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Abstract

The continued increase in computing power and network resources has changed
the landscape of software development. Nowadays, software is not confined
to a single computer, and instead runs on many types of devices that interact
on an open network, which is a network that various types of devices such as
smartphones, smartwatches, and Internet of Things devices can spontaneously
join and leave. Moreover, their software is continuously interacting with each
other, e.g., a smartphone smart home application is updated in real-time based
on the connected smart home sensors. In other words, the software that powers
those devices has become reactive.

Traditionally reactive programs are written using callbacks and the observer
pattern. Nowadays their drawbacks are well known, as they make code difficult
to understand, debug, and maintain. About a decade ago, reactive programming
has been proposed as a solution to these problems and has gained widespread
adoption.

Existing reactive programming techniques exhibit 3 issues that make them
difficult to apply to software for open networks. The first issue is related to
responsiveness, where data received via a network can (accidentally) make the
program no longer reactive. Second, we describe a paradigmatic mismatch between
reactive code and imperative code, both of which are present in every reactive
application. The final issue relates to the open network, where existing reactive
programming techniques have little or no support to discover devices on the open
network, and to manage their presence in the reactive program correctly and
efficiently.

We propose a novel computational model – called the “Actor-Reactor Model” –
that avoids the issues by using so-called “actors” and “reactors” to build distrib-
uted applications. First, reactive code is encapsulated by reactors which guarantee
responsiveness. Second, imperative code and reactive code is strictly separated in
actors and reactors respectively, thereby avoiding a paradigmatic mismatch. Fi-
nally, we design a mechanism to discover actors and reactors on an open network,
and to maintain their presence correctly and efficiently throughout a distributed
reactive program.

The Actor-Reactor Model was implemented in a new programming language
called Stella, which serves as a linguistic vehicle to demonstrate the ideas of our
approach. Compared to other reactive programming languages and frameworks,
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we found that actors and reactors are highly suitable to develop distributed ap-
plications. Furthermore, they demonstrate a correct and efficient approach to
define distributed computations that involve multiple discovered devices (e.g.,
sensors). All Stella code presented in this dissertation is executable and included
in an artefact.

The Actor-Reactor Model leads to a better understanding of the coexistence of
reactive code and imperative code in Stella and existing reactive programming
languages and frameworks.
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Samenvatting

De voortdurende toename in rekenkracht en netwerkmiddelen heeft het land-
schap van de softwareontwikkeling veranderd. Software is tegenwoordig niet
meer beperkt tot één computer, maar draait op vele soorten apparaten die met
elkaar communiceren op een open netwerk. Dit is een netwerk waar verschil-
lende soorten apparaten zoals smartphones, smartwatches en Internet of Things
apparaten spontaan mee kunnen verbinden en weer verdwijnen. Bovendien is
er een voortdurende wisselwerking tussen hun software, bv. een smartphone-
smarthometoepassing wordt in real-time bijgewerkt op basis van de aangesloten
smart-homesensoren. Met andere woorden, de software die deze apparaten aan-
stuurt is reactief geworden.

Traditioneel worden reactieve programma’s geschreven met behulp van call-
backs en het observer patroon. Hun nadelen zijn tegenwoordig gekend omdat
ze ervoor zorgen dat code moeilijk te begrijpen, debuggen, en onderhouden is.
Reactief programmeren werd ongeveer een decennium geleden voorgesteld als
een oplossing voor deze problemen, en deze techniek wordt vandaag massaal
gebruikt.

Bestaande reactieve programmeertechnieken vertonen 3 problemen die het
moeilijk maken om ze toe te passen op software voor open netwerken. Het eerste
probleem heeft te maken met responsiviteit, waarbij gegevens die via een netwerk
worden ontvangen er (per ongeluk) voor zorgen dat het programma niet meer
reactief is. Ten tweede beschrijven we een paradigmatische mismatch tussen
reactieve code en imperatieve code, dewelke beide aanwezig zijn in elk reactief
programma. Het laatste probleem heeft te maken met het open netwerk, waar
bestaande reactieve programmeertechnieken weinig of geen ondersteuning bieden
om apparaten te ontdekken op het open netwerk, en om hun aanwezigheid in het
reactieve programma correct en efficiënt te beheren.

We stellen een nieuw computationeel model voor – dat we het “Actor-Reactor
Model” noemen – dat de problemen omzeilt door zogenaamde “actors” en “react-
ors” te gebruiken om gedistribueerde applicaties te bouwen. Ten eerste, reactors
encapsuleren reactieve code en garanderen responsiviteit. Ten tweede, imper-
atieve code en reactieve code wordt strikt gescheiden door actors en reactors
respectievelijk, waardoor ze de paradigmatische mismatch omzeilen. Ten laatste
ontwerpen we een mechanisme voor actors en reactors om elkaar te ontdekken
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op een open netwerk, en om hun aanwezigheid correct en efficient te beheren in
een gedistribueerd reactief programma.

Het Actor-Reactor Model werd geïmplementeerd in een nieuwe programmeer-
taal genaamd Stella, welke dient als een linguïstisch vehikel om de ideeën van
onze aanpak te demonstreren. Vergeleken met andere reactieve programmeer-
talen en frameworks, vonden wij dat actors en reactors zeer geschikt zijn om
gedistribueerde applicaties te ontwikkelen. Voorts demonstreren zij een correcte
en efficiënte aanpak om gedistribueerde programma’s te schrijven waarbij meer-
dere ontdekte apparaten (bv. sensors) betrokken zijn. Alle Stella code die in dit
proefschrift wordt gepresenteerd is uitvoerbaar.

Het Actor-Reactor Model leidt tot een beter begrip van de samenhang tussen
reactieve code en imperatieve code in Stella en in bestaande reactieve program-
meertalen en frameworks.
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1. Introduction

The continued increase in computing power and network resources has changed
the landscape of software development. The traditional (outdated) approach to
software development is that an application runs locally on a desktop computer,
and that it remains idle until the user triggers an action by clicking on buttons
or menu options. This situation is depicted in Figure 1.1a. Whenever the user
triggers an action, the software may enter a long calculation until it eventually
presents an answer to the user.

In the past decade the traditional computing model is no longer accepted by
end users. Instead, users expect the interaction with their devices such as laptops,
smartphones and smartwatches to be seamless, and that the information that is
presented to them is updated in real-time [6, 23]. For example, in Figure 1.1b
the software continuously interacts with the user and a server-based application,
continuously updating as new events occur. The software that powers those
devices has become reactive. We call this level 1 reactivity, where the application is
able to react to events caused by the user and external devices. Furthermore, the
software running on the devices will consist of prosumers of data, a general term
that we use to denote a software component that both consumes and produces
data. Prosumers interact with each other via conceptual streams of incoming and
outgoing data such as sensor measurements.

Due to the abundance of high-performance SoCs (system on a chip1) there
are more devices interacting with each other than ever before. Nowadays they
do so on an open network. This is a type of (wireless) network where devices
can spontaneously appear and disappear based on their location, the quality of
the connection, device power management, etc. Typical devices include laptops,
smartphones, smartwatches, home automation devices (e.g., sensors), fitness
trackers, and vehicle infotainment systems. Users still expect the software that
powers these devices to be reactive, i.e., continuously updated based on the latest
available info. Additionally, we observe that a new level of reactivity occurs
for applications that operate on an open network. Not only does the software
react to events such as sensors measurements (level 1 reactivity), but they also
need to react to the constellation of collaborating devices that is continuously
changing as devices spontaneously join and leave the network. We refer to this

1A system on a chip combines most components of a computer, e.g., the CPU, memory, I/O, and
various forms of connectivity such as Bluetooth and Wi-Fi.
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1. Introduction

Interaction

(a) Traditional software development.

Reactive

Interaction

(b) Reactive software development, level 1 reactivity.

?

?

?

Interaction Network Failure

(c) Reactive software development for open networks, level 2 reactivity.

Figure 1.1.: Traditional vs. Reactive Software Development.
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1. Introduction

as level 2 reactivity. For example, Figure 1.1c depicts the interaction within such
a constellation of devices, where the network connection between some of them
has (temporarily) dropped.

Reactive applications are difficult to program using conventional programming
techniques such as imperative (sequential) code since the arrival of externally
triggered events is impossible to predict or control. The traditional approaches
to handle events revolve around asynchronous callbacks (event handlers) and
design patterns such as the Observer pattern [53]. Nowadays their drawbacks
are widely documented. Most notably they lead to inversion of control where the
control flow of the program is dictated by the arrival of outside events rather
than the code itself, and callback hell where the program logic is spread over many
callbacks that coordinate via side-effects. In a nutshell, the traditional approaches
have a detrimental effect on software development because the code is difficult to
understand, can exhibit tricky and difficult to reproduce bugs, and can become
unmaintainable [41, 68, 79, 89]. A presentation in 2007 revealed that a third of
the code in Adobe’s desktop applications was devoted to event handling, and that
this code contained half of all bugs [101].

The reactive programming paradigm is an emerging approach to implement
level 1 reactive applications without the issues such as callback hell and inversion
of control [10]. In this dissertation we will investigate the problems that occur
when reactive programming is used to support level 1 reactivity, and we propose
new mechanisms to also support level 2 reactivity.

1.1. Research Context: The Reactive Programming
Paradigm

Reactive programming requires a different code style and programmer mind-
set compared to other programming paradigms. For example, in a traditional
imperative program a sequence of program statements is executed from top to
bottom. The imperative code specifies what should happen (execute the program
statements) and also when it should happen (in the order specified by the program
text). Reactive code is different, since the code abstracts over the notion of events
which arrive at various points in time. The programmer declaratively specifies
what should happen, and the reactive run-time figures out by itself when it should
happen.

There are currently two main variants of reactive programming, namely Func-
tional Reactive Programming and Reactive Streams, which we briefly introduce in
Section 1.1.1 and Section 1.1.2. Afterwards, in Section 1.1.3, we briefly discuss
how to use them to build reactive programs that are distributed over a network.

3



1. Introduction

1.1.1. Functional Reactive Programming

Functional Reactive Programming (FRP) can be easily explained using the pro-
gramming model of spreadsheets. In a spreadsheet, when a cell C1 contains the
expression =A1+B1, then the value of C1 is automatically recomputed every time
the contents of cell A1 or B1 changes. FRP operates on the same principle, but
elevated to the level of programming languages and frameworks. It has been used
for a wide variety of systems such as modelling and simulation [95], robotics [63],
networking [48, 143], GUIs [36, 65, 88], mobile ad hoc networks [27], Wi-Fi
chips [134], real-time systems [149], audio processing and sound synthesis [64],
computer vision [104], stage lighting [133], distributed systems [83, 90, 107, 117,
132], etc. Furthermore, results from an empirical study on program comprehen-
sion suggest that FRP code is easier to write and understand compared to the
Observer pattern in object-oriented programming [124].

1.1.2. Reactive Streams

Reactive Streams is a term that encompasses a range of technologies based on asyn-
chronous data streams, where a stream represents a (possibly infinite) sequence
of values. Streams can be combined and processed using specially designed op-
erators such as map and filter. Reactive streams are popular in industry via
frameworks such as Akka Streams [119] and ReactiveX, a specification which
has been implemented in 18 languages [113] some of which are developed or
maintained by companies such as Microsoft and Netflix. An implementation of
a “Reactive Streams” specification has been included in Java since version 9 [32,
111].

1.1.3. Distributed Reactive Programming

The problems of developing event-based applications also arise when developing
distributed applications, where application updates include events that originate
from other devices on the network (e.g., sensor updates). When using reactive
programming to implement distributed reactive applications (e.g., using React-
iveX [113], Akka Streams [119], REScala [123]), every device on the network
represents (part of) a reactive program. These programs consist of prosumers that
interact with each other via data streams over a network.

In most cases the number of input and output streams of a reactive program
is limited and known beforehand (i.e., a distributed variant of level 1 reactivity)
because the number of prosumers is fixed. This is different when developing
distributed applications for open networks, where programmers are faced with
level 2 reactivity. Here, there can be any number of prosumers that provide input
to the reactive program which cannot be known beforehand.
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Reactive
program

Imperative <-> reactive bridge

Figure 1.2.: Every reactive program needs to bridge the gap between the imperative input
and output parts of the program.

1.2. Problem Statement

Reactive programming languages and frameworks that implement level 1 react-
ivity have been an active research topic for the past 2 decades. Existing reactive
programming languages and frameworks focus on new application domains for
reactive programming, as well as ever more powerful concepts to implement
said level 1 reactivity. More specifically, they focus on the language features and
abstractions whereby programmers can express reactions to events as easily and as
declaratively as possible. However, we observe that they focus only on the internal
part of a reactive program, i.e., the part which is programmed using reactive
programming techniques (FRP or reactive streams). Reactive programs also have
2 other parts: An input part provides input to the reactive program by triggering
events, and another (possibly different) output part processes the output of the
reactive program in order to “do something”. For example, Figure 1.2 depicts a
reactive program where input is provided by a weather station that communicates
via a network, and the output of the reactive program is displayed to the user in
a Graphical User Interface (GUI). These input and output parts are not written
using reactive code, but they are still written using active (imperative) code that
interacts with the real world via side-effects, in this case networking and the
GUI. Programmers have to bridge the gap between these imperative and reactive
parts of programs. We have identified 2 issues that arise in existing literature be-
cause of this mixing of 2 paradigms, namely the Reactive Thread Hijacking Problem
(Section 1.2.1) and the Reactive-Imperative Impedance Mismatch (Section 1.2.2)

Level 2 reactivity is a new addition to the field of reactive programming pro-
posed by this dissertation which existing reactive programming languages and
frameworks do not support. Moreover, when a programmer tries to implement a
computation that uses level 2 reactivity by using the features of the language or
framework, they run into the Acquaintance Maintenance Problem (Section 1.2.3).
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1.2.1. Reactive Thread Hijacking Problem

The word reactive in “reactive programming” denotes both the programming style
(code) as well as the run-time behaviour of reactive programs. In this case we
consider the latter, where programs that are called reactive are expected to react in
real-time to any changes that occur. This kind of reactivity, also called respons-
iveness, is one of the 4 key properties in the so-called “Reactive Manifesto” [23,
72], which says: “Responsive systems focus on providing rapid and consistent re-
sponse times, establishing reliable upper bounds so they deliver a consistent quality of
service.” [23]

Unfortunately, existing reactive programming languages and frameworks of-
ten impose little to no restrictions on the types of expressions that can be used
within the reactive program. When using them, it is often easy to write code
that accidentally makes the program no longer reactive. We call this problem the
Reactive Thread Hijacking Problem, where some data that enters the program
can (accidentally) cause the reactive program to become unresponsive. This can be
problematic when data is produced by distributed prosumers that are discovered
on the open network, e.g., prosumers that are not controlled by the same program.

1.2.2. Reactive-Imperative Impedance Mismatch

The second problem concerns the development of distributed reactive programs,
where it is inevitable that some parts of the reactive program will be responsible
for handling traditional concerns of distributed programming. In the worst case
scenario programmers resort to using low-level sockets, in the best case scenario
they have access to higher-level abstractions to perform network requests or pass
messages. However, in all cases the act of sending data over a network is a side-
effect executed via paradigmatically imperative code rather than reactive code.
After all, IO is an effectful aspect of programs.

In analogy with the Object-Relational Impedance Mismatch for object-oriented
programming [66], we identify the Reactive-Imperative Impedance Mismatch
as the set of problems that occur when combining reactive and imperative code,
which is inevitable when feeding data into, and extracting data from reactive
programs. We study their interaction in two directions, namely the embedding
of reactive code within an application that is otherwise written using imperative
code, and the embedding of imperative code within reactive code. Both directions
of the embedding exhibit semantic issues.

In a nutshell, expressions that contain side-effects (e.g., sockets, message passing,
or simple assignments) can cause issues when they are embedded in subexpres-
sions of a reactive program. They can cause subtle and tricky bugs since the order
of their execution cannot be determined beforehand, they are very difficult to
coordinate, and have a detrimental effect on program composition. In the other
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direction, there is currently no well-defined and sufficiently general mechanism
to embed reactive code within imperative code without (accidentally) allowing
imperative code to be embedded within reactive code.

1.2.3. Acquaintance Maintenance Problem

The final problem concerns interacting with varying numbers of prosumers on
an open network. Here, at every point in time, a prosumer that takes part in a
distributed application must know its set of acquaintances that can be reached
over the network (other prosumers). These acquaintances vary throughout the
lifetime of the application as devices join and become unreachable. Hence, a
central aspect of distributed reactive programs to support level 2 reactivity is
acquaintance management, which we describe as the combination of 2 mechanisms:

1. An acquaintance discovery mechanism to find acquaintances on the open
network. Since prosumers are not necessarily offering a service, we have re-
placed the traditional term service discovery by a more general term acquaint-
ance discovery which comprises one prosumer discovering the existence of
other prosumers.

2. An acquaintance maintenance mechanism to subscribe to discovered streams
in order to react as they appear, and to gracefully close the streams as they
disappear.

The Acquaintance Maintenance Problem denotes the issues that occur within
the reactive program to maintain the program state as acquaintances spontan-
eously appear and disappear. We will make the distinction between 2 different
kinds of reactions that can occur: application-level reactivity and topology-level
reactivity, which correspond to level 1 reactivity and level 2 reactivity respect-
ively. In other words, application-level reactivity denotes the application-level
values that flow through the reactive program (e.g., sensor measurements), and
topology-level reactivity denotes the changes that occur to the internal structure
of the reactive program whenever acquaintances appear or disappear. The react-
ive program needs to ensure that the program state is correctly and efficiently
updated whenever a change occurs on the application-level or the topology-level.
To this end, existing reactive programming languages and frameworks are either
inefficient, or require a complex and error-prone mix of code when performing
acquaintance maintenance.

1.3. Approach

Our analysis of the overarching problem concludes that it is inevitable that
imperative and reactive code both exist within a reactive program, and that
combining them in a single unified language is exceedingly difficult. The key
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to their coexistence is thus to separate them both in terms of their code and their
execution at run-time. We have designed a programming model called the
Actor-Reactor Model that epitomises such a separation.

In the Actor-Reactor Model, imperative code can only execute inside actors.
Actors behave as in the traditional actor concurrency model [70]. They support
the full power of a Turing-complete language with side-effects and (infinite) loops.
Reactive code is executed in so-called reactors. Actors and reactors communicate
exclusively via message passing, which makes them highly suitable for developing
distributed applications. Each actor and reactor represents a prosumer in a
distributed reactive program which can both produce and consume data from
other (re)actors.

The Actor-Reactor Model is implemented in a new programming language
called Stella, which we use as a linguistic vehicle to demonstrate the core concepts
and ideas. A new programming language allows us to communicate these ideas
clearly and unambiguously without the technical limitations that would be en-
countered whenwriting a library for an existing language. Stella’s implementation
of the Actor-Reactor Model tackles the problems in the following ways:
Reactive Thread Hijacking Problem To ensure that incoming data cannot (acci-

dentally) block the reactive program from being able to process any subsequent
data, Stella ensures that any computation within a reactive program must
eventually terminate. While stricter guarantees exist and are used in the field
of reactive programming (e.g., for embedded systems), Stella’s application
domain of distributed reactive systems does not require such strict constraints.
We believe Stella’s so-called eventual reactivity is a reasonable trade-off between
preventing that a reactive program can get stuck indefinitely and correctly
shaping a programmer’s thoughts to write reactive code that also behaves
reactively.

Reactive-Imperative Impedance Mismatch One of the key features of the Actor-
Reactor Model is to completely avoid the Reactive-Imperative Impedance
Mismatch by separating imperative and reactive code using actors and reactors.
Stella demonstrates a practical way to achieve this separation by defining the
language in two tiers. An object-oriented base language is used to implement
abstract data types, and the concurrent level of actors and reactors can share
those data types between each other.

Acquaintance Maintenance Problem Stella offers acquaintance discovery via a
so-called flock, a software component that automatically gathers prosumers
(actors and reactors) that can be found on the network. Stella’s acquaintance
maintenance mechanism is conceived as a new operator for reactive program-
ming languages which we call deploy-* and which integrates with flocks. The
operator can correctly and efficiently update the result of reactive computations
as the number of connected prosumers fluctuates.
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1.4. Contributions

The contributions of this dissertation are as follows.
First, we present a taxonomy of reactive programming languages and frame-

works according to the mechanisms used in related work to support distributed
reactive programming, as well as a taxonomy of related work which indicates the
degree to which they are subject to the discussed problems.

Second, we perform a thorough problem analysis that identifies the afore-
mentioned problems, and which introduces new terminology and concepts to
describe concepts from existing reactive programming languages and frameworks.
Among others we introduce the terms weak reactivity, eventual reactivity and strong
reactivity to describe the degree to which a reactive program guarantees that it
will be able to react to new data, and we introduce application-level reactivity and
topology-level reactivity to more precisely describe level 1 and level 2 reactivity
which occur within a reactive program.

Third, we propose theActor-ReactorModel as a programmingmodel to describe
and implement reactive programs. We conjecture that themodel is already present
in some way in related work, either intentionally or unintentionally, much like a
“natural phenomenon”, i.e., a structure that arises naturally when implementing
a reactive language, framework, or application.

Fourth, we design flocks as a new programming abstraction to discover prosu-
mers on an open network, and we introduce a novel operator for reactive programs
called deploy-* which complements flocks, and which is used to implement cor-
rect and efficient computations based on fluctuating numbers of prosumers.

Finally, we practice an artefact-based research method. Besides a scientific
solution to the described problems, we implemented and tested the proposed
solutions to verify that they work in practice as well as in theory. To this end,
the Stella language is the main technical contribution. Besides implementing the
Actor-Reactor Model, Stella enforces eventual reactivity, which means that any
reactive program’s reaction must eventually terminate. Furthermore, to foster
reproducibility of the research, we present a meta-implementation of a crucial
part of Stella, namely that of the reactor, which is implemented in Stella itself.

1.5. Outline of the Dissertation

The dissertation is structured as follows.

Chapter 2: State of the Art: Reactive Programming We introduce the reactive
programming paradigm and its 2main variants, namely Functional Reactive Pro-
gramming and reactive streams. A basic understanding of reactive programming
is essential for the rest of the dissertation.
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Chapter 3: State of the Art: Distributed Reactive Programming We discuss the
techniques used by existing reactive programming languages and frameworks
to build distributed reactive systems.

Chapter 4: Problem Statement We analyse the problems that occur when writing
distributed reactive programs for open networks, namely the Reactive Thread
Hijacking Problem, the Reactive-Imperative Impedance Mismatch, and the
Acquaintance Maintenance Problem.

Chapter 5: Reactive Programming in Stella The solution to the identified prob-
lems is the Actor-Reactor Model which was implemented in Stella. This chapter
introduces the Stella language and tackles the Reactive Thread Hijacking Prob-
lem and the Reactive-Imperative Impedance Mismatch.

Chapter 6: Distributed Reactive Programming in Stella This chapter intro-
duces Stella’s features that are tailored to distributed reactive programming
in order to tackle the Acquaintance Maintenance Problem. More specifically,
we introduce the flock to discover distributed prosumers on an open network,
and the reactive operator called deploy-* to implement correct and efficient
computations based on the discovered devices.

Chapter 7: Qualitative Evaluation: Comparison to the State of the Art We
evaluate the Actor-Reactor Model and Stella qualitatively via an extensive
taxonomy of related work. Firstly, we categorise existing reactive programming
languages and frameworks according to the problems introduced in Chapter 4.
Wewill show thatmany other reactive programming languages and frameworks
are subject to the discussed problems in some way. Furthermore, we argue
that some existing languages and frameworks already implement some form
of Actor-Reactor Model (either intentionally or not).

