convergent Replicated Data Types
(CvRDTs) - periodically broadcast their state to all replicas and merge
incoming states by computing the Least Upper Bound (LUB) of the in-
coming state and their own state. Shapiro et al. [Sha+11b] showed that
CvRDTs converge if the merge function tv is idempotent, commutative,
and associative. Based on their work, we define these properties as follows:

Idempotent: ∀x ∈ Σ : reachable(x) =⇒ x ≡ x tv x

Commutative: ∀x, y ∈ Σ : reachable(x) ∧ reachable(y) ∧ compatible(x, y)
=⇒ (x tv y ≡ y tv x) ∧ reachable(x tv y)

Associative: ∀x, y, z ∈ Σ : reachable(x) ∧ reachable(y) ∧ reachable(z) ∧
compatible(x, y) ∧ compatible(x, z) ∧ compatible(y, z)
=⇒ ((x tv y) tv z ≡ x tv (y tv z)) ∧ reachable((x tv y) tv z)

Σ denotes the set of all states. A state is reachable if it can be reached
starting from the initial state and applying only supported operations.

171

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Two states are compatible if they represent different replicas of the same
CRDT object3. As explained in Section 6.1.1, state equivalence is defined
in terms of ≤v on the lattice: S ≡ T ⇐⇒ S ≤v T ∧ T ≤v S.

Listing 6.4: Trait for the implementation of CvRDTs in VeriFx.

1 trait CvRDT [T <: CvRDT [T]] {
2 def merge (that: T): T
3 def compare (that: T): Boolean
4 def reachable (): Boolean = true
5 def compatible (that: T): Boolean = true
6 def equals (that: T): Boolean = {
7 this. asInstanceOf [T]. compare (that) &&
8 that. compare (this. asInstanceOf [T])
9 }

10 }

VeriFx’s CRDT library provides traits for the implementation and
verification of CvRDTs, shown in Listings 6.4 and 6.5 respectively. List-
ing 6.4 shows the CvRDT trait that was used in Listing 6.1 to implement the
TwoPSet CRDT. Every state-based CRDT that extends the CvRDT trait
must provide a type argument which is the actual type of the CRDT and
provide an implementation for the merge and compare methods. By de-
fault, all states are considered reachable and compatible, and state equiv-
alence is defined in terms of compare. These methods can be overridden
by concrete CRDTs that implement the trait.

Listing 6.5 shows the CvRDTProof trait used to verify CvRDT im-
plementations. This trait defines one type parameter T that must be a
CvRDT type and defines proofs to check that its merge function adheres to
the aforementioned properties (i.e. is idempotent, commutative, and asso-
ciative). It also defines an additional proof equalityCheck that checks if
the notion of state equivalence (that is derived from compare) corresponds
to structural equality.

Objects can extend the CvRDTProof trait to inherit automated cor-
rectness proofs for the given CRDT type. However, the trait’s type pa-
rameter T expects a concrete CvRDT type (e.g. PNCounter) and will not
work for polymorphic CvRDTs (e.g. TwoPSet) because those are type con-
structors. Instead, the CRDT library provides additional CvRDTProof1,

3The compatible predicate can be used to encode certain assumptions. For example,
to encode that replicas have a unique ID which enables them to generate unique tags.

172

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

Listing 6.5: Trait for the verification of CvRDTs in VeriFx. The arrow
function =>: implements logical implication.

1 trait CvRDTProof [T <: CvRDT [T]] {
2 proof mergeIdempotent {
3 forall (x: T) {
4 x. reachable () =>: x. merge (x). equals (x)
5 } }
6 proof mergeCommutative {
7 forall (x: T, y: T) {
8 (x. reachable () && y. reachable () && x. compatible (y)) =>:
9 (x. merge (y). equals (y. merge (x)) && x. merge (y). reachable ())

10 } }
11 proof mergeAssociative {
12 forall (x: T, y: T, z: T) {
13 (x. reachable () && y. reachable () && z. reachable () &&
14 x. compatible (y) && x. compatible (z) && y. compatible (z))
15 =>: (x. merge (y). merge (z). equals (x. merge (y. merge (z))) &&
16 x. merge (y). merge (z). reachable ())
17 } }
18 proof equalityCheck {
19 forall (x: T, y: T) {
20 x. equals (y) == (x == y)
21 } } }

CvRDTProof2, and CvRDTProof3 traits to verify polymorphic CvRDTs
that expect 1, 2, or 3 type arguments respectively. For example, the
TwoPSetProof object defined in Section 6.1.2 extends the CvRDTProof1
trait because the TwoPSet expects one type argument.

6.4.1.2 Operation-Based CRDTs

Operation-based CRDTs - also known as Commutative Replicated Data
Types (CmRDTs) - execute update operations in two phases, called pre-
pare and effect. The prepare phase executes locally at the source replica
(only if its source precondition holds) and prepares a message to be broad-
cast4 to all replicas (including itself). The effect phase applies such incom-
ing messages and updates the state (only if its downstream precondition
holds, otherwise the message is ignored).

Shapiro et al. [Sha+11b] and Gomes et al. [Gom+17] have shown that
CmRDTs guarantee SEC if all concurrent operations commute. Hence,

4While some CmRDT designs do not require causal delivery, the overall model as-
sumes reliable causal broadcast.

173

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

for any CmRDT it suffices to show that all pairs of concurrent operations
commute. Formally, for any operation o1 that is enabled by some reachable
replica state s1 (i.e. o1’s source precondition holds in s1) and any operation
o2 that is enabled by some reachable replica state s2, if these operations
can be concurrent, and s1, s2, and s3 are compatible replica states, then we
must show that on any reachable replica state s3 the operations commute
and the intermediate and resulting states are all reachable:
∀s1, s2, s3 ∈ Σ, ∀o1, o2 ∈ Σ→ Σ : reachable(s1) ∧ reachable(s2) ∧ reachable(s3)∧
enabledSrc(o1, s1) ∧ enabledSrc(o2, s2) ∧ canConcur(o1, o2) ∧
compatible(s1, s2) ∧ compatible(s1, s3) ∧ compatible(s2, s3)
=⇒ o2 · o1 · s3 ≡ o1 · o2 · s3 ∧ reachable(o1 · s3) ∧

reachable(o2 · s3) ∧ reachable(o1 · o2 · s3)

We use the notation o · s to denote the application of an operation o on
state s if its downstream precondition holds, otherwise, it returns the state
unchanged.

Listing 6.6: Polymorphic CmRDT trait to implement op-based CRDTs in
VeriFx.

1 trait CmRDT [Op , Msg , T <: CmRDT [Op , Msg , T]] {
2 def prepare (op: Op): Msg
3 def effect (msg: Msg): T
4 def tryEffect (msg: Msg): T =
5 if (this. enabledDown (msg)) this. effect (msg)
6 else this. asInstanceOf [T]
7 // by default all states are considered reachable
8 def reachable (): Boolean = true
9 // by default all operations can occur concurrently

10 def canConcur (x: Msg , y: Msg): Boolean = true
11 // by default all states are compatible
12 def compatible (that: T): Boolean = true
13 // by default there are no source preconditions
14 def enabledSrc (op: Op): Boolean = true
15 // by default there are no downstream preconditions
16 def enabledDown (msg: Msg): Boolean = true
17 def equals (that: T): Boolean = this == that
18 }

Listing 6.6 shows the CmRDT trait that can be used to implement op-
based CRDTs. The implementing CRDT needs to provide concrete type
arguments for the supported operations, the exchanged messages, and
the CRDT type itself. Every CRDT that extends the CmRDT trait must
implement the prepare and effect methods. The tryEffect method
has a default implementation that applies the operation if its downstream

174

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

precondition holds, otherwise, it returns the state unchanged. By de-
fault, all states are considered reachable, all operations are enabled at
the source and downstream, all operations can occur concurrently, and
all states are compatible. Some CmRDTs make other assumptions that
can be encoded by overriding the appropriate method. For example, in
an Observed-Removed Set [Sha+11a] it is not possible to delete tags that
are added concurrently; this can be encoded by overriding canConcur.
VeriFx only considers concurrent operations that fulfill the canConcur
predicate. Hence, for the Observed-Removed Set CRDT, VeriFx will not
check concurrent add and delete operations that have tags in common.

Listing 6.7: Trait to verify CmRDTs in VeriFx.

1 trait CmRDTProof [Op , Msg , T <: CmRDT [Op , Msg , T]] {
2 proof is_a_CmRDT {
3 forall (s1: T, s2: T, s3: T, x: Op , y: Op) {
4 // Apply operations x and y concurrently
5 // replica s1 locally invokes operation x
6 val msg1 = s1. prepare (x)
7 // replica s2 locally invokes operation y
8 val msg2 = s2. prepare (y)
9

10 (s1. reachable () && s2. reachable () && s3. reachable () &&
11 s1. enabledSrc (x) && s2. enabledSrc (y) &&
12 s1. canConcur (msg1 , msg2) && s1. compatibleS (s2) &&
13 s1. compatibleS (s3) && s2. compatibleS (s3)) =>: {
14 // The effectors must commute
15 s3. tryEffect (msg1). tryEffect (msg2)
16 . equals (s3. tryEffect (msg2). tryEffect (msg1)) &&
17 s3. tryEffect (msg1). reachable () &&
18 s3. tryEffect (msg2). reachable () &&
19 s3. tryEffect (msg1). tryEffect (msg2). reachable ()
20 }
21 }
22 }
23 }

Similar to CvRDTs, our CRDT library provides a CmRDTProof trait
shown in Listing 6.7 to verify CmRDT implementations. This trait de-
fines a general proof of correctness that checks that all operations com-
mute based on the previously described formula. The library also provides
several numbered variants of the trait to verify polymorphic CmRDTs.

175

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.4.1.3 Pure Operation-Based CRDTs

Pure operation-based CRDTs are a family of operation-based CRDTs that
exchange only the operations instead of data-type specific messages con-
structed by the prepare phase. The effect phase stores incoming opera-
tions in a partially ordered log of (concurrent) operations. Queries are
computed against the log and operations do not need to commute. Data-
type-specific redundancy relations dictate which operations to store in the
log and when to remove operations from the log.

VeriFx’s CRDT library provides a PureOpCRDT trait which is shown
in Listing 6.8 and is used for implementing pure op-based CRDTs. The
trait extends the CmRDT trait since pure op-based CRDTs are a special
variant of op-based CRDTs. Operations are tagged with a version vector
and the messages constructed by the prepare phase are simply the tagged
operations themselves (Line 14). The effect phase is also the same for every
pure op-based CRDT; it removes the operations that are made redundant
by the incoming operation (Line 16) and adds the incoming operation to
the log if it is not redundant (Lines 17 to 21). Importantly, the trait also
overrides the compatible predicate to state that concurrent operations
must have concurrent version vectors (Lines 10 and 11).

Pure op-based CRDTs that extend the PureOpCRDT trait in-
herit the generic prepare and effect phase and only need to imple-
ment the data-type-specific redundancy relations: selfRedundant and
redundantBy. Since PureOpCRDTs are also CmRDTs programmers can reuse
the CmRDTProof traits to verify pure-op based CRDT implementations.

6.4.2 Operational Transformation Library

Recall from Section 2.3.2.1 that the Operational Transformation
(OT) [EG89] approach applies operations locally and propagates them
asynchronously to the other replicas. Incoming operations are transformed
against previously executed concurrent operations such that the modified
operation preserves the intended effect. Operations are functions from
state to state: Op : Σ → Σ and are transformed using a type-specific
transformation function T : Op × Op → Op. Thus, T (o1, o2) denotes the
operation that results from transforming o1 against a previously executed
concurrent operation o2.

176

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

Listing 6.8: Traits to implement and verify pure op-based CRDTs in
VeriFx.

1 class TaggedOp [Op](t: VersionVector , o: Op)
2 trait PureOpCRDT [Op , T <: PureOpCRDT [Op , T]] extends

CmRDT [TaggedOp [Op], TaggedOp [Op], T] {
3 val polog: Set[TaggedOp [Op]]
4 def copy(newPolog: Set[TaggedOp [Op]]): T
5
6 // Data -type - specific redundancy relations
7 def selfRedundant (op: TaggedOp [Op]): Boolean
8 def redundantBy (x: TaggedOp [Op], y: TaggedOp [Op]): Boolean
9

10 override def compatible (x: TaggedOp [Op], y: TaggedOp [Op]) =
11 x.t. concurrent (y.t)
12
13 // Generic prepare and effect methods
14 def prepare (o: TaggedOp [Op]): TaggedOp [Op] = o
15 def effect (taggedOp: TaggedOp [Op]): T = {
16 val prunedPolog = this. polog . filter ((x: TaggedOp [Op]) =>

!this. redundantBy (x, taggedOp))
17 val newPolog: Set[TaggedOp [Op]] =
18 if (this. selfRedundant (taggedOp))
19 prunedPolog
20 else
21 prunedPolog .add(taggedOp)
22 this.copy(newPolog)
23 }
24 }

177

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Ressel et al. [RNG96] proved that replicas eventually converge if the
transformation function satisfies two transformation properties: TP1 and
TP2 . Property TP1 states that any two enabled concurrent operations oi
and oj must commute after transforming them:

∀oi, oj ∈ Op,∀s ∈ Σ :
enabled(oi, s) ∧ enabled(oj , s) ∧ canConcur(oi, oj)
=⇒ T (oj , oi)(oi(s)) = T (oi, oj)(oj(s))

Property TP2 states that given three enabled concurrent operations oi,
oj , and ok, the transformation of ok does not depend on the order in which
operations oi and oj are transformed:

∀oi, oj , ok ∈ Op,∀s ∈ Σ :
enabled(oi, s) ∧ enabled(oj , s) ∧ enabled(ok, s)∧
canConcur(oi, oj) ∧ canConcur(oj , ok) ∧ canConcur(oi, ok)
=⇒ T (T (ok, oi), T (oj , oi)) = T (T (ok, oj), T (oi, oj))

Note that properties TP1 and TP2 only need to hold for states in which
the operations can be generated, represented by the relation enabled :
Op × Σ → B, and only if the two operations can occur concurrently,
represented by the relation canConcur : Op×Op→ B.

VeriFx provides a library for implementing and verifying RDTs that
use operational transformations. Programmers can build custom RDTs by
extending the OT trait shown in Listing 6.9. Every RDT that extends the
OT trait must provide concrete type arguments for the state and opera-
tions, and implement the transform and apply methods. The transform
method transforms an incoming operation against a previously executed
concurrent operation. The apply method applies an operation on the
state. By extending this trait, the RDT inherits proofs for TP1 and TP2.
These proofs assume that all operations are enabled and that all opera-
tions can occur concurrently. If this is not the case, the RDT can override
the enabled and canConcur methods respectively.

Although VeriFx supports the general execution model of OT, most
transformation functions described by the literature were specifically de-
signed for collaborative text editing. They model text documents as a se-
quence of characters and operations insert or delete characters at a given
position in the document. OT papers thus describe four transformations
functions, one for every pair of operations: insert-insert, insert-delete,
delete-insert, and delete-delete.

178

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

Listing 6.9: Polymorphic OT trait to implement and verify RDTs using
operational transformation in VeriFx.

1 trait OT[State , Op] {
2 def transform (x: Op , y: Op): Op
3 def apply (state: State , op: Op): State
4
5 // by default operations are enabled on all states
6 def enabled (op: Op , state: State): Boolean = true
7 // by default all operations can be concurrent
8 def canConcur (x: Op , y: Op): Boolean = true
9

10 proof TP1 {
11 forall (opI: Op , opJ: Op , st: State) {
12 (this. enabled (opI , st) && this. enabled (opJ , st) &&
13 this. canConcur (opI , opJ)) =>: {
14 this. apply (this. apply (st , opI),
15 this. transform (opJ , opI)) ==
16 this. apply (this. apply (st , opJ),
17 this. transform (opI , opJ))
18 }
19 }
20 }
21
22 proof TP2 {
23 forall (opI: Op , opJ: Op , opK: Op , st: State) {
24 (this. enabled (opI , st) && this. enabled (opJ , st) &&
25 this. enabled (opK , st) && this. canConcur (opI , opJ) &&
26 this. canConcur (opJ ,opK) && this. canConcur (opI ,opK)) =>: {
27 this. transform (this. transform (opK , opI),
28 this. transform (opJ , opI)) ==
29 this. transform (this. transform (opK , opJ),
30 this. transform (opI , opJ))
31 }
32 }
33 }
34 }

179

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

Likewise, VeriFx’s OT library provides a ListOT trait that models the
state as a list of values and supports insertions and deletions. Listing 6.10
shows the implementation of the ListOT trait which extends the OT trait
and is polymorphic in the type of values it stores (in practice, collaborative
text editors store characters). RDTs extending the ListOT trait need to
implement four methods (Tii, Tid, Tdi, Tdd) corresponding to the trans-
formation functions for transforming insertions against insertions (Tii),
insertions against deletions (Tid), deletions against insertions (Tdi), and
deletions against deletions (Tdd). The trait provides a default implemen-
tation of transform that dispatches to the corresponding transformation
function based on the type of operations, and a default implementation of
apply that inserts or deletes a value from the underlying list.

180

6.4. LIBRARIES FOR IMPLEMENTING AND VERIFYING RDTS

Listing 6.10: Polymorphic ListOT trait to implement and verify OT
functions for collaborative text editing.

1 trait ListOT [V, Op] extends OT[List[V], Op] {
2 def isInsert (x: Op): Boolean ; def isDelete (x: Op): Boolean
3 def getPosition (x: Op): Int; def getValue (x: Op): V
4
5 def Tii(x: Op , y: Op): Op // required
6 def Tid(x: Op , y: Op): Op // required
7 def Tdi(x: Op , y: Op): Op // required
8 def Tdd(x: Op , y: Op): Op // required
9

10 def transform (x: Op , y: Op): Op = {
11 if (this. isInsert (x) && this. isInsert (y))
12 this.Tii(x, y)
13 else if (this. isInsert (x) && this. isDelete (y))
14 this.Tid(x, y)
15 else if (this. isDelete (x) && this. isInsert (y))
16 this.Tdi(x, y)
17 else if (this. isDelete (x) && this. isDelete (y))
18 this.Tdd(x, y)
19 else x // must be an identity operation
20 }
21 def apply (lst: List[V], op: Op): List[V] = {
22 if (this. isInsert (op)) {
23 val pos = this. getPosition (op)
24 val char = this. getValue (op)
25 lst. insert (pos , char)
26 }
27 else if (this. isDelete (op)) {
28 val pos = this. getPosition (op)
29 lst. delete (pos)
30 }
31 else lst // identity operation
32 }
33 // ...
34 }

181

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.4.3 Encoding RDT-Specific Assumptions

It is not uncommon for RDTs to assume causal delivery of operations but
VeriFx (and its CRDT and OT libraries) does not make any assumptions.
Specific assumptions must either be guaranteed by the RDT’s implemen-
tation or be explicitly encoded in the proofs.

For example, as mentioned in Section 4.5.2.1, the Observed-Removed
Set CRDT [Sha+11a] assumes that 1) replicas can generate globally
unique tags, and 2) add and remove operations of the same element are de-
livered in causal order. As a result of these assumptions, replicas cannot
remove a tag and concurrently add the same tag. The former assump-
tion can be guaranteed by the RDT implementation if every replica has a
unique ID that is combined with a local counter that increases monoton-
ically to generate unique tags. The latter assumption that results from
causal delivery can be explicitly encoded in the proof. However, program-
mers need to be careful when encoding assumptions explicitly in proofs
because they are not checked. To remove the latter assumption, one could
model the underlying causal communication protocols in VeriFx.

Listing 6.11 shows an excerpt from the implementation of the
Observed-Removed Set CRDT [Sha+11a] in which we override the
compatible predicate (Line 11 and 12) to encode the fact that repli-
cas have unique IDs, and we override the canConcur predicate (Line 13
to 27) such that the proof does not consider add and remove operations
if the tag generated by add is contained in the set of tags that are re-
moved (because causal delivery precludes remove from having observed
that tag). This example demonstrates how to use the predicates provided
by VeriFx’s CRDT and OT libraries to encode RDT-specific assumptions.

6.5 Evaluation

We now evaluate the applicability of VeriFx to implement and ver-
ify RDTs. Our evaluation is twofold. First, we implement and ver-
ify an extensive portfolio comprising 37 CRDTs which were taken from
literature [Sha+11a; BAS17; Sha17; Bie+12; Kle22] and industrial
databases [Akk; Anta; Antb]. To the best of our knowledge, we are the
first to mechanically verify all CRDTs from Shapiro et al. [Sha+11a], the
pure op-based CRDTs from Baquero et al. [BAS17], and the map CRDTs
from Kleppmann [Kle22]. Afterward, we reproduce a study [Imi+03] on

182

6.5. EVALUATION

Listing 6.11: Excerpt from the implementation of the OR-Set
CRDT [Sha+11a] in VeriFx.