Chapter 8: Mira: A Meta Specification of Reactors in Stella To foster reprodu-
cibility we provide a meta-implementation of Stella’s reactors in Stella itself.

Chapter 9: Conclusion We conclude the dissertation and highlight avenues for
future work.
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2. State of the Art: Reactive
Programming

The reactive programming paradigm aims to offer a solution to the problems
that occur when writing highly interactive, event-driven applications. It offers
abstractions to express programs as reactions to events that arrive over time. A
language or framework will automatically manage dependencies between events,
and it automatically takes care of updating the program state whenever events
occur.

In this chapterwe introduce reactive programming. Wewill distinguish between
2 main ways to develop reactive systems, namely Functional Reactive Programming
(FRP) and reactive streams, which we introduce in Section 2.1 and Section 2.2
respectively. Additionally, we will briefly discuss synchronous programming lan-
guages in Section 2.3.

This chapter also provides a taxonomy of related work on (non-distributed)
reactive programming in Table 2.1 on page 12. The 2nd column lists the host
language in which the framework is embedded, or a - (hyphen) when the subject
is a dedicated programming language. The 3rd column lists the language or
framework family, namely the aforementioned FRP or reactive streams. Finally,
the 4th column lists the type of evaluation model employed by the subject, namely
a push or pull-based model (or support for both).
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Lang./Lib. Host language Family Evaluation Model
Reactive programming for interactive applications or GUIs
Dunai [102] Haskell FRP Push-pull
Elm [36] - FRP Push
Flapjax [88] JavaScript FRP Push
Fran [43] Haskell FRP Pull
Frappé [33] Java FRP Push
FRPNow [106] Haskell FRP Pull
FrTime [31, 65] Racket FRP Push
Haai [97, 98] - FRP Push
Hokko [116] Scala FRP Push
NewFran [44] Haskell FRP Push-pull
RxJS [121] JavaScript Streams Push
Scala.React [79] Scala FRP Push
Yampa [63] Haskell FRP Pull
Reactive programming for embedded systems (e.g., microcontrollers, networks)
Frenetic [48] Python FRP Push
Nettle [143] Haskell FRP Pull
CFRP [136] - FRP Push
EmFRP [127] - FRP Push
Hae [150] Haskell FRP Push
ReactiFi [134] Scala FRP Push
RT-FRP [149] - FRP Pull
Other
Coherence [41, 42] - FRP Push
Lively RaTT [9] Operational semantics FRP -

Table 2.1.: Taxonomy of the state of the art in reactive programming. Note that we exclude
reactive programming languages and frameworks for distributed reactive
programming, which will be considered in Chapter 3 (Table 3.1 on page 32).
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2.1. Introduction to Functional Reactive Programming

FRP languages and frameworks combine the ideas of reactive programming with
the basic building blocks of functional programming. It was first formulated
in 1997 in Fran (an abbreviation of “Functional Reactive Animation”) [43], a
library for Haskell [105] designed for graphics and animation. In general, the
fundamental mechanism of functional reactive programming can be easily ex-
plained using the programming model of spreadsheets. When a cell C1 contains
the expression A1 + B1, then the value of C1 is automatically recomputed every
time the contents of cell A1 or B1 changes. FRP languages and frameworks operate
on the same principle, but elevated to the level of programming languages.

The ideas introduced by Fran have been adopted by a wide range of languages
and frameworks. Many of them are listed in Table 2.1 in the FRP family.

2.1.1. Signals, Behaviours, and Events

FRP languages and frameworks often offer two different abstractions to represent
values that can change over time:
Signal or behaviour A signal, also referred to as a behaviour, is a time-varying

value, i.e., an abstraction whose concrete value changes over time. In the
original literature of Fran it is said to be continuous, meaning that its value is
defined at every point in time (at infinitely small granularity). For example,
time itself is often modelled as a signal. In the aforementioned example of a
spreadsheet program, every cell in the program can be modelled as a signal.

Event (streams) An event is an abstraction for a value that occurred at a fixed
point in time, for example, keyboard strokes and mouse clicks. Events are
often used in combination with special operators that trigger when one or more
events occur. Because events in FRP languages are often similar to reactive
streams, events will be the focus in Section 2.2.
There is a duality between signals and event streams since either one can be used

to implement the other [30]. FRP languages that contain both abstractions (e.g.,
Fran [43], FrTime [31], Flapjax [88] and REScala [123]) also include operations to
convert one to the other. The difference between them is how the programmer
approaches the solution to a particular problem, i.e., the code style. Whereas
the continuous nature of signals lends itself to using them in combination with
functions, event streams are used in combination with stream operators such as
map and filter.

2.1.2. Lifting

Most reactive languages and frameworks use ordinary (i.e., non-reactive) functions
to perform operations on signals. Most often these functions are defined in some
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celsius * 9/5 + 32 fahrenheit Data flow

Source Node Sink NodeInternal Nodes

Figure 2.1.: Compiled structure of a reactive program to a DAG, which converts temper-
atures in Celsius to Fahrenheit. Data flow is usually depicted from top to
bottom, but depicted here from left to right.

.

base language (e.g., Haskell, Scala, …). These ordinary functions can be applied to
signals by lifting them to the level of signals. Often the lifting is done automatically
when applying a function to a signal. For example, consider a signal celsius
that is “driven by” some real thermometer, whose value at every point in time
is the current temperature in Celsius. The following code snippet (written in
FrTime [31], pronounced “Father time”) converts each temperature measurement
to fahrenheit.

(define fahrenheit (+ (* celsius 9/5) 32))

The arithmetic functions + and * from the base language (in this case Scheme)
are automatically lifted by FrTime when they are applied to a signal such as
celsius. Applying a lifted function to signals returns a new signal, which in
this case stored in fahrenheit. Whenever the value of celsius is changed, then
FrTime ensures that the value of fahrenheit will change as well by recomputing
the value of (* celsius 9/5) and the subsequent invocation of the + function
(just like a spreadsheet).

2.1.3. A Reactive Program’s Directed Acyclic Graph (DAG)

Applying a function to signals such as celsius creates a new signal. This creates
a chain of dependencies among signals which determines which signals should
change whenever other signals change. We often think of a reactive program as
a Directed Acyclic Graph (DAG). For example, the aforementioned Celsius to
Fahrenheit converter can be represented by the DAG drawn in Figure 2.1.

We use the following terminology to refer to specific nodes of the DAG.

Source nodes correspond to the “input” signals of the reactive program. Their
values are typically provided by code that is external to the reactive program,
e.g., the code powering a thermometer.
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Internal nodes are composed signals that constitute the reactive program logic,
e.g., the arithmetic that converts a temperature in Celsius to Fahrenheit.

Sink nodes correspond to the “output” signals of the reactive program that con-
stitute the program output. This output is usually processed by code that is
external to the reactive program, e.g., to modify some GUI or to send values
over a network.

When the value of a signal such as celsius changes, then the DAG shows
which dependent signals such as fahrenheit should be updated as well. Thus
we will often say that values are “propagating through the DAG” from the sources
to the sinks, updating the value of signals along the way. While in this case the
used example is simple (a linear DAG), in Chapter 5 we will use DAGs that have
multiple connected sources, sinks, and internal nodes.

In general there are two strategies used by reactive programming languages
and frameworks to propagate updates, which can be pull-based or push-based.

2.1.4. Pull-based Evaluation Model

Apull-based evaluation dictates that the updating of a signal is performed “bottom
up”, i.e., from the sinks of the DAG to the sources. Continuing the example of a
Celsius-to-Fahrenheit temperature converter, in languages and frameworks that
have a pull-based evaluation model, the fahrenheit node “pulls” a new value
from the signals it depends on to update itself, as depicted in Figure 2.2. No
computation occurs when the values of fahrenheit are not needed in the rest of
the program, despite the value of celsius possibly changing at a high rate.

In Table 2.1 (page 12) we categorise related work according to their evaluation
model. The reactive programming frameworks that are written in Haskell, e.g.
Fran and Yampa are usually pull-based. This is because a pull-based evaluation
model is a natural fit with the lazy evaluation of Haskell, where the evaluation of
expressions is deferred until their results are needed by other computations.

Deferring the updating of signals can potentially cause issues because input
values cannot be skipped. Thus, a history of changes to the input signals such
as celsius is accumulated until eventually fahrenheit pulls new values. In
literature this is called a time leak [71], because the reactive program then has to
“catch up” until it has processed the entire history of values up until the most
recent one, which can take a very long time (hence called a time leak). A pull-
based model can also lead to space leaks, which refers to a memory leak that arise
from (accidentally) capturing too much of the history of a signal [71], which often
occurs when signals are first-class values (i.e., they can be the values of other
signals).

Various techniques have been proposed to avoid spacetime leaks, each with
varying degrees of functionality and complexity. For example, NewFran supports
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celsius * 9/5 + 32 fahrenheit 

Data flow Pull new value

Figure 2.2.: Adaptation of the DAG in Figure 2.1 to depict a pull-based model.

celsius * 9/5 + 32 fahrenheit 

Data flow Push new value

Figure 2.3.: Adaptation of the DAG in Figure 2.1 to depict a push-based model.

both a push and pull-based evaluation model, Arrowized FRP [63], and Monadic
Stream Functions [103]. In this dissertation we will use a push-based evaluation
model, which does not suffer from spacetime leaks, and which we consider to be
more appropriate in the domain of distributed reactive applications.

2.1.5. Push-based Evaluation Model

A push-based evaluation model eagerly pushes values through the reactive pro-
gram. Continuing the example of a Celsius-to-Fahrenheit converter, data will
be pushed down the DAG whenever the value of the celsius signal is updated,
as graphically depicted in Figure 2.3. Most languages and frameworks such as
FrTime [31], Flapjax [88], and REScala [123] that are embedded in languages
without lazy evaluation are usually push-based (cf. Table 2.1). In general we
consider a push-based evaluation model to be more suitable for event-driven
applications that are expected to react immediately to events, which is the case in
the domain of distributed reactive applications. However, the cost is additional
complexity for the developer of the language or framework because of glitches.

Glitches All languages and frameworks that implement a push-based model re-
quire an efficient mechanism to avoid glitches, which are computations of incorrect
results [31]. Speaking in terms of the DAG, a glitch occurs when an update to a sig-
nal propagates through multiple paths of the DAG, causing a signal “downstream”
to be updated multiple times. For example, consider the following expression
that checks whether the Unix time in seconds is smaller than the same time but
incremented.
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seconds

+ 1

<
Data flow

(a) The two distinct propagation paths are high-
lighted in blue and red.

1

2

3
Data flow

(b) The priority of nodes in the DAG is determ-
ined by their height in the DAG.

Figure 2.4.: DAG of an expression that can potentially cause a glitch.

(< seconds (+ seconds 1))

A programmer expects this statement to be perpetually true as the value of the
seconds signal is updated for every tick of the Unix time. The problem occurs
when using a naive approach to updating the DAG: When the value of a signal is
updated, then its dependents should immediately be reevaluated as well. This
means that an update to seconds causes the < expression and +1 expressions to
be reevaluated. In this scenario the < expression is updated twice, namely once
after the value of the seconds signal changes, and once again after the value of (+
seconds 1) changes. The corresponding DAG representation given in Figure 2.4a
highlights these 2 propagation paths in red and blue. Assuming that dependent
signals are updated from left to right, then the first update of < along the red
path yields false because (+ seconds 1) has not been reevaluated yet. This
result semantically wrong, and in general it wastes computing resources. Hence,
glitches should be avoided.

Glitch Prevention: The Reactive Engine Every push-based FRP language or
framework has what we call a reactive engine that is responsible for propagating
signal updates through the DAG in a sensible way to avoid glitches. The idea is to
prevent a signal such as < from being updated until all of its dependencies have
been updated to the latest value. Wewill briefly explain the algorithm proposed by
FrTime, which serves as the basis for the implementation of other FRP languages
and frameworks such as Flapjax, REScala, Scala.React, Haai, AmbientTalk/R,
Frenetic, and Stella.

The main idea of FrTime’s update algorithm is that the nodes of the DAG are
topologically sorted, and reevaluated in that topological order. In other words,
each signal can only be reevaluated after all of its predecessors have been reevalu-
ated. In the example of Figure 2.4a, both the seconds and (+ seconds 1) nodes
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are updated before the < node is updated, thus preventing the glitch. To this end,
every node in the DAG is labelled with its height in the DAG. The DAG heights for
the running example are depicted in Figure 2.4b. Source nodes have the lowest
height 1, and each dependent node increases maximum height of its predecessors
by 1.

Once every node has an assigned height, at run-time a priority queue can be used
to schedule nodes for reevaluation. Each node’s height determines the priority
in the queue, where nodes with a lower height have a higher priority, and are
thus executed first. For example, using the heights of Figure 2.4b, when node 1
changes and nodes 2 and 3 are scheduled, then node 2 will update before 3 thus
preventing the glitch.

2.2. Introduction to Reactive Streams

Reactive streams is the collective term for frameworks based on asynchronous
data streams. The first library based on reactive streams seems to originate at
Microsoft1, where Erik Meijer and his Cloud Programmability Team developed
Rx, also called ReactiveX and Reactive Extensions. The first version of Rx for .NET
developers was released to the public in 2009 [39] and open-sourced in 2012 [86].
Frameworks such as Rx are labelled in Table 2.1 (page 12) as belonging to the family
of streams. Note that, despite our taxonomy only listing 3 streaming frameworks,
since the original formulation of Rx it has been modernised and ported to over
18 languages [112] and is widely adopted by both hobbyist programmers and
enterprises. The other implementations of reactive streams that we considered
are Akka Streams [119] (Scala, Java) and Creek (Elixir). While other streaming
frameworks exist such as Monix [91] and FS2 [51] which we did not include in
Table 2.1, in our experience the core concepts they offer are very similar to those
that we have already included.

The central abstraction in every streaming framework is the stream, a (possibly
infinite) sequence of values. A rich library of built-in stream operators are used to
functionally build, transform and compose streams. We will exemplify streams
and their operators in RxJS (Section 2.2.1) and Akka Streams (Section 2.2.2), which
we consider to be representative for the state of the art.

2.2.1. Reactive Streams in Rx

A stream in Rx is often called an observable, named after the Observable interface
that they implement [121]. While Observable and the methods it implements are

1We only considered the modern incarnation of reactive streams sparked by Rx which is currently
widely used to develop reactive programs, rather than stream programming in general, e.g.,
pLucid [8].
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1 const numbers = from([1, 2, 3, 4, 5]);

2 numbers.subscribe((x) => console.log(x));

Listing 2.1: Building a stream using from in RxJS

1 numbers.subscribe(x => console.log(x));

Listing 2.2: Subscribing to a stream in RxJS.

well documented, rather than focussing on its implementation, we will show how
to use the interface to build, transform, and combine streams. We will exemplify
these aspects using RxJS, a modern and widely used implementation of Rx in
JavaScript and TypeScript.

Building Streams: Hot vs. Cold Observables

Streams are often created using operators designed to transform ordinary data to a
stream. For example, RxJS includes a from operator that turns (among others) an
array into a stream, as shown in Listing 2.1. The stream referenced by numbers is
a so-called cold observable (an instance of the Observable interface), which means
that the stream lies dormant until a subscriber appears. The numbers 1 to 5 are
emitted (in order) to every subscriber individually once they appear. For example,
the assuming the definition of numbers is in scope, then Listing 2.2 adds a single
subscriber to the stream by invoking subscribe on the observable. The numbers
observable now “wakes up” and starts streaming the numbers in the array to the
subscriber. In this case, the given JavaScript lambda with 1 argument is invoked
for each element on the stream, after which the stream is stopped. Each additional
subscriber will again receive the contents of the array, independent of any other
streams that receive values from the same numbers stream.

Cold observables are useful for transforming fixed-size data structures to
streams where each subscriber receives the entire contents of the data structure.
A different kind of observable is called a hot observables, which are more suitable
for representing (infinite) streams of values such as sensor measurements. Hot
observables do not wait for subscribers to appear before emitting a value. Instead,
subscribers can spontaneously show up while values are already being emitted.
In this case they will not receive the entire history of emitted values, but instead
they only receive the values that are emitted after they subscribed.

One way to create a hot observable is via a built-on operator called a Subject,
which is a type of observable to which the programmer can manually push new
values via a next method. The use of a Subject is demonstrated in Listing 2.3.
Here, we define a numbers stream similar to the previous example, but the values
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1 const numbers = new Subject();

2 numbers.next(1);

3 numbers.next(2);

4 numbers.subscribe(x => console.log(x));

5 numbers.next(3); // console logs 3

6 numbers.next(4); // console logs 4

7 numbers.next(5); // console logs 5

Listing 2.3: Manually pushing values to a stream in RxJS

1 const numbers = from([1, 2, 3, 4, 5]);

2 const odds = numbers.pipe(

3 map((x) => x + 10),

4 filter((x) => x % 2));

5 odds.subscribe((x) => console.log(x)); // console prints 11 13 15

Listing 2.4: Transforming a stream using map and filter in RxJS

1 to 5 are emitted by invoking next, rather than being supplied by an array. A
new subscribe appears on line 4 after numbers 1 and 2 have already been emitted.
These numbers are not received by the subscriber, and thus only the subsequent
numbers 3-5 are printed to the console when they are emitted.

Unary Operators on Streams

A multitude of operators exist to transform the data that is emitted to streams.
Many of them inspired by list-based operators in functional programming. In
general, applying an operator to a stream returns a new stream that exhibits the
characteristics of the applied operator. For example, applying a map operator to
a stream will return a new stream where a function is applied to each emitted
value, and a filter operator defines a new stream that only emits the values of a
given input stream whenever a given predicate returns true.

In RxJS, operators are applied to streams by piping the values of streams through
a sequence of operators. For example, Listing 2.4 defines a stream odds that pipes
the values from a numbers stream through a map and filter operator. The map
adds 10 to every value, and filter emits only the values that are odd. Note that
the input stream numbers is an implicit argument of map and filter, which are
arguments of the pipe function invoked on numbers.

N-ary Operators on Streams

Stream are not just unary transformations of values using maps and filters. Many
operators exist to combinemultiple input streams to 1 output stream. For example,
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1 val numbers = Source(1 to 5)

2 val printlnSink = Sink.foreach(println)

3 numbers.runWith(printlnSink)

Listing 2.5: Building a stream in Akka Streams

operators such as zipWith take n streams as input and combine their values into
an array: Given two streams that emit the natural numbers, zipWith produces a
new stream that emits the arrays [0, 0], [1, 1], etc. In general, many different
types of operators are built-in to cover many scenarios that a programmer may
need. For instance, a drawback of zipWith is that it waits for a new element to be
emitted by every input stream. This is problematic when streams produce values
at different rates, e.g., a fast stream and a slow stream. Hence, a frequently used
variant of zipWith is called combineLatestWith, which emits a combined value
whenever one of the input streams emits a new value by using the latest (old)
value for the other input streams.

2.2.2. Reactive Streams in Akka Streams

Akka Streams is a framework in Scala and Java that adds reactive streams to Akka,
a popular actor library. The main novelty of Akka Streams is its combination
with actors. Similar to RxJS, we will show how to build, transform and combine
streams.

Building Streams: Materialization on Actors

In Section 2.1 we introduced FRP, and we showed the correspondence between
the program text of a reactive program and its graphical representation as a DAG.
In Akka Streams the DAG is explicit. For example, Listing 2.5 defines the same
numbers stream from before by using Akka Stream’s Source operator on line 1.
However, unlike in RxJS, the value stored in variable numbers is not a stream
object (e.g., an observable in RxJS). Instead it represents a part of a static DAG,
more specifically an object of type Source[Int, NotUsed]2. This object directly
corresponds to what we called a DAG’s source node in Section 2.1.3.

Akka Streams requires a DAG to be complete before it can be run, which means
that it should consist of at least a source node and a sink node. We define such a
sink on line 2, which will invoke the given println function for each value that
it receives. Finally, the invocation of runWith on line 3 connects numbers to the
sink and runs an instance of the stream.

2While the exact type signature is not important, Int denotes the type of the values emitted by
the source, and Akka Streams’ NotUsed is the type of (optional) auxiliary information provided
by the source, i.e. none in this example.
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1 val numbers = Source(1 to 5)

2 val printlnSink = Sink.foreach(println)

3 val multiplyAndFilter = Flow[Int].map(x => x * 10)

4 .filter(x => (x % 2) == 0)

5 numbers.via(multiplyAndFilter)

6 .runWith(printlnSink)

Listing 2.6: Transforming a stream using map and filter in Akka Streams

In RxJS streams are (usually) executed in the main JavaScript event loop, i.e., the
main program thread. In Akka Streams, Akka actors are responsible for executing
steams, which they call materializing a stream. Invoking runWith connects a
partial DAG to a sink, spawns a new actor3, and runs an instance of the complete
DAG on that actor.

Unary Operators on Streams

A rich set of built-in stream operators can be used to build (parts of) a DAG. In
Section 2.2.1 we used RxJS to implement a stream that multiplies each number by
10 and filters out the odd numbers. We implement the same example in Listing 2.6.
Lines 1 to 2 defines the same DAG source and sink as before, and lines 3 to 4
defines a part of a DAG via Akka Streams’ Flow class, which transforms values
of type Int by mapping and filtering them. The source, internal nodes and the
sinks of the DAG are composed and materialized on lines 5 to 6, which dictates
that values from numbers should first pass via multiplyAndFilter.

N-ary Operators on Streams

Similar to RxJS, Akka Streams includes a wide range of built-in operators that help
developers build the DAGs that they desire. Unlike RxJS, Akka Streams features a
domain specific language that they call the GraphDSL to compose more complex
DAGs with multiple inputs and outputs [78]. While we will not delve into the
details of the GraphDSL, in Listing 2.7 we construct the same DAG as Listing 2.6
but using the GraphDSL. If one ignores the boilerplate code, lines 3 to 6 implement
the same DAG components (source, internal nodes and sink). They are composed
in the GraphDSL using the squiggly arrow syntax on line 7. These arrows directly
correspond to edges in the DAG, but in code rather than a graphical depiction.
Using the GraphDSL, a programmer can create much more complicated DAGs
including operators that have multiple inputs or outputs, which we will not show
for brevity.

3Akka Streams offers the programmer control over where the actor is spawned, but we have
omitted this for brevity.
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1 val g = RunnableGraph.fromGraph(GraphDSL.create() { implicit builder:

GraphDSL.Builder[NotUsed] =>

2 import GraphDSL.Implicits._

3 val numbers = Source(1 to 5)

4 val printlnSink = Sink.foreach(println)

5 val multiplyAndFilter = Flow[Int].map(x => x * 10)

6 .filter(x => (x % 2) == 0)

7 numbers ~> multiplyAndFilter ~> printlnSink

8 ClosedShape

9 })

Listing 2.7: Combining Streams using the GraphDSL of Akka Streams

2.3. Synchronous Programming Languages

Synchronous programming languages are often included in the term “reactive
programming”. We did not include them in the taxonomy of Table 2.1 (page 12)
and Table 3.1 (page 32), but we will briefly discuss them here.

Similar to FRP and reactive streams, synchronous languages are built for ap-
plications that continuously react to their environment. However, they were not
designed to avoid the issues of writing event-driven programs using callbacks or
observers, and are used to program an entirely different type of application. More
specifically, they are used to program real-time systems and embedded systems
with strict timing requirements, and where safety and reliability is critical [13,
61]. Languages such as Esterel [18], Lustre [59] and SIGNAL [73] originated in the
early 1980’s and remain actively used today, and more recent languages include
Céu [126] and HipHop.js [20].