1 class Tag[ID](replica: ID , counter: Int)
2 enum SetOp [V, ID] { Add(e: V) | Remove (e: V) }
3 enum SetMsg [V, ID] {
4 AddMsg (e: V, tag: Tag[ID]) |
5 RemoveMsg (e: V, tags: Set[Tag[ID]])
6 }
7 class ORSet [V, ID]
8 (id: ID , counter: Int , elements: Map[V, Set[Tag[ID]]])
9 extends CmRDT [SetOp [V, ID], SetMsg [V, ID], ORSet [V, ID]] {

10 // ...
11 override def compatible (that: ORSet [V, ID]) =
12 this.id != that.id // replicas have unique IDs
13 override def canConcur (x: SetMsg [V, ID], y: SetMsg [V, ID]) =
14 x match {
15 case AddMsg (_, tag) =>
16 y match {
17 case AddMsg (_, _) => true
18 // tag cannot be in tags because of causal delivery
19 case RemoveMsg (_, tags) => !tags. contains (tag)
20 }
21 case RemoveMsg (_, tags) =>
22 y match {
23 // tag cannot be in tags because of causal delivery
24 case AddMsg (_, tag) => !tags. contains (tag)
25 case RemoveMsg (_, _) => true
26 }
27 } }

183

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

the correctness of OT functions. To this end, we verify 5 well-known oper-
ational transformation functions for collaborative text editing. Moreover,
we verify 4 unpublished OT designs for replicated registers and stacks.

6.5.1 Methodology

All experiments reported in this section were conducted on AWS using
an m5.xlarge VM with 4 virtual CPUs and 16 GiB of RAM. VeriFx uses
Z3 version 4.8.14.0 to discharge the necessary proof obligations. As in
previous chapters, we implemented all benchmarks with JMH [Ope]. We
configured JMH to execute 20 warmup iterations followed by 20 mea-
surement iterations for every benchmark. To avoid run-to-run variance
JMH repeats every benchmark in 3 fresh JVM forks, yielding a total of
60 samples per benchmark.

6.5.2 Verifying Conflict-free Replicated Data Types

Table 6.1 depicts the 37 CRDTs we implemented and verified in VeriFx.
For each CRDT, the table shows the type of CRDT, the code size, and
the average verification time. The table features five CRDTs that were
adapted from the original specification (marked with an a©) and two that
are new. For example, the state-based 2P2P Graph is an adaptation from
the operation-based 2P2P Graph specification found in [Sha+11a].

VeriFx was able to verify all CRDTs except the Replicated Grow-
able Array (RGA) [Sha+11a] due to the recursive nature of the insertion
algorithm. We found that the Two-Phase Set CRDT (described in Sec-
tion 6.1) converges but is not functionally correct, that the original Map
CRDT proposed by Kleppmann [Kle22] diverges as VeriFx found the same
counterexample as described in their technical report, and that the Molli,
Weiss, Skaf (MWS) Set is incomplete. In the remainder of this section, we
first describe the implementation and verification of the MWS Set, and
afterward, focus on the map CRDTs from [Kle22].

6.5.2.1 MWS Set

Algorithm 8 describes the MWS Set, which associates a count to every
element. An element is considered in the set if its count is strictly positive.
remove decreases the element’s count, while add increments the count by

184

6.5. EVALUATION

CRDT Type LoC Correct Time Source
Counter O 17 3 3.2 s [Sha+11a]
Grow-Only Counter S 33 3 4.3 s [Sha+11a]
Positive-Negative Counter S 15 3 5.9 s [Sha+11a]
Dynamic PN-Counter S 41 3 7.1 s [Akk]
Enable-Wins Flag P 18 3 4.0 s [BAS17]
Enable-Wins Flag O 44 3 3.6 s [Antb]
Disable-Wins Flag P 20 3 3.9 s [BAS17]
Disable-Wins Flag O 50 3 3.8 s [Anta]
Multi-Value Register S 63 3 8.8 s [Sha+11a]
Multi-Value Register P 18 3 4.1 s [BAS17]
Last-Writer-Wins Register S 16 3 5.3 s [Sha+11a]
Last-Writer-Wins Register O 38 3 4.4 s [Sha+11a]
Grow-Only Set S 10 3 5.3 s [Sha+11a]
Two-Phase Set O 27 3 4.4 s [Sha+11a]
Two-Phase Set S 26 7 6.3 s [Sha+11a]
Unique Set O 39 3 4.4 s [Sha+11a]
Add-Wins Set P 28 3 4.3 s [BAS17]
Remove-Wins Set P 42 3 4.5 s [BAS17]
Last-Writer-Wins Set S 36 3 6.6 s [Sha+11a]
Optimized LWW-Set S 37 3 6.5 s new
Positive-Negative Set S 36 3 9.6 s [Sha+11a]
Observed-Removed Set O 75 3 6.2 s [Sha+11a]
Observed-Removed Set S 34 3 7.6 s [Sha17]
Optimized OR-Set S 78 3 30.2 s [Bie+12]
Molli, Weiss, Skaf Set O 45 3 4.7 s i© [Sha+11a]
Grow-Only Map S 32 3 9.1 s new
Buggy Map O 87 7 65.2 s [Kle22]
Corrected Map O 101 3 49.4 s [Kle22]
2P2P Graph O 58 3 7.8 s [Sha+11a]
2P2P Graph S 41 3 10.7 s a© [Sha+11a]
Add-Only DAG O 42 3 4.7 s [Sha+11a]
Add-Only DAG S 30 3 8.7 s a© [Sha+11a]
Add-Remove Partial Order O 61 3 10.4 s [Sha+11a]
Add-Remove Partial Order S 49 3 13.2 s a© [Sha+11a]
Replicated Growable Array O 156 � / [Sha+11a]
Continuous Sequence O 108 3 9.2 s a© [Sha+11a]
Continuous Sequence S 53 3 11.4 s a© [Sha+11a]

Table 6.1: Verification results for CRDTs implemented and verified in
VeriFx. S = state-based, O = op-based, P = pure op-based CRDT. � =
timeout, a© = adaptation of an existing CRDT, i© = incomplete defini-
tion.

185

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

the amount that is needed to make it positive (or by 1 if it is already pos-
itive). Listing 6.12 shows the implementation of the MWS Set in VeriFx
as a polymorphic class that extends the CmRDT trait (cf. Section 6.4.1.2).
The type arguments passed to CmRDT correspond to the supported op-
erations (SetOps), the messages that are exchanged (SetMsgs), and the
CRDT type itself (MWSSet). The SetOp enumeration defines two types of
operations: Add(e) and Remove(e).

Algorithm 8 Op-based MWS Set CRDT taken from [Sha+11a].
1: payload set S = {(element, count), . . .}
2: initial E × {0}
3: query lookup (element e) : boolean b
4: let b = ((e, k) ∈ S ∧ k > 0)
5: update add (element e)
6: atSource (e) : integer j
7: if ∃(e, k) ∈ S : k ≤ 0 then
8: let j = |k|+ 1
9: else
10: let j = 1
11: downstream (e, j)
12: let k′ : (e, k′) ∈ S
13: S := S\{(e, k′)} ∪ {(e, k′ + j)}
14: update remove (element e)
15: atSource (e)
16: pre lookup(e)
17: downstream (e)
18: S := S\{(e,k′)} ∪ {(e,k′ − 1)}

Algorithm 9 Remove with k′ defined at source.
1: update remove (element e)
2: atSource (e) : integer k′
3: pre lookup(e)
4: let k′ : (e, k′) ∈ S
5: downstream (e, k′)
6: S := S\{(e, k′)} ∪ {(e, k′ − 1)}

Algorithm 10 Remove with k′ defined in downstream.
1: update remove (element e)
2: atSource (e)
3: pre lookup(e)
4: downstream (e)
5: let k′ : (e, k′) ∈ S
6: S := S\{(e, k′)} ∪ {(e, k′ − 1)}

186

6.5. EVALUATION

Listing 6.12: MWS Set implementation in VeriFx.

1 enum SetOp [V] { Add(e: V) | Remove (e: V) }
2 enum SetMsg [V] { AddMsg (e: V, dt: Int) | RmvMsg (e: V) }
3 class MWSSet [V](elements: Map[V, Int]) extends CmRDT [SetOp [V],

SetMsg [V], MWSSet [V]] {
4 override def enabledSrc (op: SetOp [V]) = op match {
5 case Add(_) => true
6 case Remove (e) => this. preRemove (e)
7 }
8 def prepare (op: SetOp [V]) = op match {
9 case Add(e) => this.add(e)

10 case Remove (e) => this. remove (e)
11 }
12 def effect (msg: SetMsg [V]) = msg match {
13 case AddMsg (e, dt) => this. addDownstream (e, dt)
14 case RmvMsg (e) => this. removeDownstream (e)
15 }
16 def lookup (e: V) = this. elements . getOrElse (e, 0) > 0
17 def add(e: V): SetMsg [V] = {
18 val count = this. elements . getOrElse (e, 0)
19 val dt = if (count <= 0) (count * -1) + 1 else 1
20 new AddMsg (e, dt)
21 }
22 def addDownstream (e: V, dt: Int): MWSSet [V] = {
23 val count = this. elements . getOrElse (e, 0)
24 new MWSSet (this. elements .add(e, count + dt))
25 }
26 def preRemove (e: V) = this. lookup (e)
27 def remove (e: V): SetMsg [V] = new RmvMsg (e)
28 def removeDownstream (e: V): MWSSet [V] = {
29 val kPrime = ??? // undefined in Algorithm 8
30 new MWSSet (this. elements .add(e, kPrime - 1))
31 }
32 }
33 object MWSSet extends CmRDTProof1 [SetOp ,SetMsg , MWSSet]

Listing 6.13: Computing k′ at the source.

1 def remove (e: V): Tuple [V, Int] =
2 new Tuple (e, this. elements . getOrElse (e, 0))
3 def removeDown (tup: Tuple [V, Int]): MWSSet [V] = {
4 val e = tup.fst; val kPrime = tup.snd
5 new MWSSet (this. elements .add(e, kPrime - 1))
6 }

Listing 6.14: Computing k′ downstream.

1 def remove (e: V): V = e
2 def removeDown (e: V): MWSSet [V] = {
3 val kPrime = this. elements . getOrElse (e, 0)
4 new MWSSet (this. elements .add(e, kPrime - 1))
5 }

187

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

The MWSSet class has a field, called elements, that maps elements to
their count (Line 3). Like all op-based CRDTs, the MWSSet implements two
phases: prepare and effect. The prepare method pattern matches on
the operation and delegates it to the corresponding source method which
prepares a SetMsg message to be broadcast to all replicas. The class over-
rides the enabledSrcmethod to implement the source precondition on the
remove method, as defined by Algorithm 8. When replicas receive incom-
ing messages, they are processed by the effect method which delegates
them to the corresponding downstream method which performs the actual
update. For example, the removeDownstream method processes incoming
RmvMsg messages by decreasing some count k′ by 1. Unfortunately, k′ is
undefined in Algorithm 8.

We believe that k′ is either defined by the source replica and included
in the propagated message (Algorithm 9), or, k′ is defined as the element’s
count at the downstream replica (Algorithm 10). We implemented both
possibilities in VeriFx (Listings 6.13 and 6.14) and verified them to find
out which one, if any, is correct. To this end, the companion object of
the MWSSet class (cf. Line 33 in Listing 6.12) extends the CmRDTProof1
trait (cf. Section 6.4.1.2), passing along three type arguments: the type
of operations SetOp, the type of messages being exchanged SetMsg, and
the CRDT type constructor MWSSet. The object extends CmRDTProof1 as
the MWSSet class is polymorphic and expects one type argument. When
executing the proof inherited by the companion object, VeriFx automat-
ically proves that the possibility implemented by Listing 6.14 is correct
and that the one of Listing 6.13 is wrong.

Figure 6.8 shows the counterexample returned by VeriFx for the imple-
mentation from Listing 6.13 together with a visualization of the divergence
problem. This problem manifests when replicas concurrently add and re-
move the same element. Recall that a counterexample is a mapping from
variables (defined by the proof) to values that break the proof. Since the
MWS Set is an operation-based CRDT we used the CmRDTProof1 trait (cf.
Section 6.4.1.2). This proof defines three variables s1, s2, and s3 that rep-
resent the state of the replicas, and two variables x and y that represent
concurrent operations generated by replicas s1 and s2 respectively.

The counterexample found by VeriFx is shown in Fig. 6.8a. It consists
of a replica s1 that generates an add operation x = Add(v3) and pre-
pares a message AddMsg(v3, 1) to be broadcast. Concurrently, replica

188

6.5. EVALUATION

// Definition of the type parameter S
enum S { v0 | v1 | v2 | v3 | v4 }
// Variable assignments that cause divergence
val s1 = MWSSet (Map(v3 -> 8856 , ...))
val s2 = MWSSet (Map(v3 -> 2, ...))
val s3 = MWSSet (Map(v3 -> 2438 , ...))
val x = Add(v3) // operation generated by replica s1
// The prepare phase constructs the following message:
// s1. prepare (x) = AddMsg (v3 , 1)
val y = Remove (v3) // operation generated by replica s2
// s2. prepare (y) = RemoveMsg (v3 , 2)

(a) Counterexample returned by VeriFx.

s3
{ v3 -> 2438 } AddMsg(v3, 1)

RemoveMsg(v3, 2)s3
{ v3 -> 2438 }

{ v3 -> 2439 }

{ v3 -> 1 }

RemoveMsg(v3, 2)

AddMsg(v3, 1) { v3 -> 2 }

{ v3 -> 1 }

(b) Visualization of the counterexample returned by VeriFx.

Figure 6.8: Counterexample for the MWS Set, found by VeriFx.

s2 generates a remove operation y = Remove(v3) and prepares a message
RemoveMsg(v3, 2) to be broadcast. The RemoveMsg contains 2 because
that is the local count that s2 stores for key v3. Eventually, every replica
receives the broadcasted messages, possibly in a different order, and pro-
cesses them. Figure 6.8b shows that depending on the order in which s3
processes the messages, the outcome is different. The reason for this di-
vergence problem is that add increments the local count by a given value
(cf. Listing 6.12) but remove overrides the local count with the incoming
count minus one (cf. Listing 6.13). Thus, depending on the order in which
those operations are applied the elements will have a different count.

Listing 6.14 shows a modified implementation of the remove operation
which decrements the local count instead of overriding the local count
with the incoming count minus one. VeriFx proves that this implemen-
tation guarantees convergence. We thus successfully completed the MWS
Set implementation thanks to VeriFx’s integrated verification capabili-
ties. The counterexample returned by VeriFx was crucial to understand
the problem and find an appropriate solution.

189

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.5.2.2 A Buggy Map CRDT

Kleppmann [Kle22] describes the specification of an operation-based Map
CRDT which he believed to be “obviously correct” only to find out it con-
tains a bug that causes divergence after spending hours trying to verify it.
He then tweeted the buggy pseudo code of the Map CRDT and challenged
his 29400 followers (mainly software engineers) to find the bug. Although
I came close, I could not identify the precise timestamp conditions under
which the bug would occur. Only Sreeja Nair (which at the time was also
a PhD student doing research on RDTs) was able to manually identify the
bug. Kleppmann later tweeted a variation on the algorithm: “Here is a
variant of the algorithm that is correct (I believe)”.

Fortunately, we now have VeriFx to help us automatically verify both
the buggy map CRDT and the corrected map CRDT, which until now
had not been verified. We implemented and verified both map CRDTs in
an afternoon. The complete implementation and verification of the buggy
map CRDT is explained in Appendix I. We now present the key takeaways
from our experience implementing and verifying these map CRDTs.

Implementation. The implementation of the map CRDTs mainly
consisted of translating the mathematical specifications to VeriFx. We
introduced slight changes to the design to improve efficiency. For example,
the specification keeps a set of triples where each triple holds a key, a
value, and a timestamp. Since every key appears at most in one triple,
our implementation uses a dictionary to efficiently map keys to their value
and timestamp.

Verification. After implementing the buggy map CRDT, we pro-
ceeded to its automated verification but VeriFx generated invalid coun-
terexamples. For instance, one in which two distinct replicas generated
the same timestamp. This is not possible because the design assumes that
replicas have unique IDs and combine them with Lamport clocks [Lam78]
to generate unique timestamps. However, VeriFx does not know this as-
sumption nor does it know the relation between a replica’s clock and the
values it observed. In practice, many CRDTs make similar implicit as-
sumptions which is the reason they are complex and difficult to get right.

Thus, in order to verify the buggy map CRDT we had to encode all
assumptions explicitly such that VeriFx does not analyze impossible cases.
Naturally, we were not able to distill all assumptions from the first time.
Instead, VeriFx kept returning invalid counterexamples which helped us

190

6.5. EVALUATION

find and formulate the missing assumptions. Listing I.2 in Appendix I.3
shows the encoding of these assumptions.

Counterexample. After defining all assumptions, VeriFx found a
valid counterexample for the buggy map CRDT that is equivalent to the
one found manually by Nair [Kle22]. It consists of a corner case in which
the Put and Delete operations do not commute and thus may cause repli-
cas to diverge. We explain the complete counterexample in Appendix I.3.

Corrected Map CRDT. After finding the counterexample for the
buggy map CRDT, we also verified the corrected map CRDT from [Kle22].
This did not require additional efforts since we already distilled all as-
sumptions for the buggy map CRDT. VeriFx automatically proved that
the corrected design indeed guarantees convergence, which to the best of
our knowledge, is the first mechanical proof of correctness for this CRDT.

As shown in Table 6.1, the verification times for the buggy and cor-
rected map CRDTs are slightly higher compared to the other CRDTs
we verified, but are still very fast for a fully automated verification ap-
proach. The higher verification times come from the fact that these map
CRDTs are too complex to directly prove convergence of all operation
pairs. Hence, we introduce a subproof for every operation pair. The total
verification time is the sum of the verification times of the subproofs.

6.5.2.3 Conclusion

We verified a diverse and extensive portfolio of CRDTs, including op-
timized designs that are representative of real-world CRDTs used in
industrial-strength databases. For example, the Last-Writer-Wins Reg-
ister, Multi-Value Register, PN-Counter, Enable-Wins and Disable-Wins
Flags, Grow-Only Map, Grow-Only Set, Observed-Removed Set, and
Remove-Wins Set are used in AntidoteDB5. The Dynamic Positive-
Negative Counter supports a dynamic number of replicas and is similar
to the one that is implemented in Akka’s distributed key-value store. The
Riak key-value database6 implements several CRDTs (counters, registers,
sets, etc.) based on the specifications of Shapiro et al. [Sha+11a] which we
also implemented and verified. Thus, we conclude that VeriFx is suited
to verify CRDTs since all implementations were verified in a matter of
seconds (cf. Table 6.1).

5https://www.antidotedb.eu/
6https://riak.com/products/riak-kv

191

https://www.antidotedb.eu/
https://riak.com/products/riak-kv

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

6.5.3 Verifying Operational Transformation

We now show that VeriFx is general enough to verify other RDT families
such as Operational Transformation (OT) [EG89]. We implemented all
transformation functions for collaborative text editing described by Imine
et al. [Imi+03] and verified TP1 and TP2 in VeriFx.

Transformation Function LoC Properties Time

TP1 TP2 TP1 TP2

Ellis and Gibbs [EG89] 84 7 7 115 s 29 s

Ressel et al. [RNG96] 78 3 7 68 s 30 s

Sun et al.[Sun+98] 68 7 7 321 s 13 s

Suleiman et al. [SCF97] 85 7 7 34 s 40 s

Imine et al. [Imi+03] 83 3 7 61 s 17 s

Registerv1 [Imi22] 6 7 3 3 s 3 s

Registerv2 [Imi22] 6 3 7 3 s 3 s

Registerv3 [Imi22] 7 3 3 3 s 3 s

Stack [Imi22] 47 7 3 5 s 5 s

Table 6.2: Verification results of OT functions in VeriFx.

Table 6.2 summarizes the verification results. For each transformation
function, the table shows the code size, whether or not it satisfies TP1 and
TP2, and the average verification time. As can be observed from the table,
the functions proposed by Ellis and Gibbs [EG89], Sun et al. [Sun+98],
and Suleiman et al. [SCF98] do not satisfy TP1 nor TP2 . Ressel et al.’s
functions [RNG96] satisfy TP1 but not TP2 . The transformation func-
tions proposed by Imine et al. [Imi+03] also do not satisfy TP2 , which
confirms the findings of Li and Li [LL04] and Oster et al. [Ost+06]. In
addition, in a private communication [Imi22], Imine asked us to verify
(unpublished) OT designs for replicated registers and stacks. Out of the
three register designs verified in VeriFx, only one was correct for both TP1
and TP2 . Regarding the stack design, it guarantees TP2 but not TP1 .
VeriFx provided meaningful counterexamples for each incorrect design.

To exemplify our approach to verifying OT, the remainder of this
section reports on the implementation and verification of Imine et al.’s
transformation functions [Imi+03] in VeriFx.

192

6.5. EVALUATION

6.5.3.1 The IMOR Transformation Functions

Listing 6.15: Excerpt from the implementation of Imine et al.’s trans-
formation functions [Imi+03] in VeriFx.

1 enum Op { Ins(p: Int , ip: Int , c: Int) | Del(p: Int) | Id () }
2 object Imine extends ListOT [Int , Op] {
3 def Tii(x: Ins , y: Ins) = {
4 val p1 = x.p; val ip1 = x.ip; val c1 = x.c
5 val p2 = y.p; val ip2 = y.ip; val c2 = y.c
6 if (p1 < p2) x
7 else if (p1 > p2) new Ins(p1 + 1, ip1 , c1)
8 else if (ip1 < ip2) x
9 else if (ip1 > ip2) new Ins(p1+1, ip1 , c1)

10 else if (c1 < c2) x
11 else if (c1 > c2) new Ins(p1+1, ip1 , c1)
12 else new Id ()
13 }
14 def Tid(x: Ins , y: Del) =
15 if (x.p > y.p) new Ins(x.p - 1, x.ip , x.c)
16 else x
17 def Tdi(x: Del , y: Ins) =
18 if (x.p < y.p) x else new Del(x.p + 1)
19 def Tdd(x: Del , y: Del) =
20 if (x.p < y.p) x
21 else if (x.p > y.p) new Del(x.p - 1)
22 else new Id ()
23 }

Listing 6.15 shows the implementation of Imine et al.’s transformation
functions [Imi+03] in VeriFx. These transformation functions are often
referred to as “IMOR” based on the authors’ initials. The enumeration
Op on Line 1 defines the three supported operations:

• Ins(p, ip, c) represents the insertion of character c at position p.
Initially, the character7 was inserted at position ip. Transformations
may change p but leave ip untouched.

• Del(p) represents the deletion of the character at position p.

• Id() acts as a no-op. This operation is never issued by users directly
but operations may be transformed to a no-op.

The object Imine extends the ListOT trait and implements the four trans-
formation functions (Tii, Tid, Tdi, Tdd) that are required for collabora-

7We represent characters using integers that correspond to their ASCII code.

193

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

tive text editing (cf. Section 6.4.2). The implementation of these trans-
formation functions is a straightforward translation from their description
by Imine et al. [Imi+03]. The resulting object inherits automated proofs
for TP1 and TP2 . When running these proofs, VeriFx reports that the
transformation functions guarantee TP1 but not TP2 .

6.5.3.2 Conclusion

Based on our experience verifying OT functions and the results shown in
Table 6.2, we conclude that VeriFx is suited to verify other RDT families
such as OT. Due to the number of cases that have to be considered, the
verification times are longer than for CRDTs but are still acceptable for
static verification [Cal+15].

6.6 Notes on Related Work

Program verification is a vast area of research. We structure this discussion
on related work in four parts. First, we discuss related work on verification
languages. Second, we focus on the verification of CRDTs. Third, we
review approaches to verify invariants in distributed systems. Finally, we
discuss related work on the verification of OT.

6.6.1 Verification Languages

We reviewed existing verification languages in Section 2.3.1 and classified
them into three categories: interactive, auto-active, and automated veri-
fication languages [LM10]. We now compare VeriFx to the most relevant
works in these categories of verification languages.

Vazou et al. [Vaz+17] introduce the idea of refinement reflection in
Liquid Haskell, where user-defined functions are reflected in a decidable
fragment of SMT logic and can be used in refinement types to express
correctness properties. VeriFx leverages a similar idea of reflection where
every construct of the base language and its collections are reflected in
SMT logic such that arbitrary VeriFx programs can completely be re-
flected in the logic. The main difference is that Liquid Haskell requires
programmers to express correctness properties using refinement types and
manually write proofs as Haskell functions, whereas, VeriFx targets auto-
mated verification of user-defined correctness properties (expressed with

194

6.6. NOTES ON RELATED WORK

the proof construct) by leveraging specialized encodings of the language’s
constructs in SMT logic. Moreover, VeriFx targets an iterative program-
ming style where incorrect designs are improved based on the returned
counterexamples, whereas Liquid Haskell only raises a type error without
providing additional information.

Auto-active verification languages like Dafny [Lei10] and
Spec# [BLS05] verify programs for runtime errors and user-defined
invariants based on annotations provided by the programmer (e.g.
preconditions, postconditions, loop invariants, etc.). IVLs like Boo-
gie [Bar+06] and Why3 [FP13] automate the proof task by generating
VCs from source code and discharging them using one or more SMT
solvers but are not used directly by programmers. While the afore-
mentioned approaches aim to be general such that they can be used to
prove any property of a program, VeriFx was designed to be a high-level
programming language capable of verifying RDTs fully automatically.

Also related to VeriFx is the work by Kaki and Jagannathan [KJ14]
which consists of an automated verification framework integrated in a re-
finement type system. Programmers write relational specifications that
define structural relations (using relational algebra) for the data type at
hand and express correctness properties as refinement types atop opera-
tions. However, writing relational specifications for advanced data types is
non-trivial and can be rather verbose, as noted by the authors themselves.
In contrast, VeriFx allows programmers to write custom correctness prop-
erties directly as proofs in the language and thus does not require separate
specifications, thereby, avoiding mismatches between the implementation
and the verification, and simplifying software evolution.

6.6.2 Verifying Conflict-free Replicated Data Types

As mentioned in the introduction of this chapter, Gomes et al. [Gom+17]
and Zeller et al. [ZBP14] propose formal frameworks to mechanically verify
SEC for CRDT implementations but these are not automated and require
significant efforts from the programmer.

Liu et al. [Liu+20] extend Liquid Haskell with typeclass refinements
and use them to prove SEC for some of their own CRDTs. While sim-
ple proofs can be discharged automatically by the underlying SMT solver,
advanced CRDTs also require significant proof efforts (as discussed in Sec-
tion 6.1). In contrast, we fully automatically verified over 30 well-known

195

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

CRDTs in VeriFx. Automated verification is enabled by efficiently encod-
ing all functional collections and their operations using the combinatory
array logic for SMT solvers, whereas the reflection of those Liquid Haskell
functions in SMT logic is recursive which breaks automated verification.

Liang and Feng [LF21] propose a new correctness criterion for CRDTs
that extends SEC with functional correctness. While their focus is on
manual verification of functional correctness, VeriFx focuses on automated
verification of SEC.

Wang et al. [Wan+19] propose replication-aware linearizability, a cri-
terion that enables sequential reasoning to verify CRDT implementations.
The authors manually encoded the CRDTs in Boogie [Bar+06] to prove
correctness. Those encodings are non-trivial and differ from real-world
CRDT implementations. In contrast, VeriFx verifies high-level CRDT
implementations directly.

Nagar and Jagannathan [NJ19] developed a proof rule that is
parametrized by the consistency model and automatically checks conver-
gence for CRDTs. Unfortunately, their framework introduces impreci-
sions which may lead to correct CRDTs being rejected. Moreover, their
framework requires a first-order logic specification of the CRDT which is
cumbersome and error-prone. The resulting proofs thus verify the speci-
fication instead of a concrete implementation. In contrast, VeriFx verifies
CRDT implementations directly, thereby avoiding mismatches between
the specification and the implementation and fostering code evolution.

6.6.3 Verifying Invariants of Replicated Data

Maintaining application-specific invariants under weak consistency is
difficult. As explained in Section 2.3.3, invariant confluent opera-
tions [Bai+14] maintain application invariants without coordination.
Follow-up work [WH18] devised an automated decision procedure to verify
if operations are invariant confluent.

Some works have focused on verifying program invariants for existing
RDTs. Soteria [NPS20] verifies program invariants for state-based repli-
cated objects based on the invariant confluence criterion. Repliss [ZBP20]
verifies program invariants for applications that are built on top of their
CRDT library. CISE [Got+16] proposes a proof rule to check that a
particular choice of consistency for the operations preserves the applica-
tion’s invariants. IPA [Bal+18] detects invariant-breaking operations and

196

6.7. CONCLUSION

proposes modifications to the operations in order to preserve application-
specific invariants. Unfortunately, these approaches assume that the un-
derlying RDT is correct. VeriFx enables programmers to verify that this
is the case. In this dissertation, we did not verify application invariants
and leave it as future work.

6.6.4 Verifying Operational Transformation

Ellis and Gibbs [EG89] first proposed an algorithm for operational
transformation together with a set of transformation functions. Sev-
eral works [SCF98; Sun+98] showed that integration algorithms like
adOPTed [RNG96], SOCT2 [SCF98], and GOTO [SE98] guarantee con-
vergence if the transformation functions satisfy the TP1 and TP2 proper-
ties. Unfortunately, Ellis and Gibbs’ transformation functions [EG89] do
not satisfy these properties [Sun+98; RNG96; SCF98].

Over the years, several transformation functions were pro-
posed [RNG96; Sun+98; SCF97]. Imine et al. [Imi+03] used SPIKE,
an automated theorem prover, to verify the correctness of these transfor-
mation functions and found counterexamples for all of them, except for
Suleiman et al.’s transformation functions [SCF97] (which later were also
shown to be wrong by Oster et al. [Ost+06]). As shown in Section 6.5.3,
we were able to reproduce Imine et al.’s findings [Imi+03] using VeriFx
and generate similar counterexamples. Imine et al. [Imi+03] also pro-
posed a simpler set of transformation functions which later was found to
also violate TP2 [LL04; Ost+06]. VeriFx also found this counterexample.

6.7 Conclusion

Replicated Data Types (RDTs) are widespread among highly available dis-
tributed systems but verifying them remains complex, even for experts.
Recently, automated verification efforts have been proposed [Liu+20;
NJ19] but these cannot yet produce complete correctness proofs from
high-level implementations.

In this chapter, we proposed VeriFx, a functional object-oriented pro-
gramming language that features a novel proof construct to express cor-
rectness properties that are verified automatically. We leverage the proof
construct to build libraries for implementing and verifying two well-known

197

CHAPTER 6. AUTOMATED VERIFICATION OF RDTS

families of RDTs: CRDTs [Sha+11b] and OT [EG89]. Programmers can
also implement custom libraries to verify other approaches. Verified RDT
implementations can be transpiled to mainstream languages, currently
Scala and JavaScript. VeriFx’s modular architecture allows programmers
to add support for other languages.

By integrating automated verification in a high-level programming lan-
guage, VeriFx empowers programmers to implement RDTs and seamlessly
verify them. VeriFx detects divergence problems and returns high-level
counterexamples which help correct the implementation. Since the verifi-
cation process is automated and integrated into the language itself, pro-
grammers do not need expertise in formal verification. We thus success-
fully solved the verification problem outlined in Section 1.1.3.

198

Chapter 7

Conclusion

Throughout this dissertation we proposed principled approaches and de-
veloped novel programming languages for the development and verification
of new and existing RDTs. This final chapter concludes this dissertation
by summarizing our work. First, we revisit the problem statement for
the development of RDTs. Afterward, we provide an overview of our ap-
proach and restate our contributions. We then identify promising avenues
for future research and conclude this dissertation with some final remarks.

7.1 Programming Replicated Data Types

Distributed systems replicate data for good reasons, but keeping replicas
consistent when facing network partitions is complicated since program-
mers face a trade-off between availability and consistency, as identified by
the CAP theorem [Bre00; Bre12]. To further complicate matters, today’s
systems experience huge workloads and users expect applications to work
even when they are on the move and have only reduced connectivity. As a
result, high availability, low latencies, and good scalability are often more
important than strong consistency. For this reason, distributed systems
increasingly shift toward weakly consistent data replication. However,
ensuring convergence and data integrity under weak consistency is hard.

To relieve programmers from the complexity of programming with
weak consistency, researchers propose RDTs that resemble sequential data
types but internally embed nifty, often ad-hoc, design tricks to ensure state
convergence. However, designing dedicated RDTs for every possible data

199

CHAPTER 7. CONCLUSION

type does not scale. Several composition techniques exist [MV15; KB17;
WMM20] but none allow for arbitrary compositions of all CRDTs.

We identified three main problems of RDTs, in Section 1.1.3, that
hinder their integration in mainstream distributed applications:

Non-customizable semantics. Existing RDTs exhibit hardcoded con-
currency semantics but real-world applications require custom se-
mantics. As a result, programmers often find themselves building
new RDTs from scratch for their specific use case. This is problem-
atic because it exposes programmers to ad-hoc conflict resolution
which is hard, even for experts.

Limited support for application invariants. Applications often in-
volve business-specific data integrity invariants that should not be
violated. However, traditional RDTs do not support application-
specific invariants out-of-the-box. Some approaches extend RDTs
with invariants but these require programmers to provide separate
(often formal) specifications, e.g. in first-order logic. We cannot ex-
pect regular software engineers to write formal specifications as these
are highly complex. Moreover, they hamper software evolution as
the specifications must evolve along with the code.

Complexity of verification. RDTs are built around subtle design
choices and assumptions (e.g. causal delivery) that are easy to break.
Therefore, it is crucial to verify RDT implementations before deploy-
ing them in production. However, verification of RDTs is mostly
done manually based on formal specifications instead of actual im-
plementations. As a result, formal verification of RDTs is currently
reserved for experts in distributed systems and verification.

7.2 Overview of our Approach

To address the three aforementioned problems of RDTs we devised a prin-
cipled approach for the development of application-specific RDTs and de-
veloped a novel programming language to verify RDT implementations
automatically without requiring expertise in formal verification.

Our approach is built around three fundamental principles, initially
defined in Section 1.2:

200

7.2. OVERVIEW OF OUR APPROACH

Don’t Design for Replication, Replicate your Design. According
to this principle, programmers should not manually deal with
conflicts but instead replicate existing data types and declaratively
specify the desired concurrency semantics.

Correct Replicated Data Types Out-of-the-Box. This principle
requires RDTs to be correct out-of-the-box such that programmers
do not need to manually verify RDT implementations.

Programming Language Support. This principle requires techniques
for building RDTs to feature appropriate language support.

We now provide an overview of our approach that summarizes each
chapter and explains how they solve the aforementioned problems (cf.
Section 7.1) according to our vision.

We started in Chapter 3 with the SECRO approach which extends se-
quential data types with application-specific preconditions and invariants
that are used at runtime to compute valid executions of the operations.
However, computing serializations at runtime proved to be inefficient and
does not scale to the workloads experienced by modern applications.

To address the performance issue of SECROs, Chapter 4 proposes the
ECRO approach which statically analyzes RDT specifications to detect
conflicts and identify solutions beforehand. Although the resulting RDTs
exhibit good performance and outperform related hybrid approaches, pro-
grammers need to define separate specifications which are cumbersome
and error-prone. Subtle mistakes in the RDT specification may lead to
runtime anomalies which violates our second principle. Furthermore, pro-
grammers now also need to maintain separate specifications which consid-
erably complicates software evolution and thus does not completely meet
our third principle.

Chapter 5 introduces EFx, a novel programming language that sim-
plifies the development of RDTs by extending sequential data types with
concurrency contracts. These contracts consist of high-level preconditions
and invariants that are integrated in the language. We built EFx such that
the entire language and its collections have efficient SMT encodings. As a
result, EFx can analyze arbitrary data types and their contracts in order
to synthesize correct ECROs automatically. Thus, programmers no longer
have to write separate specifications in low-level specification languages.
This solves the problem of disconnected specifications in ECROs.

201

CHAPTER 7. CONCLUSION

The development of RDTs in EFx meets our three principles: RDTs
are synthesized from sequential data types and their concurrency con-
tract (principle 1). The resulting RDTs leverage the ECRO protocol to
guarantee state convergence and maintain application-specific invariants
out-of-the-box (principle 2). The entire approach is integrated in the EFx
language which fulfills the principle of programming language support
(principle 3).

While EFx proposes a principled approach for the development of cus-
tom RDTs, many researchers and practitioners build ad-hoc RDTs. Since
ad-hoc approaches are brittle, it is important to provide appropriate veri-
fication tools. Chapter 6 proposes VeriFx, a variation on EFx that derives
automated correctness proofs for high-level RDT implementations. Ver-
iFx returns concrete counterexamples for incorrect RDTs. This is essential
to iteratively improve RDT implementations until they are correct.

We conclude that this dissertation successfully tackles the problems of
non-customizable semantics and limited support for invariants by enabling
programmers to build custom RDTs with application-specific invariants
in EFx. We also addressed the problem that RDTs are difficult to get
right by enabling programmers to verify real-world RDT implementations
automatically in VeriFx without requiring verification-specific code.

7.3 Reviewing the Contributions

Throughout this dissertation, we realized our vision for the development
and verification of RDTs, outlined in the introduction (cf. Section 1.2).
This led to three main contributions which we now review with hindsight.

The ECRO family of RDTs. We presented a new family of RDTs that
are built by augmenting sequential data types with a declarative
specification of the desired concurrency semantics. These specifica-
tions enable programmers to customize the conflict resolution pol-
icy of RDTs and express application-specific invariants that must be
maintained. The first incarnation of this approach was the SECRO
data type, however, it did not meet the performance requirements
of modern applications. We then proposed improved approaches,
ECRO and EFx, that statically analyze the specifications to de-
tect conflicts and find coordination-free solutions beforehand. The
resulting ECRO RDTs use this information to efficiently serialize

202

7.3. REVIEWING THE CONTRIBUTIONS

operations in order to guarantee convergence and preserve applica-
tion invariants. We conducted a geo-distributed RUBiS benchmark
which showed that even though replicas occasionally need to reorder
operations, this is often more efficient than coordinating the opera-
tions (i.e. executing them under strong consistency).

Synthesizing RDT specifications. We proposed EFx, a novel pro-
gramming language that simplifies the development of RDTs using
the ECRO approach. EFx integrates a contract system that allows
programmers to attach high-level preconditions and invariants to a
data type’s operations. These preconditions and invariants are ex-
pressed in high-level EFx code, instead of first-order logic as was the
case for ECROs. We carefully designed EFx such that any EFx pro-
gram can be readily analyzed using SMT solving. As a result, EFx
can automatically analyze RDT implementations and their contract
to synthesize an appropriate distributed specification and generate
a correct ECRO for the given data type. We validated our approach
by implementing an extensive portfolio of RDTs and several real-
world applications including a flight reservation system, an auction
system, and a banking application.

Automated verification of RDTs. We developed VeriFx, a high-level
programming language with integrated verification capabilities for
the development of RDTs. VeriFx allows programmers to imple-
ment RDTs using collections and operations from functional pro-
gramming. The resulting RDTs are automatically verified for the
necessary correctness properties. If the RDT is not correct, VeriFx
returns a concrete counterexample which enables programmers to
iteratively improve the implementation until it is correct. We vali-
dated VeriFx by implementing and verifying 37 CRDTs - many of
which are used in industrial databases - and reproducing a study
on the correctness of OT functions. This work accounts for the
most extensive portfolio of verified RDTs to date. Our results show
that it is possible to integrate automated verification in a high-level
programming language for the development of RDTs, which frees
programmers from an additional and complicated verification step.

203

CHAPTER 7. CONCLUSION

7.4 Avenues for Future Research

Before we conclude this dissertation, we identify potential avenues for
future research that seek to address some of the current limitations of
ECROs, EFx, and VeriFx. We also identify other properties of RDTs
that could be verified using VeriFx.

7.4.1 Multi-Object Invariants

The ECRO family of RDTs lets programmers turn sequential data types
into RDTs that converge and respect application-specific invariants. How-
ever, invariants are confined to a single RDT and cannot span several
instances of the same or different RDTs.

An interesting research avenue consists in adding support for multi-
object invariants, i.e. invariants that span several objects. For example,
a banking system may use an RDT per account and require clients to
keep a positive balance across accounts (i.e. the sum of a client’s account
balances should be non-negative).

Adding support for multi-object invariants to the ECRO approach will
require modifications to the ECRO analyses since all pairs of operations
of these objects must be analyzed. It remains to be seen if this is feasible
for invariants spanning many objects since the number of operation pairs
that need to be analyzed grows significantly with every object that must
be considered. In addition, the ECRO protocol will need to be adapted in
order to respect invariants even when operations are invoked concurrently
on different objects. This will require the protocol to safely serialize the
operations of all objects related by an invariant. For instance, the protocol
could keep a DAG of operations per group of objects that are related by
one or more invariants. It remains to be seen which impact this will have
on performance and if more efficient strategies exist.