The programming model of synchronous languages is conceptually simple. A
synchronous reactive system continuously reacts to a sequence of input events by
producing a sequence of output events. Reactions to a set of events which occur at
one instant of a logical clock are considered to be instantaneous as if executed by
an infinitely fast machine. In other words, the program is always able to react fast
enough to input events, and is able to produce all output events before processing
the next set of events at the next instant of a logical clock. This property is called
the synchrony hypothesis [18], a graphical depiction of which is given in Figure 2.5.
Upon receiving a set of input events, all modules of the application (i.e., its logical
components) are instantaneously activated at all levels of the hierarchy.

We will briefly introduce 2 forms of synchronous languages, namely imperative
languages (Section 2.3.1) and dataflow languages (Section 2.3.2), and then we will
discuss their applicability for developing distributed reactive programs for open
networks (Section 2.3.3).
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Figure 2.5.: Graphical depiction of a synchronous reactive system.
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1 module M:

2 input names;

3 output names;

4 statement

5 end module

Listing 2.8: Generic structure of a module in Esterel.

2.3.1. Imperative Synchronous Languages

Imperative synchronous languages are highly suited for applications that focus on
control handling, e.g., alarm systems and machine interfaces. The first such lan-
guage was Esterel [18], which continues to influence recently proposed languages
such as Céu [125] and HipHop.js [20].

A pure Esterel program is conceived as a module as shown in Listing 2.8: a
module has a name (e.g., M), a set of input events, a set of output events, and a body
statement4. An event is either present or absent in a given instant, which is a single
activation of the application, i.e., the complete (instantaneous) processing of a set
of input events that generate a set of output events. The logic of an Esterel program
is written in terms of the presence or absence of events, which are processed using
language statements. There are 11 such core language statements that form the
basis of Esterel [16] and a rich library of derived language statements.

The “Hello World!” of synchronous languages is called ABO: if the events A
and B occur, then trigger output O. This example is implemented as a module in
Listing 2.9. The module has 2 input events A and B and one output event O. The
body of the module is defined as a single statement 5 that contains a subexpression
of the form p||q (the || statement is pronounced “parallel”), which itself has 2
subexpressions, namely await A, await B. When the || statement is executed it
will immediately (i.e., within the same logical clock cycle) execute both constitu-
ent statements in parallel, and the program will proceed past the || statement
whenever both constituent statements terminate. In this case, the constituent
await statements will only proceed whenever an event A and B respectively is
present. When this is the case, the program proceeds and emits an O event as
output.

4In the literature events are referred to as signals. We did not use this term to avoid confusion
with the already established terminology of signals in FRP languages.

5Language statements may be arbitrarily grouped within brackets “[” and “]”, and a statement
p;q sequences 2 statements to be executed in the given order, i.e., first p then q.
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1 module ABO:

2 input A, B;

3 output O;

4 [ await A || await B ];

5 emit O

6 end module

Listing 2.9: ABO in Esterel.

2.3.2. Synchronous Dataflow Languages

Synchronous dataflow languages such as Lustre [59] and SIGNAL [73] are highly
suitable for applications such as electrical signal processing and monitoring. We
will briefly introduce the concepts used in Lustre to demonstrate the difference
in programming style compared to imperative synchronous languages such as
Esterel.

Any variable and expression in Lustre denotes a flow, which is a pair that consists
of:

1. A (possibly infinite) sequence of values of a given type.
2. A logical clock.

In other words, the current value of a flow is determined by the current value of a
flow’s clock. Basic Lustre expressions include:
X = E; The variable X is semantically identical to the expression E. I.e., X denotes

exactly the same sequence of values with the same clock as E.
pre(e) If the current clock of the flow e is the value n, then the pre operator

retrieves the value of flow e at its clock n− 1, i.e., its previous value (initially
the null-value nil).

E -> F Given two flows E and F with the same clock, which are represented by
their sequence of values (e1, e2, …, en) and (f1, f2, …, fn), then the
operator -> (pronounced “followed by”) defines a new flow whose sequence
is (e1, f2, …, fn). The new sequence is equal to the sequence of F except
for the value at the first clock which is given by E. For example, the following
expression implements a counter that counts the number of clock cycles in a
program.
n = 0 -> pre(n) + 1;

Consider an electric signal that is either on or off (e.g., 1.4 volt signifies that
the signal is on, and 0 volt means that it is off), then a rising edge is the moment
at which the signal switches from 0V to 1.4V, and a falling edge is the moment
at which the signal switches from 1.4V to 0V. Lustre can be used to detect such
edges. For example, Listing 2.10 implements a node, which is Lustre’s basic unit
of composition, that detects a falling or rising edge. A node has a name and a
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1 node EDGE(A: bool) returns (B: bool);

2 let

3 B = false -> A and not pre(A);

4 tel

Listing 2.10: The definition of an EDGE node in Lustre.

1 node ABO (A,B: bool) returns (O: bool);

2 var seenA, seenB : bool;

3 let

4 seenA = false -> A or pre(seenA);

5 seenB = false -> B or pre(seenB);

6 O = EDGE(seenA and seenB);

7 tel

Listing 2.11: ABO in Lustre.

number of inputs and outputs. In this case the node is called EDGE, which has
one input flow called A of type bool, and one output flow B of type bool. The
body which is defined between let and tel equates output B to be a boolean flow
that captures A’s rising and falling edges. More specifically, the flow B holds true
whenever the value of flow A transitions from false to true (rising edge), and it
also holds true when A’s value transitions from true to false (falling edge).

Nodes can be reused to define larger applications. For example, Listing 2.11
implements the same ABO example that we used to demonstrate Esterel (List-
ing 2.9 on page 26). It has 2 input boolean flows A and B, and an output boolean
flow O that should hold true when the flows A and B both contain true, i.e., if A
and B occur, then output O. The implementation of ABO on line 2 declares 2 local
variables seenA and seenB that are initialised on lines 4 to 5 whose value starts
as false, and will remain true forever as soon as A or B’s value respectively is
true. The output signal O uses the aforementioned EDGE node to detect the exact
moment when seenA and seenB have both transitioned to true.

2.3.3. Discussion: Synchronous Languages for Open Network
Distribution

Synchronous languages have many advantages for programming reactive systems
where determinism, parallelism, strict timing constraints, and reliability (e.g.,
through formal verification) is important, e.g., aircraft flight control systems and
nuclear power plant control systems [60, 122]. However, we do not consider them
to be suitable in the domain of distributed reactive programs for open networks
because they use a distribution model that is not comparable to distribution in
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general-purpose applications, e.g., web-based applications and open network
applications.

Distribution is common in the application domain of synchronous languages
such as Esterel, Lustre, and SIGNAL, e.g., for fault tolerance, performance, and
due to the distributed location of sensor systems [28]. When a synchronous
program is distributed over a network, the main idea is that the distributed
program provides the same guarantees as an equivalent non-distributed program.
E.g., the synchrony hypothesis is upheld, the program is deterministic, can be
formally verified, and is reliable. An approach to do so is via automated tools that,
given a centralised synchronous program and a distributed memory architecture,
generate distributed code with automatically inserted communication [52, 55].

More generally, a synchronous program can be transformed to run on an asyn-
chronous architecture (i.e., a network) if that architecture satisfies the following
assumption: “The architecture obeys the model of a network of synchronous modules
interconnected by point-to-point wires, one per each communicated signal; each indi-
vidual wire is lossless and preserves the ordering of messages, but the different wires
are not mutually synchronized.” [14]. In other words, if network communication is
reliable, then it can be proven that the behaviour of the asynchronous (distributed)
program is consistent with that of the synchronous (non-distributed) program.
This means that all local guarantees regarding determinism and formal verifica-
tion remain valid. In contrast, when developing distributed reactive programs
for open networks there is no such synchronisation, the programs at either end
of the network are not necessarily part of the same codebase, and the network is
assumed to be unreliable.

2.4. Summary

Reactive programming encompasses various techniques to write event-driven soft-
ware (more) declaratively without introducing the problems with callbacks and
the Observer pattern. In particular, we distinguished 2 ways based on Functional
Reactive Programming and reactive streams.

Functional Reactive Programming introduces the notion of a time-varying
value in a functional language. These values are often called signals or behaviours.
Applying a function to a signal returns a new signal which applies the function
to every value carried by the signal. This can be thought of as a conventional
spreadsheet program: every cell is represented by a signal, and cells are glued
together using spreadsheet operators (i.e., functions) such as arithmetic. Whenever
the value of a signal changes, this value will propagate through the reactive
program by reapplying the used functions using the signal’s updated values.

Reactive streams are a variation on reactive programming where changes of
values over time are made explicit via a streams. Here, a reactive program consists
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of streams that are connected via stream operators such as map and filter, which
essentially form a pipeline of stream processing steps. Pushing new data though
the stream means that all operators in the pipeline process the data from start to
completion.

Finally, reactive programs are intrinsically connected to their representation
as a Directed Acyclic Graph (DAG). In Functional Reactive Programming the
DAG arises naturally from the program text when considering the dependencies
between signals via function applications. When using reactive streams, the DAG
is created explicitly by wiring stream operators, or in some cases a special DSL is
provided to create complex (non-linear) DAGs.
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Reactive Programming

This chapter dives deeper into the application of Functional Reactive Programming
and reactive streams to develop distributed reactive systems.

In general, distributed reactive programming means that the Directed Acyclic
Graph (DAG) of a reactive program becomes distributed over a network. To do so,
distributed reactive programming languages and frameworks implement various
mechanisms to “publish” signals or streams to the network, and to allow other
computers to discover these signals or streams, and to react to their changes. For
example, a Celsius thermometer may publish its measurements as a signal to the
network which is continuously updated as the measured temperature fluctuates.
A Celsius-to-Fahrenheit converter that is running on a different device can then
immediately react to the signal, rather than manually dealing with low-level
networking abstractions (e.g., sockets).

We present a taxonomy of distributed reactive programming languages and
frameworks in Table 3.1 (page 32). It has the same structure and classification as
our taxonomy of Chapter 2 (Table 2.1 on page 12), but we added a 5th column
for distributed reactive programming. Concretely we identified 6 mechanisms in
the state of the art to distribute signals or streams over a network. This chapter is
structured into 6 sections to discuss them. They are:

• Global signal registry (Section 3.1)
• Conflict-free Replicated Data Types (Section 3.2)
• Actors (Section 3.3)
• Ambient-oriented programming (Section 3.4)
• Multitier reactive programming (Section 3.5)
• Wireless sensor Networks (Section 3.6)
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Lang./Lib. Host lang. Family Eval. Model Distr.
Reactive programming for embedded systems (e.g., microcontrollers, networks)
Flask [81] Haskell/Red FRP Pull Sensor

networks
Distributed reactive programming
Akka Streams [77, 119] Scala Streams Push Actors
AmbientTalk/R [27] AmbientTalk FRP Push Ambient
Creek [138, 139] Elixir Streams Push-pull Actors
DREAM [83, 84] Java FRP Push Global registry
Gavial [118] Scala FRP Push Multitier
REScala [40, 90, 123] Scala FRP Push CRDT
ScalaLoci [152] Scala FRP Push Multitier
Stella [141, 147] - FRP Push Actors
XFRP [132, 151] - FRP Push Actors
Other
ActiveSheets [142] MS Excel FRP Push Global registry

Table 3.1.: Taxonomy of the state of the art in distributed reactive programming. This tax-
onomy complements the taxonomy in Chapter 2 (page 32) of non-distributed
reactive programming languages and frameworks.

3.1. Global Signal Registry

The first category that we discuss from Table 3.1 (page 32) is a global signal registry.
A global signal registry is a registry at some known location (e.g., addressable by
hostname or URL) where programs can register their local signals or streams to
be discovered by other programs. Other programs can retrieve signals or streams
from the registry and use them as if they were defined locally. ActiveSheets and
DREAM support such a global signal registry. Due to their very different nature,
we will discuss them separately.

3.1.1. ActiveSheets

ActiveSheets is a programming language and tool embedded in Microsoft Ex-
cel [142]. It extends Excel with 3 features that enable reactive and distributed
programming.

1. Streams of live data can be imported into spreadsheet cells1. The value of
the cell automatically updates whenever the connected stream emits a new
value. Just like a normal spreadsheet, any computations that are derived
from such a cell will automatically update when the value of the cell changes.

1The original work makes a distinction between a stream and a feed. They call a stream an infinite
sequence of attribute/value pairs, whereas a feed is an infinite sequence containing only one of
those attributes. In our discussion this distinction is not important.
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2. In addition to capturing the latest value of a stream, “projections” of streams
can be defined, e.g., to capture a slidingwindow of values emitted to a stream.
The size of the window is determined by the user, e.g. to capture the 10
most recent values of a stream in cells A1 to A10.

3. Cells contain additional operations to capture state that can evolve over
time.

ActiveSheets extends Microsoft Excel’s GUI with widgets that enable Act-
iveSheets to operate as a distributed reactive program. The first step to do so is
to connect the spreadsheet to an external server, which acts as a global signal
registry. Users can import streams that are offered by the server, and they can
export local data to the server which creates additional streams (importable by
other ActiveSheets clients).

In principle, an exported stream terminates as soon as the spreadsheet that
exports that stream is closed (e.g., when closing the local application). This means
that other clients that use the stream will no longer receive new data. To prevent
the stream from being closed, a user can export an entire spreadsheet to the server
via a GUI widget, which then perpetually remains active on the server rather than
the client.

3.1.2. DREAM

DREAM is a Functional Reactive Programming framework in Java used to in-
vestigate consistency guarantees2 when designing distributed reactive programs.
Similar to ActiveSheets, it employs a global signal registry to exchange signals in
a distributed application. We will demonstrate its distribution mechanism via a
Celsius to Fahrenheit converter.

Listing 3.1 implements a Celsius to Fahrenheit converter. A new signal is defined
using the Var class, which is used on line 1 to implement a reactive value celsius
that holds values of type Integer. The first argument of Var is a (unique) name
for the signal, in this case thermometer, and the second argument is an initial
value for the signal, such as Java’s object representation of the primitive number
20.

A new signal called fahrenheit is derived from celsius by instantiating the
Signal class. The first argument is a unique name, and the second argument
is a Java lambda that implements the computation itself. The celsius.get()
expression in the body retrieves the current value of the signal. The third argument
is used to register which signal gives rise to a reevaluation of the lambda whenever
the value of the signal changes, which in this case is only the celsius signal.

2In the context of distributed reactive programming, consistency denotes the degree to which
computed values in a DAG that spans different machines are in a consistent state with each
other. For example, to prevent glitches in a distributed reactive program.

33



3. State of the Art: Distributed Reactive Programming

1 Var<Integer> celsius = new Var<>("thermometer", Integer.valueOf(20));

2 Signal<Integer> fahrenheit =

3 new Signal<>(() -> (celsius.get() * 9/5) + 32, celsius);

4 celsius.set(Integer.valueOf(21));

Listing 3.1: Converting a Celsius signal to Fahrenheit in DREAM

1 RemoteVar<Integer> temp = new RemoteVar<Integer>("Host1", "thermometer");

Listing 3.2: Looking up signals in DREAM’s global signal registry.

Finally on line 4 the value of the celsius signal is modified to be 21, which will
propagate through the reactive program.

Provided that the program of Listing 3.1 has registered a hostname such as
Host1 in a configuration file (not shown), then its signals are made available to
other DREAM applications on the network via Java’s remote object registry [100]
(commonly referred to as rmiregistry). Other DREAM programs can obtain a
reference to those signals via the global registry by looking up signals by name. For
example, the code in Listing 3.2 which is running on a different client can address
the signal called thermometer that is exported by the client with hostname Host1.
The local object stored in variable temp is a proxy for the remote signal whose
value will be updated whenever the value of the remote signal is updated.

3.2. Distributed Reactive Programming With CRDTs

A second category in Table 3.1 is the Conflict-free Replicated Data Type (CRDT).
One framework, namely REScala, supports distributed reactive programming via
CRDTs. We briefly introduce CRDTs and REScala before showing how CRDTs are
used to develop distributed REScala programs.

3.2.1. Conflict-free Replicated Data Types

AConflict-free ReplicatedData Type (CRDT) is a data structure that can be replicated
across multiple programs running on different computers in a network [131].
Every replica can be used and updated by a program without synchronising or
coordinating with the other replicas. In other words, a local application can
continue to use and update any local state stored in a CRDT even when the
network disconnects.

The underlying run-time guarantees eventual consistency: If no new updates
are made by the programs to their version of the CRDT (i.e., their “replica”),
then the state of each replica will eventually converge to a single value. In other
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1 val newEntry = Evt[Entry]()

2 val automaticEntries: Event[Entry] = App.nationalHolidays()

3 val allEntries = newEntry || automaticEntries

4
5 newEntry.fire(Entry("my event title", Date.today))

Listing 3.3: Adding calendar entries in REScala with streams. Example from [90].

words, whenever inconsistencies occur between the state of each replica, e.g., after
a temporary network failure, then it is mathematically possible to resolve the
conflict between different versions of the data.

Not every data structure can be used as a CRDT due to the required mathemat-
ical guarantees. Those that are well understood include counters, registers and
sets [130].

3.2.2. REScala

REScala is a Functional Reactive Programming library in Scala. It supports both
signals andwhat REScala calls “events”. Using our terminology, REScala’s “events”
abstraction equates to a stream, i.e., a possibly infinite sequence of discrete values.
We introduce REScala by using the example from the authors [90], which we also
use in Chapter 4.

The example used in [90] is that of a shared calendar where users can add
calendar events and select a week to display the calendar events from. The part
of the example to add calendar events is shown in Listing 3.3. All calendar events
are collected on a stream called newEntry (line 1), and the application has a
stream of built-in calendar events called automaticEntries (line 2). The events
from both streams are merged using the || stream operator which returns a
single output stream called allEntries that contains the events from both input
streams. An example of adding a calendar event is given on line 5, where a new
Event (implementation not shown) is pushed onto the newEntry stream.

Signals are used to represent a user’s currently selected calendar date and
week. They are defined in Listing 3.4. A signal selectedDay is created by in-
stantiating REScala’s Var with an initial value of Date.today. Then, a signal
selectedWeek is derived via REScala’s Signal expression. The definition of the
signal between curly braces can make use of other signals such as selectedDay
which are defined in scope. Here, using selectedDay.value will ensure that
whenever selectedDay’s value changes, then the Signal expression is recom-
puted as well. Finally we show how to modify the value of a source signal on line 4,
which will immediately propagate through the DAG and cause the selectedWeek
signal to update as well.
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1 val selectedDay: Var[Date] = Var(Date.today)

2 val selectedWeek = Signal { Week.of(selectedDay.value) }

3
4 selectedDay.set(Date.tomorrow)

Listing 3.4: Selecting calendar dates in REScala with signals. Example from [90].

1 val entrySet: Signal[Set[Entry]] =

2 if (distribute)

3 ReplicatedSet("SharedEntries").collect(allEntries)

4 else

5 allEntries.fold(Set.empty) { (entries, entry) => entries + entry}

6
7 val selectedEntries = Signal {

8 entrySet.value.filter { entry =>

9 try selectedWeek.value == Week.of(entry.date.value)

10 catch { case DisconnectedSignal => false }

11 }

12 }

Listing 3.5: Using CRDTs in REScala to implement a shared calendar. Example from [90].

3.2.3. Distributed Reactive Programming in REScala

CRDTs are used by REScala to distribute a reactive program’s DAG over a net-
work [90]. The main idea is that CRDTs are used behind the scenes to replicate
signals over the network. RESCala takes care of the mechanism required for
signals to discover each other, and CRDTs are used to ensure that a signal’s value
is correctly propagated over a network.

The code responsible for sharing calendar events is shown in Listing 3.5. It
defines 2 signals entrySet which contains a Set of all calendar events, and
selectedEntries which contains a Set of only the calendar events that fall
within the user selected week. As a visual aid, we draw the DAG of the corres-
ponding program in Figure 3.1.

The entrySet signal is defined on lines 1 to 5. If a distribute flag is set, then
a new ReplicatedSetCRDT is created which is identified (on the network) via its
name SharedEntries. All local events from the allEntries stream are collected
by the CRDT and shared over the network. In Figure 3.1 we draw 3 such replicas
of the CRDT (for brevity we did not draw any DAGs across the network boundary).
If the distribute flag is not set, then all local events given by allEntries are
aggregated into a regular (non-replicated) Set. The result stored in entrySet

is a signal that contains sets: A newly updated Set is propagated to dependent
signals every time the calendar entries change, e.g., when a new calendar entry is
added.
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Figure 3.1.: Diagram of the shared calendar application DAG of Listing 3.5.

The selectedEntries signal on lines 7 to 12 filters all calendar entries for
those that fall within the week selected by the user. The filter expression can
be considered as standard Scala code. However, note the use of 2 signals in the
body, namely selectedWeek.value and entry.date.value. Hence the filter is
automatically recomputed whenever the selected week changes, whenever the
date of a calendar changes, or when a calendar entry is added or removed from
the Set (e.g., when CRDTs synchronise).

3.3. Actors

A third category listed in Table 3.1 (page 32) is the actor model or actors. The
actor model is a computational model where actors are the basic unit of concur-
rency [70]. The properties of actors, namely their isolated state and message
passing, make them very desirable to build distributed programs. In practice
actors have been widely adopted via languages such as Erlang [7], Elixir [67] and
JavaScript [57] (Web Workers), and various frameworks such as Akka [119] (Scala,
Java), Orleans [15] (C#/.NET), and many more.

In recent years the actor model has been adopted to build distributed reactive
programs (cf. Table 3.1), namely byAkka Streams, Creek, XFRP and Stella. Wewill
briefly explain how Akka Streams, Creek and XFRP are used to build distributed
reactive programs.

37



3. State of the Art: Distributed Reactive Programming

3.3.1. Akka Streams

Akka Streams is a stream-based reactive programming framework for Scala and
Java [77, 119]. We previously introduced Akka Streams in Section 2.2.2 on page 21.
We discussed the comprehensive API to build a reactive program’s DAG, and that
such a DAG has to be materialized (instantiated) which executes the DAG on an
actor.

An Akka Streams program DAG consisted of source nodes, internal nodes and
sink nodes. The examples previously shown in Section 2.2.2 used a source that
emits numbers (e.g., the expression Source(1 to 5)), and the sink of the reactive
program printed the result to the console. Materializing this DAG means that a
single actor is spawned on which the DAG is running. In the previous examples
data was generated locally on the spawned actor, and we did not show any actor-to-
actor communication. Since actors are the key enabler of distributed programming
in Akka Streams, we will briefly show how to construct Akka Streams programs
where multiple (possibly distributed) actors interact with each other.

There are many types of source nodes to feed an Akka Streams program with
data, e.g., collections, Java 8 streams, timers, etc. One of these sources is an
actorRef source [76], which allows the reactive program to react to messages sent
by other actors. A use case of actorRef is given in Listing 3.6, which implements
a Celsius to Fahrenheit converter as an Akka Streams program. The DAG of the
program is defined in 3 parts. Lines 1 to 5 define the source node of the DAG,
line 7 defines the temperature converter, and line 8 defines a sink that prints the
result to the console. For the sake of this discussion, the constructor arguments
of Source.actorRef can be ignored. They indicate the various strategies to be
used by Akka Streams whenever a message is received that cannot be processed,
and what happens when messages are sent faster than they can be processed (i.e.,
they are buffered).

Materializing the DAG on line 10 yields a reference to the actor that runs the
stream. This object can be freely passed to other (distributed) actors that are
created using standard Akka code (the actor framework that underpins Akka
Streams). Other actors can send messages to the stream just like any other actor,
i.e. using the ! (send) operation as demonstrated on lines 11 to 12.