7.4.2 Improving Automated Verification

The EFx and VeriFx languages currently have a number of limitations
that follow directly from their design (cf. Section 5.7). We now discuss
potential avenues for future research that aim to lift these limitations.

204

7.4. AVENUES FOR FUTURE RESEARCH

7.4.2.1 Inductive Proofs

Recall that EFx and VeriFx provide extensive functional collections with
higher-order operations. These are encoded using the Combinatory Ar-
ray Logic (CAL) [MB09] which allows for efficient and automated ver-
ification. However, the collections do not provide aggregation methods
because those cannot be encoded using CAL. Instead, they need to be
encoded recursively, and this requires inductive reasoning, which the un-
derlying SMT solver (Z3 [MB08]) does not support out-of-the-box.

A potential avenue for future research is to explore the integration of
inductive proofs in EFx and VeriFx, which would pave the way for adding
aggregation methods. The difficulty consists in finding a suitable encoding
for these inductive proofs such that SMT solvers can automate the veri-
fication process. While VeriFx currently leverages the Z3 solver [MB08],
other solvers may be more appropriate. For example, Reynolds and Kun-
cak [RK15] have integrated inductive reasoning in CVC41.

7.4.2.2 Proof Composition

VeriFx provides a novel proof construct for programmers to specify
application-specific correctness properties and discharges those properties
automatically using the Z3 SMT solver [MB08].

Some proofs may depend on other proofs, but this cannot be ex-
pressed in VeriFx. For example, Listing 7.1 shows the implementation
of a state-based Positive-Negative Counter CRDT as the composition of
two Grow-Only Counter CRDTs [Sha+11a]. The merge method merges
two PNCounters by merging their respective GCounters.

Listing 7.1: Implementation of a PN-Counter CRDT in VeriFx by com-
posing two G-Counter CRDTs.

1 class PNCounter (p:GCounter , n:GCounter) extends CvRDT [PNCounter]{
2 // ...
3 def merge (that: PNCounter) =
4 new PNCounter (this.p. merge (that.p), this.n. merge (that.n))
5 }

1https://cvc4.github.io/

205

https://cvc4.github.io/

CHAPTER 7. CONCLUSION

Currently, to prove that the PNCounter is correct, VeriFx needs to
prove that the GCounter is a CRDT and also that the composition of
those two GCounters into a PNCounter is a CRDT. Thus the proof of
the PNCounter depends on the proof of the GCounter. A more effi-
cient approach would be to first verify the GCounter and then verify the
PNCounter given the correctness proof for the GCounter, i.e. by explicitly
encoding the fact that GCounter is a CRDT as an assumption of the proof.
As such, VeriFx only needs to reason about the composition and not about
the underlying GCounters. This strategy was employed in [BFP] to verify
invariants of composed CRDTs in Antidote SQL [Lop+19] with VeriFx.

Proof composition could also simplify the verification of nested RDTs.
For instance, some map RDTs [Pre18] allow the values to again be RDTs.
Thus, programmers should be able to prove that the map is correct given
that the underlying RDTs are also correct. For a concrete map, say
Map[ORSet[Int]], the correctness proof of the map depends on the proof
of the underlying ORSet CRDT.

It remains to be seen if proof composition is suited to automatically
verify complex RDTs formed by arbitrary compositions and nestings.

7.4.3 Going Further with Automated Verification

In this dissertation, we successfully used VeriFx to verify the consistency
guarantees of CRDTs [Sha+11b] and OT [EG89]. We now identify other
properties of RDTs that could be verified with VeriFx.

7.4.3.1 Verifying Functional Correctness of RDTs

Most RDTs presented in the literature are replicated variants of well-
known sequential data structures. It is well-known that RDTs can have
concurrency semantics that cannot be explained by a sequential execution
of the operations [Pre18]. However, any sequential execution on an RDT
should be identical to that execution on the corresponding sequential data
type. We say that the RDT must preserve the data type’s sequential
semantics.

It would be interesting to verify functional correctness for well-known
RDTs using VeriFx. However, research is needed to determine which
conditions are sufficient to prove functional correctness. Is it enough to
prove that all pairs of sequential operations lead to equivalent states when

206

7.5. CLOSING REMARKS

applied on the RDT and the sequential data type? Or do we also need to
prove other properties?

7.4.3.2 Verifying Invariants

Real-world applications involve business-specific invariants that must be
respected at all times. Although operations uphold invariants locally, they
may break invariants when executed concurrently with other operations.
For example, in a courseware system, students may enroll for courses and
enrollments must be linked to existing students. This is a widespread
invariant known as referential integrity. Now, a student may enroll for
a course and concurrently that course could be deleted from the system.
Although both operations maintain referential integrity when executed
locally, the resulting state violates the invariant because the student is
enrolled in a course that no longer exists.

To uphold application-specific invariants programmers sometimes re-
sort to ad-hoc RDT approaches. For example, programmers can compose
RDTs in a specific way to achieve the desired semantics. It would be
interesting to verify that those RDTs indeed preserve the application’s
invariants.

7.5 Closing Remarks

Our journey toward a simple and efficient approach to build application-
specific RDTs resulted in the EFx language, a minimalist object-oriented
programming language for the development of RDTs by means of simple
concurrency contracts that describe the desired semantics and invariants.
EFx synthesizes ECROs from sequential data types and their concurrency
contracts. The resulting ECROs guarantee convergence and invariant-
preservation out-of-the-box.

We then took our approach a step further and developed VeriFx, a
variation on EFx that leverages similar SMT encodings to verify real-world
RDTs. This approach proved fruitful as we were able to automatically
verify 37 well-known CRDTs and 9 OT designs.

In conclusion, EFx and VeriFx present significant improvements over
existing approaches for the development and verification of RDTs. We

207

CHAPTER 7. CONCLUSION

believe that the integration of SMT solving in high-level programming
languages is key to help programmers develop bulletproof software.

208

Appendix A

Tree Organization of a Text
Document

In order to implement an efficient text editor application, we organize the
text document as a balanced tree of characters. Informally, given a node
N, nodes in its left subtree must occur before N in the document, whereas
nodes in the right subtree must occur after N in the document.

h e l o

1 2 3 4

(a) A simple text document.

2
"e"

3
"l"

4
"o"

1
"h"

(b) The document’s tree representa-
tion.

Figure A.1: A text document and its tree representation. Numbers indi-
cate the characters’ indices.

Although the index of a character reflects its position within the doc-
ument, the text editor cannot organize the tree according to absolute
character indices, as they are not stable, i.e. indices may change over
time as characters are inserted and deleted. To illustrate the problem,
Fig. A.1 shows a text document and its tree representation. In Fig. A.2,

209

APPENDIX A. TREE ORGANIZATION OF A TEXT DOCUMENT

we insert the character “l” after “e” in the document, which affects the
index of all succeeding characters (red indices). Hence, in order to remain
correct, every affected node of the tree is updated accordingly, thereby
making insertions and deletions linear operations.

h e l l o

1 2 3 4 5

(a) Modified text document.

2
"e"

4
"l"

5
"o"

1
"h"

3
"l"

(b) Modified tree representation.

Figure A.2: A text document and its tree representation. Red numbers
indicate index changes compared to Fig. A.1.

If character indices are used as is, they reflect the order of the charac-
ters but are not stable. On the other hand, the unique IDs of characters
are stable but do not reflect their order. A solution to this problem is to
generate identifiers such that they a) reflect the position of the characters,
and b) are stable (i.e. a character’s identifier does not change over time)
Generating stable identifiers is based on the previous and next characters:

generate_id(prev, next) =


1, if ¬prev ∧ ¬next
id(next)

2 , if ¬prev
id(prev) + 1, if ¬next
id(prev)+id(next)

2 , otherwise

When inserting a character, its identifier is the average of the identifiers
of the previous and next characters (last case). The first three cases are
corner cases, which arise when the document is empty (1st case), when
prepending a character to the document (2nd case) and when appending
a character to the document (3rd case). Notice that this scheme reflects
the order of the characters since the generated identifier is smaller than
the next identifier and bigger than the previous identifier (by definition of
the average).

Assume the same text document and identifiers as in Fig. A.1. If a user
inserts the character “l” after “e”, this results in the text document and

210

h e l l o

1 2 2.5 3 4

(a) Modified text document.

2
"e"

3
"l"

4
"o"

1
"h"

2.5
"l"

(b) Modified tree representation.

Figure A.3: A text document and its tree representation. Red number is
the identifier of the newly added character.

tree shown in Fig. A.3. Using the aforementioned scheme, the identifiers
of the other characters remain unchanged.

211

APPENDIX A. TREE ORGANIZATION OF A TEXT DOCUMENT

212

Appendix B

Formal Definition of the
Transitive Closure of
Concurrent Operations

The SECRO algorithm discussed in Section 3.2.2.1 checks preconditions
and postconditions based on the transitive closure of concurrent opera-
tions. This appendix formally defines the transitive closure of concurrent
operations.

Definition 10: Happens before relation

An operationm1 = (o1, p1, a1, c1, id1) happened before an operation
m2 = (o2, p2, a2, c2, id2) iff the logical timestamp of m1 happened
before the logical timestamp of m2: m1 ≺ m2 ⇐⇒ c1 ≺ c2.

Definition 11: Concurrency relation

Two operations m1 and m2 are concurrent iff neither one happened
before the other [Lam94]: m1 ‖m2 ⇐⇒ m1 ⊀ m2 ∧m2 ⊀ m1.

Definition 12: Transitive closure of concurrency relation

We define ‖+ as the transitive closure of ‖.

213

APPENDIX B. FORMAL DEFINITION OF THE TRANSITIVE
CLOSURE OF CONCURRENT OPERATIONS

Definition 13: Transitive closure of concurrent operations

The set of all operations that are transitively concurrent to an op-
eration m with respect to a history h is defined as: TC(m,h) =
{m′ |m′ ∈ h ∧ m′ ‖+m}.

214

Appendix C

Scala DSL for First-Order
Logic

The ECRO approach augments sequential data types with a distributed
specification. These specifications describe operations and application in-
variants using first-order logic. As described in Section 4.2.2, we designed
an embedded domain-specific language (DSL) for programming first-order
logic formulas in Scala, which are then translated to SMT formulas. We
now briefly discuss the different components of the language.

Types, values, and operators. The DSL features three primitive
types (booleans, integers, and strings) and supports custom types that can
be used to represent complex types such as user-defined classes (cf. Ta-
ble C.1). Primitive values are represented by the BoolValue, IntValue,
and StringValue wrappers. We also provide the traditional numeric op-
erators, boolean operators, and comparison operators and provide conve-
nient infix notations for them (cf. Table C.2).

Type Type Representation Value Representation
Boolean case object Bool extends Type case class BoolValue(value: Boolean)
Integer case object Integer extends Type case class IntValue(value: Int)
String case object Stringg extends Type case class StringValue(value: String)
<Custom> case class CustomType(name: String) extends Type /

Table C.1: Types supported by the DSL.

215

APPENDIX C. SCALA DSL FOR FIRST-ORDER LOGIC

Description Representation Infix Notation
Equals case class Equals(lhs: Any, rhs: Any) lhs === rhs
Not Equals case class NotEquals(lhs: Any, rhs: Any) lhs <> rhs
Boolean and case class And(lhs: Any, rhs: Any) lhs /\ rhs
Boolean or case class Or(lhs: Any, rhs: Any) lhs \/ rhs
Negation case class Not(stat: Any) /
Plus case class Plus(lhs: Any, rhs: Any) lhs |+| rhs
Minus case class Minus(lhs: Any, rhs: Any) lhs |-| rhs
Multiplication case class Times(lhs: Any, rhs: Any) lhs |*| rhs
Division case class Divide(lhs: Any, rhs: Any) lhs |/| rhs
Smaller than case class SmallerThan(lhs: Any, rhs: Any) lhs « rhs
Smaller than or equal to case class SmallerThanOrEq(lhs: Any, rhs: Any) lhs «= rhs
Bigger than case class BiggerThan(lhs: Any, rhs: Any) lhs » rhs
Bigger than or equal to case class BiggerThanOrEq(lhs: Any, rhs: Any) lhs »= rhs

Table C.2: List of operators provided by the DSL.

Variables and identifiers. Programmers can declare free variables by
providing a name and type for them and refer to them using identifiers
(cf. Table C.3). Note that declarations do not assign a value to the vari-
able, i.e. they may hold any value of the given type. In order to “assign”
a value to a variable, one can state that the variable equals the desired
value. For example, Identifier("age") === IntValue(25) “assigns”
the value 25 to an existing variable “age”.

Relations and states. Relations constrain the state of an object. The
DSL provides two special state types: OldState and NewState (cf. Ta-
ble C.3). The former represents the state of the object prior to applying
an operation, whereas the latter represents the state after applying the
operation. This enables programmers to express the effects of an oper-
ation. For instance, the value of a counter can be represented with a

Description Representation Notation
Identifier case class Identifier(name: String) /
Variable case class Var(name: String, tpe: Type) Identifier(name) :: tpe
Relation case class Relation(name: String, vars: Var*)(ret: Type) /
First-Order Logic Formula case class RelationInstance(name: String, args: Any*) Relation(name, _)(args)
State sealed trait State /
Old State class OldState extends State /
New State class NewState extends State /
Current State class CurrentState extends State /
Universal Quantifier case class Forall(vars: Set[Var], body: Formula) forall(vars) :- body
Existential Quantifier case class Exists(vars: Set[Var], body: Formula) exists(vars) :- body
Logical Implication case class Implication(ante: Formula, conse: Formula) ante ==> conse

Table C.3: Logic building blocks provided by the DSL.

216

C.1. COMPLETE SET SPECIFICATION

Listing C.1: Overview of the interface of the Relation class.

1 case class Relation (name: String , vars: Var *)(ret: Type) {
2 def instance (args: Any *): RelationInstance
3 def apply (args: Any *) = instance (args:_*)
4 def copy(fromTo : (State , State)): Formula
5 def copyExcept (fromTo : (State , State), condition : Formula):

Formula
6 def copyWhen (fromTo : (State , State), condition : Formula):

Formula
7 // ‘key ‘-‘v‘ must be unique
8 def unique (key: Var , v: Var , state : State): Formula
9 def assertion (cond: Formula , state : State): Formula

10 }

relation value :: State→ Integer. Incrementing the counter can then be
expressed as value(newState) === value(oldState) |+| 1.

Custom relations, such as the aforementioned value example, are de-
fined by instantiating the Relation class shown in listing C.1. More
concretely, relations are instatiated with a name, a variable number of
typed arguments, and a return type. As shown in listing C.1, rela-
tions provide methods to copy facts from one state to another (copy,
copyExcept, and copyWhen), express uniqueness constraints (unique), or
assert any other condition (assertion). Relations are instantiated by ap-
plying them to some arguments and yield a first-order logic formula, e.g.
value(newState).

Quantifiers and implications. The DSL provides universal and ex-
istential quantifiers (forall and exists functions, cf. Table C.3) which
take one or more variables and a boolean formula that specifies a property
about these variables. Logical implication can be expressed using the ==>
infix notation which expects two boolean formulas: the antecedent and
the consequent.

C.1 Complete Set Specification

We now present the complete specification of the Set ECROs discussed
in Section 4.2 using our DSL.

217

APPENDIX C. SCALA DSL FOR FIRST-ORDER LOGIC

Listing C.2: Distributed specification of the Add-Wins Set.

1 case class AWSet [V](set: Set[V]) extends ESet[V]
2 object AWSet extends DistributedSpec {
3 // Declarations
4 val V = CustomType ("V"); val elem = "elem"
5 val contains = Relation (" contains ", Var(elem , V))(Bool)
6 val x = Identifier ("x")
7 // Specs
8 val aws = classOf [AWSet [_]]
9 val add = aws. getDeclaredMethod ("add", classOf [Object])

10 val remove = aws. getDeclaredMethod (" remove ", classOf [Object])
11 val relations = Set(contains)
12 val operations : Map[Method , Mutator] = Map(
13 add -> Mutator (
14 post = (old: OldState , res: NewState) => {
15 contains (res , x) /\
16 contains . copyExcept (old -> res , elem === x)
17 },
18 // add wins invariant
19 inv = (_: OldState , res: NewState) => contains (res , x)),
20 remove -> Mutator (
21 post = (old: OldState , res: NewState) => {
22 not (contains (res , x)) /\
23 contains . copyExcept (old -> res , elem === x)
24 })) }

Listing C.2 shows the distributed specification of the Add-Wins Set
ECRO. To represent elements contained by the set we will need a pred-
icate1 contains :: V × State → Boolean. To this end, line 4 defines a
custom type V which is the abstract type of the elements that are con-
tained by the set (i.e. it corresponds to the type parameter V in AWSet[V]).
Line 5 then defines the contains relation which takes one argument elem
and is true if elem is contained by the set, false otherwise. Note that
we do not define a “set” argument explicitly because every relation is de-
fined over a state, hence, the DSL adds a state argument (representing
the object) behind the scenes.

Now that we defined the contains predicate, we can implement the
actual specification of the operations. First, we inform the DSL about
all relations we will use, by providing a set containing the relations (see
the relations field on line 11). Then, we provide the DSL with an
operations field that maps each method to its specification (lines 12
to 24). As explained in Section 4.2, the postconditions of add and remove

1A predicate is a relation that returns a boolean.

218

C.2. RUBIS SPECIFICATION

state that the added element x2 is present/absent in the resulting set and
use the copyExcept method defined on relations to copy all the other
elements from the old set to the res set (lines 16 and 23). The invariant
on add states that the added element must occur in the resulting state
and thus guarantees add-wins semantics. The Remove-Wins Set is similar,
except that it puts an invariant on remove such that the removed element
is not present in the resulting state (cf. Listing 4.2 in Section 4.2.2).

C.2 RUBiS Specification

We now present the complete specification of the RUBiS ECRO discussed
in Section 4.2.3 using our DSL. More concretely, we provide the complete
implementation of the placeBid and closeAuction operations for the
RUBiS application. Listing C.3 shows the sequential implementation of
the RUBiS data type. It keeps a set of users and a map from auction
IDs to auctions (line 32). Auctions consist of a set of bids, a status (open
or closed), and optionally a winner (line 19). Method placeBid (line 40)
retrieves the auction and places the bid on the auction. closeAuction
(line 46) retrieves the auction and puts its status on closed.

To turn this sequential RUBiS data type into an ECRO, we augment
it with a distributed specification, shown in Listing C.4. First, we declare
three first-order logic predicates to represent auctions, users, and bids on
auctions: auction(id, status), user(name), and bid(auction, user,
amount) (line 12 to 14). Then, we use these predicates to describe the
placeBid and closeAuction operations, as explained in Section 4.2.3.
The precondition of placeBid (line 34 to 38) requires the auction to be
open, the user to exist, the price to be bigger than zero, and every auc-
tion to be well-formed (i.e. either open or closed but not both). The
postcondition of placeBid (line 39 to 42) adds the bid and copies all
the existing bids from the old state to the new state. The precondition
of closeAuction (line 44) states that auctions must be well-formed. Its
postcondition (line 45 to 49) closes the auction, states that the auction
can no longer be open, and copies all other auctions from the old state to
the new state.

2x is defined on line 6 and corresponds to the parameter of the add and remove
operations.

219

APPENDIX C. SCALA DSL FOR FIRST-ORDER LOGIC

Listing C.3: Sequential RUBiS implementation.

1 import scala . collection . SortedSet
2
3 type User = String
4 type AID = String
5 sealed trait Status
6 case object Open extends Status
7 case object Closed extends Status
8
9 case class Bid(userId : User , bid: Int) extends Ordered [Bid] {

10 def compare (that: Bid): Int = bid. compareTo (that.bid)
11 }
12
13 val bidOrdering =
14 Ordering .by[Bid , Bid](
15 b => b.copy(bid = b.bid * -1)) // big to small
16
17 case class Auction (
18 bids: SortedSet [Bid] = SortedSet . empty [Bid](bidOrdering),
19 status : Status = Open , winner : Option [User] = None) {
20 def bid(userId : User , price : Int) =
21 copy(bids = bids + Bid(userId , price))
22
23 def close () = {
24 val highestBid : Option [Bid] = bids. headOption
25 val winner = highestBid .map(_. userId)
26 copy(status = Closed , winner = winner)
27 }
28 }
29
30 case class Rubis (
31 users : Set[User] = Set () ,
32 auctions : Map[AID , Auction] = Map ()) extends ECRO {
33 private def getAuction (auctionId : AID) = {
34 auctions .get(auctionId) match {
35 case Some(auction) => auction
36 case None => throw AuctionNotFound (auctionId)
37 }
38 }
39
40 def placeBid (auctionId :AID , userId :User , price :Int): Rubis = {
41 val auction = getAuction (auctionId)
42 val updatedAuction = auction .bid(userId , price)
43 copy(auctions = auctions . updated (auctionId , updatedAuction))
44 }
45
46 def closeAuction (auctionId : AID): Rubis = {
47 val auction = getAuction (auctionId)
48 copy(auctions = auctions . updated (auctionId , auction . close))
49 }
50 }

220

C.2. RUBIS SPECIFICATION

Listing C.4: Distributed specification for RUBiS ECRO.