Akka Streams leverages the underlying Akka actor library for distributed actor
discovery. It offers abstractions such as a Receptionist [74] which is essentially a
distributed publish-subscribe system where actors can be registered and retrieved
via a unique name.
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1 val celsiusSource = Source.actorRef(

2 completionMatcher = { case Done => CompletionStrategy.immediately },

3 failureMatcher = PartialFunction.empty,

4 bufferSize = 100,

5 overflowStrategy = OverflowStrategy.dropHead)

6
7 val CToF = Flow[Int].map(c => (c * 9/5) + 32)

8 val sink = Sink.foreach(println)

9
10 val actorRef = celsiusSource.via(CToF).to(sink).run()

11 actorRef ! 22

12 actorRef ! 21

Listing 3.6: A Celsius to Fahrenheit converter in Akka Streams which accepts messages
from other actors.

1 remoteThermometer

2 .map(fn c -> (c * 9/5) + 32 end)

3 .runWith(foreach(f => {

4 printf("Current temp: %fF\n", f))})

Listing 3.7: A Celsius to Fahrenheit converter in Creek.

3.3.2. Creek

Creek is a streaming framework for Elixir designed for distributed reactive pro-
gramming and metaprogramming3. Similar to Akka Streams, a Creek program
defines a DAG which describes how data is processed, and “instances” of those
DAGs are run on actors.

Given a remote thermometer, Listing 3.7 implements a Celsius to Fahrenheit
converter as a stream. In this case remoteThermometer is assumed to be an actor
that implements the correct protocol to communicate with other actors that will
run the Celsius to Fahrenheit DAG.

Creek offers an actor discovery mechanism that is tailored towards the Internet
of Things, where many devices such as sensors ought to be discovered automatic-
ally on the network. Concretely, it offers a global network stream that announces
meta-messages which indicate that actors join or leave. For example, we can
extend the example of Listing 3.7 with additional code to discover a remote ther-
mometer on the network. The original code of Listing 3.7 remains present in
Listing 3.8 on lines 4 to 7. We use Creek’s network stream that will contain device
join and leave events. The stream is filtered on line 2 to only keep the tuples
where the event is the symbol :join, and the type of the device is :thermometer.

3Metaprogramming in Creek is described in [139]. An early version of Creek that describes its
distributed capabilities was called Potato, and is described in [138].
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1 network()

2 .filter(fn { event, n } -> n.type == :thermometer && event == :join end)

3 .map(fn {_ , remoteThermometer } ->

4 remoteThermometer

5 .map(fn c -> (c * 9/5) + 32 end)

6 .runWith(foreach(f => {

7 printf("Current temp: %fF\n", f))})

8 end)

Listing 3.8: Discovering remote actors in Creek.

1 module CelsiusToFahrenheit % module name

2 in { client1@hostname } celsius : Float % temperature sensor

3 out fahrenheit : Float

4
5 { client2@hostname } node fahrenheit = (celsius * 1.8) + 32

Listing 3.9: A distributed Celsius to Fahrenheit converter in XFRP.

The subsequent map operator on line 3 runs the Celsius to Fahrenheit converter
for each thermometer that passes the filter.

3.3.3. XFRP

XFRP is an actor-based reactive programming language that compiles to Erlang,
and which integrates with Erlang to support distributed programming.

Every XFRP program consists of module declarations that implement a func-
tional reactive program. For example, a distributed Celsius to Fahrenheit con-
verter is implemented in Listing 3.9. The module called CelsiusToFahrenheit

declares a single source node called celsius which expects values of type Float
(denoted by the keyword in), and it declares a single sink node fahrenheit also
containing values of type Float (denoted by the keyword out). The body of the
module implements a single node called fahrenheit which was designated as
the output of the module, and which implements the temperature conversion in
the style of Functional Reactive Programming.

All source, internal and sink nodes in an XFRP program are compiled to Erlang
actors. To build a distributed program, in Listing 3.9 we used the optional node
placement types before a node’s declaration, e.g., { client1@hostname }. They
are Erlang host specifiers that denote on which machine (hostname) and Erlang
instance (e.g., client1) the compiled actors should be spawned. The XFRP
runtime takes care of the propagation of values over the network.
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1 def Thermometer := object: {

2 def temp := 0;

3
4 def temperature() {

5 temp;

6 };

7
8 def @Mutator update(newTemp) {

9 temp := newTemp;

10 };

11 };

Listing 3.10: Digital twin of a thermometer in AmbientTalk.

3.4. Ambient-oriented Reactive Programming

A fourth category in Table 3.1 (page 32) is ambient-oriented programming. Ambient-
oriented programming is a programming paradigm for developing distributed
applications [37]. The main difference with traditional paradigms is the base
assumption that wireless networks and mobile devices are volatile (e.g., when
devices go out of range), and can thus appear and disappear spontaneously. The
programming language should incorporate network failures throughout all parts
of the application, rather than treating them as an exceptional circumstance (e.g.,
via exception handling). The main ambient-oriented programming language is
AmbientTalk [34]. We briefly introduce AmbientTalk’s syntax and object-oriented
base language before showing how it is used to build distributed reactive pro-
grams.

3.4.1. AmbientTalk

AmbientTalk is a prototype-based object-oriented programming language. For
example, we can use a prototype to represent a thermometer’s digital twin (i.e.,
a virtual representation of a physical thermometer). Listing 3.10 defines such a
prototype object via the object: { } syntax. The prototype has one local field
called temp which is initialised to 0, a getter method called temperature, and a
setter method called update that assigns to the local temp field. The prototype
object is assigned to a variable called Thermometer. Note that the @Mutator

annotation in the definition of update is not standard AmbientTalk, but is a part
of AmbientTalk/R.
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1 def CelsiusToFahrenheit := object: {

2 def convert(celsius) {

3 (celsius * 9/5) + 32;

4 };

5 };

6
7 def sensor := makeReactive(Thermometer.new());

8 def result := CelsiusToFahrenheit.convert(sensor.temperature());

Listing 3.11: A Celsius to Fahrenheit converter in AmbientTalk/R.

1 deftype ThermometerT;

2 def sensor := makeReactive(Thermometer.new());

3 exportBehavior: sensor as: ThermometerT;

4
5 def allNearbySensors := ambientBehavior: ThermometerT @All;

Listing 3.12: Sharing objects over the network with AmbientTalk/R.

3.4.2. AmbientTalk/R

AmbientTalk/R is a reactive extension of AmbientTalk that combines the ambient-
oriented features of AmbientTalk with functional reactive programming [27].

Methods and fields of AmbientTalk objects are used to create reactive depend-
encies between objects. For example, Listing 3.11 implements a reactive Celsius
to Fahrenheit converter as a prototype object with a convert method. However,
objects such as Thermometer and CelsiusToFahrenheit are not automatically
reactive. AmbientTalk/R provides a makeReactive primitive that turns a non-
reactive object into a reactive object. For example, line 7 clones the Thermometer
object by invoking the new method which every object has, and turns the clone
into a reactive object. Now, accessing the temperature getter on line 8 creates a
dependency (just like in Functional Reactive Programming) between the convert
method and sensor. Thus, whenever the sensor’s update method is called, then
the change to its temperature will automatically change the value of result.

AmbientTalk/R shares the capabilities of AmbientTalk to distribute objects
over a network. In general, objects are published to the network via type tags,
and other AmbientTalk/R applications can discover the objects via the same
type. For example, Listing 3.12 defines a ThermometerT type on line 1, and
shares the sensor object using exportBehavior: as:. The application can
discover all objects shared using the ThermometerT type via ambientBehavior:,
as demonstrated on line 5. The returned value that is stored in allNearbySensors
is a collection of discovered sensors which can be used by the reactive program.
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1 @peer type Client <: { type Tie <: Single[Server] }

2 @peer type Server <: { type Tie <: Single[Client] }

Listing 3.13: Defining a client-server architecture in ScalaLoci where each client is tied to
a single server and vice-versa.

3.5. Multitier Reactive Programming

A fifth category listed in Table 3.1 (page 32) is multitier programming. Multitier
programming is a programming paradigm where the multiple tiers of a distributed
systems architecture (e.g., a 2-tier client-server architecture, 3-tier architecture,
peer-to-peer, etc.) can be programmed using a single codebase in one program-
ming language. Multitier programming was pioneered by languages such as Hop
and HipHop [19, 129], and later adopted by the Functional Reactive Programming
language ScalaLoci [152] and the Gavial [118] framework. We briefly discuss how
ScalaLoci is used to develop distributed reactive programs, which we consider to
be representative for the state of the art. In general, the concepts from ScalaLoci
translate to Gavial as well.

3.5.1. ScalaLoci

ScalaLoci is a multitier and reactive domain-specific language in Scala. The main
novelty compared to traditional multitier programming is that ScalaLoci can be
used to define signals within specific tiers, and which can be used within other
tiers as well. When the different application tiers are split and run on different
hardware, then ScalaLoci automatically takes care of the communication between
signals defined on one tier to the other tiers.

The architecture of a distributed program is explicitly defined in the program
using peers and ties. A peer represents a single tier in the distributed system, e.g.,
a client or server tier. A tie specifies the relationship between tiers. For example,
Listing 3.13 defines a client-server architecture where each client is tied to a single
server, and each server is tied to a single client.

A variation of the client-server architecture is defined in Listing 3.14 where
each client is still tied to a single server, but each server is tied to multiple clients.
In general, ScalaLoci can be used to implement various architectures including a
peer-to-peer architecture. For brevity we will limit our examples to using Single
ties.

Consider the implementation of a Celsius to Fahrenheit converter in Listing 3.15.
Lines 2 to 4 define the used tiers, in this case a Thermometer tier which will rep-
resent a thermometer, and a Converter tier which will convert the thermometer’s
measurements to Fahrenheit. Since the various tiers in the application share
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1 @peer type Client <: { type Tie <: Single[Server] }

2 @peer type Server <: { type Tie <: Multiple[Client] }

Listing 3.14: Defining a client-server architecture in ScalaLoci where a server is tied to
multiple clients.

a single codebase, both code and data are annotated with placement types that
indicate which tier they are a part of. For example, the variable celsius on line 6
implements the current temperature of a thermometer as a reactive signal. Signals
are created in ScalaLoci using Var that is given an initial value, in this case 0. This
code has the placement type on[Thermometer]which indicates that the specified
code block (between curly brackets) that contains the signal definition is executed
on the Thermometer tier.

Similarly to celsius, the fahrenheit computation on line 7 is annotated with
the placement type on[Converter], which means that the provided code block
is executed on the Converter tier. In this case it contains the definition of a new
signal that converts the value of the celsius signal to Fahrenheit. Note the call
to celsius.asLocal(): ScalaLoci makes the distribution explicit in the code,
indicating that data will be moved from the celsius signal on the Thermometer
tier to a local representation of the same signal on the Converter tier.

The main function on lines 11 to 15 is called when the program starts, and
further highlights how code is split into different tiers. It consists of two parts
which are executed on the Thermometer and Converter tier respectively. The
thermometer will change the value of its celsius signal to a random number
between 0 and 25, and the converter will observe any changes to its fahrenheit
signal by printing those values to the Converter tier’s console.

3.6. Reactive Wireless Sensor Networks

The final category listed in Table 3.1 (page 32) are (reactive) Wireless Sensor
networks. Wireless Sensor Networks are networks that consist of low cost, low-
power devices that collect data, often about the physical world (e.g., environmental
conditions, volcano activity, etc). The devices can be deployed in large numbers
such that they form a dense wireless network. Functional Reactive Programming
has been applied to sensor networks via frameworks such as theHaskell-based FRP
framework Flask [81]. We briefly explain how Flask is used to build distributed
reactive programs for Wireless Sensor Networks.

One of the main contributions of Flask is how to reconcile existing work on
FRP with the extremely limited resources of small devices (e.g., with only 10K of
RAM). Essentially, Haskell is used as a meta-language to generate low-level object
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1 @multitier object ThermometerService {

2 @peer type Peer

3 @peer type Thermometer <: Peer { type Tie <: Single[Converter] }

4 @peer type Converter <: Peer { type Tie <: Single[Thermometer] }

5
6 val celsius = on[Thermometer] { Var(0) }

7 val fahrenheit = on[Converter] {

8 Signal { (celsius.asLocal() * 9/5) + 32 }

9 }

10
11 def main(): Unit on Peer =

12 (on[Thermometer] {

13 celsius.set(scala.util.Random.nextInt(25))

14 }) and

15 (on[Converter] { fahrenheit.changed observe println })

16 }

Listing 3.15: A multitier Celsius to Fahrenheit converter in ScalaLoci.

code that can be executed on the sensors4. In this case the low-level code can be
either nesC [54] (an extension of the C language for TinyOS) or Red, a language
whose syntax is compatible with Haskell but with additional constraints that are
suitable for embedded systems (e.g., no recursion or allocation of closures).

A Flask program consists of Haskell code that constructs a reactive program’s
DAG. The Haskell type system is used to ensure that the computations in the DAG
are either nesC or Red, meaning that the reactive program DAG that is generated
by the Haskell code can be executed on sensors.

While wewill not go into the details, the type signatures of some of themain FRP
functions used to construct a DAG are shown in Listing 3.16. The map function
applies an object-level function to a signal of values. The first argument is the
function to apply to the signal. The used type constructor N denotes the type of
the object-level code, in this case a function that transforms values of type a into a
value of type b. The 2nd argument of type S a denotes a signal that carries values
of type a, and the return value of map is a new signal that carries values of type
b. Similarly, the filter function accepts an object-level predicate and returns
a new signal that only contains the values for which the predicate returns True.
The &&& (“parallel”) and >>> (“and then”) operators are commonly found in other
Haskell FRP frameworks such as Yampa [63]. In a nutshell, the &&& combinator
combines the values of 2 signals in a signal that contains a tuple with both values,
and the >>> combinator chains 2 functions that operate on signals.

4Note that Haskell code is not transpiled to low-level object code, but rather the Haskell code will
generate low-level object code by carefully using the correct Flask library calls.
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1 map :: N (a -> b) -> S a -> S b

2 filter :: N (a -> Bool) -> S a -> S a

3 &&& :: S a -> S b -> S (a, b)

4 >>> :: (S a -> S b) -> (S b -> S c) -> (S a -> S c)

Listing 3.16: Type signatures of Flask signal operators.

1 send :: FlowChannel -> S a -> S ()

2 recv :: FlowChannel -> S a

Listing 3.17: Type signatures of Flask’s distribution operators.

Distributed programming is supported by Flask by allowing values to be broad-
cast wirelessly to the network via radio channels. It offers 2 built-in functions send
and recv to send and receive data on a radio channel. The type signature of these
functions are shown in Listing 3.17. The send function requires a channel and a
signal, and will publish the signal’s values to the network. In the other direction,
the recv function turns a channel into a new signal to which the program can
react.

3.7. Summary of Distributed Reactive Programming
Approaches

In this chapter we outlined the state of the art reactive programming languages
and frameworks to develop distributed reactive systems. As we have shown, the
commonality between all of them is that they allow the reactive program’s DAG
to become distributed, such that data between 2 parts of the DAG can flow over
a network. The discussed related work was categorised in Table 3.1 (page 32)
according to the used techniques, which we briefly summarise.
Global Signal Registry A global signal registry is used by ActiveSheets and

DREAM to export local signals to the network. Other programs connected to
the same registry can lookup signals in the registry by name, and use them in
their own programs as if they were defined locally.

Conflict-free Replicated Data Types To ensure that a distributed reactive pro-
gram is resilient against network failures, RESCala uses CRDTs to handle the
propagation of values over the network. Essentially a signal is exported to
the network with a unique name, and other programs can lookup the signal
using that name. Behind the scenes a CRDT is created on each side of the
network. The properties of CRDTs ensure that when the CRDT on one side of
the network is updated, then eventually the same CRDT on the other side of
the network will be updated as well.
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Actors We demonstrated Akka Streams, Creek and XFRP which build a reactive
programming framework on top of actors. Since actors are already an often
used programmingmodel for distributed systems, these frameworks keep using
actors as the basic unit of discoverability in the application. For Akka Streams
this means relying on existing features to exchange actor references, e.g., using
publish-subscribe. On the other hand, Creek directly integrated actor discovery
with reactive streams by reifying the discovery and disconnection of actors as
a data stream in the application, which can be mapped and filtered to obtain
the desired actors (e.g., to use only thermometer actors). Finally, a different
approach is offered by the functional reactive programming language XFRP.
Here, the reactive program is specified in terms of nodes which perform a
computation, and each node is compiled to an actor. Distribution is achieved
via placement types which indicate on which (remote) host the compiled actors
should run.

Ambient-oriented Programming Ambient-oriented programming is specifically
designed to program applications for wireless ad-hoc networks. To build
distributed reactive programs for such networks, the AmbientTalk/R reactive
programming language provides a mechanism where a program’s signals can
be published to the network by using a type tag. It also provides primitives to
discover the signals that are available on the network under a given type tag,
which results in a collection of signals to which the reactive program can react.

Multitier Reactive Programming Multitier languages such as ScalaLoci andGavial
provide programmers with the ability to program multitier applications in a
single language, using a single codebase. The language or framework takes care
of splitting the code into the various tiers, which can be executed on different
machines. In this case signals that are running on one tier can refer to the
signals of another tier because they share the same codebase, and the language
or framework takes care of managing distribution when the tiers are split.

Reactive Wireless Sensor Networks Functional Reactive Programming has been
used by Flask to program sensors in a Wireless Sensor Network. These devices
have extremely limited capabilities, and thus their networking is often limited
to a simple radio. The signal discovery features of Flask reflect the limited
capabilities of sensors, and manifest themselves as a simple send and receive

where the values of a signal can be broadcast on a radio channel. Vice-versa,
each radio channel can be reified as a signal in the reactive program to receive
broadcasts from other devices.

Of the identified techniques, 4 are not suitable for developing distributed
reactive programs for open networks. Namely, a global signal registry and CRDTs
are unsuitable because the number of signals that are published to the network is
fixed by the program code (i.e., not open). The broadcasting mechanism used by
reactive Wireless Sensor Networks is too low level, and it requires a programmer
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to build additional abstractions, e.g., at least to distinguish between multiple
signals from similar devices (e.g., a multiplexer). Multitier reactive programming
is not suited because it requires all tiers in a distributed system to be programmed
using a single codebase, which is not the case for open networks.

Actors and ambient-oriented programming are potential candidates, since their
discovery mechanisms can be used for open networks. However, signal discovery
is only one aspect of programming open networks. Another aspect, which will be
discussed in Chapter 4, is how the reactive program can correctly and efficiently
manage all of the discovered signals (i.e., the Acquaintance Maintenance Problem
of Section 4.3).
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In this chapter we analyse the problems that occur when a programmer uses exist-
ing reactive programming languages and frameworks to implement distributed
reactive applications for open networks. Concretely we will study 3 problems:
2 problems occur when using a reactive programming language or framework
“for distributed application development”, and 1 problem occurs when doing so
specifically “for open networks”.

The first problem is called the Reactive Thread Hijacking Problem discussed
in Section 4.1, where the data that enters a reactive program via the network
can accidentally cause the program to be no longer reactive. This is problematic
when interacting with devices on an open network because the various discovered
devices are not necessarily part of the same codebase by the same developers (i.e.,
they cannot be controlled).

The second problem is called the Reactive/Imperative Impedance Mismatch
discussed in Section 4.2, which encompasses the problems of combining imper-
ative code with reactive code within the same application. Since both types of
code are inevitable when programming distributed applications, we will study
their combination in both directions, i.e., the embedding of reactive code within
imperative code and vice-versa. Essentially, their combination is problematic
because the semantics of the program become unclear and it becomes difficult to
predict how the program will behave at run-time.

Finally, the third problem is called the Acquaintance Maintenance Problem
discussed in Section 4.3, which occurs whenwriting reactive programs that react to
an open number of data producers, which means that they are dynamic and cannot
be determined beforehand. The current approaches to implement such programs
either lead to code that exhibits accidental complexity and is error-prone, or the
implementation is inefficient.
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4.1. Reactive Thread Hijacking Problem

The word reactive in “reactive programming” denotes both the programming style
(code) as well as the run-time behaviour of reactive programs. In this section we
discuss the latter, where programs that are called reactive are expected to react in
real-time to any changes that occur, i.e., they are expected to be responsive. To
this end, the “Reactive Manifesto” highlighted the need to establish reliable upper
bounds on program response times [23]. To better understand what it means for a
program to be “responsive”, we define different levels of reactivity that correspond
to different kinds of “reliable upper bound” for a program’s execution time.

4.1.1. Levels of Reactivity: Weak, Eventual, and Strong Reactivity

The core of the issue concerns program termination. More specifically the (non-
)termination of an individual reaction of the reactive program. We identified 3
levels of reactivity that provide different termination guarantees: weak reactivity,
eventual reactivity, and strong reactivity. We will discuss them in terms of the
reaction time of a reactive program, i.e., the time it takes for a reactive program to
react to an arbitrary input value.

Weak Reactivity: Aprogramming language or framework is calledweakly reactive
when it provides no guarantees about the reaction time of an arbitrary program
that is accepted as a valid program by the language or framework. Most
reactive programming languages and frameworks are weakly reactive, because
usually they allow applications to be programmed with the full power of a
Turing-complete language.

Eventual Reactivity: A reactive programming language or framework is called
eventually reactive when it can guarantee that any program accepted as a valid
program by the language or framework has a finite reaction time. In other
words, all reactions to any input value will eventually terminate.

Strong Reactivity: A reactive programming language or framework is called
strongly reactive when it can guarantee that the reaction time of any program
accepted as a valid program by the language or framework does not depend on
the size of the input. In other words, the asymptotic worst-case reaction time
is guaranteed to be in O(1).

A taxonomy of related work according to the different levels of reactivity will
be provided in Chapter 7.

4.1.2. Hijacking Reactive Programs With Long Lasting Computations

Most reactive programming languages and frameworks are weakly reactive, and
it is often easy to demonstrate a reactive program which (accidentally) becomes
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1 val userInputSignal = Var("") // initial signal value is ""

2 val matches = Signal {

3 "(A+)*B".r.findFirstMatchIn(userInputSignal())

4 }

Listing 4.1: Matching strings to a regular expression in REScala.

no longer reactive for certain types of input. For example, consider the program
in Listing 4.1 written in REScala [123], a state of the art FRP library for Scala,
that checks whether user-provided input strings match a regular expression.
Line 1 defines a new source called userInputSignal (initialized with the empty
string), and line 2 derives a new signal called matches. Whenever the value of
userInputSignal changes, the value of matches automatically reflects whether
the string matches the given regular expression (A+)*B (e.g., AB and AAAB, but
not AAA). The worst-case complexity of this program is O(2n) with n being the
size of the input string. Matching the string AAAAA fails after approximately 112
steps, and matching 50 A’s fails only after ∼3 quadrillion steps [115]. Thus, the
program clearly cannot be called reactive with respect to all possible inputs. This
is especially problematic when the inputs are provided externally and thus cannot
be predicted, e.g., user input, or data from distributed services.

While the example may be a contrived case of catastrophic backtracking in
regular expressions, a developer can easily and accidentally introduce computa-
tions into reactive programs that (occasionally) have unintended consequences
for their reaction time. We call this problem the Reactive Thread Hijacking Prob-
lem, because long lasting computations (such as matching regular expressions)
can completely “hijack” the thread of execution of a reactive program, thereby
stopping the reactive program from being able to react to any new input.

4.1.3. Research Goal

While responsiveness is considered to be an important property of reactive sys-
tems, knowing that a program should be responsive is different from then also
ensuring that it is responsive. Most existing reactive programming languages and
frameworks sidestep the issue completely.