1 object Rubis extends DistributedSpec {
2 // Declarations
3 val id = "id"
4 val idVar = Variable (id , Stringg)
5 val statusV = Variable (" status ", Bool)
6 val auctionVar = Variable (" auction ", Stringg)
7 val userVar = Variable ("user", Stringg)
8 val amountVar = Variable (" amount ", Integer)
9 val Open = True; val Closed = False

10
11 // Relations
12 val auction = Relation (" auction ", idVar , statusV)(Bool)
13 val user = Relation ("user", userVar)(Bool)
14 val bid = Relation ("bid",auctionVar ,userVar , amountVar)(Bool)
15
16 val auctionId = Identifier (" auctionId ")
17 val price = Identifier (" price ")
18 val userId = Identifier (" userId ")
19
20 val rbs = classOf [Rubis]
21 val str = classOf [String]; val i = classOf [Int]
22 val placeBid = rbs. getDeclaredMethod (" placeBid ", str , str , i)
23 val closeAuction = rbs. getDeclaredMethod (" closeAuction ", str)
24
25 // Specs
26 val relations = Set(auction , user , bid)
27
28 // auctions are either open or closed but not both
29 def auctionsOpenOrClose (state : State) =
30 auction . unique (idVar , statusVar , state)
31
32 val operations : Map[Method , Mutator] = Map(
33 placeBid -> Mutator (
34 pre = (state : CurrentState) => {
35 auction (auctionId , Open , state) /\
36 user(userId , state) /\ (price >> 0) /\
37 auctionsOpenOrClose (state)
38 }
39 post = (old: OldState , res: NewState) => {
40 old + bid(auctionId , userId , price , newState) /\
41 bid.copy(old -> res)
42 }) ,
43 closeAuction -> Mutator (
44 pre = (state : CurrentState) => auctionsOpenOrClose (state)
45 post = (old: OldState , res: NewState) => {
46 old + auction (auctionId , Closed , newState) /\
47 not (auction (auctionId , Open , newState)) /\
48 auction . copyExcept (old -> res , id === auctionId)
49 }))
50 }

221

APPENDIX C. SCALA DSL FOR FIRST-ORDER LOGIC

222

Appendix D

Cycle Detection and
Resolution in the ECRO
Protocol

We now explain how ECRO’s replication protocol keeps the execution
graph acyclic. Algorithm 11 extends the replication algorithm presented
in Section 4.4.1 with a deterministic approach to detect and solve cycles.
While adding new edges, the algorithm continuously checks for cycles
(line 15). If a newly added edge c1 → c2 causes a cycle, at least one
path exists from c2 to c1. To solve the cycle, the algorithm computes all
paths from c2 to c1 (line 38) and breaks them one by one by removing
one ao-edge on each path (line 41). These edges can be removed without
putting at risk convergence since they impose an artificial ordering be-
tween non-commutative operations (say ci

ao−→ cj) but we know that they
are already ordered by one or more paths (from cj to ci) between them
(otherwise they would not be part of the cycle). As a result, we solved
the cycle while ensuring that all non-commutative operations remain or-
dered. Sometimes it is not possible to break each path only by removing
ao-edges. In that case the cycle is caused by a combination of hb-edges
and co-edges. These cannot be removed as this would violate either con-
vergence or safety. Instead, the algorithm deterministically discards a call
that breaks the cycle (line 18). Information about discarded ao-edges and
discarded calls is propagated between the replicas to ensure that all repli-
cas eliminate the same ao-edges and/or calls and thus still converge. Since

223

APPENDIX D. CYCLE DETECTION AND RESOLUTION

the set of discarded edges and the set of discarded calls grow monotoni-
cally and Algorithm 11 is deterministic, all replicas converge to the same
execution graph and hence to equivalent states as proven in Section 4.4.

224

Algorithm 11 Detecting and solving cycles in the ECRO replication
protocol.
1: 〈Σ, σ0, M, G, t, F〉, with G = (C, E) . ECRO’s internal state
2: σ: Σ . object current state σ
3: discarded . set of discarded edges
4: function execute_remote(c) . execution of call c at remote replica
5: new_edges ← ∅ . initialise set to keep edges related to call c
6: new_discarded ← ∅ . initialise set to keep discarded edges related to call c
7: C← C ∪ { c } . update graph vertices
8: E ← E \ discarded . remove discard edges from the following analysis
9: for v ∈ C ∧ v 6= c do . determine hb and co-edges involving call c
10: if v ≺ c ∧ not seqCommutative(c, v) then
11: edge ← 〈v, hb, c〉 . add hb-edge from call v to call c
12: else if v ‖ c then . call v is concurrent with c
13: if resolution(c, v) = < then edge ← 〈c, co, v〉 . order c before v
14: else if resolution(c, v) = > then edge ← 〈v, co, c〉 . order v before c
15: if causesCycle(edge) then . does this edge cause a cycle?
16: new_discarded ← resolveCycle(edge) . try discarding ao-edges
17: if hasNoSolution() then . cycle caused by hb and co-edges
18: C ← C \ { c } . discard call c
19: E ← E \ new_edges . discard edges related to call c
20: propagateDiscardedCall(c) . inform replicas about discarded call
21: return . function terminates
22: new_edges ← new_edges ∪ { edge } . collect edges related to call c
23: for v ∈ C ∧ v ‖ c do . determine ao-edges between existing calls and call c
24: if resolution(c, v) = > ∧ not commutative(c, v) then
25: if Id(c) < Id(v) then edge ← 〈v, ao, c〉 . impose deterministic order
26: else edge ← 〈v, ao, c〉
27: if causesCycle(edge) then
28: new_discarded ← new_discarded ∪ { edge } . discard the edge
29: else new_edges ← new_edges ∪ { edge } . collect edges related to c
30: discarded ← discarded ∪ new_discarded . update discarded edges
31: propagateDiscardedEdges(discarded) . tell replicas to discard these edges
32: E← (E ∪ new_edges) \ new_discarded . update graph edges
33: t← dynamicTopologicalSort(new_edges)
34: commit() . Commit causally stable operations
35: σ ← apply(σ0, t) . execute the sequence of calls on the initial state σ0

36: function resolveCycle(〈c1, rel, c2〉)
37: new_discarded ← ∅ . initialize set to keep discarded edges to solve the cycle
38: paths ← allPaths(c2, c1, G) . determine all paths that close the cycle
39: for p ∈ paths do
40: if existsArbitrationOrderEdge(p) then . search ao-edges unique to path p
41: d ← removeEdge(p) . remove the ao-edge that has a minimal id
42: new_discarded ← new_discarded ∪ { d } . update discarded edges
43: else return no_solution . cycle is caused by an hb or co-edge
44: return new_discarded

225

APPENDIX D. CYCLE DETECTION AND RESOLUTION

226

Appendix E

Geo-Distributed RUBiS
Benchmark on a
Read-Mostly Workload

Section 4.6.4 presented a geo-distributed benchmark for the RUBiS appli-
cation. The benchmark was executed by measuring the latency of opera-
tions at DC Paris while the other DCs execute an update-heavy workload
consisting of 100 operations per second with 50% reads and 50% writes.
We now perform the same experiment with a read-mostly workload con-
sisting of 1000 operations per second with 95% reads and 5% writes.

0

500

1000

1500

ge
tS

ta
tu

s

op
en

Auc
tio

n

sto
re

Buy
Now

re
gis

te
rU

se
r

pla
ce

Bid

clo
se

Auc
tio

n

La
te

nc
y

(in
 m

s)

ECRO
PoR
RedBlue

Figure E.1: Average latency of RUBiS operations as observed by users at
DC Paris. Error bars represent the 99.9% confidence interval.

227

APPENDIX E. GEO-DISTRIBUTED RUBIS BENCHMARK ON A
READ-MOSTLY WORKLOAD

Figure E.1 shows the average latency of RUBiS operations under this
read-mostly workload. The figures are similar to those depicted in Sec-
tion 4.6.4. The getStatus and openAuction operations are safe, hence,
they are not coordinated, resulting in low latencies. The storeBuyNow and
registerUser operations are unsafe and require coordination in all imple-
mentations (see Table 4.3), and thus have high latencies. The placeBid
and closeAuction operations are unsafe and require coordination in both
PoR and RedBlue (see Table 4.3). ECROs do not coordinate these op-
erations because Ordana found a solution to the conflict, which consists
of locally ordering placeBid operations before closeAuction operations
when they affect the same auction concurrently (see Table 4.2 in Sec-
tion 4.5.1). As a result, ECROs achieve low latency (less than 1ms) while
PoR and RedBlue exhibit high latencies (more than 900ms).

228

Appendix F

EFx’s Type System

We now present EFx’s type system which resembles that of Featherweight
Generic Java [IPW01]. An environment Γ is a partial and finite mapping
from variables to types. A type environment ∆ is a finite set of type vari-
ables. EFx’s type system consists of a judgment for type well-formedness
∆ ` T ok which says that type T is well-formed in context ∆, and a judg-
ment for typing ∆; Γ ` e : T which says that in context ∆ and environment
Γ, the expression e is of type T . We abbreviate ∆ ` T1 ok, . . . , ∆ ` Tn ok
to ∆ ` T ok, and ∆; Γ ` e1 : T1, . . . , ∆; Γ ` en : Tn to ∆; Γ ` e : T .

∆ ` string ok
(WF-String)

∆ ` bool ok
(WF-Bool)

∆ ` int ok
(WF-Int)

X ∈ ∆
∆ ` X ok

(WF-TVar)

∆ ` T ok
class A 〈C 〉 (X) { . . . }. . .

or class A 〈C 〉 (X) extends . . . { I 〈. . .〉 }. . .
∆ ` C 〈T〉 ok

(WF-Class)

∆ ` T ok T <: P
trait I 〈X <: P〉 { . . . }

or trait I 〈X <: P〉 extends I 〈. . .〉 { . . . }
∆ ` I 〈T〉 ok

(WF-Trait)

Figure F.1: Judgments for type well-formedness in EFx.

229

APPENDIX F. EFX’S TYPE SYSTEM

Figure F.1 defines well-formed types. Primitive types are always well-
formed. A type variable X is valid if it is in scope: X ∈ ∆, i.e. the
surrounding method or class defined the type parameter. Class types and
trait types are valid if a corresponding class or trait definition exists and
all type arguments are well-formed.

We now define a few auxiliary definitions which are needed for the
typing rules. The fields function takes a class type and returns its fields
and their types:
class A 〈C〉 (X) { v : T }M or class A 〈C 〉 (X) extends v : T{ I 〈Q〉 }M

fields(C〈P 〉) = [P/X] v : T
(F-class)

The mtype function takes the name of a method and the type of a
class, and returns the actual type signature of the method. If the method
is not found in the class (MT-class-rec rule) it is looked up in the
hierarchy of super traits by the MT-trait and MT-trait-rec rules.
For polymorphic methods, the returned type signature is polymorphic:
class A 〈C 〉 (X) { . . . }M or class A 〈C 〉 (X) extends . . . { I 〈Q〉 }M

def m 〈Y 〉 (x : T) : T = e ∈M
mtype(m,C〈P 〉) = [P/X] (〈Y 〉T → T)

(MT-class)

class A 〈C 〉 (X) extends . . . { I 〈Q〉 }M
def m 〈Y 〉 (x : T) : T = e /∈M

mtype(m,C〈P 〉) = mtype(m, I 〈Q〉)
(MT-class-rec)

trait I 〈X <: T ′〉 {M } or trait I 〈X <: T ′〉 extends I ′〈. . .〉 {M }
def m 〈Y 〉 (x : T) : T = e ∈M

mtype(m, I 〈P〉) = [P/X] (〈Y 〉T → T)
(MT-trait)

trait I 〈X <: T ′〉 {M } or trait I 〈X <: T ′〉 extends I ′〈P〉 {M }
def m 〈Y 〉 (x : T) : T = e /∈M

mtype(m, I 〈P〉) = mtype(m, I ′〈P〉)
(MT-trait-rec)

Similarly, we assume that there are functions valNames(I 〈P〉) and
declaredMethods(I 〈P〉) that return all fields, respectively all methods,
declared by a trait (and its super traits).

Figure F.2 introduces judgments for the well-formedness of classes and
traits. Classes are well-formed if the types of the fields are well-formed
and all its methods, preconditions, and invariants are well-formed (T-
class1 rule). If the class extends a trait, it must also implement all

230

∆ = X ∆ ` T ok
D = M ∪ Pre ∪ Inv M OK IN C〈X〉
Pre OK IN C〈X〉 Inv OK IN C〈X〉

class A 〈C〉 (X) { v : T }D OK
(T-class1)

∆ = X ∆ ` T ok ∆ ` I 〈P〉 ok
trait I 〈. . .〉 {B } or trait I 〈. . .〉 extends . . . {B }

D = M ∪ Pre ∪ Inv M OK IN C〈X〉
Pre OK IN C〈X〉 Inv OK IN C〈X〉

valNames(I 〈P〉) ⊂ v declaredMethods(I 〈P〉) ⊂ M
class A 〈C〉 (X) extends v : T{ I 〈P〉 }D OK

(T-class2)

∆ = X ∆ ` T ok ∆ ` I ′〈P〉 ok
trait I ′ 〈. . .〉 { . . . } or trait I ′ 〈. . .〉 extends . . . { . . . }

B = valDecl ∪methodDecl ∪M M OK IN I 〈X〉
valNames(I ′〈P〉) ⊂ valDecl

declaredMethods(I ′〈P〉) ⊂ (methodDecl ∪M)
trait I 〈X <: T〉 extends I ′ 〈P 〉 {B } OK

(T-trait)

∆ = X,Y ∆ ` T ,T ok
class A 〈C〉 (X) { . . . }. . .
or trait C 〈X <: Q〉 { . . . }

or trait C 〈X <: Q〉 extends . . . { . . . }
∆; x : T , this : C〈X〉 ` e : T

def m 〈Y 〉 (x : T) : T = e OK IN C〈X〉
(T-method)

∆ = X,Y ∆ ` T ,T ok
class @replicated 〈C〉 (X) { . . . }D

∆; x : T , this : C〈X〉 ` e : bool
def m 〈Y 〉 (x : T) : T = e′ ∈ D

pre m 〈Y 〉 (x : T) { e } OK IN C〈X〉
(T-pre)

∆ = X,Y ∆ ` T ,T ok
class @replicated 〈C〉 (X) { . . . }D

∆; x : T , this : C〈X〉, old : C〈X〉 ` e : bool
def m 〈Y 〉 (x : T) : T = e′ ∈ D

inv m 〈Y 〉 (x : T) { e } OK IN C〈X〉
(T-inv)

Figure F.2: Judgments for well-formedness of classes and traits in EFx.

231

APPENDIX F. EFX’S TYPE SYSTEM

fields and methods declared by the hierarchy of super traits (T-class2
rule). The judgment for the well-formedness of traits is defined similarly.
Preconditions and invariants are well-formed if they are associated with
an existing method of the replicated class (i.e. a class that is annotated
with @replicated) and their body returns a boolean (T-pre and T-inv
rules). Preconditions and invariants can use this to refer to the current
instance of the object. Additionally, invariants can also use old to refer
to the old instance of the object (i.e. the object as it was before executing
the method call).

Figure F.3 shows the typing rules for expressions. Most rules are a
simplification of Featherweight Generic Java [IPW01] without subtyping.
Literal values and arithmetic and boolean operations are straightforward
to type. Types of variables (T-var rule) are looked up in the environment
Γ. If statements (T-if rule) are of type T if the condition is of type
boolean and both branches are of type T . Value statements (T-val rule)
introduce a variable in the environment and have the same type as their
body. Anonymous functions (T-abstraction) are of a function type
where the domain corresponds to the type of the parameters and the
codomain corresponds to the type of the body. The type of a function
invocation is the type of the function’s codomain (T-call rule). The T-
new and T-field rules are simple rules to type class instantiations and
field accesses respectively. To type (polymorphic) method invocations (T-
invoke rule) we fetch the method’s type (which is a polymorphic function
type) and substitute all occurrences of the method’s type parameters with
the actual type arguments.

232

∆; Γ ` num : int
(T-num)

∆; Γ ` str : string
(T-str)

∆; Γ ` true : bool
(T-true)

∆; Γ ` false : bool
(T-false)

x ∈ dom(Γ)
∆; Γ ` x : Γ(x)

(T-var)
∆; Γ ` e : bool

∆; Γ `!e : bool
(T-neg)

∆; Γ ` e1 : int ∆; Γ ` e2 : int

∆; Γ ` e1 ⊕ e2 : int
(T-op1)

∆; Γ ` e1 : bool ∆; Γ ` e2 : bool

∆; Γ ` e1 ⊗ e2 : bool
(T-op2)

∆; Γ ` e1 : bool
∆; Γ ` e2 : T ∆; Γ ` e3 : T

∆; Γ ` if e1 then e2 else e3 : T
(T-if)

∆ ` T1 ok
∆; Γ ` e1 : T1 ∆; Γ, x : T1 ` e2 : T2

∆; Γ ` val x : T1 = e1 in e2 : T2
(T-val)

∆ ` T ok
∆; Γ, x : T ` e : T

∆; Γ ` (x : T)⇒ e : T → T
(T-abstraction)

∆; Γ ` e1 : T → T
∆; Γ ` e2 : T

∆; Γ ` e1(e2) : T
(T-call)

fields(C〈P〉) = v : T
∆ ` C〈P〉 ok ∆; Γ ` e : T
∆; Γ ` new C〈P〉(e) : C〈P〉

(T-new)
∆; Γ ` e : To fields(To) = v : T

∆; Γ ` e.vi : Ti

(T-field)

∆; Γ ` eo : To ∆ ` P ok
mtype(m,To) = 〈X〉T → T

∆; Γ ` e : [P/X]T
∆; Γ ` eo.m 〈P〉 (e) : [P/X]T

(T-invoke)

Figure F.3: EFx’s type system.

233

APPENDIX F. EFX’S TYPE SYSTEM

234

Appendix G

Core SMT Expressions

We now discuss the expressions that Core SMT supports. Those expres-
sions are common to most SMT solvers, except lambdas which, as men-
tioned before, are described by the preliminary proposal for SMT-LIB v3.0
and are only implemented by some SMT solvers such as Z3 [MB08].

Figure G.1 provides an overview of all Core SMT expressions. The
simplest expressions are literal values representing integers, strings, and
booleans. Core SMT supports the typical arithmetic operators (+, −,
∗, /) and boolean operators (∧, ∨, and negation ¬) as well as universal
and existential quantification, and logical implication. Let bindings de-
fine immutable variables. Pattern matching is supported, but the cases
must be exhaustive. For example, when pattern matching against an ADT
every constructor must be handled. Core SMT supports two types of pat-
terns: constructor patterns n(n) that match a specific ADT constructor
n and binds names to its fields n, and wildcard patterns that match any-
thing and give it a name n. References v refer to variables that are in
scope, e.g. function parameters or variables introduced by a let binding
or pattern matching. If statements are supported but an else branch is
mandatory, and both branches must type to the same sort. Functions can
be called, and type arguments can be provided explicitly to disambiguate
polymorphic functions. For example, we defined an ADT Option〈T 〉 with
two constructors Some and None. When calling the None constructor, we
need to explicitly provide a type argument since it cannot be inferred from
the call, e.g. None〈int〉(). Finally, fields of an ADT can be accessed by
their name. Arrays and lambdas were already discussed in Section 5.3.1.

235

APPENDIX G. CORE SMT EXPRESSIONS

e ::= num | str | true | false (primitive values)
| e[e] | e[e] :=e | λ(x : T).e
| x | e ⊕ e | e ⊗ e | ¬e
| match(e, case(ptn, e)) (pattern matching)
| let x = e in e (let expression)
| if(e, e, e) (conditional expression)
| e(e) (function call)
| f 〈T 〉(e) (function call with

explicit type arguments)
| e.v (field access)
| ∀(x : T).e | ∃(x : T).e (quantified formulas)
| e =⇒ e (logical implication)

ptn ::= K (x) | x (patterns)

Figure G.1: All Core SMT expressions.

236

Appendix H

EFx’s Complete Map
Semantics

Section 5.3.3.2 explained how to encode maps in Core SMT using arrays
and how to efficiently encode the basic map operations as well as some
advanced map operations. This appendix defines the compilation rules for
the remaining map operations.