In summary:

Research Goal #1: Bounded-time Reactivity

The language design problem that needs to be solved is how to ensure that a
“reliable upper bound” can be imposed on long lasting computations within
reactive programs.
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4.2. Reactive-Imperative Impedance Mismatch

Consider developing distributed reactive programs. It is inevitable that some
parts of the reactive program will be responsible for handling traditional concerns
of distributed programming such as networking. In the worst-case programmers
resort to using low-level sockets, in the best case they have access to higher-level
abstractions to perform network requests or pass messages. However, in all cases
the act of sending data over a network is a side-effect executed via paradigmatically
imperative code rather than reactive code. After all, IO is an effectful aspect of
programs.

In analogy with the Object-Relational Impedance Mismatch for object-oriented
programming [66], we identify the Reactive-Imperative Impedance Mismatch
as the set of problems that occur when combining imperative code with reactive
code. We discuss the problems of their combination in two directions. Namely
the “embedding of imperative code within reactive code” (Section 4.2.1), and vice-
versa, the “embedding of reactive code within imperative code” (Section 4.2.2).

4.2.1. Embedding Imperative Code in Reactive Code

Effectful computations are extremely tricky to understand and debug when they
are embedded within the nodes of a reactive program’s Directed Acyclic Graph
(DAG) [42, 79], i.e., when imperative expressions are subexpressions of reactive
expressions. In brief, this is because the update order of the DAG, and therefore
the order of its side-effects, is not part of the semantics of a reactive program.

Reactive programming languages such as FrTime [31], Flapjax [88] and RES-
cala [123] prevent glitches1 by specifying that updates should be executed in a
topological order of the DAG. Some implementations parallelise the execution of
certain regions of the DAG, such as the conceptual propagation model of Elm [36]
and a parallel version of the REScala update algorithm [40]. Streaming frame-
works such as ReactiveX [113] and Akka Streams [119] do not feature such an
algorithm, and instead only specify that parent nodes should be updated before
their child nodes. Hence, a programmer cannot determine the order in which
side-effects are executed by just reading the program’s code, and they may cause
additional issues such as race conditions [93] when the execution of the DAG is
parallelised.

All of the aforementioned technologies allow multiple valid update orders
to be used for a given program. This is important information for language
implementers, because it gives them a lot of freedom to tweak and optimise (e.g.,
parallelise) how values propagate through the reactive program. However, for
application developers this means that the concrete update order can vary across

1A glitch is a temporary inconsistency in the program, see Section 2.1.5 on page 16.
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1 val counter = Var(0) // initial source value is 0

2 Signal { print("A" + counter() + " ") }

3 Signal { print("B" + counter() + " ") }

Listing 4.2: A REScala reactive program with side-effects.

different implementations or versions of the same language or framework. As we
will demonstrate, the order can even change at run-time.

It is easy to demonstrate a reactive programwhere the embedding of imperative
code in reactive code yields nondeterministic results when it is executed. Consider
the reactive program (written in REScala) in Listing 4.2. Line 1 defines a new
source called counter, and lines 2 and 3 define two signals that print either A
or B to the console followed by the value of the counter. When this program
is executed, the initial value of counter is propagated through the program,
and “A0 B0” is printed to the console in the order of evaluation (from top to
bottom). However, when the value of counter is updated to 1, approximately
50% of the time the program output is reversed and “B1 A1” is printed. Thus,
effectful expressions leak information about the update order of subexpressions
within reactive programs, and their correct execution may never rely on a specific
order. Note that, in this case, the side-effecting print expressions are immediately
obvious to a programmer, but in general side-effects can be hidden by multiple
layers of abstraction (e.g., function or library calls).

The root of the problem are unconstrained side-effects within the reactive pro-
gram. Not only can side-effects cause bugs that are difficult to find and reproduce
because of an unlucky ordering in some propagations through the DAG, but they
are also very difficult to coordinate and have a detrimental effect on behavioural
composition [41]. Recognising these issues, most reactive programming languages
and frameworks forbid side-effects within a reactive program, either through
language design or via programmer guidelines (e.g., REScala guidelines [114]).
However, as we will discuss next, they are rarely successful in banning side-effects
completely.

4.2.2. Embedding Reactive Code in Imperative Code

Reactive programs do not exhibit the issues from the previous section when all
embedded code is purely functional. However, we observe that this requirement
is not met in practice. That is because reactive programs never exist in a vacuum,
and parts of real-world programs naturally require side-effects, e.g., to provide
input to the reactive program, to modify a GUI, or to push notifications to a user.
Hence the embedding of reactive code within imperative code that performs
those tasks is unavoidable.
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Existing reactive languages and frameworks all tackle the problems caused by
the embedding to some degree. We argue that their solutions either have limited
applicability, or are ad hoc solutions with unclear semantics. What follows is a
list of mechanisms that we identified in related work.

Built-in Primitives

Reactive programming languages and frameworks often incorporate built-in prim-
itives to simplify the development of certain types of applications. For example,
Flapjax [88] and Elm [36] provide a DSL for building GUIs where sources are
automatically created and updated by GUI components, and the GUI automat-
ically integrates with sinks of the reactive program. Similarly, the GUI library
used by FrTime [31] consists of automatically generated wrappers (via macros)
for Racket’s object-oriented GUI toolkit [47, 65]. These wrappers automatically
integrate with FrTime, and hide the (imperative) code to interact with an object-
oriented GUI library. Such languages typically also feature built-in signals with
narrow applicability, such as Elm’s Mouse.position signal [36] that follows the
coordinates of the cursor, and FrTime’s seconds signal that follows Unix time.

Languages may also include special native functions or special forms that per-
form specific tasks. For example, Elm [36] is a functional reactive programming
language built for programming web applications2. Because many parts of web ap-
plications require side-effects, Elm offers a built-in syncGet operation to execute
synchronous HTTP requests (a side-effect), e.g., to fetch images.

Meta-constructs

Reactive programs always react to the values supplied to their sources, which
originate from many different parts of the program such as the GUI, network
sockets, or separate program threads. To bridge the gap between these parts and
the DAG of the reactive program, reactive programming languages and frame-
works often offer mechanisms to imperatively change the values of sources, or
vice-versa, to perform an imperative action whenever a sink of the DAG changes.
From the perspective of the reactive program code we call them meta-constructs,
since this code is not part of the reactive program itself, and instead it is standard
(non-reactive) code in the host language.

For example, FrTime [31] and REScala [123] offer built-in primitives to create
and (destructively) modify the source of a reactive program. Their semantics is
often unclear since these mechanisms are not part of the reactive programming

2We always refer to the originally published version of Elm described in [36]. As of Elm version 0.17
(released in 2016), Elm has replaced its functional reactive programming with an architectural
pattern [35].
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model, but are necessary to implement real-world programs. Streaming frame-
works such as ReactiveX [113] and Akka Streams [119] include a wide range of
built-in operators to transform the contents of data structures to a stream, and
usually offer a special type of stream to which values can be imperatively pushed,
e.g., a Subject in Rx.

(A)Synchronous Input/Output

A reactive runtime is responsible for propagating values through the reactive
program (see Section 2.1.5 on page 17). Whenever the program thread that
contains the reactive runtime is blocked, the reactive program (temporarily)
stops reacting to any new input. Hence, reactive programming languages and
frameworks often use multi-threading or asynchronous tasks to prevent blocking
the reactive runtime, frequently to provide input values to the reactive program,
or to process the output of the reactive program.

For example, FrTime [31] contains both asynchronous tasks andmulti-threading.
Asynchronous tasks are used in the implementation of FrTime to periodically
update primitive signals such as seconds, which represents the current Unix time.
An asynchronous task is scheduled by the implementation of FrTime to update its
value every second. Multi-threading is used to ensure that the user does not block
the reactive program via code that is entered into Racket’s Read-Eval-Print Loop
(REPL), which is used by FrTime developers to interact with a running FrTime
program. A dedicated program thread manages the reactive runtime while the
main program thread is responsible for the GUI and REPL. Developers may enter
code into the REPL to imperatively change the values of source nodes of the DAG.
From FrTime’s implementation we distilled that the main thread asynchronously
“sends” (via a message) these new input values to the reactive thread. Conversely,
a programmer may monitor the value of a signal by entering its name in the REPL,
which displays the value of the signal in the GUI. Behind the scenes a dependency
is created from the REPL thread to the reactive program thread, such that the
value of the specified signal is continuously “sent” to the REPL thread as it updates
over time. However, multi-threading and concurrency are not part of the FrTime
programming model.

The Elm [36] language incorporates asynchronous tasks as part of its execution
model, and offers an async special form to compute blocking or long lasting
computations asynchronously, e.g., to asynchronously fetch an image from a web
address.

The REScala [123] library allows Scala code to modify the value of the sources of
the DAG. In this case modifying sources is synchronous: the new value of a source
is changed and immediately (synchronously) propagated through the DAG. While
multi-threading is not part of REScala’s semantics, from our experiments with the
original variant of REScala we learned that multiple Scala threads may change
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the same sources simultaneously. The implementation requires these threads to
acquire a global lock to prevent race conditions. When multiple threads supply
input values for sources, they may suffer from lock contention. A more recent
implementation of REScala [40] changed these propagation semantics by allowing
multiple updates to propagate through the reactive program concurrently as
transactions.

4.2.3. Research Goal

The mixing of imperative and reactive code should not be an afterthought when
designing a reactive programming language or framework. In one direction,
the embedding of imperative code within reactive code can cause bugs that are
difficult to find and reproduce because of an unlucky update order of the DAG,
and side-effects within the reactive program have a detrimental effect on program
composition. In the other direction, there is currently no semanticallywell-defined
and sufficiently general mechanism to embed reactive code within imperative
code without consequently also allowing imperative code to be embedded within
reactive code.

In summary:

Research Goal #2: Reactive-Imperative Reconciliation

The language design problem that needs to be be solved is how to reconcile
the reactive parts of reactive programs with the unavoidable imperative
parts, without violating the invariants of the reactive code.

4.3. The Acquaintance Maintenance Problem

Remember from Section 1.1.3 that we used the term prosumer to denote a software
component that both consumes and produces data, and that prosumers inter-
act with each other via conceptual streams of data (e.g., sensor measurements).
Furthermore, in Section 1.2.3 we introduced that every reactive program has to
perform what we called acquaintance management, which is the combination of 2
mechanisms:

1. An acquaintance discovery mechanism to find acquaintances on the open
network.

2. An acquaintance maintenance mechanism to subscribe to discovered streams
in order to react as they appear, and to gracefully close the streams as they
disappear.

We explore acquaintance management for reactive programs, and we will show
that existing reactive programming languages and frameworks are either inef-
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ficient, or require a complex and error-prone mix of code when implementing
distributed reactive programs for open networks.

Throughout this section we use the running example of a reactive program
that discovers thermometers and that computes their average temperature. We
first discuss acquaintance discovery in Section 4.3.1 to find thermometers on
the open network, and in Section 4.3.2 we discuss acquaintance maintenance,
i.e., calculating their average temperature and maintaining the thermometers
throughout the reactive program as thermometers appear and disappear.

4.3.1. Acquaintance Discovery: Extensional vs. Intensional

We classify acquaintance discovery mechanisms as either extensional or intensional.
We use these terms in the traditional mathematical sense, namely that an exten-
sional definition of a concept formulates its meaning by explicitly specifying every
object that falls under the definition, and an intensional definition gives meaning
to a concept by specifying the rules or conditions that objects have meet to be part
of the definition. Applying these terms to acquaintance discovery:
Extensional acquaintance discovery: The developer explicitly specifies the ac-

quaintances that are required by the program. This is demonstrated by the
following example in RxJS, a JavaScript implementation of ReactiveX [113,
121], which explicitly names the URL to a specific thermometer and binds the
resulting stream to sensor1.

const sensor1 = rxjs.webSocket("ws://sensor1.mysensors");

Intensional acquaintance discovery: The developer writes a prescription of the
acquaintances that are required by the program. An example can be found
in the AmbientTalk/R reactive programming language [27]. The following
snippet discovers all thermometers that are accessible on the same (wireless)
network. The expression ambientBehavior: creates a set of all objects on the
network with the ThermometerT type tag. Its result is a signal that automatic-
ally updates whenever the underlying collection updates.

def allNearbySensors := ambientBehavior: ThermometerT @All;

When dealing with open networks, an intensional discovery mechanism is es-
sential. By definition of an open network, the set of potential acquaintances is un-
knowable up front. Hence, extensionally enumerating all possible acquaintances
is impossible. Because prosumers spontaneously come and go, the mechanism
itself must also be reactive. However, existing reactive programming languages
and frameworks such as Flapjax [88], REScala [123], Akka Streams [119], FS2 [51],
Project Reactor [108], ReactiveX [113], and Streamz [135] only support extensional
acquaintance discovery. The lack of built-in intensional acquaintance discovery
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Prosumer 
(Reactive program DAG)

Data flow

Data flow over network

Application-level reactivity

Topology-level reactivity

...

...

Figure 4.1.: Illustration of the 2 different levels of reactivity. Note that the distinction
between producer and consumer is for clarity. In general both are prosumers.

mechanism leaves them in an unfavourable position, because there is no corres-
ponding strategy to maintain the state of the reactive program as acquaintances
appear and disappear.

4.3.2. Acquaintance Maintenance in Reactive Programs

An acquaintance maintenance is needed to correctly and efficiently maintain the
state of the reactive program as acquaintances continuously appear and disappear.
To show the different facets of doing so, we continue the example of computing
the average temperature of a set of thermometers connected to a network, and
we will assume an intensional acquaintance discovery mechanism that is capable
of discovering them. Speaking in terms of streams, the average computation
must appropriately react to streams appearing, disappearing, and updating with
new values. In Figure 4.1 we illustrate these interactions between prosumers
and their streams. Each of the dashed rectangles represents one prosumer whose
reactive program is represented by aDAG. At the top, Figure 4.1 depicts N (possibly
different) producers of data, e.g., thermometers. At the bottom, a sole consumer
continuously reacts to data from the producers. We discriminate 2 levels of
reactivity that constitute acquaintance maintenance.

Application-level reactivity: Whenever a source node of a DAG changes (i.e.,
at the top of the DAG), the reactive language or framework automatically
recomputes the dependent parts of the program that are affected by the change.
This is the “normal” propagation of values through the DAG as discussed in
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Section 2.1.5 on page 16, e.g., an updatedmeasurement of a thermometer causes
the average to be updated as well. Figure 4.1 illustrates one such propagation
path in red. We call this application-level reactivity.

Topology-level reactivity: A new kind of reactivity that we call topology-level
reactivity occurs in consumers whose computations depend on an open number
of producers, e.g., the average calculation. The topology of the DAG needs to
be continuously reconfigured to accommodate the appearing or disappearing
streams. This is illustrated in Figure 4.1 in blue, denoting the appearing and
disappearing of a stream (and its dependencies) in the DAG of the consumer.

Application-level reactivity is well understood from existing reactive program-
ming languages and frameworks, such as the ones introduced in Chapter 2 and
Chapter 3. In the remainder of this section we analyse how such languages
and frameworks handle topology-level reactivity. We will make the distinction
between the 2 ways to represent a reactive value, namely as a (continuous) signal
(see Section 2.1.1 on page 13) and as a stream (see Section 2.2 on page 18) Since
they lead to a different programming style, we will discuss them separately.

Acquaintance Maintenance using Reactive Streams

The mainstream approach to writing reactive programs is based on reactive
streams, where the basic unit of change are events (see Section 2.2 on page 18).
Many reactive programming languages and frameworks offer abstractions that
represent event streams [31, 43, 88, 123], and frameworks based on reactive streams
(i.e., event streams) are often used in mainstream software development [113,
119].

Listing 4.3 implements the aforementioned computation that averages temper-
atures via an RxJS stream called average$ ($ is a naming convention for streams).
To communicate the continuously appearing and disappearing sensors to the re-
active program we used a stream called sensorDiscove-ryService.sensors$

(not defined here) from which average$ is derived. This stream propagates a
new sensor$ stream (containing temperature measurements) every time a sensor
appears. In RxJS, the average$ stream is defined by “piping” the values from
sensors$ through a sequence of RxJS stream operators. The operators in the
example work as follows:

Line 2, zipWithIndex: Every value propagated by sensors$ is a stream of tem-
perature measurements that belongs to a particular thermometer. To be able
to identify each thermometer downstream, line 2 adds an identifier to each
thermometer’s stream, yielding [sensor$, id] pairs where sensor$ is the
thermometer’s stream.

Line 3, flatMap: The lambda given as argument to flatMap is invoked for every
[sensor$, id] pair and generates a new stream. flatMap remembers all
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1 const average$ = sensorDiscoveryService.sensors$.pipe(

2 zipWithIndex,

3 rxjs.flatMap(([sensor$, id]) => sensor$.pipe(

4 rxjs.map((tmpr) => [id, tmpr]),

5 rxjs.endWith([id, null]),

6 rxjs.catchError(_ => rxjs.of([id, null])))),

7 rxjs.scan((tracker, [id, tmpr]) =>

8 tmpr === null ? tracker.remove(id) : tracker.update(id, tmpr),

9 new AverageTracker()),

10 rxjs.map(tracker => tracker.getAverage()));

Listing 4.3: Topology-level reactivity in RxJS, calculating an average of all sensors.

flatMap((   ) =>                      )

Time

Stream

Output

Input

Stream1

Stream2

Logical connection

Figure 4.2.: Illustration of the flatMap operator in RxJS. The diagram is simplified for
brevity (it does not consider higher-order streams, i.e., streams whose values
are other streams).

streams it has generated and echoes their values on a first-in first-out basis.
Since a textual explanation of flatMap is often difficult to comprehend, it is
visualised in Figure 4.2 in terms of the various streams involved (time flows
from left to right). At the top, we depict flatMap as an operation that trans-
forms values of type “circle” to a stream of values of type “square”. Whenever
the input stream contains a red circle, then the lambda passed to flatMap gen-
erates a stream of red squares, which are echoed on the output stream. When
the input stream contains a new value such as a blue circle, then flatMap

remembers both the stream of red squares and blue squares, and echoes both
of their values on its output stream.
We use flatMap to transform a stream of [sensor$, id] pairs to a stream
of [id, tmpr] pairs where id is the same as before, and tmpr is its latest
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temperature measurement. Whenever the sensor$ stream is updated by said
sensor, a new [id, tmpr] pair is propagated by flatMap. Lines 5 and 6 handle
the removing of a thermometer’s stream (gracefully or via an error). They
ensure that an [id, null] pair is propagated to “clean up” the thermometer
downstream.

Line 7, scan: Most of the application logic is tackled by scan, that essentially
implements a fold operation for streams where the accumulator is emitted for
every input value. The accumulator is a purely functional AverageTracker
(implemented elsewhere) that tracks the latest temperatures of each sensor.
The subsequent map (line 10) extracts the current average.

The main problem with this approach is its accidental complexity. More spe-
cifically:

• The code is error-prone. In our experience this problem translates to other
frameworks like Akka Streams as well, which operate in a very similar
manner. Besides the essential complexity of the application logic (averaging
temperatures), the operations needed to handle topology-level reactivity to
manage acquaintances (thermometers) are accidental complexity.

• Finding the correct combination of operators is difficult. The code snippet
of Listing 4.3 was actually written by an anonymous reviewer of one of our
papers about acquaintance management. The original code snippet written
by us contained a semantic bug, because we thought of the solution in a
different way (more similar to the solution based on signals which we show
in the next section). The original code can still be found in Appendix A
where we discuss the bug.

Acquaintance Maintenance using Signals

Functional Reactive Programming languages and frameworks use signals to
represent time-varying values (see Section 2.1.1 on page 13). Those that support
both signals and event streams (e.g., Fran [43], FrTime [31], Flapjax [88] and
REScala [123]) also include operations to convert one to the other, and either one
can be used to implement the other [30]. Whereas event streams use operations
such as map and filter, signals are programmed by “lifting” regular functions,
leading to code that is typically more declarative and compact.

Listing 4.4 implements the same average calculation from the previous section
in REScala [90, 123], an FRP library in Scala. Line 1 declares a signal that holds
values of type Set[Sensor]. Line 2 derives a new signal that computes their
average value. The implementation is standard Scala: line 3 computes the sum
total of all sensor values via a standard Scala foldLeft, and line 6 divides the
total by the number of sensors. Note that each .value access automatically creates
a dependency on a signal. In contrast to the RxJS code in Listing 4.3, the topology
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1 val sensors: Signal[Set[Sensor]] = ... // omitted for brevity

2 val average: Signal[Int] = Signal.dynamic {

3 val total = sensors.value.foldLeft(0) { (accum, sensor) =>

4 accum + sensor.measurement.value

5 }

6 total / sensors.value.size

7 }

Listing 4.4: Topology-level reactivity in REScala.

of the DAG that arises from this computation is automatically maintained by
REScala, which correctly creates and removes dependencies as new sets of sensors
are propagated.

Signal-based code is usually inefficient because of the propagation of (in this
case) sets. Every time a change occurs at the topology-level (e.g., a new sensor
appears) then a completely new Set is propagated through the reactive program,
and the average temperature is computed from scratch via the foldLeft. Simil-
arly, whenever a change occurs at the application-level (e.g., a new temperature
measurement is produced) then this also causes the result to be computed from
scratch, despite the majority of the work being identical (since only 1 value has
changed). While in this case the computation is simple arithmetic, in general it
can be much more complex and involve many prosumers.

Techniques such as incremental data structures [80] and incremental behaviours [116]
have been proposed to speed up application-level reactivity. However, to the best
of our knowledge these techniques have not been integrated to speed up topology-
level reactivity.

4.3.3. Research Goal

Reactive programming languages and frameworks for open networks need to
support all aspects of acquaintance management in a reactive way. This means
support for a intensional acquaintance discovery, as well as acquaintance mainten-
ance, which leads to topology-level reactivity. The Acquaintance Maintenance
Problem can be summarised as follows.
Reactive Streams result in code that can react efficiently on both the application-

level and the topology-level. However, event streams seem to engender larger
and more complex code that is more difficult to write.

Signals result in code that is more idiomatic and seems to be easier to write and
understand [124], but it is usually inefficient for both levels of reactivity.
In other words:
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Research Goal #3: Acquaintance Maintenance

The language design problem that needs to be be solved is how to achieve
correct acquaintance maintenance that is idiomatic (like signals) but also
efficient.

4.4. Summary

In this chapter we have identified three problems that occur when programming
distributed reactive programs for open networks.

First, the Reactive Thread Hijacking Problem in Section 4.1 occurs whenever
input values of the reactive program (accidentally) cause long lasting computations
that block the reactive program. This is particularly problematic when said
inputs are unpredictable, e.g., provided by an external (distributed) program. We
discussed various levels of reactivity, namely weak, eventual and strong reactivity,
that each provide different guarantees with respect to the reaction time of a
reactive program.

Second, theReactive-Imperative ImpedanceMismatch in Section 4.2 describes
the problems that occur when combining imperative code and reactive code. This
is especially pervasive in distributed reactive programs, because inevitably reactive
code has to be coupled to imperative code to handle the traditional concerns of I/O
(e.g., sockets). We discussed the embedding in two directions. In one direction,
when embedding imperative code within reactive code, side-effects will expose
the internal update order of the reactive program’s DAG. In the other direction
we discussed techniques to embed reactive code within imperative code, i.e., to
couple imperative code to the sources and sinks of a reactive program.