Jem.bijective()K = ∀(k1 : JKKt, k2 : JKKt).
(k1 6= k2 ∧ JemK[k1] 6= None〈JV Kt〉() ∧ JemK[k2] 6= None〈JV Kt〉())

=⇒ JemK[k1] 6= JemK[k2] where typeof (em) = Map〈K,V 〉

The bijective method checks if the mapping of keys to values is
one-to-one. Calls to bijective are compiled to a universally quantified
formula that checks that every two distinct keys that are present in the
map are associated with different values.

Jem.forall(ep)K =
∀(x : JKKt).JemK[x] 6= None〈JV Kt〉() =⇒ JepK[x, JemK[x].value]

where typeof (em) = Map〈K,V 〉 and typeof (ep) = (K,V) → bool

Jem.exists(ep)K =
∃(x : JKKt).JemK[x] 6= None〈JV Kt〉() ∧ JepK[x, JemK[x].value]
where typeof (em) = Map〈K,V 〉 and typeof (ep) = (K,V)→ bool

When calling forall with a predicate ep of type (K,V) → bool on a
map em of type Map 〈K, V〉, the method checks that the predicate holds for
all elements of the map. Similarly, the exists method checks that the
predicate holds for at least one element of the map. Thus, at least one

237

APPENDIX H. EFX’S COMPLETE MAP SEMANTICS

key k must exist that is present in the map and whose associated value v
fulfills the predicate.

Jem.filter(ep)K =
λ(x : JKKt).if(JemK[x] 6= None〈JV Kt〉() ∧ JepK[x, JemK[x].value],

Some(JemK[x].value),
None〈JV Kt〉())

where typeof (em) = Map〈K,V 〉 and typeof (ep) = (K,V)→ bool

The filter method takes a predicate ep and returns a map containing
only the key-value pairs that fulfill the predicate. Calls to filter are
encoded as a lambda that defines an array containing only the key-value
pairs that are in the compiled map (JemK[x] 6= None〈JV Kt〉()) and fulfill
the predicate (JepK[x, JemK[x].value]).

Jem1 .zip(em2)K =
λ(x : JKKt).if(Jem1K[x] 6= None〈JV Kt〉() ∧ Jem2K[x] 6= None〈JW Kt〉(),

Some(Tuple_ctor(Jem1K[x].value, Jem2K[x].value)),
None〈JTuple〈V,W 〉Kt〉())

where typeof (em1) = Map〈K,V 〉 and typeof (em2) = Map〈K,W 〉

When calling zip on a map em1 of type Map〈K,V 〉 with a map em2 of type
Map〈K,W 〉, the method returns a map of type Map〈K, Tuple〈V,W 〉〉 that
contains only the keys that are present in both maps, i.e. Jem1K[x] 6=
None〈JV Kt〉() ∧ Jem2K[x] 6= None〈JW Kt〉(), and holds their values in a
tuple, i.e. Tuple_ctor(Jem1K[x].value, Jem2K[x].value).

Jem1 .combine(em2 , ef)K =
λ(x : JKKt).if(Jem1K[x] 6= None〈JV Kt〉() ∧ Jem2K[x] 6= None〈JV Kt〉(),

Some(Jef K[Jem1K[x].value, Jem2K[x].value]),
if(Jem1K[x] 6= None〈JV Kt〉(),

Jem1K[x],
if(Jem2K[x] 6= None〈JV Kt〉(),

Jem2K[x],
None〈JV Kt〉())))

where typeof (em1) = Map〈K,V 〉 and typeof (em2) = Map〈K,V 〉
and typeof (ef) = (V, V)→ V

The combine method combines two maps em1 and em2 using a user-
provided function ef . To this end, calls to combine are compiled to a
lambda that defines an array containing all the keys from em1 and em2 . If

238

a key is present in both maps their values are combined using the provided
function ef . If a key-value pair is present in only one of the maps it is
copied to the resulting map. If a key is not present in em1 nor in em2 then
it is not present in the resulting map.

Jem.toSet()K =
λ(x : Tuple〈JKKt, JV Kt〉).

JemK[x.fst] = Some(x.snd)
where typeof (em) = Map〈K,V 〉

Finally, the toSet method turns a map em of type Map 〈K, V〉 into a set
of type Set 〈Tuple〈K, V〉〉 where each key-value pair is represented as a
tuple. Calls to toSet are compiled to a lambda that checks that the first
element of the tuple (i.e. the key) is associated with the second element
of the tuple (i.e. the value) in the map em.

239

APPENDIX H. EFX’S COMPLETE MAP SEMANTICS

240

Appendix I

Implementation and
Verification of the Buggy
Map CRDT

Section 6.5.2.2 reported on our experience implementing and verifying
the buggy and corrected map CRDTs proposed by Kleppmann [Kle22].
In this appendix, we explain the implementation and verification of the
buggy map CRDT in detail using code examples. We also discuss the
counterexample found by VeriFx.

I.1 Original Specification

The buggy map CRDT is a replicated dictionary storing key-value pairs
where the values are regular values (i.e. no nested CRDTs). Algorithm 12
shows the specification of the buggy map CRDT. It defines a read op-
eration to fetch the value associated to a certain key, and two update
operations: set and delete which assign a value to a key, respectively,
delete a certain key. Every operation consists of two parts, a prepare
phase (denoted “on request“) that prepares a message to be broadcast to
every replica (including itself), and an effect phase (denoted “on deliver-
ing“) that applies the incoming message. We briefly explain both update
operations:

set(k, v). When preparing a set operation that assigns a value v to a key
k, the replica generates a new and globally unique timestamp t and

241

APPENDIX I. VERIFICATION OF THE BUGGY MAP CRDT

Algorithm 12 The buggy map CRDT algorithm, taken from [Kle22].
on initialisation do

values := {}
end on

on request to read value for key k do
if ∃t, v.(t, k, v) ∈ values then return v else return null

end on

on request to set key k to value v do
t := newTimestamp() . globally unique, e.g. Lamport timestamp
broadcast (set, t, k, v) by causal broadcast (including to self)

end on

on delivering (set, t, k, v) by causal broadcast do
previous := {(t′, k′, v′) ∈ values | k′ = k}
if previous = {} ∨ ∀(t′, k′, v′) ∈ previous. t′ < t then

values := (values \ previous) ∪ {(t, k, v)}
end if

end on

on request to delete key k do
if ∃t, v. (t, k, v) ∈ values then

broadcast (delete, t) by causal broadcast (including to self)
end if

end on

on delivering (delete, t) by causal broadcast do
values := {(t′, k′, v′) ∈ values | t′ 6= t}

end on

242

I.1. ORIGINAL SPECIFICATION

Listing I.1: Excerpt from the implementation of the buggy map CRDT
in VeriFx.

1 enum MapOp [K, V] { Put(k: K, v: V) | Delete (k: K) }
2 enum MapMsg [K, V] {
3 PutMsg (t: Clock , k: K, v: V) |
4 DeleteMsg (t: Clock , k: K) |
5 NopMsg ()
6 }
7 class KMap[K, V](clock: Clock , values: Map[K, Tuple [Clock , V]])
8 extends CmRDT [MapOp [K, V], MapMsg [K, V], KMap[K, V]] {
9 def contains (k: K): Boolean = this. values . contains (k)

10 def get(k: K): V = this. values .get(k).snd
11
12 // Prepare phase for the "put" operation
13 // "put" corresponds to the "set" operation in the

specification
14 def preparePut (k: K, v: V) = {
15 val t = this. clock
16 new PutMsg (t, k, v)
17 }
18 // Effect phase for incoming "put" messages
19 def put(t: Clock , k: K, v: V) = {
20 val newClock = this. clock .sync(t)
21 if (! this. values . contains (k) ||
22 this. values .get(k).fst. smaller (t))
23 new KMap(newClock , this. values .add(k, new Tuple (t, v)))
24 else
25 new KMap(newClock , this. values)
26 }
27
28 // Prepare phase for the " delete " operation
29 def prepareDelete (k: K) = {
30 if (this. values . contains (k)) {
31 val t = this. values .get(k).fst
32 new DeleteMsg [K, V](t, k)
33 }
34 else
35 new NopMsg [K, V]()
36 }
37 // Effect phase for incoming " delete " messages
38 def delete (t: Clock , k: K) = {
39 if (this. values . contains (k) && this. values .get(k).fst == t)
40 new KMap(this.clock , this. values . remove (k))
41 else
42 new KMap(this.clock , this. values)
43 }
44
45 override def equals (that: KMap[K, V]) =
46 this. values == that. values
47 }

243

APPENDIX I. VERIFICATION OF THE BUGGY MAP CRDT

broadcasts a (set, t, k, v) message. When receiving such a message,
the replica checks if it already stores a value for this key. If this is
not the case, or if the previous value has a smaller timestamp t′ < t,
then it assigns the incoming value v to the key k, thereby, overriding
any previous value. On the other hand, if the previous value has a
bigger timestamp, then the incoming set message is ignored and the
previous value is kept.

delete(k). When preparing a delete operation that deletes a key k, the
replica fetches the timestamp t at which that key was inserted and
broadcasts a (delete, t) message. Note that the key itself is not
added to the message because set always inserts a single key with
a unique timestamp, hence, the timestamp t uniquely identifies the
key. When receiving a (delete, t) message, the replica removes the
key that was inserted at timestamp t (if it is still present).

I.2 Implementation in VeriFx

Listing I.1 shows the implementation of the buggy map CRDT in Ver-
iFx. Every replica (i.e. every instance of the KMap class) maintains a local
Lamport clock (consisting of a counter and a replica identifier) and keeps
a dictionary that maps keys to timestamped values (i.e. a tuple contain-
ing a timestamp and a value). This implementation strategy is slightly
different from Algorithm 12 but more efficient because a dictionary allows
for constant-time lookup, insertion, and deletion. We also extended the
DeleteMsg such that it not only contains the timestamp t but also the
key to be deleted (Line 4). This allows for an efficient implementation of
delete since the replica knows which key to delete and does not have to
loop over the map to find the key whose value has timestamp t.

We override equality - which by default is structural equality - because
replicas have different Lamport clocks [Lam78] as our implementation of
the clocks keeps a unique replica identifier. Hence, two replicas are con-
sidered equal if they have the same values, independent of their clocks.
We also renamed the set operation to put. The remainder of the imple-
mentation is a straightforward translation from the specification.

244

I.2. IMPLEMENTATION IN VERIFX

Listing I.2: Encoding the assumptions of the Map CRDT in VeriFx.

1 override def reachable (): Boolean = {
2 // every value must have a unique timestamp
3 !(exists (k1: K, k2: K) {
4 k1 != k2 &&
5 this. values .get(k1).fst == this. values .get(k2).fst
6 }) &&
7 // All the values in the map must have a timestamp < than our

local clock (since we sync our clock on incoming updates)
8 this. values . values (). forall ((entry: Tuple [Clock , V]) =>

entry .fst. counter < this. clock . counter)
9 }

10 private def noValueFromFuture (r1: KMap[K, V], r2: KMap[K, V]) {
11 r1. values . values (). forall ((entry: Tuple [Clock , V]) => {
12 val t = entry .fst
13 (t. replica == r2. clock . replica) =>:
14 (t. counter < r2. clock . counter)
15 })
16 }
17 override def compatible (that: KMap[K, V]) = {
18 // replicas have unique IDs
19 (this. clock . replica != that. clock . replica) &&
20 // we have no value from the future of the other replica
21 this. noValueFromFuture (this , that) &&
22 // the other did not observe a value from our future
23 this. noValueFromFuture (that , this) &&
24 // unique timestamps
25 !(exists (k1: K, k2: K) {
26 k1 != k2 && this. values .get(k1).fst ==

that. values .get(k2).fst
27 }) &&
28 // replicas cannot store different values for the same key

and timestamp
29 !(exists (k: K) {
30 val thisTuple = this. values .get(k)
31 val thisTimestamp = thisTuple .fst
32 val thisValue = thisTuple .snd
33 val thatTuple = that. values .get(k)
34 val thatTimestamp = thatTuple .fst
35 val thatValue = thatTuple .snd
36 (thisTimestamp == thatTimestamp) && (thisValue != thatValue)
37 })
38 }

245

APPENDIX I. VERIFICATION OF THE BUGGY MAP CRDT

I.3 Verification in VeriFx

After implementing the buggy map CRDT in VeriFx we proceeded to the
verification of the map. As explained in Section 6.5.2.2, VeriFx returned
invalid counterexamples because it is not aware of the CRDT’s assump-
tions which are implicit in the design. For instance, VeriFx does not
know that replicas have unique IDs nor does it know the relation between
a replica’s clock and the values it observed. We need to encode these as-
sumptions explicitly such that VeriFx does not consider cases that cannot
occur in practice. To this end, we override the reachable and compatible
predicates (cf. Section 6.4.1.2). The former defines which states are reach-
able (i.e. valid), while the latter defines which replicas are compatible.

Listing I.2 shows the implementation of the reachable and
compatible predicates. First, we define a state to be reachable iff every
value has a unique timestamp (Line 3 to 6) and all values have a times-
tamp whose count is smaller than the replica’s local clock (Line 8). The
latter property follows from the fact that the dictionary is constructed by
successive insertions and every insertion synchronizes the replica’s clock
with the timestamp of the inserted element.

Second, we define two replicas to be compatible iff:

• they have unique IDs (Line 19),

• they did not observe values with a timestamp that is bigger than the
current clock of the replica that inserted that value (Line 21 to 23)
because that would mean that some replica observed a value from
the future of the origin replica which is not possible,

• they do not have the same timestamp for different keys (Line 25
to 27) because every insertion inserts a single key with a unique
timestamp,

• for every key k for which they store the same timestamp t they also
store the same value v (Line 29 to 37) because every timestamp
uniquely identifies one insertion: PutMsg(t, k, v).

Clearly, the above assumptions are not straightforward and are in fact
implicit in the original specification, but are nevertheless vital to the cor-
rectness of the algorithm. In practice, many CRDTs make similar implicit
assumptions which is the reason they are complex and difficult to get right.

246

I.3. VERIFICATION IN VERIFX

enum V { v0 | v2 }
enum K { k1 }
val s1 = KMap(Clock (1, 1) , Map ())
val s2 = KMap(Clock (2, 9) , Map(k1 -> (Clock (4, 2) , v2)))
val s3 = KMap(Clock (3, 3) , Map(k1 -> (Clock (4, 2) , v2)))
val x = Put(k1 , v0) // operation generated by s1
// The prepare phase will broadcast the following message:
// s1. preparePut (k1 , v0) = PutMsg (Clock (1, 1) , k1 , v0))
val y = Delete (k1) // operation generated by s2
// s2. prepareDelete (k1) = DeleteMsg (Clock (4, 2) , k1)

(a) Simplified counterexample returned by VeriFx.

s3
{ k1 -> ((4, 2), v2) } PutMsg((1, 1), k1, v0))

DeleteMsg((4, 2), k1)

{ k1 -> ((4, 2), v2) }

{ }
PutMsg((1, 1), k1, v0))

{ k1 -> ((1, 1), v0) }

DeleteMsg((4, 2), k1)
{ }

s3
{ k1 -> ((4, 2), v2) }

(b) Visualization of the counterexample returned by VeriFx.

Figure I.1: Counterexample for the buggy Map CRDT, found by VeriFx.

Counterexample. After defining all assumptions described above, Ver-
iFx found a valid counterexample which is shown in Fig. I.1a. We simpli-
fied the counterexample by renaming the keys and values and removing
those that do not affect the outcome. The counterexample is equivalent
to the one that was found manually by Nair (cf. [Kle22]). It consists of a
corner case in which the Put and Delete operations do not commute and
thus may cause replicas to diverge.

Recall that a counterexample is a mapping from variables (defined by
the proof) to values that break the proof. In this case, the CmRDTProof2
trait (cf. Section 6.4.1.2) that was used to check commutativity of the op-
erations, defines three variables s1, s2, and s3 representing the state of the
replicas, and two variables x = Put(k1, v0) and y = Delete(k1) rep-
resenting concurrent operations that were generated by replica s1 and s2
respectively. These replicas first prepare a message for the operations (re-
spectively, PutMsg(Clock(1, 1), k1, v0)) and DeleteMsg(Clock(4,
2), k1)) and broadcast those messages to every replica. Every replica
receives these messages, possibly in a different order, and applies them.

247

APPENDIX I. VERIFICATION OF THE BUGGY MAP CRDT

Depending on the order in which replica s3 applies the operations,
the outcome is different. This is visualized in Fig. I.1b. If s3 first pro-
cesses the DeleteMsg(Clock(4, 2), k1) message then key k1 is gone
because the stored timestamp matches the timestamp that was requested
to delete. Afterwards, when processing the PutMsg(Clock(1, 1), k1,
v0) message, the replica will add key k1 with value v0. When applying
the operations the other way around, the outcome is different because the
PutMsg(Clock(1, 1), k1, v0) message is ignored since its timestamp is
smaller than the timestamp s3 currently stores for that key: Clock(1, 1)
< Clock(4, 2). Later, when processing the DeleteMsg(Clock(4, 2),
k1) message, s3 effectively deletes key k1 because the timestamp matches
the one that is stored. Thus, after the first execution, the resulting state
contains key k1, whereas, after the second execution, k1 is not present in
the map. This explains the divergence bug.

248

Bibliography

[Aha+95] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli,
and Phillip W Hutto. “Causal memory: Definitions, imple-
mentation, and programming”. In: Distributed Computing 9.1
(1995), pp. 37–49. doi: 10.1007/BF01784241.

[Akk] Akka. Implementation of a Positive-Negative Counter CRDT
in Akka. https://github.com/akka/akka/blob/main/
akka-distributed-data/src/main/scala/akka/cluster/
ddata/PNCounter.scala. Accessed: 04-07-2022.

[Alo+08] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe
Rohm. “The Cost of Serializability on Platforms That Use
Snapshot Isolation”. In: 2008 IEEE 24th International Con-
ference on Data Engineering. 2008, pp. 576–585. doi: 10.
1109/ICDE.2008.4497466.

[Anta] AntidoteDB. Implementation of a Disable-Wins Flag CRDT
in AntidoteDB. https : / / github . com / AntidoteDB /
antidote / blob / master / apps / antidote _ crdt / src /
antidote_crdt_flag_dw.erl. Accessed: 19-07-2022.

[Antb] AntidoteDB. Implementation of an Enable-Wins Flag CRDT
in AntidoteDB. https : / / github . com / AntidoteDB /
antidote / blob / master / apps / antidote _ crdt / src /
antidote_crdt_flag_ew.erl. Accessed: 19-07-2022.

[ASB15] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. “Effi-
cient State-based CRDTs by Delta-Mutation”. In: Int. Con-
ference on Networked Systems (May 13–15, 2015). Ed. by
Ahmed Bouajjani and Hugues Fauconnier. Springer-Verslag.
Agadir, Morocco, 2015, pp. 62–76. doi: 10.1007/978- 3-
319-26850-7_5.

249

https://doi.org/10.1007/BF01784241
https://github.com/akka/akka/blob/main/akka-distributed-data/src/main/scala/akka/cluster/ddata/PNCounter.scala
https://github.com/akka/akka/blob/main/akka-distributed-data/src/main/scala/akka/cluster/ddata/PNCounter.scala
https://github.com/akka/akka/blob/main/akka-distributed-data/src/main/scala/akka/cluster/ddata/PNCounter.scala
https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1109/ICDE.2008.4497466
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5

BIBLIOGRAPHY

[Att+16] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam
Morrison, Hongseok Yang, and Marek Zawirski. “Specifica-
tion and Complexity of Collaborative Text Editing”. In: Pro-
ceedings of the 2016 ACM Symposium on Principles of Dis-
tributed Computing. PODC ’16. Chicago, Illinois, USA: As-
sociation for Computing Machinery, 2016, pp. 259–268. isbn:
9781450339643. doi: 10.1145/2933057.2933090.

[Bai] Peter Bailis. Stickiness and Client-Server Session Guaran-
tees. http://www.bailis.org/blog/stickiness- and-
client - server - session - guarantees/. Accessed: 23-08-
2022.

[Bai+13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, and Ion Stoica. “Highly Available
Transactions: Virtues and Limitations”. In: Proc. VLDB En-
dow. 7.3 (Nov. 2013), pp. 181–192. issn: 2150-8097. doi: 10.
14778/2732232.2732237.

[Bai+14] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi,
Joseph M. Hellerstein, and Ion Stoica. “Coordination Avoid-
ance in Database Systems”. In: Proc. VLDB Endow. 8.3
(Nov. 2014), pp. 185–196. issn: 2150-8097. doi: 10.14778/
2735508.2735509.