Finally, the Acquaintance Maintenance Problem arises writing reactive pro-
grams for open networks. Neither of the 2 main approaches (based on reactive
streams and signals) are suitable for performing acquaintancemaintenance, which
consists of application-level reactivity and topology-level reactivity. The existing
approaches are either inefficient, or require a complex and error-prone mix of
code.
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5. Reactive Programming in Stella

This chapter tackles 2 of the 3 problems introduced in Chapter 4. Concretely we
present a solution to the following 2 problems:

1. The Reactive Thread Hijacking Problem (Section 4.1 on page 50), where long
lasting computations can completely hijack the thread of execution of a
reactive program, thereby stopping the program from being able to react to
any new inputs.

2. The Reactive-Imperative Impedance Mismatch (Section 4.2 on page 52), where
the combination of imperative programming with reactive programming
can cause issues for both paradigms.

We tackle these problems using a conceptual model that we call the Actor-
Reactor Model. The model serves as the foundation of our solution, and will also
serve as the basis for solving the 3rd and final problem in Chapter 6. We have
implemented the Actor-ReactorModel in Stella, a new experimental programming
language that serves as a linguistic vehicle to express the ideas developed in this
dissertation. It is conceived as a continuation-passing style interpreter written in
TypeScript with trampolines and (green) threads, programmed in the style of [50].

This chapter will serve as a reference for both Stella’s programming model and
the various language features that we used to build real applications using Stella.
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5.1. Running Example: Bikey

Infrastructure for shared bicycles or electric scooters can be found in many cities
around the world. These bikes or scooters are increasingly network-enabled to
track their location, battery level, distance travelled, etc [69]. The application
which we will implement is called “Bikey”. A screenshot of Bikey is given in
Figure 5.1, which provides an overview of all electric bikes in an area around the
VUB’s university campus in a web-based application. Since real-world data of
this nature is difficult to come by, this implementation is controlled via buttons
and context menus in the GUI. A user will mock data via the GUI by manually
adding, removing, and moving bikes (via drag & drop). Note that, as we will show
in Chapter 6, it is within Stella’s capabilities to replace the GUI-based data entry
of this application such that the data is served by a real distributed system (e.g.,
electric bikes).

Bikey is a prime example of a web-based distributed reactive program that
necessarily includes both imperative and reactive code: Imperative code interacts
with an ordinary, imperative web browser, and reactive code is responsible for
correctly and timely computing metrics about bikes. More specifically, each bike
continuously streams its current location to a server, and the server computes
certain metrics for the user in real-time. A close-up of these metrics can be found
in Figure 5.2. Based on the location of a bike, the reactive program computes the
following metrics in real-time:

• Whenever a user rents a bike, its path is tracked from start to finish. Paths
are visualised in Figure 5.1 via the thick coloured lines that track (moving)
bikes.

• Users pay a fixed price of e1 to start a trip, followed by e0.25 per minute.
The current price is shown in the popup of Figure 5.2.

• Under the price in the popup, users see for how long they have rented the
bike and the total distance travelled.

After introducing the Actor-Reactor Model in Section 5.2, throughout the rest
of this chapter we will explain Stella via code snippets that implement parts of
the Bikey.

5.2. Stella Fundamentals: The Actor-Reactor Model

The Reactive Thread Hijacking Problem and the Reactive-Imperative Impedance
Mismatch are caused by long lasting computations and side-effects respectively.
Their problems will persist as long as they are allowed to be part of the reactive
program. Hence the solution to both problems is similar, namely to completely
disallow them to be a part of the reactive program. In other words, long lasting
computations and side-effects should be evacuated into a different part of the
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Figure 5.1.: Screenshot of Bikey (using mock bicycle data).

Figure 5.2.: Zoomed-in screenshot of Bikey, showing the metrics collected per bike. The
pop-up reads “e1.25; Time rented: 1 minutes; Total distance: 0.53km”.
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program where they can no longer negatively affect the reactive program. We do
so via a computational model called the Actor-Reactor Model.

In Section 5.2.1 we explain our so-called actors and reactors, and in Section 5.2.2
we explain the role of abstract data types to uphold their properties.

5.2.1. The Actor-Reactor Model

The Actor-Reactor Model is a programming model that treats actors and reactors
as the basic primitives of concurrent “active” and “reactive” computations. It can
be considered to be an extension of the traditional actor model for concurrent
computations [70].

Actors are used to represent the imperative parts of reactive programs, i.e., they
are programmed using imperative code. Since actors communicate solely via
message passing, in response to a message they can:

• make nondeterministic local decisions on how to process the message,
• imperatively create (“spawn”) other actors and reactors,
• imperatively send more messages,
• imperatively modify their own local state.

In the Actor-Reactor Model they are solely responsible for executing long
lasting computations and side-effects.

Reactors are used to encapsulate reactive programs, i.e., they are programmed
using purely functional and declarative code. Reactors also communicate solely
via messages, and in response to a message they will:

1. deterministically process the message by propagating it through the re-
active program1,

2. declaratively send more messages.
Similar to other reactive programming languages, each reactor has its own
Directed Acyclic Graph (DAG) and update thread to propagate values through
the DAG. As we will discuss in Section 5.2.2, it is impossible for reactors to
perform long lasting computations and side-effects.

Actors and reactors are the basic unit of composition between imperative and
reactive code, which will communicate via the streams which they produce and
consume. Streams are an abstraction on top of message passing where actors and
reactors can subscribe to a particular “type” of message of another actor or reactor.
They do so by subscribing to a stream that is exported by another (re)actor. Using
streams, (re)actors can easily publish (i.e., “broadcast”) certain types of messages
to other (re)actors. Whereas actors support (1) the sending of point-to-point

1Since reactive programs can track state over time, functional purity is not enough to be determin-
istic. Thus, for reactors, deterministic processing of messages means that the same sequence of
messages from the inception of the reactor will yield the same output.
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messages, (2) broadcasting messages via streams, and (3) subscribing to streams
to receive their messages, reactors only support (1) the receiving of messages, and
(2) the automatic publishing of their computation results to their output stream.

5.2.2. Passing Application Data Between Actors and Reactors

Despite actors and reactors being programmed using paradigmatically differ-
ent code, the messages that are passed between actors and reactors may contain
arbitrary application data. To avoid code duplication, incompatibilities and in-
consistencies between this data, actors and reactors share the same abstract data
types. Concretely, in Stella these will be conceived as classes that are defined by
an object-oriented base language.

Sharing abstract data types without restriction is potentially problematic, since
the allowed sets of operations are different between actors and reactors. Whereas
actors may use the full power of a Turing-complete language (unrestricted loops
and side-effects), reactors are restricted to operations that are guaranteed to
terminate eventually (see eventual reactivity in Section 4.1.1 on page 50) and
that are free from side-effects. Hence, Stella’s classes will feature two tiers of
operations. The first tier are regular class methods which have no restrictions, i.e.,
they may contain side-effects and endless recursion. The second tier of operations
are called routines, which are a novel kind of class method whose expressive
power is restricted in a specific way. Actors will be able to call both methods and
routines, whereas reactors can only invoke routines. To ensure reactors perform
no side-effects and long lasting computations, routines enforce the following
properties.

Properties of Routines

1. Routines have no side-effects. [Purity]

2. Routines always terminate. [Termination]

3. Routines can only invoke other routines. [Transitivity]

Routine Purity

Routine purity means that routines have no side-effects. In practice this means
that any expressions with side-effects should be rejected by the interpreter or
compiler. Since Stella is a dynamic language, its interpreter rejects expressions
such as assignments and message sends in the body of routines. Furthermore, the
operations of all native classes are defined as routines whenever possible.
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Routine Termination

Various techniques and mechanisms exist to ensure that routines will always ter-
minate. An overview of techniques used by related workwill be given in Chapter 7.
Since Stella is intended to be used for (distributed) web-based applications, its
timing constraints are more relaxed compared to, e.g., real-time embedded sys-
tems. Hence, Stella’s routines will still allow recursion as long as it is guaranteed
to be finite.

Wewill enforce termination using a dynamic variant of size-change termination
(SCT) [94]. This form of SCT checks at run-time whether the arguments of a
(recursive) routine keep getting “smaller” in every step of the recursion. To check
when a value is smaller than another, all Stella values can be ordered using a
built-in routine. For example, numbers can be ordered via |x| < |y|, and lists can
be ordered using the length of the list. A size-change graph is tracked at run-time
to check how the arguments of a routine evolve over time. Before entering a new
routine call, the so-called size-change termination principle is used to compare the
argument values of the routine call to those of earlier calls to the same routine
higher on the call stack. The routine call is permitted as long as (at least) one
argument is decreasing in size over time. A run-time exception is thrown when
all arguments remain the same or increase in size.

The size-change principle is a safe over-approximation of termination. In other
words:

• Programs that satisfy the size-change principle will terminate. The authors
of [94] developed a formal semantics where all programs terminate, and
they formally prove that, if the size-change principle is satisfied, then the
SCT algorithm does not change the result of the program compared to the
same program without SCT checking.

• There are other programs that do not satisfy the size-change principle but
which terminate. These programs cannot be correctly detected to terminate
via size-change termination. Some of these programs can still be rewritten
to aid the size-change principle (i.e., transform them to include decreasing
arguments). For example, SCT has been used by its authors to implement
several non-trivial programs [94]. The largest program is a 1100 lines of
code R5RS Scheme interpreter that was used to run a Mergesort on a list
of strings. Some of the other programs implemented by the authors could
only be run with additional help for the size-change termination, e.g., by
writing a custom ordering for data types, or by transforming conditional
expressions to pattern matching.

• Some programs simply do not terminate.
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Size-change termination errs on the side of caution and only accepts the first
kind of programs, i.e., those which are known to terminate under the size-change
principle. All other programs are rejected via a run-time error.

Routine Transitivity

The properties of routines are transitive. Once a routine is called by a regular
method, then from that point onwards all invocations must also be invocations of
routines. This property ensures that purity and termination are always upheld.

5.2.3. Using Actors and Reactors: Bikey Architecture

Every Stella application consists of actors and reactors that communicate via
messages. As an example, Figure 5.3 depicts the architecture of Bikey. It shows
the various types of actors and reactors involved in running the application, as
well as the messages and streams that connect them.

Figure 5.3 depicts 3 actors called Main, Bike and Time, and a single reactor
called TripMonitor. Note thatwe only draw a single Bike actor and TripMonitor
reactor. In general there is one such (re)actor for each bike and bike trip in the
application. While the implementation of these (re)actors will be explained later
in this chapter, note how each of them interact via streams.

1. The Main actor is the main entrypoint of the program which processes
messages such as add-bike! and move-bike! that are generated by the
GUI (implemented in HTML + CSS + JavaScript). When processing such
messages the Main actor may spawn other actors such as the Bike actor, e.g.,
when the user simulates the appearance of a bike through GUI actions.

2. A Bike actor represents a single bicycle which is continuously updating its
location by emitting location messages via its location stream. In this case
the location updates are caused by a user’s GUI actions via the Main actor,
but in general one can imagine these actors interfacing with a hardware
positioning system (e.g., GPS) to autonomously update their location.

3. Whenever a bike’s location updates, a “location update message” is imme-
diately received by a TripMonitor reactor that is subscribed to a bike’s
location stream. The reactor processes messages from its input streams
and reactively calculates application-level metrics such as the rental price
and total distance travelled. Processing the messages causes the metrics
to change, resulting in an output message that is broadcast and received
by Main. Finally, the Main actor processes the output of TripMonitor by
updating the GUI.

In the remainder of this chapterwe introduce Stella by implementing the various
components of Bikey, starting with the object-oriented base language.
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Figure 5.3.: Architecture of Bikey.

5.3. Sequential Object-Oriented Base Language

Stella is a class-based, dynamically typed language inwhich all run-time values are
objects. It can be thought of as having two layers: a sequential object-oriented base
language, and the concurrent level of actors and reactors that are programmed in
terms of the base language. The sequential base language contains objects such as
numbers, strings (e.g., "hello") and symbols (e.g., 'hello), as well as method
invocations on objects and a number of special forms (e.g., to spawn actors and
reactors). Keywords that denote objects will start with a #, such as the boolean
values #true and #false. Throughout all Stella code snippets we will highlight
keywords in bold, strings are surrounded by double quotes, and symbols start
with a single quote and are italicised.

Stella uses S-expression syntax with operators in prefix notation. Dynamic
method lookup in Stella’s object-oriented model is single dispatch. For example,
the expression (println! "Hello World!") looks up the println! method on
the class String of the receiver object "Hello World!". Similarly, the expression
(+ 1 2) invokes + from the Number class on the receiver object, number 1, passing
the number 2 as the argument. Some other examples from the base language are
shown in Listing 5.1. Local variables are introduced via def, assignments use
set!, and conditionals use if. Equality is implemented in the root class (Object):
its method eq? tests for object reference equality. All values are #true except for
#false and #undefined.
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1 // (def <identifier> <expression>)

2 (def a 1)

3 // (set! <identifier> <expression>)

4 (set! a 2)

5 // (if <condition> <consequent> <alternative>)

6 (if (eq? a 1) (println! "yes!") (println! "no!"))

Listing 5.1: Examples of basic expressions in Stella

A Stella file may contain 4 types of top-level definitions: classes, actor beha-
viours (“the class of an actor”), reactor behaviours (“the class of a reactor”), and
flocks. Classes are introduced in this section, actors in Section 5.4, and reactors
in Section 5.5. Flocks will be introduced in Chapter 6 where we present Stella’s
features for distributed programming.

5.3.1. Classes

Classes are defined at the top level of a program file. For example, consider
the Pair class defined in Listing 5.2 which can be used to represent linked lists.
Local fields of the class are declared on line 2. Line 4 defines a constructor called
default with 2 formal parameters called initial-car and initial-cdr that
will initialize the fields of a new pair. Lines 8 and 9 define two routines called
first and second with no arguments which are “getters” for the car and cdr

field, and correspondingly, lines 10 and 11 define two methods set-first! and
set-second! which are setters for these fields. Line 13 defines a routine called
length that will compute the length of a linked list by calling length on the cdr
field as long as it is also a pair2.

Instantiating Classes

Classes are instantiated using the new special form. For example, the expression in
Listing 5.3 instantiates Pair using its default constructor. The resulting object
can be referenced via variable p1.

Note that there can be many constructors with different names, each with a
different purpose. While multiple constructors allow for flexibility when instanti-
ating a class, in practice we found that in many cases a class will have only one
way to instantiate it, or that one way is used most of the time. Hence, Stella offers
a variant of new called newd (“new default”) that invokes the default constructor,

2Note that the type-of invocation in Listing 5.2 line 15 returns a symbol that represents the
name of the class. This is because, unlike SmallTalk [56], classes are not reified as objects in our
language. They cannot be referenced directly except via the new or newd special forms to create
an instance.
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1 (class Pair

2 (def-fields car cdr)

3
4 (def-constructor (default initial-car initial-cdr)

5 (set! car initial-car)

6 (set! cdr initial-cdr))

7
8 (def-routine (first) car)

9 (def-routine (second) cdr)

10 (def-method (set-first! new-car) (set! car new-car))

11 (def-method (set-second! new-cdr) (set! cdr new-cdr))

12
13 (def-routine (length)

14 (cond ((eq? cdr #undefined) 1)

15 ((eq? (type-of cdr) 'Pair) (+ 1 (length cdr)))

16 (else 2))))

Listing 5.2: An implementation of a Pair class which demonstrates 2 different kinds of
operations: methods and routines.

1 // (new <class name> <constructor name (symbol)> <...args>)

2 (def p1 (new Pair 'default 1 2))

Listing 5.3: Instantiating the Pair class.

which is called as such by convention. For example, the previous instantiation of
Pair via its default constructor can be rewritten as:

(def p1 (newd Pair 1 2)) // (newd <class> <...args>)

When the programmer defines no constructors at all, the class compiler inserts
a default constructor that does not initialise local fields (their value remains
#undefined).

Enforcing Routine Properties

In Section 5.2.2 we introduced the properties of routine purity, termination, and
transitivity. These properties are upheld by all def-routine definitions.

Routine purity: Routines that contain expressions with side-effects are rejected
because of Stella’s design. In our case they are set! and a couple of others3.
A run-time error occurs when a routine calls a regular method, for example
println! which prints to the console.

3Operations with side-effects end in a “!” by convention. They are: set!, spawn-actor!, spawn-
reactor!, send!, emit!, monitor!, react-to!, publish! and unpublish!.
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1 (def p1 (newd Pair 1 2))

2 (set-second! p1 p1)

3 (length p1) // successfully rejected via a run-time error

Listing 5.4: Creating a circular data structure with Pair of Listing 5.2.

Routine termination: The current implementation of Stella uses size-change
termination [94] to enforce routine termination, which we briefly explained in
Section 5.2.2. As an example, consider the excerpt of Stella code in Listing 5.4
that uses the Pair class of Listing 5.2. Here, a Pair is made to point to itself,
creating a circular linked list. A subsequent call to length on the Pair gives
rise to a recursive call to length on the same object. SCT rejects this call, since
the argument values have not decreased since previous invocations (there are
no arguments).
In general, the size-change property is checked for each routine at the level of
the class, rather than at the level of individual objects. This is because we allow
routines to create new objects, as long as the constructor only contains routine
invocations and field initialisations (i.e., a very controlled form of set!). If
the size-change principle were not checked at the class-level but at the object-
level, then a routine could cause an infinite computation. For example, if the
aforementioned length routine created a new pair and called length on this
pair, which also creates a new pair that invokes length on that pair, and so
forth.

Routine transitivity: Transitivity requires that routines can only invoke other
routines. This is upheld by a run-time check, because Stella is a dynamic
language.

Note that Stella’s design is not coupled to any specific SCT algorithm, or even
to SCT itself. Rather, we currently use it as a technique to enforce that routines
will eventually terminate which works for high-level programming languages
such as Stella, and unlike other approaches (such as specialised type systems),
SCT requires no programmer assistance.

5.3.2. Built-in Classes

Since Stella is a research prototype, its standard library is limited and defined
on a “by need” basis. The native classes include Boolean, Date, Dictionary,
Number, Vector, ImmutableVector, Number, Object, PriorityQueue, Random,
Set, String, and Symbol. We will show the interface of the Dictionary, Vector
and ImmutableVector since they are the data structures that we use most often
in this dissertation.
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Name Type Signature Description
Constructors
default Constructor () →

Dictionary

Creates an empty dictionary.

Methods and routines
get Routine Object →

Object

Given a key, retrieves its associated value
(or #undefined).

put! Method Object

Object → ()

Associates a key (1st argument) with a
value (2nd argument).

remove! Method Object → () Removes a key.
contains? Routine Object →

Boolean

Checks if the dictionary contains a key.

size Routine () → Number Get the number of keys in the dictionary.
keys Routine () → Vector Lists all keys in the dictionary.
values Routine () → Vector Lists all values in the dictionary.
iterator Routine () →

Iterator

Creates an iterator for the dictionary.

Table 5.1.: Interface of Stella’s Dictionary class.

1 (def dict (newd Dictionary)) // create dict with its default constructor

2 (put! dict 'my-key 1) // insert 'my-key with value 1 into dictionary

3 (println! (get dict 'my-key)) // lookup the value of 'my-key, prints 1

4 (remove! dict 'my-key) // remove 'my-key from the dictionary

Listing 5.5: Examples of base language expressions to use a Dictionary.

Dictionaries

The interface of Stella’s Dictionary class is given in Table 5.1. It contains a
standard set of methods4 to associate keys with values, to lookup keys, etc. Note
that the type signatures of get, put!, remove! and contains? that take a key
as argument only specify that the key has type Object. That is because any type
of Stella object can be used as key. The equality of keys is based on strict “object
reference equality”, the same kind of equality that is used when comparing objects
via the eq? method that is implemented by the Object class. Typically we will
use symbols as keys, as two symbols that contain the same sequence of characters
are always referentially equal.

An example of base language code that uses a dictionary is shown in Listing 5.5,
where a key 'my-key is added to the dictionary, its value is retrieved and printed,
and then removed from the dictionary.

4Note that, since routines are a restricted version of methods, we include routines under the
umbrella term of “methods” when talking about the interface of a class.
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1 (def vec (newd Vector 1 2 3)) // create new vector with its default

constructor, initialising it with values 1 2 3

2 (push! vec 4) // adds 4 to the end of the vector

3 (println! (get vec 0)) // prints 1, which is the value on index 0

4 (println! (last vec)) // prints 4, which is the last value of the vector

5 (pop! vec) // removes (and returns) the last element from the vector

Listing 5.6: Examples of base language expressions to use a Vector.

Vectors

Stella’s Vector represents an indexed, growable array (of objects). It is the default
data structure to store an ordered list or a collection of objects. The interface of
Vector class is shown in Table 5.2. It contains methods to get and put! values
from/on a specified index, as well as methods to manipulate the size of the vector
by adding or removing values at both ends of the vector (the front and back)5. An
example of using Vector can be found in Listing 5.6.

In addition to a mutable Vector, Stella contains an ImmutableVector that
implements most of the same methods as Vector, but all of them are conceived
as routines. Methods that modify the vector will return a new ImmutableVector

instead. Offering both mutable and immutable versions of data structures occurs
in other languages as well, e.g., in Scala [128]. The interface of ImmutableVector
can be found in Appendix B (page 189).

5.3.3. JavaScript Foreign Function Interface

Stella has a practical foreign function interface that programmers can use to
interact with JavaScript objects. E.g., in the architecture of Bikey in Figure 5.3
(page 72), GPS coordinates of bikes enter the Stella program from the HTML +
CSS + JavaScript GUI. These GPS coordinates are JavaScript objects with a lng
and lat field.

In general, JavaScript objects enter a Stella program in three ways:
1. When starting a program, via the env environment argument of the Main

actor’s constructor (shown later in Section 5.4). The contents of the env

object is provided by the JavaScript code that starts the Stella interpreter.
2. JavaScript code sends an asynchronousmessage to a Stella actor that contains

JavaScript objects. For example, JavaScript code can send a message to
Stella’s Main actor via a JavaScript function exposed by Stella’s interpreter.

5An experienced JavaScript developer will notice that the interface of Vector is similar to JavaS-
cript’s Array [92]. This is not a coincidence, since Stella’s Vector is implemented using JavaS-
cript arrays. Since Stella runs in JavaScript, we have a lot of experience with the interface of
JavaScript’s Array and have adopted some of its features.
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1 {

2 value: 1,

3 fun: (x, y) => x + y

4 }

Listing 5.7: A JavaScript object with a value and fun field.

3. Stella code invokes a foreign function (e.g, passed via env) which returns a
JavaScript object.

JavaScript objects are automatically wrapped as Stella objects when they enter
a Stella program. More specifically, JavaScript’s number, boolean, string and
undefined map directly to Stella’s Number, Boolean, String and Undefined

classes, and JavaScript’s array is mapped to Stella’s Vector. All other JavaScript
objects are wrapped with Stella’s generic JSObjectProxy class.

Whereas Stella objects can only be interactedwith by callingmethods, JavaScript
objects have multiple ways to interact with them, e.g., to get or set an object’s
fields. Stella’s object wrapper needs to support these common interactions. Hence,
4 types of special methods are defined in JSObjectProxy to interact with the
underlying JavaScript object, namely to test if a field is present, to get the value of
a field, to set the value of a field, and to call a function stored in a field. We explain
these interactions using the JavaScript object defined in Listing 5.7, which has a
field called value (bound to number 1) and fun (bound to a JavaScript lambda).

Testers To test whether a field is present, JSObjectProxy accepts method calls of
the form has-*? where * is the name of a field. For example, if obj denotes the
wrapper for the JavaScript object in Listing 5.7, then executing (has-value?
obj) in Stella will return #true since the value field is present in Listing 5.7.
Since testing for field presence has no side-effects and always terminates, testing
for field presence is a routine.