[Bal+15] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc
Shapiro. “Putting Consistency Back into Eventual Consis-
tency”. In: 10th European Conference on Computer Systems.
EuroSys ’15. Bordeaux, France, 2015, 6:1–6:16. isbn: 978-1-
4503-3238-5. doi: 10.1145/2741948.2741972.

[Bal+18] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Ro-
drigues, and Nuno Preguiça. “IPA: Invariant-preserving Ap-
plications for Weakly Consistent Replicated Databases”. In:
Proc. VLDB Endow. 12.4 (Dec. 2018), pp. 404–418. issn:
2150-8097. doi: 10.14778/3297753.3297760.

[Bar+06] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-
cobs, and K. Rustan M. Leino. “Boogie: A Modular Reusable
Verifier for Object-Oriented Programs”. In: Formal Meth-
ods for Components and Objects. Ed. by Frank S. de Boer,

250

https://doi.org/10.1145/2933057.2933090
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.14778/3297753.3297760

BIBLIOGRAPHY

Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de
Roever. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 364–387. doi: 10.1007/11804192_17.

[BAS17] Carlos Baquero, Paulo S. Almeida, and Ali Shoker.
“Pure Operation-Based Replicated Data Types”. In: CoRR
abs/1710.04469 (2017). eprint: 1710.04469.

[BFP] Dina Borrego, Carla Ferreira, and Nuno Preguiça. “Verifi-
cação e Reforço de Invariantes Aplicacionais no Antidote
SQL”. In: INForum 2022, to appear.

[BG13] Peter Bailis and Ali Ghodsi. “Eventual Consistency Today:
Limitations, Extensions, and Beyond: How Can Applications
Be Built on Eventually Consistent Infrastructure given No
Guarantee of Safety?” In: Queue 11.3 (Mar. 2013), pp. 20–
32. issn: 1542-7730. doi: 10.1145/2460276.2462076.

[BHG87] Philip A Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency control and recovery in database systems.
Vol. 370. Addison-wesley Reading, 1987.

[Bie+12] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc
Shapiro, Carlos Baquero, Valter Balegas, and Sérgio Duarte.
An optimized conflict-free replicated set. 2012. doi: 10 .
48550/ARXIV.1210.3368.

[Bir+82] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and
Roger M. Needham. “Grapevine: An Exercise in Distributed
Computing”. In: Commun. ACM 25.4 (Apr. 1982), pp. 260–
274. issn: 0001-0782. doi: 10.1145/358468.358487.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
“The Spec# Programming System: An Overview”. In: Con-
struction and Analysis of Safe, Secure, and Interoperable
Smart Devices. Ed. by Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and Traian Muntean. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 49–69. isbn:
978-3-540-30569-9. doi: 10.1007/978-3-540-30569-9_3.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. “Nitpick: A
Counterexample Generator for Higher-Order Logic Based on
a Relational Model Finder”. In: Interactive Theorem Proving.

251

https://doi.org/10.1007/11804192_17
1710.04469
https://doi.org/10.1145/2460276.2462076
https://doi.org/10.48550/ARXIV.1210.3368
https://doi.org/10.48550/ARXIV.1210.3368
https://doi.org/10.1145/358468.358487
https://doi.org/10.1007/978-3-540-30569-9_3

BIBLIOGRAPHY

Ed. by Matt Kaufmann and Lawrence C. Paulson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 131–146.
isbn: 978-3-642-14052-5.

[Böh+11] Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, and Tjark
Weber. “Reconstruction of Z3’s Bit-Vector Proofs in HOL4
and Isabelle/HOL”. In: Certified Programs and Proofs. Ed. by
Jean-Pierre Jouannaud and Zhong Shao. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 183–198. isbn: 978-3-
642-25379-9. doi: 10.1007/978-3-642-25379-9_15.

[BR95] Adel Bouhoula and Michaël Rusinowitch. “Implicit induction
in conditional theories”. In: Journal of automated reasoning
14.2 (1995), pp. 189–235. doi: 10.1007/BF00881856.

[Bre00] Eric A. Brewer. “Towards Robust Distributed Systems (Ab-
stract)”. In: Proceedings of the Nineteenth Annual ACM Sym-
posium on Principles of Distributed Computing. PODC ’00.
Portland, Oregon, USA: Association for Computing Machin-
ery, 2000, p. 7. isbn: 1581131836. doi: 10.1145/343477.
343502.

[Bre12] Eric Brewer. “CAP Twelve years later: How the “Rules” have
Changed”. In: Computer 45 (Feb. 2012), pp. 23–29. doi: 10.
1109/MC.2012.37.

[BSW04] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. “From session
causality to causal consistency”. In: 12th Euromicro Confer-
ence on Parallel, Distributed and Network-Based Processing.
2004, pp. 152–158. doi: 10.1109/EMPDP.2004.1271440.

[Bur+12] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and
Benjamin P. Wood. “Cloud Types for Eventual Consistency”.
In: 26th European Conference on Object-Oriented Program-
ming. ECOOP’12. Beijing, China: Springer-Verlag, 2012,
pp. 283–307. isbn: 978-3-642-31056-0. doi: 10.1007/978-
3-642-31057-7_14.

[Bur+14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang,
and Marek Zawirski. “Replicated Data Types: Specification,
Verification, Optimality”. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’14. San Diego, California, USA: As-

252

https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/BF00881856
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14

BIBLIOGRAPHY

sociation for Computing Machinery, 2014, pp. 271–284. isbn:
9781450325448. doi: 10.1145/2535838.2535848.

[BW10] Sascha Böhme and Tjark Weber. “Fast LCF-style proof re-
construction for Z3”. In: International Conference on Inter-
active Theorem Proving. Springer. 2010, pp. 179–194. doi:
10.1007/978-3-642-14052-5_14.

[Cal+15] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Do-
minik Gabi, Pieter Hooimeijer, Martino Luca, Peter O’Hearn,
Irene Papakonstantinou, Jim Purbrick, and Dulma Ro-
driguez. “Moving Fast with Software Verification”. In: NASA
Formal Methods. Ed. by Klaus Havelund, Gerard Holzmann,
and Rajeev Joshi. Cham: Springer International Publishing,
2015, pp. 3–11. isbn: 978-3-319-17524-9. doi: 10.1007/978-
3-319-17524-9_1.

[Cet+14] Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden,
David Maier, John Meehan, Andrew Pavlo, Michael Stone-
braker, Erik Sutherland, Nesime Tatbul, Kristin Tufte, Hao
Wang, and Stanley Zdonik. “S-Store: A Streaming NewSQL
System for Big Velocity Applications”. In: Proc. VLDB En-
dow. 7.13 (Aug. 2014), pp. 1633–1636. issn: 2150-8097. doi:
10.14778/2733004.2733048.

[De +19a] Kevin De Porre, Florian Myter, Christophe De Troyer,
Christophe Scholliers, Wolfgang De Meuter, and Elisa Gon-
zalez Boix. “A Generic Replicated Data Type for Strong
Eventual Consistency”. In: Proceedings of the 6th Workshop
on Principles and Practice of Consistency for Distributed
Data. PaPoC ’19. Dresden, Germany: Association for Com-
puting Machinery, 2019. isbn: 9781450362764. doi: 10.1145/
3301419.3323974.

[De +19b] Kevin De Porre, Florian Myter, Christophe De Troyer,
Christophe Scholliers, Wolfgang De Meuter, and Elisa Gon-
zalez Boix. “Putting Order in Strong Eventual Consistency”.
In: Distributed Applications and Interoperable Systems. Ed.
by José Pereira and Laura Ricci. Cham: Springer Interna-
tional Publishing, 2019, pp. 36–56. isbn: 978-3-030-22496-7.
doi: 10.1007/978-3-030-22496-7_3.

253

https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.14778/2733004.2733048
https://doi.org/10.1145/3301419.3323974
https://doi.org/10.1145/3301419.3323974
https://doi.org/10.1007/978-3-030-22496-7_3

BIBLIOGRAPHY

[De +20] Kevin De Porre, Florian Myter, Christophe Scholliers, and
Elisa Gonzalez Boix. “CScript: A distributed programming
language for building mixed-consistency applications”. In: J.
Parallel Distributed Comput. 144 (2020), pp. 109–123. doi:
10.1016/j.jpdc.2020.05.010.

[De +21] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa
Gonzalez Boix. “ECROs: Building Global Scale Systems from
Sequential Code”. In: Proc. ACM Program. Lang. 5.OOPSLA
(Nov. 2021). doi: 10.1145/3485484.

[DeC+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. “Dynamo: Amazon’s Highly Available Key-value
Store”. In: 21st ACM SIGOPS Symp. on Operating Sys-
tems Principles. SOSP ’07. Stevenson, Washington, USA,
2007, pp. 205–220. isbn: 978-1-59593-591-5. doi: 10.1145/
1323293.1294281.

[DFGed] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix.
“VeriFx: Correct Replicated Data Types for the Masses”. In:
Proc. ACM Program. Lang. OOPSLA (Submitted).

[DG19] Kevin De Porre and Elisa Gonzalez Boix. “Squirrel: An
Extensible Distributed Key-Value Store”. In: Proceedings
of the 4th ACM SIGPLAN International Workshop on
Meta-Programming Techniques and Reflection. META 2019.
Athens, Greece: Association for Computing Machinery, 2019,
pp. 21–30. isbn: 9781450369855. doi: 10.1145/3358502.
3361271.

[Dim+14] Dimitar Dimitrov, Veselin Raychev, Martin Vechev, and Eric
Koskinen. “Commutativity Race Detection”. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’14. Edin-
burgh, United Kingdom: Association for Computing Machin-
ery, 2014, pp. 305–315. isbn: 9781450327848. doi: 10.1145/
2594291.2594322.

254

https://doi.org/10.1016/j.jpdc.2020.05.010
https://doi.org/10.1145/3485484
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/3358502.3361271
https://doi.org/10.1145/3358502.3361271
https://doi.org/10.1145/2594291.2594322
https://doi.org/10.1145/2594291.2594322

BIBLIOGRAPHY

[EG89] C. A. Ellis and S. J. Gibbs. “Concurrency Control in Group-
ware Systems”. In: Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data. SIGMOD
’89. Portland, Oregon, USA: Association for Computing Ma-
chinery, 1989, pp. 399–407. isbn: 0897913175. doi: 10.1145/
67544.66963.

[EJ09] Cecchet Emmanuel and Marguerite Julie. RUBiS: Rice Uni-
versity Bidding System. http://rubis.ow2.org/. 2009.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 —
Where Programs Meet Provers”. In: Programming Languages
and Systems. Ed. by Matthias Felleisen and Philippa Gard-
ner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 125–128. isbn: 978-3-642-37036-6. doi: 10.1007/978-
3-642-37036-6_8.

[GL02] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant Web
Services”. In: SIGACT News 33.2 (June 2002), pp. 51–59.
issn: 0163-5700. doi: 10.1145/564585.564601.

[Gom+17] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mul-
ligan, and Alastair R. Beresford. “Verifying Strong Even-
tual Consistency in Distributed Systems”. In: Proc. ACM
Program. Lang. 1.OOPSLA (Oct. 2017), 109:1–109:28. issn:
2475-1421. doi: 10.1145/3133933.

[Goo] Google. Protocol Buffers. https://developers.google.
com/protocol-buffers. Accessed: 10-10-2022.

[Got+16] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Na-
jafzadeh, and Marc Shapiro. “’Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed Sys-
tems”. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’16. St. Petersburg, FL, USA: Associa-
tion for Computing Machinery, 2016, pp. 371–384. isbn:
9781450335492.

[GPS16] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. “Incremental Consistency Guarantees for Repli-
cated Objects”. In: 12th USENIX Symposium on Operat-

255

https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
http://rubis.ow2.org/
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

BIBLIOGRAPHY

ing Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016. USENIX Association,
2016, pp. 169–184. isbn: 978-1-931971-33-1. doi: 10.5555/
3026877.3026891.

[Hel15] Pat Helland. “Immutability Changes Everything: We Need
It, We Can Afford It, and the Time is Now.” In: Queue 13.9
(Nov. 2015), pp. 101–125. issn: 1542-7730. doi: 10.1145/
2857274.2884038.

[HL19] Farzin Houshmand and Mohsen Lesani. “Hamsaz: Replica-
tion Coordination Analysis and Synthesis”. In: Proc. ACM
Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290387.

[Hol+16] Brandon Holt, James Bornholt, Irene Zhang, Dan R. K.
Ports, Mark Oskin, and Luis Ceze. “Disciplined Inconsis-
tency with Consistency Types”. In: Proceedings of the Sev-
enth ACM Symposium on Cloud Computing, Santa Clara,
CA, USA, October 5-7, 2016. ACM, 2016, pp. 279–293. doi:
10.1145/2987550.2987559.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability:
A Correctness Condition for Concurrent Objects”. In: ACM
Trans. Program. Lang. Syst. 12.3 (July 1990), pp. 463–492.
issn: 0164-0925. doi: 10.1145/78969.78972.

[Imi+03] Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaël
Rusinowitch. “Proving Correctness of Transformation Func-
tions in Real-Time Groupware”. In: Proceedings of the Eighth
Conference on European Conference on Computer Supported
Cooperative Work. ECSCW’03. Helsinki, Finland: Kluwer
Academic Publishers, 2003, pp. 277–293. doi: 10 . 5555 /
1241889.1241904.

[Imi22] Abdessamad Imine. Exchange of mails regarding OT, and un-
published register and stack designs. personal communication.
Mar. 10, 2022.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
“Featherweight Java: A Minimal Core Calculus for Java and
GJ”. In: ACM Trans. Program. Lang. Syst. 23.3 (May 2001),
pp. 396–450. issn: 0164-0925. doi: 10.1145/503502.503505.

256

https://doi.org/10.5555/3026877.3026891
https://doi.org/10.5555/3026877.3026891
https://doi.org/10.1145/2857274.2884038
https://doi.org/10.1145/2857274.2884038
https://doi.org/10.1145/3290387
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/78969.78972
https://doi.org/10.5555/1241889.1241904
https://doi.org/10.5555/1241889.1241904
https://doi.org/10.1145/503502.503505

BIBLIOGRAPHY

[Jep] Jepsen, LLC. Linearizability. https : / / jepsen . io /
consistency/models/linearizable. Accessed: 2-12-2022.

[JR18] Radha Jagadeesan and James Riely. “Eventual Consistency
for CRDTs”. In: Programming Languages and Systems. Ed.
by Amal Ahmed. Cham: Springer International Publishing,
2018, pp. 968–995. isbn: 978-3-319-89884-1. doi: 10.1007/
978-3-319-89884-1_34.

[Jua+16] Rubén de Juan-Marín, Hendrik Decker, José Enrique
Armendáriz-Íñigo, José M Bernabéu-Aubán, and Francesc D
Muñoz-Escoí. “Scalability approaches for causal multicast: a
survey”. In: Computing 98.9 (2016), pp. 923–947. doi: 10.
1007/s00607-015-0479-0.

[Kak+18] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and
Suresh Jagannathan. “Safe Replication through Bounded
Concurrency Verification”. In: Proc. ACM Program. Lang.
2.OOPSLA (Oct. 2018). doi: 10.1145/3276534.

[Kak+19] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and
Suresh Jagannathan. “Mergeable Replicated Data Types”.
In: Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). doi:
10.1145/3360580.

[KB17] Martin Kleppmann and Alastair R Beresford. “A Conflict-
Free Replicated JSON Datatype”. In: IEEE Trans. on Paral-
lel and Distributed Systems. TPDS’17 28.10 (2017), pp. 2733–
2746. doi: 10.1109/TPDS.2017.2697382.

[Ker+01] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro,
and Peter Druschel. “The IceCube Approach to the Recon-
ciliation of Divergent Replicas”. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Principles of Distributed
Computing. PODC ’01. Newport, Rhode Island, USA: Asso-
ciation for Computing Machinery, 2001, pp. 210–218. isbn:
1581133839. doi: 10.1145/383962.384020.

[KJ14] Gowtham Kaki and Suresh Jagannathan. “A Relational
Framework for Higher-Order Shape Analysis”. In: SIGPLAN
Not. 49.9 (Aug. 2014), pp. 311–324. issn: 0362-1340. doi:
10.1145/2692915.2628159.

257

https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/models/linearizable
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1007/s00607-015-0479-0
https://doi.org/10.1007/s00607-015-0479-0
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3360580
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/383962.384020
https://doi.org/10.1145/2692915.2628159

BIBLIOGRAPHY

[Kle15] Martin Kleppmann. A Critique of the CAP Theorem. 2015.
doi: 10.48550/ARXIV.1509.05393.

[Kle22] Martin Kleppmann. Assessing the understandability of a
distributed algorithm by tweeting buggy pseudocode. Tech.
rep. UCAM-CL-TR-969. University of Cambridge, Computer
Laboratory, May 2022. doi: 10.48456/tr-969. url: https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-969.pdf.

[Köh+20] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger,
Alessandro Margara, and Guido Salvaneschi. “Rethinking
Safe Consistency in Distributed Object-Oriented Program-
ming”. In: Proc. ACM Program. Lang. OOPSLA (2020). doi:
10.1145/3428256.

[Kul+11] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin
Sui, and Keshav Pingali. “Exploiting the Commutativity Lat-
tice”. In: Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation.
PLDI ’11. San Jose, California, USA: Association for Com-
puting Machinery, 2011, pp. 542–555. isbn: 9781450306638.
doi: 10.1145/1993498.1993562.

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events
in a Distributed System”. In: Communications of the ACM
21.7 (1978), pp. 558–565. doi: 10.1145/359545.359563.

[Lam94] Leslie Lamport. “The Temporal Logic of Actions”. In: ACM
Trans. Program. Lang. Syst. 16.3 (May 1994), pp. 872–923.
issn: 0164-0925. doi: 10.1145/177492.177726.

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Veri-
fier for Functional Correctness”. In: Logic for Programming,
Artificial Intelligence, and Reasoning. Ed. by Edmund M.
Clarke and Andrei Voronkov. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 348–370. isbn: 978-3-642-17511-
4. doi: 10.1007/978-3-642-17511-4_20.

[LF21] Hongjin Liang and Xinyu Feng. “Abstraction for Conflict-
Free Replicated Data Types”. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming
Language Design and Implementation. PLDI 2021. Vir-
tual, Canada: Association for Computing Machinery, 2021,

258

https://doi.org/10.48550/ARXIV.1509.05393
https://doi.org/10.48456/tr-969
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-969.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-969.pdf
https://doi.org/10.1145/3428256
https://doi.org/10.1145/1993498.1993562
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/978-3-642-17511-4_20

BIBLIOGRAPHY

pp. 636–650. isbn: 9781450383912. doi: 10.1145/3453483.
3454067.

[LHL20] Xiao Li, Farzin Houshmand, and Mohsen Lesani. “Hampa:
Solver-Aided Recency-Aware Replication”. In: Computer
Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceed-
ings, Part I. Vol. 12224. Lecture Notes in Computer Science.
Springer, 2020, pp. 324–349. doi: 10.1007/978- 3- 030-
53288-8_16.

[Li+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues. “Making Geo-
Replicated Systems Fast as Possible, Consistent When Neces-
sary”. In: Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation. OSDI’12. Hol-
lywood, CA, USA: USENIX Association, 2012, pp. 265–278.
isbn: 9781931971966. doi: 10.5555/2387880.2387906.

[Li+14] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Ro-
drigo Rodrigues, and Viktor Vafeiadis. “Automating the
Choice of Consistency Levels in Replicated Systems”. In: Pro-
ceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference. USENIX ATC’14. Philadelphia,
PA: USENIX Association, 2014, pp. 281–292. isbn: 978-1-
931971-10-2. doi: 10.5555/2643634.2643664.

[Lig] Lightbend Inc. Serialization. https://doc.akka.io/docs/
akka/current/serialization.html. Accessed: 10-10-2022.

[Lin] Greg Linden. Slides from my talk at Stanford. http : / /
glinden.blogspot.com/2006/12/slides-from-my-talk-
at-stanford.html. Accessed: 14-10-2022.

[Liu+20] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Ku-
per, Michael Hicks, and Niki Vazou. “Verifying Replicated
Data Types with Typeclass Refinements in Liquid Haskell”.
In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi:
10.1145/3428284.

[LL04] Du Li and Rui Li. “Preserving Operation Effects Relation in
Group Editors”. In: Proceedings of the 2004 ACM Confer-
ence on Computer Supported Cooperative Work. CSCW ’04.

259

https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.5555/2387880.2387906
https://doi.org/10.5555/2643634.2643664
https://doc.akka.io/docs/akka/current/serialization.html
https://doc.akka.io/docs/akka/current/serialization.html
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
https://doi.org/10.1145/3428284

BIBLIOGRAPHY

Chicago, Illinois, USA: Association for Computing Machin-
ery, 2004, pp. 457–466. isbn: 1581138105. doi: 10.1145/
1031607.1031683.

[LM10] K. Rustan M. Leino and Michał Moskal. “Usable Auto-Active
Verification”. In: Usable Verification Workshop. 2010. url:
http://fm.csl.sri.com/UV10/.

[Lop+19] Pedro Lopes, João Sousa, Valter Balegas, Carla Ferreira, Sé-
gio Duarte, Annette Bieniusa, Rodrigo Rodrigues, and Nuno
Preguiça. Antidote SQL: Relaxed When Possible, Strict When
Necessary. 2019. doi: 10.48550/ARXIV.1902.03576.

[LPR18] Cheng Li, Nuno Preguiça, and Rodrigo Rodrigues. “Fine-
grained consistency for geo-replicated systems”. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, 2018, pp. 359–372. isbn:
978-1-931971-44-7. doi: 10.5555/3277355.3277391.

[mac] macrotrends. Amazon Revenue 2010-2022. https://www.
macrotrends.net/stocks/charts/AMZN/amazon/revenue.
Accessed: 14-10-2022.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient
SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by C. R. Ramakrishnan and
Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/
978-3-540-78800-3_24.

[MB09] Leonardo de Moura and Nikolaj Bjørner. “Generalized, ef-
ficient array decision procedures”. In: 2009 Formal Methods
in Computer-Aided Design. 2009, pp. 45–52. doi: 10.1109/
FMCAD.2009.5351142.

[MM18] Matthew Milano and Andrew C. Myers. “MixT: A Language
for Mixing Consistency in Geodistributed Transactions”. In:
Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 2018.
Philadelphia, PA, USA: ACM, 2018, pp. 226–241. isbn: 978-
1-4503-5698-5. doi: 10.1145/3192366.3192375.

260

https://doi.org/10.1145/1031607.1031683
https://doi.org/10.1145/1031607.1031683
http://fm.csl.sri.com/UV10/
https://doi.org/10.48550/ARXIV.1902.03576
https://doi.org/10.5555/3277355.3277391
https://www.macrotrends.net/stocks/charts/AMZN/amazon/revenue
https://www.macrotrends.net/stocks/charts/AMZN/amazon/revenue
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1145/3192366.3192375

BIBLIOGRAPHY

[MSD18] Florian Myter, Christophe Scholliers, and Wolfgang De
Meuter. “A CAPable Distributed Programming Model”. In:
Proceedings of the 2018 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2018. Boston, MA,
USA: ACM, 2018, pp. 88–98. isbn: 978-1-4503-6031-9. doi:
10.1145/3276954.3276957.

[MV15] Christopher Meiklejohn and Peter Van Roy. “Lasp: A Lan-
guage for Distributed, Coordination-free Programming”. In:
17th Int. Symp. on Principles and Practice of Declarative
Programming. PPDP ’15. Siena, Italy, 2015, pp. 184–195.
isbn: 978-1-4503-3516-4. doi: 10.1145/2790449.2790525.

[Néd+13] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Em-
manuel Desmontils. “LSEQ: An Adaptive Structure for Se-
quences in Distributed Collaborative Editing”. In: Proc. of
the 2013 ACM Symposium on Document Engineering. Do-
cEng ’13. Florence, Italy, Sept. 2013, pp. 37–46. isbn: 978-1-
4503-1789-4. doi: 10.1145/2494266.2494278.

[Nie+22] Abel Nieto, Léon Gondelman, Alban Reynaud, Amin
Timany, and Lars Birkedal. “Modular Verification of Op-
Based CRDTs in Separation Logic”. In: Proc. ACM Program.
Lang. 6.OOPSLA2 (Oct. 2022). doi: 10.1145/3563351. url:
https://doi.org/10.1145/3563351.

[NJ19] Kartik Nagar and Suresh Jagannathan. “Automated Param-
eterized Verification of CRDTs”. In: Computer Aided Verifi-
cation. Ed. by Isil Dillig and Serdar Tasiran. Cham: Springer
International Publishing, 2019, pp. 459–477. isbn: 978-3-030-
25543-5. doi: 10.1007/978-3-030-25543-5_26.

[NPS20] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. “Proving the
Safety of Highly-Available Distributed Objects”. In: Program-
ming Languages and Systems. Ed. by Peter Müller. Cham:
Springer International Publishing, 2020, pp. 544–571. isbn:
978-3-030-44914-8. doi: 10.1007/978-3-030-44914-8_20.

[OHe18] Peter W. O’Hearn. “Continuous Reasoning: Scaling the Im-
pact of Formal Methods”. In: Proceedings of the 33rd An-
nual ACM/IEEE Symposium on Logic in Computer Science.

261

https://doi.org/10.1145/3276954.3276957
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3563351
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-44914-8_20

BIBLIOGRAPHY

LICS ’18. Oxford, United Kingdom: Association for Comput-
ing Machinery, 2018, pp. 13–25. isbn: 9781450355834. doi:
10.1145/3209108.3209109.

[Ope] OpenJDK. jmh - OpenJDK. https://openjdk.java.net/
projects/code-tools/jmh/. Accessed: 13-05-2020.

[Ost+06] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad
Imine. “Tombstone Transformation Functions for Ensuring
Consistency in Collaborative Editing Systems”. In: 2006
International Conference on Collaborative Computing: Net-
working, Applications and Worksharing. 2006, pp. 1–10. doi:
10.1109/COLCOM.2006.361867.

[PK07] David J. Pearce and Paul H. J. Kelly. “A Dynamic Topo-
logical Sort Algorithm for Directed Acyclic Graphs”. In: J.
Exp. Algorithmics 11 (Feb. 2007), 1.7–es. issn: 1084-6654.
doi: 10.1145/1187436.1210590.

[Pon14] Julien Ponge. Avoiding Benchmarking Pitfalls on the JVM.
https : / / www . oracle . com / technical - resources /
articles/java/architect-benchmarking.html. Accessed:
13-05-2020. July 2014.

[Pre18] Nuno Preguiça. “Conflict-free Replicated Data Types: An
Overview”. In: (2018). doi: 10.48550/ARXIV.1806.10254.

[Ran+13] Aurel Randolph, Hanifa Boucheneb, Abdessamad Imine, and
Alejandro Quintero. “On Consistency of Operational Trans-
formation Approach”. In: Electronic Proceedings in Theoret-
ical Computer Science 107 (Feb. 2013), pp. 45–59. doi: 10.
4204/eptcs.107.5.

[RK15] Andrew Reynolds and Viktor Kuncak. “Induction for SMT
Solvers”. In: Verification, Model Checking, and Abstract In-
terpretation. Ed. by Deepak D’Souza, Akash Lal, and Kim
Guldstrand Larsen. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2015, pp. 80–98. isbn: 978-3-662-46081-8. doi: 10.
1007/978-3-662-46081-8_5.

[RNG96] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzen-
häuser. “An Integrating, Transformation-Oriented Approach
to Concurrency Control and Undo in Group Editors”. In:

262

https://doi.org/10.1145/3209108.3209109
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1145/1187436.1210590
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
https://doi.org/10.48550/ARXIV.1806.10254
https://doi.org/10.4204/eptcs.107.5
https://doi.org/10.4204/eptcs.107.5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5

BIBLIOGRAPHY

Proceedings of the 1996 ACM Conference on Computer Sup-
ported Cooperative Work. CSCW ’96. Boston, Massachusetts,
USA: Association for Computing Machinery, 1996, pp. 288–
297. isbn: 0897917650. doi: 10.1145/240080.240305.

[SCF97] Maher Suleiman, Michèle Cart, and Jean Ferrié. “Serializa-
tion of Concurrent Operations in a Distributed Collabora-
tive Environment”. In: Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work: The In-
tegration Challenge. GROUP ’97. Phoenix, Arizona, USA:
Association for Computing Machinery, 1997, pp. 435–445.
isbn: 0897918975. doi: 10.1145/266838.267369.

[SCF98] Maher Suleiman, Michèle Cart, and Jean Ferrié. “Concurrent
Operations in a Distributed and Mobile Collaborative En-
vironment”. In: Proceedings of the Fourteenth International
Conference on Data Engineering. ICDE ’98. USA: IEEE
Computer Society, 1998, pp. 36–45. isbn: 0818682892. doi:
10.5555/645483.656223.

[SE98] Chengzheng Sun and Clarence Ellis. “Operational Transfor-
mation in Real-time Group Editors: Issues, Algorithms, and
Achievements”. In: Proc. of the 1998 ACM Conference on
Computer Supported Cooperative Work. CSCW ’98. Seattle,
Washington, USA, 1998, pp. 59–68. isbn: 1-58113-009-0. doi:
10.1145/289444.289469.

[Sha+11a] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek
Zawirski. A comprehensive study of Convergent and Commu-
tative Replicated Data Types. Research Report RR-7506. Inria
– Centre Paris-Rocquencourt ; INRIA, Jan. 2011, p. 50.

[Sha+11b] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek
Zawirski. “Conflict-free Replicated Data Types”. In: 13th Int.
Symp. on Stabilization, Safety, and Security of Distributed
Systems. Ed. by Xavier Défago, Franck Petit, and Vincent
Villain. SSS’11. Springer-Verslag. Grenoble, France, 2011,
pp. 386–400. doi: 10.1007/978-3-642-24550-3_29.

[Sha17] Marc Shapiro. “Replicated Data Types”. In: Encyclopedia Of
Database Systems. Ed. by Ling Liu and M. Tamer Özsu.

263

https://doi.org/10.1145/240080.240305
https://doi.org/10.1145/266838.267369
https://doi.org/10.5555/645483.656223
https://doi.org/10.1145/289444.289469
https://doi.org/10.1007/978-3-642-24550-3_29

BIBLIOGRAPHY

Vol. Replicated Data Types. Springer-Verlag, July 2017,
pp. 1–5. doi: 10.1007/978-1-4899-7993-3_80813-1.

[SKJ15] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagan-
nathan. “Declarative Programming over Eventually Consis-
tent Data Stores”. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation. PLDI ’15. Portland, OR, USA: Associa-
tion for Computing Machinery, 2015, pp. 413–424. isbn:
9781450334686. doi: 10.1145/2737924.2737981.

[Sun+98] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang,
and David Chen. “Achieving Convergence, Causality Preser-
vation, and Intention Preservation in Real-Time Cooperative
Editing Systems”. In: ACM Trans. Comput.-Hum. Interact.
5.1 (Mar. 1998), pp. 63–108. issn: 1073-0516. doi: 10.1145/
274444.274447.

[Ter+13] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla,
Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam
Abu-Libdeh. “Consistency-Based Service Level Agreements
for Cloud Storage”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. SOSP
’13. Farminton, Pennsylvania: Association for Computing
Machinery, 2013, pp. 309–324. isbn: 9781450323888. doi: 10.
1145/2517349.2522731.

[Ter+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J.
Spreitzer, Marvin M. Theimer, and Brent B. Welch. “Ses-
sion Guarantees for Weakly Consistent Replicated Data”. In:
Proceedings of the Third International Conference on on Par-
allel and Distributed Information Systems. PDIS ’94. Autin,
Texas, USA: IEEE Computer Society Press, 1994, pp. 140–
150. isbn: 0818664010. doi: 10.5555/381992.383631.

[Ter+95] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. “Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Storage Sys-
tem”. In: 15th ACM Symp. on Operating Systems Principles.
Ed. by M. B. Jones. SOSP ’95. Copper Mountain, Colorado,

264

https://doi.org/10.1007/978-1-4899-7993-3_80813-1
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.5555/381992.383631

BIBLIOGRAPHY

USA, 1995, pp. 172–182. isbn: 0-89791-715-4. doi: 10.1145/
224056.224070.

[TS] Doug Tollefson and Andrew Spyker. Acme Air. https://
github.com/acmeair/acmeair. Accessed: 27-04-2022.

[TV07] Andrew S Tanenbaum and Maarten Van Steen. Distributed
Systems: Principles and Paradigms. 2nd ed. Upper Saddle
River, New Jersey, USA: Prentice-Hall, 2007.

[Vaz+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis,
and Simon Peyton-Jones. “Refinement Types for Haskell”.
In: Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’14. Gothen-
burg, Sweden: Association for Computing Machinery, 2014,
pp. 269–282. isbn: 9781450328739. doi: 10.1145/2628136.
2628161.

[Vaz+17] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan
G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.
“Refinement Reflection: Complete Verification with SMT”.
In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi:
10.1145/3158141.

[Vog09] Werner Vogels. “Eventually Consistent”. In: Communications
of the ACM 52.1 (2009), pp. 40–44. doi: 10.1145/1435417.
1435432.

[VV16] Paolo Viotti and Marko Vukoliundefined. “Consistency in
Non-Transactional Distributed Storage Systems”. In: ACM
Comput. Surv. 49.1 (June 2016). issn: 0360-0300. doi: 10.
1145/2926965.

[Wal+97] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall.
“A note on distributed computing”. In: Mobile Object Sys-
tems Towards the Programmable Internet. Ed. by Jan Vitek
and Christian Tschudin. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 49–64. isbn: 978-3-540-68705-4. doi:
10.1007/3-540-62852-5_6.

[Wan+19] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and
Gustavo Petri. “Replication-Aware Linearizability”. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 2019.

265

https://doi.org/10.1145/224056.224070
https://doi.org/10.1145/224056.224070
https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965
https://doi.org/10.1007/3-540-62852-5_6

BIBLIOGRAPHY

Phoenix, AZ, USA: Association for Computing Machinery,
2019, pp. 980–993. isbn: 9781450367127. doi: 10 . 1145 /
3314221.3314617.

[Web08] Tjark Weber. “Sat-based finite model generation for higher-
order logic”. PhD thesis. Technische Universität München,
2008.

[WH18] Michael Whittaker and Joseph M Hellerstein. “Interactive
checks for coordination avoidance”. In: Proceedings of the
VLDB Endowment 12.1 (2018), pp. 14–27. doi: 10.14778/
3275536.3275538.

[WMM20] Matthew Weidner, Heather Miller, and Christopher Meikle-
john. “Composing and Decomposing Op-Based CRDTs with
Semidirect Products”. In: Proc. ACM Program. Lang. 4.ICFP
(Aug. 2020). doi: 10.1145/3408976.

[ZBP14] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter.
“Formal Specification and Verification of CRDTs”. In: For-
mal Techniques for Distributed Objects, Components, and
Systems. Ed. by Erika Ábrahám and Catuscia Palamidessi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 33–
48. isbn: 978-3-662-43613-4. doi: 10 . 1007 / 978 - 3 - 662 -
43613-4_3.

[ZBP20] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter.
“Combining State- and Event-Based Semantics to Verify
Highly Available Programs”. In: Formal Aspects of Com-
ponent Software. Ed. by Farhad Arbab and Sung-Shik
Jongmans. Cham: Springer International Publishing, 2020,
pp. 213–232. isbn: 978-3-030-40914-2. doi: 10.1007/978-3-
030-40914-2_11.

[ZH18] Xin Zhao and Philipp Haller. “Observable atomic consistency
for CvRDTs”. In: Proceedings of the 8th ACM SIGPLAN
International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. 2018, pp. 23–32. doi: 10.
1145/3281366.3281372.

[ZH20] Xin Zhao and Philipp Haller. “Replicated data types that
unify eventual consistency and observable atomic consis-
tency”. In: Journal of Logical and Algebraic Methods in Pro-

266

https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.1145/3408976
https://doi.org/10.1007/978-3-662-43613-4_3
https://doi.org/10.1007/978-3-662-43613-4_3
https://doi.org/10.1007/978-3-030-40914-2_11
https://doi.org/10.1007/978-3-030-40914-2_11
https://doi.org/10.1145/3281366.3281372
https://doi.org/10.1145/3281366.3281372

BIBLIOGRAPHY

gramming 114 (2020), p. 100561. issn: 2352-2208. doi: 10.
1016/j.jlamp.2020.100561.

[ZN16] Nosheen Zaza and Nathaniel Nystrom. “Data-centric Consis-
tency Policies: A Programming Model for Distributed Appli-
cations with Tunable Consistency”. In: First Workshop on
Programming Models and Languages for Distributed Com-
puting, PMLDC@ECOOP 2016, Rome, Italy, July 17, 2016.
ACM, 2016, p. 3. doi: 10.1145/2957319.2957377.

267

https://doi.org/10.1016/j.jlamp.2020.100561
https://doi.org/10.1016/j.jlamp.2020.100561
https://doi.org/10.1145/2957319.2957377

	Introduction
	Geo-Replicated Systems
	The CAP Theorem
	The Quest for High Availability and Low Latency
	Problem Statement

	Research Vision
	Approach and Contributions
	Supporting Publications
	Dissertation Roadmap

	State of the Art in Geo-Replicated Systems
	Consistency Models
	Strong Consistency
	Weak Consistency
	Hybrid Consistency

	Programming Abstractions for Replication
	Replicated Data Types

	Distributed Systems Verification
	Verification Languages
	Verifying Correctness of Replicated Data Types
	Verifying Invariants
	Overview

	Conclusion

	From Sequential to Replicated Data Types
	State Convergence Without Coordination
	Strong Eventually Consistent Replicated Objects (SECROs)
	Use Case: A Collaborative Text Editor
	Replication Protocol

	Performance Evaluation
	Methodology
	Memory Consumption
	Latency of Operations
	Effect of Commit on the Latency of Operations

	Notes on Related Work
	Conclusion

	Efficient Replicated Data Types from Sequential Code
	The Need for Static Analysis
	Building Geo-Distributed Applications, the ECRO Way
	Overview
	Building Replicated Sets
	Building a Geo-Distributed Auction System
	Coping with Different Classes of Conflicts

	Deriving Safe Serializations from Distributed Specifications
	The ECRO Distributed Specification
	Dependency Analysis
	Concurrent Commutativity Analysis
	Deriving Sequential Commutativity
	Safety Analysis

	Explicitly Consistent Replicated Objects
	Replication Protocol
	Consistency Guarantees
	Protocol Correctness
	Implementation

	Qualitative Evaluation
	Portfolio of ECRO Data Types
	Comparison of ECROs Against Related Approaches
	Conclusion

	Performance Evaluation
	Methodology
	Feasibility of the Static Analysis Phase (RQ2)
	Scalability of the ECRO Protocol (RQ3)
	Performance of a Geo-Distributed RUBiS Application (RQ4)
	Impact of Causally Unstable Operations on Scalability (RQ3)

	Notes on Related Work
	Conclusion

	A High-Level Programming Language for Efficient RDTs
	Motivation
	Shortcomings of Hybrid Approaches
	The Need for a High-Level Analyzable Language

	The EFx Language
	Overall Architecture
	Syntax
	Replicated Data Types and Concurrency Contracts
	Functional Collections

	Automated Analysis of EFx Programs
	Core SMT
	Compiling EFx to Core SMT
	Encoding Functional Collections Efficiently in SMT
	Compilation Example

	Synthesizing ECROs from Contracts
	Qualitative Evaluation
	Portfolio of Replicated Data Types
	Application-Specific RDTs
	Application Case: A Distributed Voting Game
	Comparison to the Original ECRO Approach

	Performance Evaluation
	Methodology
	Synthesis Evaluation
	Feasibility of Analyzing High-Level EFx Programs

	Discussion
	Notes on Related Work
	Conclusion

	Automated Verification of Replicated Data Types
	The Need for a Fully Verifiable Language
	Design and Implementation
	Verification
	Deployment

	The VeriFx Language
	Overall Architecture
	Syntax
	Type System

	Automated Proof Verification
	Compiling VeriFx to Core SMT
	Deriving Proof Obligations
	Constructing High-Level Counterexamples

	Libraries for Implementing and Verifying RDTs
	CRDT Library
	Operational Transformation Library
	Encoding RDT-Specific Assumptions

	Evaluation
	Methodology
	Verifying Conflict-free Replicated Data Types
	Verifying Operational Transformation

	Notes on Related Work
	Verification Languages
	Verifying Conflict-free Replicated Data Types
	Verifying Invariants of Replicated Data
	Verifying Operational Transformation

	Conclusion

	Conclusion
	Programming Replicated Data Types
	Overview of our Approach
	Reviewing the Contributions
	Avenues for Future Research
	Multi-Object Invariants
	Improving Automated Verification
	Going Further with Automated Verification

	Closing Remarks

	Tree Organization of a Text Document
	Formal Definition of the Transitive Closure of Concurrent Operations
	Scala DSL for First-Order Logic
	Complete Set Specification
	RUBiS Specification

	Cycle Detection and Resolution in the ECRO Protocol
	Geo-Distributed RUBiS Benchmark on a Read-Mostly Workload
	EFx's Type System
	Core SMT Expressions
	EFx's Complete Map Semantics
	Verification of the Buggy Map CRDT
	Original Specification
	Implementation in VeriFx
	Verification in VeriFx