Getters To retrieve the value of a field, JSObjectProxy accepts method calls of
the form get-* where * is the name of a field. The returned value is wrapped
as a Stella object. For example, executing (get-value obj) in Stella on the
wrapper for the object in Listing 5.7 will return the number 1 (of Stella’s
Number class). Since retrieving the value of a field has no side-effects, getters
are routines.

Setters To set the value of a field, JSObjectProxy accepts method calls of the
form set-*! where * is the name of a field. The assigned value is automatically
unwrapped whenever possible, e.g., booleans, numbers, strings and vectors (ar-
rays) are unwrapped to their JavaScript counterpart, as well as JSObjectProxy
objects that were already JavaScript wrappers. Other Stella objects that do
not have an immediate JavaScript counterpart are converted to a JavaScript
object that only contains the object’s fields and their (unwrapped) values. For
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example, executing (set-value! obj 2) on the wrapper for the object of
Listing 5.7 will assign the number 2 to its value field.

Callers To call a function on a JavaScript object, JSObjectProxy forwards any
method calls that do not match the pattern of testers, getters and setters.
Highlighting the fact that invoking JavaScript methods may cause side-effects,
Stella’s FFI adds an exclamation mark suffix to each method name6. For ex-
ample, executing (fun! obj 1 2) on the wrapper for the object Listing 5.7
calls the JavaScript lambda fun. The arguments are automatically unwrapped
before calling fun and the return value is automatically wrapped.

5.3.4. Tackled Research Goals

Stella’s object-oriented base language fulfils the first research goal, namely to
ensure bounded-time reactivity (see Section 4.1.3 on page 51). To this end, Stella’s
classes can define routines, which have no side-effects and are guaranteed to
eventually terminate. While the base language itself is not yet reactive, Stella’s
reactors, which will be introduced in Section 5.5, will only be able to invoke
routines on objects.

5.4. Actors and Streams

An actor is a process that has an actor behaviour and a mailbox [70] (a message
queue). An actor behaviour describes the internal state and interface of an actor.
Actors in Stella are based on the Active Objects model [21, 70, 154], where actor
behaviours are defined similar to classes in object-oriented programming. In
addition to receiving and processing messages, actors can be used to implement
zero or more streams to which they can emit (publish) values. We explain how
actor behaviours are defined, how streams are implemented using actors, and
how actors monitor streams for changes.

5.4.1. Actor Behaviour

An actor behaviour is defined in the top-level scope. Similar to a class, it declares
a number of local fields via def-fields, constructors via def-constructor,
and methods via def-method. Additionally they may declare streams via def-
stream.

Every Stella program must contain a Main actor behaviour that defines a con-
structor named start. This is exemplified by the “Hello World!” program in
Listing 5.8. This Main actor behaviour declares no local fields, no streams, and no

6JavaScript functions cannot have an exclamation mark in their name, so it is safe for Stella to add
it in the interface.
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1 (def-actor Main

2 (def-constructor (start env)

3 (println! "Hello World!")))

Listing 5.8: A “Hello World!” program in Stella.

methods. The formal parameter of its start constructor called env is an object
that contains environment variables passed from the JavaScript code that starts
the Stella program. The body of the constructor is a single println! expression
that prints "Hello World" to the console (remember that println! is invoked
on the receiver object "Hello World" of type String).

5.4.2. Spawning Actors: “spawn-actor!”

Stella’s actor model requires the explicit spawning (and killing) of actors. For
this, Stella offers a spawn-actor! expression that spawns an actor from an actor
behaviour, initialising the actor with one of its constructors. For example, in the
running example, each bike is represented by an actor that has the Bike actor
behaviour. A bike is spawned (e.g., in the Main actor) as follows.

// (spawn-actor! <identifier> <constructor (symbol)> <... args>)

(def bike (spawn-actor! Bike 'init gps-position))

The first argument of spawn-actor refers to the actor behaviour, and the second
argument to the constructor of the actor. The remaining arguments correspond to
the formal parameters expected by the constructor, which in this case is a variable
gps-position which we assume to be in scope. Constructors are invoked in the
process of the newly spawned actor. More specifically, the very first message in-
serted into the mailbox of the newly spawned actor will invoke the corresponding
constructor. All subsequent messages will invoke methods defined in the actor
behaviour via def-method.

Spawning an actor returns an ActorReference (ordinary) object that, as we
will explain, can be used to refer to the actor’s streams and to send asynchronous
messages to the actor.

5.4.3. Emitting to Streams: “emit!”

As introduced in Section 5.2.1, every actor can implement data streams to broad-
cast values (via messages) to other actors and reactors. Streams are used to broad-
cast data that naturally evolves over time. For example, the running example
contains an actor behaviour called Bike that represents a “digital twin” for every
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1 (def-actor Bike

2 (def-stream location)

3
4 (def-constructor (init initial-location)

5 // (emit! <stream name> <values to emit>)

6 (emit! location initial-location))

7
8 (def-method (update-location! new-location)

9 (emit! location new-location)))

Listing 5.9: A simple “digital twin” for a bicycle in Bikey.

bicycle7. This actor behaviour is implemented in Listing 5.9. There are 3 declar-
ations its body. Line 2 declares a stream called location, which means that all
actors with the Bike behaviour have a stream called “location”. Line 4 declares
a constructor called init (there can be multiple), and line 8 declares a method
called update-location!. Both the constructor and the method have 1 formal
parameter and an emit! expression in their body that emits a location (a GPS
coordinate object) to the location stream of the current actor. Every time an
emit! expression is evaluated, a message will be broadcast to all other actors and
reactors that are subscribed to the location stream of a particular Bike actor.

Note that emitting to streams exported by other actors (and reactors) is not
possible thanks to the scoping rules of actor behaviours. The first argument of
an emit! expression expects the name of a stream declared in the scope of the
current actor behaviour. Furthermore it would be undesirable to do so, because
then the actor that defines the stream has no control over the data emitted to its
stream.

5.4.4. Qualification

To subscribe to streams exported by specific actors and reactors, (re)actors need
a mechanism to refer to streams. Such a reference to a stream is obtained via a
qualification expression that uses dot-notation. For example, given an actor bike
(cf. Listing 5.9), then the expression bike.location designates an object of type
Stream. Note that the dot-notation is exclusively used to address streams, and
not fields, methods, etc.

7While Bike actors are conceptually running on the physical bikes that move around a city, in
our implementation they are spawned locally in response to GUI events. As we will show in
Chapter 6, Stella fully supports distributing actors such as Bike over a network.
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5.4.5. Stream Arity

Streams in Stella have an arity that specifies the number of values that must be
emitted to the stream in one emission. The previous example of the Bike actor
behaviour (Listing 5.9) declared a stream of arity 1. For example, Bike declared a
location stream as follows:

(def-stream location)

A def-stream expression takes an optional 2nd argument to denote its arity.
The previous declaration is equivalent to:

(def-stream location 1)

An arity higher than 1 is used to emit multiple values that must change sim-
ultaneously. For example, a part of Bikey involves aggregating the path that a
user has cycled and to calculate the total distance travelled. This path and its
corresponding distance are computed by a reactor that emits both values simultan-
eously, i.e., on a stream with arity 2. Otherwise, if these values would be emitted
independently, a consumer of the stream might first update the application with
an extended path, and only after some time with the updated length of the path.
After the first update the application would be in an inconsistent state, similar
to a glitch in reactive programming (glitches are introduced in Section 2.1.5 on
page 16). Furthermore, we will use stream arity to facilitate the composition of
actors and reactors.

5.4.6. Monitoring a Stream: “monitor!”

Actors subscribe to streams by “monitoring” them for changes. Each monitor!

expression that they execute establishes a subscription to a stream, meaning that
any values emitted to the stream (i.e., a broadcasted message) will be received by
the monitoring actor. As a concrete example, consider the Main actor behaviour
in Listing 5.10 which continuously prints the current time to the console, as
produced by some Time actor that exports a stream called seconds which tracks
Unix time. On line 5 the Main actor subscribes to the time.seconds stream.
Upon subscribing, the publisher immediately sends the latest value that was
published to the stream, which enters the mailbox of the subscriber as a print-
time! message. All future emissions of the time actor to its seconds stream are
also received as print-time! messages. The number of formal parameters of the
print-time! method must be equal to the arity of the monitored stream (in this
case 1). monitor! returns a handle that can be used to cancel the subscription.
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1 (def-actor Main

2 (def-constructor (start env)

3 (def time (spawn-actor! Time 'default))

4 // (monitor! <stream> <selector>)

5 (def handle (monitor! time.seconds 'print-time!)))

6
7 (def-method (print-time! current-time)

8 (println! current-time)))

Listing 5.10: Monitoring a stream.

5.4.7. Asynchronous Message Passing: “send-after!” and “send!”

Stella’s actors communicate by sending each other asynchronous messages. The
basic primitive for sending messages is an operation called send-after! that
schedules a messages to be sent after a specified delay.

A send-after! expression can be used to send a message immediately by
specifying the delay to be 0. Since this is often the standard way to send a message,
Stella offers the a send! operation with an automatic delay of 0.

To demonstrate both forms of message sending in a practical example, consider
the Time actor behaviour defined in Listing 5.11 that implements a stream that
tracks Unix time. We use a Time actor in Bikey to track the total duration of
a bicycle trip (cf. Bikey’s architecture in Figure 5.3 on page 72). It exports a
stream called seconds, has a constructor called default, and a method called
emit-time!. In the body of its constructor, on line 6 a Time actor sends an
asynchronous “emit-time!” message to itself via an immediate send!. We use
the special keyword #self to denote a reference to the current actor (an object
of type ActorReference). The corresponding emit-time! method is invoked
when the message is dequeued from the mailbox.

The body of the emit-time! method creates a new Date object via its default
constructor (line 9), which defaults to the current time. The following lines
convert the current Unix time from milliseconds to seconds and emit it to the
seconds stream. Finally, to emit the next time update, on line 15 the actor sends
a recursive message to itself after 1000 milliseconds have passed. This message is
only inserted into the receiver’s mailbox after the specified time has passed.

5.5. Reactors: Functional Reactive Programming

Besides actors, Stella features reactors. A reactor is a process that encapsulates a
functional reactive program that is programmed using functional reactive code
rather than sequential, imperative code. By encapsulating imperative code in
actors and reactive code in reactors, Stella avoids the issues that arise when
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1 (def-actor Time

2 (def-stream seconds)

3
4 (def-constructor (default)

5 // (send! <target> <selector> <...args>)

6 (send! #self 'emit-time!))

7
8 (def-method (emit-time!)

9 (def time (newd Date))

10 (def unix-time-ms (get-time time))

11 (def unix-time-seconds (round (/ unix-time-ms 1000)))

12 (emit! seconds unix-time-seconds)

13
14 // (send-after! <target> <milliseconds> <selector> <...args>)

15 (send-after! #self 1000 'emit-time!)))

Listing 5.11: The Time actor behaviour emits the Unix time.

combining imperative and reactive programming. Since reactors can only invoke
routines on objects, it is guaranteed that their computations have no side-effects
and that they terminate (eventually). Furthermore, since a reactor is a separate
process, long lasting computations in other processes cannot accidentally block a
reactor.

In this section we explain the various constituents of reactors. We first explain
reactor behaviours (Section 5.5.1) and how to turn them into a reactor (Section 5.5.2).
Then we further detail the relation between reactor behaviours and reactors by
introducing the intermediary concept of reactor deployments (Section 5.5.4). The
remainder of this section explains the various operations of reactors that we
used to implement the running example, namely qualifications within reactors,
sampling, and state accumulation.

5.5.1. Reactor Behaviours

Just like an actor is spawned from an actor behaviour, every reactor is spawned
from a reactor behaviour that describes the reactor’s program logic. The general
structure of a reactor behaviour is shown in Figure 5.4, where we annotated the
different parts of a Plus reactor behaviour that adds two numbers. Every reactor
behaviour follows the same structure.

1. It has a unique name, e.g. Plus.
2. Its inputs (formal parameters) are declared after the name, e.g. x and y.
3. Its body may contain variable definitions (e.g., result), routine invocations

(e.g., +), conditionals (via if), and reactor-specific expressions (e.g., the
aforementioned qualification, sampling, and state accumulation).
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Output declaration

Name
Inputs
Body

(def-reactor (Plus x y)
  (def result (+ x y))
  (out result))

Figure 5.4.: Structure of a reactor behaviour.

1 (def-reactor (PriceCalc start-fee minutes cost-per-minute)

2 (out (+ start-fee (* minutes cost-per-minute))))

Listing 5.12: Calculating the price of a bike rental in Bikey

4. Its last line of code is always an output declaration given by out that denotes
the outputs of the reactor behaviour, e.g., in Figure 5.4 the local variable
result is the single output value.

An example of a reactor behaviour used in Bikey can be found in Listing 5.12,
which defines PriceCalc that calculates the price of a bicycle trip. Its inputs
are start-fee, minutes and cost-per-minute. In this case there are no local
variable definitions, and the price calculation occurs immediately as part of the
out declaration.

Reactor behaviours are written in a programming style that resembles Func-
tional Reactive Programming (see Section 2.1 on page 13). Input variables such
as start-fee and minutes behave similarly to signals (time-varying values) in
other FRP languages. Similar to spreadsheet formulas, new signals are derived by
invoking routines such as + and * on existing signals. The value of such a derived
signal is the result of invoking the routine on the values of the argument signals.
At run-time, whenever the value of any argument signal changes, e.g., for the *
invocation they are minutes or cost-per-minute, then all dependent signals are
automatically updated as well.

As is typical for FRP languages, the program logic of a reactor behaviour can be
visually represented by a Directed Acyclic Graph (DAG) that is derived from the
program text. For example, the corresponding DAG representation of PriceCalc
is given in Figure 5.5, which shows how data flows through the reactive program.
Due to the strong correspondence between the code and the DAG, we often call
the inputs the “source nodes” (“sources” for short), the outputs are the “sink
nodes” (“sinks” for short), and all other nodes are called internal nodes. For now
we will explain reactors and their operations without considering the DAG, and
in Section 5.6 we will revisit various reactor operations and explain them in terms
of their DAG representation.
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Data flow

Sources 

start-fee minutes
cost-per- 

minute

Sinks 
sink #1

*

+

Source nodes

Internal nodes

Sink nodes

Figure 5.5.: DAG representation of PriceCalc (Listing 5.12).

5.5.2. Spawning Reactors: “spawn-reactor!”

Since spawning a reactor is in fact an effectful action, actors are responsible for
spawning reactors. They do so via a spawn-reactor! expression that returns a
reference (of type ReactorReference) to the spawned reactor. For example, an
actor spawns a reactor from the aforementioned PriceCalc reactor behaviour (cf.
Listing 5.12) as follows:
(def r (spawn-reactor! PriceCalc))

After spawning, a reactor perpetually waits for messages that change the value
of its input signals, after which these values propagate through the reactor and
cause newly computed values to be emitted by the reactor (the reactor’s output).
We will call the complete processing of a single message a turn of the reactor, i.e.,
the complete propagation of values from the input signals to the output signal.

5.5.3. Sending Values to Reactors: “react-to!”

The output of reactors is updated whenever the value of one or more of its input
signals has changed. New values for input signals can be provided by other
(re)actors in three ways:

1. Direct propagation: An actor sends a 'react-to! message to the reactor
to change the value of its input signals. For example, an actor can send such
a message to the PriceCalc reactor r as follows:
// start fee: 1 EUR, trip duration: 5 min., price per min.: 0.25 EUR

(send! r 'react-to! 1 5 0.25)

This 'react-to! message is enqueued in the mailbox of the reactor. When
the reactor processes this message it changes the values of its inputs to 1, 5
and 0.25 respectively, which also cause any derived values to be updated as
well (in this case the price of a trip). Since sending a 'react-to! message
is a very common operation, Stella provides a built-in react-to! operation
that is functionally equivalent:
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(react-to! r 1 5 0.25)

Note that not all input signals are required to change on every react-to!
message. A programmer may send the value #undefined for one or more
inputs to signify that the value of the input signal should not change (i.e., it
remains the same as the old value).

2. Stream propagation: Whenever an argument of react-to! is an object of
type Stream, then the receiving reactor will subscribe to the stream and
react to the stream’s values. In other words, rather than changing the value
of the corresponding input signal to the Stream object, the input signal will
instead change to the values emitted to the stream by a different (re)actor.

3. Qualification: As we will explain later in this section, using a qualification
expression in the body of a reactor will establish a subscription to the given
stream, rather than propagating the Stream object.

We call the complete processing of a message from any of these sources a turn
of the reactor, after which the output of the reactor is updated. This output is
only accessible as a stream called out that every reactor exports. A reference to
this stream is obtained via a regular qualification expression, e.g., r.out. Other
(re)actors can subscribe to this stream via the means that we already explained,
for example actors can use monitor! (see Section 5.4.6), and reactors use the
aforementioned “stream propagation” or “qualification”.

5.5.4. Reactor Deployments

Traditionally, the DAG of a reactive program (e.g., Figure 5.5 on page 87) is used
(internally) to store the “current state”. For example, consider a node with 2
dependencies such as the * node in Figure 5.5. Whenever the value of one of the
dependencies changes (e.g., the minutes source), then the * routine is reapplied
using the most recently computed value of the other input signals that did not
change (e.g., cost-per-minute).

Stella’s reactive programs consists of multiple reusable reactor behaviours. More
concretely, a single reactor behaviour can be used to to spawn multiple reactors
each with their own independent internal state and computations. Furthermore,
as we will show, each reactor behaviour can also use other reactor behaviours to
perform their computations. Hence Stella requires an intermediate abstraction to
capture the run-time state of a particular “instance” of a reactor behaviour. We
call this intermediate abstraction a reactor deployment.

A reactor deployment is an “instance” of a reactor behaviour that stores its
run-time state, e.g., themost recent values that were propagated and dependencies
on streams. A reactor deployment cannot be referred to directly (i.e., it cannot
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“escape” a reactor), and there can be many deployments of reactor behaviours
within the same reactor.

The Root Deployments

Every reactor behaviour that is used within the program logic of some reactor
must be deployed, i.e. “instantiated”, before it can be used by a reactor. The first
deployment is created when the reactor is spawned. For example, following ex-
pression will spawn a reactor r that initially contains exactly 1 reactor deployment,
namely the deployment of PriceCalc.

(def r (spawn-reactor! PriceCalc))

We call this the root deployment of that particular reactor since it lies at the “root”
of (potentially) any other reactor deployments within the same reactor. Compared
to the (potential) other reactor deployments it receives special treatment, namely:

• Any 'react-to! message sent to the reactor changes the values of the root
deployment’s input signals.

• The output stream of a reactor (accessed via r.out) emits the values of
the root deployment’s output signals (the values of the signals in the out
declaration of a reactor behaviour).

5.5.5. Creating Additional Deployments: “deploy”

Similar to how, in a functional programming language, functions call other func-
tions, Stella’s reactor behaviours can “call” other reactor behaviours. Reactor
behaviours can use a deploy expression which can be seen as a function applica-
tion for reactor behaviours, but instead of applying a function once, it deploys
a reactor behaviour that (in this case) remains active throughout the lifetime of
the reactor8. At run-time this means that one reactor deployment (e.g., the root
deployment) gives rise to other reactor deployments.

As an example, consider the DistanceBetween reactor behaviour in Listing 5.13
that calculates the great-circle distance between two points using the Haversine
formula [45]. It is used by Bikey to calculate the total distance travelled by a bike,
which is ametric shown in theGUI.Most expressions in its body are variable defini-
tions and routine invocations on objects. Since the formula requires some angles to
be specified in radians, DistanceBetween makes use of the DegreesToRadians
behaviour defined on line 16 by deploying an instance of it. Responsible for this
is the deploy expression, for example on lines 7 and 8. Whenever the value of
one of the given argument signals changes, this new value will propagate through

8Chapter 6 will define a deploy-* operation where reactor deployments spontaneously appear
and disappear.
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1 (def-reactor (DistanceBetween point1 point2)

2 (def lat1 (get-lat point1))

3 (def lon1 (get-lng point1))

4 (def lat2 (get-lat point2))

5 (def lon2 (get-lng point2))

6
7 (def dlat (deploy DegreesToRadians (- lat2 lat1)))

8 (def dlon (deploy DegreesToRadians (- lon2 lon1)))

9 (def a (+ (expt (sin (/ dlat 2)) 2)

10 (* (cos (deploy DegreesToRadians lat1))

11 (cos (deploy DegreesToRadians lat2))

12 (expt (sin (/ dlon 2)) 2))))

13 (def c (* 2 (atan2 (sqrt a) (sqrt (- 1 a)))))

14 (out (* 6367 c)))

15
16 (def-reactor (DegreesToRadians degrees)

17 (out (* degrees (/ #Pi 180))))

Listing 5.13: Deploying additional reactor behaviours.

the corresponding deployment of DegreesToRadians. Similarly, the value of the
output signal of DegreesToRadians will propagate back to the deployment of
DistanceBetween.

Note the difference between a reactor that contains multiple reactor deploy-
ments, and multiple reactors that are connected via streams. All propagation of
values between multiple deployments in a single reactor occurs synchronously
during the processing of a single message of the reactor’s mailbox. On the other
hand, multiple reactors that are connected via streams only communicate asyn-
chronously via messages. When a reactor emits its output values to its out stream,
a message is broadcast to all subscribers (e.g., other reactors) that receive that
message in their mailbox. Eventually they will process this message by finding the
reactor deployment that is subscribed to the stream, and changing the values of
its input signals according to the contents of the message. Changing those signals
thus causes the synchronous propagation of values within the reactor potentially
across various reactor deployments, eventually leading to an update of the output
stream.

5.5.6. Qualification Within Reactors

A crucial difference between a routine invocation (e.g., get-lat and get-lng in
Listing 5.13) and a reactor deployment is that a routine invocation is (re)computed
whenever the values of the input signals change (i.e., input → output), whereas a
reactor deployment can produce new output values even when its apparent input
signals did not change. This is because each reactor deployment can subscribe
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1 (def-reactor (AccumulatePath bike)

2 (def path (deploy Accumulate bike.location (newd ImmutableVector) 'push))

3 (def distance-delta

4 (if (< (length path) 2)

5 0

6 (deploy DistanceBetween (penultimate path) (last path))))

7 (def exact-distance (deploy Accumulate distance-delta 0 '+))

8 (out path (round exact-distance 2)))

Listing 5.14: Accumulating the path of a bike trip in Bikey.

to streams by using qualification expressions, and they will update their output
signals whenever the referred to streams emit new values.

As an example, consider the AccumulatePath reactor behaviour in Listing 5.14
that accumulates the path travelled by a rented bike as an immutable list of
coordinates. A bike’s path and the distance spanned by the path is visualised in
Bikey’s GUI (see Figure 5.1 on page 67). The only input signal of AccumulatePath
is a reference to a bike, i.e., a reference to an actor with the Bike actor behaviour
(from Listing 5.9 on page 82).

Line 2 of Listing 5.14 accumulates every location update in an ImmutableVec-

tor. In other words, an object that represents a GPS location will be added to the
vector whenever the location of a bike updates, i.e., when its location stream
emits a new value. The accumulation itself is implemented by the Accumulate
reactor behaviour which we will show later (Section 5.5.9). Its first argument
is a qualification expression that will supply location updates, the second argu-
ment an initial accumulator, and the third argument a method to invoke on the
accumulator with a new location update as argument, yielding an updated accu-
mulator. The qualification expression automatically subscribes to the referenced
location stream, i.e., the value of Accumulate’s first input signal will change
to the values emitted by the stream. Hence, whenever the location of a bike up-
dates, the updated location automatically propagates through the deployment of
Accumulate.

Note that the expression bike.location is not eternally tied to a specific actor
and stream. In general, whenever the value of the bike signal is updated to be a
different actor, then the reactor will stop propagating values from the old bike’s
stream (i.e., it unsubscribes from the stream), and start propagation values by the
new bike’s stream (i.e., it subscribes to the stream). In this specific application the
value of bike is not changed because doing so is not part of the application logic.
Regardless, allowing the actor or reactor reference to change at run-time suits the
semantics of signals such as bike whose value can naturally change over time.

The expressions in the rest of the body of AccumulatePath in Listing 5.14
implement the logic to calculate the total distance spanned by the accumulated
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1 (def-reactor (TripMonitor id bike time start-fee cost-per-minute)

2 (def time-elapsed (ceiling (deploy TripTime time.seconds)))

3 (def-values (path distance) (deploy AccumulatePath bike))

4 (def cost (deploy PriceCalc start-fee time-elapsed cost-per-minute))

5 (out id time-elapsed path distance cost))

Listing 5.15: The TripMonitor reactor behaviour collects allmetrics of a trip: its duration,
path, distance, and cost.

path. In short, for each update of path, lines 3 to 6 calculate the real-world
distance between the two most recent additions to the vector (which are situated
at the rear), or returns 0 if the vector is too small. The total distance travelled is
accumulated on line 7, and rounded to 2 decimal places on line 8. Both the path
and the rounded distance are declared as the output of AccumulatePath.

5.5.7. Receiving Multiple Output Values: “def-values”

Just like many programming languages offer mechanisms to return multiple
values from a function, it is often the case that a reactor has multiple declared
outputs. For example, the AccumulatePath reactor behaviour in Listing 5.14
outputs both the path and its real-world distance. Multiple output values can
also arise when using a qualification expression, namely whenever the referenced
stream has an arity larger than 1 (see Section 5.4.5), meaning that at least 2 values
are emitted to the stream as a single message. Up until now we have not shown
how to distinguish multiple output values.

The mechanism to capture (i.e., name) multiple output values is relatively
simple. Besides a regular def expression to define a single local variable, reactor
behaviours can use a def-values expression to define multiple variables at once.
The number of variables must correspond exactly to the number of output values.
An example can be found in Listing 5.15 which implements the TripMonitor
reactor behaviour. Besides being the central reactor behaviour responsible for
computing and outputting all metrics related to a trip9, it shows how reactor
behaviours can incorporate deployments with multiple outputs.
TripMonitor in Listing 5.15 has 5 input signals. Their expected values are,

from left to right:
1. A unique identifier for the trip (a symbol).
2. A bike (a reference to a Bike actor from Listing 5.9 on page 82).
3. An actor that tracks the current time (a reference to a Time actor from

Listing 5.11 on page 85).
4. The starting fee of renting a bike (e1).

9The architectural overview of Bikey can be found in Figure 5.3 on page 72.
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1 (def-reactor (TimeElapsed current-time)

2 (def time-start (sample-once current-time))

3 (out (- current-time time-start)))

Listing 5.16: The TimeElapsed reactor behaviour tracks elapsed time.

5. The cost per minute of renting a bike (e0.25).
The body of TripMonitor deploys various other behaviours that implement the
required calculations10. Among these, it deploys AccumulatePath on line 3which
had declared 2 outputs. We used the deploy expression in combination with a
def-values expression, such that the 2 output signals can be referred to as path
and distance respectively.

5.5.8. Sampling Signals: “sample-once” and “sample”

In digital signal processing, sampling is the reduction of a continuous electrical
signal (e.g., a sound wave) to a sequence of samples, where each sample measures
the amplitude or value of the electrical signal at a specified point in time as
defined by the sampling rate (the rate at which values are measured). Similarly,
in Functional Reactive Programming, sampling is the act of measuring the value
of an FRP signal at the rate defined by another FRP signal.

Sampling a Signal Once

The simplest form of sampling is the one required by the running example. Here,
the price to rent a bike is calculated based on a fixed cost of e1 followed by e0.25
per minute. To track the duration of a trip, a reactor needs to store the starting
time and to calculate the difference between the start time and the current time.
Defining a signal that perpetually holds the starting time requires us to sample
the time signal once at the start of a trip.

Stella provides a sample-once expression that can be used in reactor beha-
viours. An example from Bikey is given in Listing 5.16, which implements the
TimeElapsed reactor behaviour that will track how long a user has rented a bike.
Its single input signal is current-time, whose values we expect to be the Unix
time in seconds. The body contains a single signal definition of time-start
that will sample the value of the given signal current-time once. In practice
this will be whenever TimeElapsed is deployed, i.e., whenever the first value for
current-time propagates through the reactor deployment of TimeElapsed. The
value of start-time will be perpetually equal to this sampled value. Speaking in

10The implementation of the used reactor behaviours AccumulatePath and PriceCalc have been
shown earlier in this section, and the implementation of TripTimewill be shown in Section 5.6.5.
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reactor turn 0 1 2 3
current-time 1636716691 1636716692 1636716693 1636716694
start-time 1636716691 1636716691 1636716691 1636716691

Table 5.3.: Example of the signal current-time being sampled once.

reactor turn 0 1 2 3 4
s 'a 'b 'c 'c 'd

r 0 0 1 2 3
sampled-s 'a 'a 'c 'c 'd

Table 5.4.: Example of a signal s being sampled at the rate of signal r.

terms of the turns of a reactor (i.e., the complete processing of a set of input signal
updates), then the values of current-time and start-time evolve according to
Table 5.3. Whereas the value of current-time is updated to the next Unix time
every turn, the value of start-time does not change.

Sampling a Signal Multiple Times

In general, a signal s can be sampled at any rate as given by the rate at which
another signal r changes. For example, consider the following sample expression
that can be used in reactor behaviours.

(def sampled-s (sample s r))

The signal sampled-s carries the values of s, but only at the times that r changes.
An example is given in Table 5.4wherewe show the output of sampled-swhenever
the value of s and r changes in a turn of the reactor. Here, signal s contains sym-
bols of a single character, and s’s value is updated at reactor turns 0, 1, 2 and
4. Similarly, r is a signal that contains the natural numbers, which are updated
in turns 0, 2, 3, and 4. The output signal sampled-s will carry the value of s
whenever the signal r changes its value, i.e., at reactor turns 0, 2, 3 and 4. Note
how the value of sampled-s does not change at time 1 because the value of r did
not change. Also note that sampled-s’s value does not change at time 3 despite
r’s value changing from 2 to 3, because the value of s did not change between
time 2 and 3.

5.5.9. State Accumulation: “pre”

Statefulness is an important aspect of Bikey and reactive programs in general. For
example, in an earlier listing (Listing 5.14 on page 91) we used an Accumulate

reactor behaviour to accumulate the path and total distance travelled by a user.
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reactor turn 0 1 2 3 4
s 'a 'b 'c 'd 'e

(pre s) #undefined 'a 'b 'c 'd

(pre s 'x) 'x 'a 'b 'c 'd

Table 5.5.: Example use of pre within a reactor.

1 (def-reactor (Accumulate val initial-acc accumulate-routine)

2 (def acc

3 (if (eq? val (pre val))

4 (pre acc initial-acc)

5 (apply* accumulate-routine (pre acc initial-acc) val)))

6 (out acc))

Listing 5.17: Accumulating reactor behaviour.

This Accumulate reactor behaviour is not the most primitive form of state accu-
mulation. It is implemented just like any other reactor behaviour, but using a
more fundamental operation to track local state.

State is often introduced into a reactive program by using an operation that
stores the “old” value of a signal, i.e., the value a signal had in the previous
turn [127, 132, 142, 149, 150]. This is a relatively simple mechanism that allows
a programmer to use the “old state” of a signal in computations, and to update
this value with new information for the next turn. We define a special form called
pre that captures this previous value of a signal.

The evolution of a signal’s value using pre is exemplified in Table 5.5, which
shows how the value of signals that use pre will evolve over time. Here, the value
of signal s changes to a different symbol in each turn of the reactor. The signal
defined by (pre s) echoes these values, but they are delayed by 1 turn. Note that
the initial value of (pre s) remains #undefined. An optional 2nd argument
of pre replaces the initial #undefined with a different value, e.g., (pre s 'x)

replaces the initial value at reactor turn 0 with the symbol 'x.
The implementation of the Accumulate reactor behaviour uses pre to store

the accumulator. Its implementation is given in Listing 5.17. We define 3 input
signals: val is the signal whose values are accumulated, initial-acc is the initial
value of the accumulator, and accumulate-routine is the name (a symbol) of
a routine to invoke on the accumulator to update its state. The accumulating
variable is called acc (line 2), and is defined as follows:

• If the current value of the input signal val is equal to its value in the previous
turn, then the accumulator acc is not updated (it keeps its old value). This
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is to prevent the accumulator from updating every time the reactor activates,
even when the value of val did not change11.

• If the current value of val is not equal to its value in the previous turn, then
the value of acc is updated by applying the accumulate-routine to the
previous value of the accumulator and the new value. Note that apply*
is a native method defined in the Symbol class. It calls itself (the value of
accumulate-routine) on the object provided as its second argument (the
previous accumulator) with the remaining arguments. E.g., (apply* '+ 0

1) calls '+ on the object 0 with 1 as argument.
The value of acc is continuously updated and “passed” to the next turn of the
reactor, and thus we are able to use it to accumulate changes over time.

5.5.10. Tackled Research Goals

Stella’s implementation of the Actor-Reactor Model fulfils the second research
goal from Section 4.2.3 (page 56), namely to reconcile imperative and reactive
code. The Reactive-Imperative Impedance Mismatch is avoided by construction,
by enforcing that all imperative code must be contained within actors, and all
reactive code is contained within reactors. Speaking in terms of the embedding of
imperative and reactive code:
Embedding imperative code in reactive code: Both side-effects and infinite loops

cannot affect reactors. First, reactors can only invoke routines on objects, and
the object-oriented base language enforces that routines do not contain side-
effects and that they must eventually terminate. Second, side-effects from
actors cannot affect reactors either since they are isolated to the actor’s process:
Any messages sent between (re)actors are passed by (deep) copy.

Embedding reactive code in imperative code: There is only 1 way for imperat-
ive code to interact with reactive code, namely via message passing. The
semantics of message passing is well defined, namely: Input enters the reactor
via messages that are inserted in the mailbox of a reactor are processed on a
first-in first-out basis. The values emitted by reactors are sent onwards via
messages that enter the mailbox of the receiving (re)actor.

5.6. Reactors as DAGs

In the previous sections we briefly mentioned that Stella’s reactor behaviours
are internally represented as a Directed Acyclic Graph (DAG). A DAG is not
just an implementation technique to make reactive programs work, and that

11We have investigated other mechanisms to perform state accumulation that do not require such
an if-test to eliminate erroneous updates. A more general method of tracking state is called a
“trampoline variable” [99], but this method is currently not implemented in Stella.
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1 (def-reactor (ToMinutes time-seconds)

2 (out (/ time-seconds 60)))

Listing 5.18: The ToMinutes reactor behaviour converts a time in seconds to minutes.

60

/

Source nodes

Internal nodes

Sink nodes

Sources 

seconds

Implicit sources 

<none>

Sinks 
sink #1Data flow

Figure 5.6.: The DAG representation of ToMinutes (Listing 5.18) shows all parts of our
DAG visualisation.

programmers can also gain a better understanding of how a reactive program
works by keeping in mind its DAG representation.

All operations of reactor behaviours discussed in the previous sections have
a DAG representation that reveals additional info about how they work. In this
section we discuss the operations which we think benefit the most from revealing
their structure in the DAG, and finally we introduce a DAG point-free composition
operation that follows directly from viewing reactor behaviours as DAGs.

5.6.1. DAG Representation of Reactor Behaviours

Every reactor behaviour can be drawn as a DAG. In Section 5.5.1 we previously
showed the PriceCalc reactor behaviour of Listing 5.12 (page 86) and its DAG
representation in Figure 5.5. Another example used in Bikey is the ToMinutes
reactor behaviour in Listing 5.18 which converts a Unix timestamp in seconds to
minutes. Its corresponding DAG representation is shown in Figure 5.6.

Every reactor behaviour’s DAG consists of a set of (explicit) sources and implicit
sources, which together make up the source nodes. The (explicit) sources corres-
pond to the input signals of the reactor behaviour. The implicit sources are a new
type of source node that represent implicit data inputs of the reactor behaviour.
Essentially they represent signals that may cause the output to change, but which
are not explicitly listed as input signals in the code of the reactor behaviour. Note
that the DAG of ToMinutes has no implicit sources, since its body only contains a
simple routine invocation. In general, as we will show when discussing the DAGs
of deploy and qualification, implicit sources are automatically generated when
using expressions that add an additional data source (as in “new input stream”)
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1 (def-reactor (Add a b)

2 (out (+ a b)))

3
4 (def-reactor (Increment x)

5 (out (deploy Add x 1)))

Listing 5.19: The Add and Increment reactor behaviours.

Data flow
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Sinks 
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deploy: Add

Increment Add
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+

1

Sources 

DeploymentLogical connection

Figure 5.7.: DAG representation of Increment (Listing 5.19).

to the reactor behaviour. We will normally omit the implicit sources from the
DAG visualisation when there are none. The internal nodes comprise the various
operations within the DAG such as the routine invocation / (division). Finally, we
draw a sink node for each entry in the out declaration of the reactor behaviour,
in this case 1.

5.6.2. DAG Representation of Deploy

In Section 5.5.4 we discussed the deploy expression that allows a reactor beha-
viour to use other reactor behaviours a number of times. We used the example of
a DistanceBetween reactor behaviour (Listing 5.13 on page 90) that deployed
multiple “instances” of a DegreesToRadians reactor behaviour. Since the DAG
of DistanceBetween is too big to visualise here, we will use the exemplary re-
actor behaviours Add and Increment defined in Listing 5.19. Add simply adds
two numbers, and Increment deploys Add to increment a given number. While
these reactor behaviours have a simple DAG visualisation, the technique we use
to represent a deploy expression is the same for all reactor behaviours, including
DistanceBetween.

The DAG representation of Add and Increment is shown in Figure 5.7. Rather
than visualising their DAGs in isolation, we visualise two reactor deployments
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using a rectangle with dashed border, one for Increment and one for Add. Notice
how Increment’s deploy expression is compiled to two DAG nodes (highlighted
in blue) that are logically connected.

1. An internal deploy node is connected to the arguments of the deploy ex-
pression, in this case source node x and constant node 1.

2. An implicit source node is connected to the sink of the Add deployment.
Its name “deploy-collector” is solely for the visualisation, and is not
derived from code.

The internal deploy node is responsible for managing its corresponding deploy-
ment of Add. Whenever the value of the argument signals change – in this case x –
then these changes propagate to the deployment of Add, i.e., they change the value
of the input signals. In the other direction, whenever the value of the sink node
of Add changes, the new value propagates to the implicit source node followed by
any further dependents that use the result of the deploy expression (in this case,
just Increment’s sink node).

Compiling a deploy expression to 2 DAG nodes was inspired by the async

statement in Elm [36], and we found it to be a common pattern that we used for
other statements as well, such as a qualification expression.

5.6.3. DAG Representation of Qualification

In Section 5.5.6 explained how a qualification expression is used within a reactor.
Rather than propagating an object of type Stream, the reactor will create a de-
pendency on the referred stream, and propagate the stream’s values instead. To
exemplify this we explained the AccumulatePath reactor behaviour (Listing 5.14
on page 91).

The DAG representation of AccumulatePath is given in Figure 5.8, which
shows how a qualification expression is compiled to a DAG. For completeness we
draw the entire DAG with all its internal nodes. We highlighted the nodes of the
qualification in blue. Similar to deploy, a qualification expression is compiled to
2 nodes. The internal node called bike.location manages the dependency on
the stream, i.e., establishing or removing the subscription, and ensuring that the
stream’s values change the value of the desired implicit source node. The implicit
source node called location receives the values emitted by the stream. In this
case the qualification expression refers to the location stream of a particular
bike actor.

Representing a qualification expression via 2 DAG nodes highlights the subtle
complexity of the operation. Namely, that there are potentially 2 axes of change
that should be correctly reacted to by a reactor. First, any updates emitted to
the location stream will change the value of the location implicit source node.
Second, while it does not occur in this specific application due to its logic, reactors
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Figure 5.8.: DAG representation of AccumulatePath (Listing 5.14).

also handle the situation where the reference to the bike actor changes to a
different actor. This means that the reactor should stop propagating values from
the old bike’s stream, and start propagating values from the new bike’s stream.

5.6.4. DAG Representation of If

The control structure supported by reactors is an if expression. Up until now we
used if expressions as if they were a normal expression, but it is important to
know exactly how an if expression operates to know which signals are updated
and when.

We will explain the if expression using the artificial SwitchBetween reactor
behaviour in Listing 5.20. Depending on the current value of the condition, the
result of the if expression will either be the value of the “a” signal or the “b”
signal. The DAG representation of SwitchBetween is given in Figure 5.9, where
the if node depends on the nodes that correspond with its condition, consequent
and alternative. Depending on the value of the condition, the if node propagates
either the latest value of the consequent or the alternative. Note that when the
expressions used in the consequent or alternative branch are more complicated
(e.g., nested routine invocations, stateful expressions, deploy expressions, qual-
ifications, etc.), these expressions remain “active” even when their values are
(temporarily) not used as the result of if.
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1 (def-reactor (SwitchBetween condition a b)

2 (out (if condition

3 a // consequent

4 b))) // alternative

Listing 5.20: Using if in a reactor behaviour.
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Figure 5.9.: DAG representation of SwitchBetween (Listing 5.20).

5.6.5. Point-free Reactor Behaviour Composition: “ror”

Reactor behaviours are composable in 2 ways. The first way is via a regular
deploy expression, where one reactor behaviour uses another reactor behaviour.
In analogy with functional programming we call this a point-wise composition
of reactor behaviours. The second way is called point-free composition, where
reactor behaviours can be composed by “glueing” them together.

We will exemplify both forms of composition by showing 2 equivalent imple-
mentations of the only remaining reactor behaviour used in Bikey that we have
not yet shown, namely TripTime which tracks the duration of a bicycle trip. A
point-wise implementation of TripTime is given in Listing 5.21. Its input signal
time-seconds is expected to be the Unix time in seconds, and its single output
is the duration of the trip. Tracking this duration is handled by deploying reactor
behaviours that we have previously shown, namely TimeElapsed (Listing 5.16
on page 93) and ToMinutes (Listing 5.18 on page 97).

In mathematics, new functions can be defined point-free via a function compos-
ition operator ◦. The composition f ◦ g (pronounced “f after g”) is a function
h such that h(x) = f(g(x)). Similarly, Stella offers a ror operator (“reactor
behaviour after reactor behaviour”) that composes reactor behaviours: r1 ◦ r2

1 (def-reactor (TripTime time-seconds)

2 (out (deploy ToMinutes (deploy TimeElapsed time-seconds))))

Listing 5.21: The TripTime reactor behaviour defined in point-wise style
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1 (def-reactor TripTime (ror ToMinutes TimeElapsed))

Listing 5.22: The TripTime reactor behaviour defined in point-free style using ror

constructs a new behaviour where data is first propagated through r2 and then
through r1. The DAG of this behaviour is the composition of r1 and r2, where the
sinks of r2 are connected to the sources of r1.

As an example of point-free reactor behaviour composition, Listing 5.22 defines
same TripTime from Listing 5.21 but in a point-free style using ror. TripTime
is defined as a new reactor behaviour that combines the behaviours of ToMinutes
and TimeElapsed. In this case, the constituent reactor behaviours can be easily
composed because they each define only one source and one sink. If the reactor
behaviours would not directly “fit together”, intermediate reactor behaviours can
take care of reordering sources and sinks or transforming data.

In general the ror operator is capable of connecting multiple “input” reactor
behaviours to one “output” reactor behaviour. The following expression defines a
new reactor behaviour R that is the composition of an output reactor behaviour
Rout with input reactor behaviours R1 to Rn.

(def-reactor R (ror Rout R1 R2 . . . Rn))

Reactor behaviour R can be compiled as long as the number of sinks of all input
reactor behaviours matches the number of sources in Rout. If this is the case, they
will be connected in order from left to right to construct the reactor behaviour R.
The sources of R will be the same as the sources of the inputs, ordered from left to
right.

sources(R) := sources(R1) + sources(R2) + . . . + sources(Rn)

The sinks of R are the same as the sinks of Rout.

sinks(R) := sinks(Rout)

Additional point-free composition operators with different semantics that are
not implemented in Stella are conceivable and useful, for example, the parallel
and parallel* operators defined in [97]. In [98] various other kinds of point-free
composition operators are used extensively to construct reactive sorting networks.
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5.7. Tying Everything Together: Bikey’s Main Actor

When combining the code snippets from this chapter in a single file, one obtains
a complete, executable implementation of Bikey in Stella12.

In this section we show the final piece of Bikey, namely the Main actor that
responds to messages from the external HTML + CSS + JavaScript application. All
user interactions will generate a message that is sent from JavaScript to the Main
actor. Vice-versa, the Main actor sends updates of bike trips back to JavaScript by
invoking an “update” JavaScript function via Stella’s foreign function interface.

The Main actor for Bikey is defined in Listing 5.23. It declares four local fields
on line 2 which are initialized in the constructor on lines 5 to 8.
env is a JSProxyObject provided by the external JavaScript world. It contains a

method called updateTrip! that updates the GUI.
bikes is a dictionary that stores all Bike actors in the application. Its keys

are identifiers generated by the outside JavaScript world to identify the GUI
elements related to a particular bike, e.g., the small bike icons in Figure 5.1 on
page 67.

trips is a dictionary that stores all TripMonitor reactors in the application.
Similar to bikes, the keys are unique identifiers generated by JavaScript to
identify the GUI elements related to a particular trip, e.g., the path a bike has
travelled and the metrics of a trip (distance travelled, cost, etc.)

time is a Time actor (from Listing 5.11 on page 85) that provides Unix time as a
stream. One time actor is shared among all TripMonitor reactors.
The methods in the body of Main handle messages sent from JavaScript in

response to GUI events. They work as follows:

add-bike! (line 10) A bikewas added in theGUI. Given an id and initial location
for the bike, in response a new Bike actor (see Listing 5.9 on page 82) is
spawned on line 11 and subsequently stored in the bikes dictionary. Since the
identifier provided by JavaScript is a string, we convert it to a Symbol to use
as a dictionary key. Otherwise, when using strings as key, there are equality
issues where different String objects are not equal despite representing the
same sequence of characters. Symbols do not have these issues.

move-bike! (line 14) A user drag & dropped a bike to a different location on the
map, which represents a bike moving in the real world. The corresponding
Bike actor is retrieved on line 15 and subsequently sent an update-location!
message.

delete-bike! (line 18) A user removed a bike from themap. The corresponding
Bike actor is retrieved on line 19, subsequently removed from the dictionary

12Note that we did not show the parts of the application not implemented in Stella, namely the
HTML, JavaScript and CSS that power the webpage, and which communicate with the Main
actor via messages and Stella’s foreign function interface.
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1 (def-actor Main

2 (def-fields env bikes trips time)

3
4 (def-constructor (start _env)

5 (set! env _env)

6 (set! bikes (newd Dictionary))

7 (set! trips (newd Dictionary))

8 (set! time (spawn-actor! Time 'default)))

9
10 (def-method (add-bike! id initial-location)

11 (def bike (spawn-actor! Bike 'init initial-location))

12 (put! bikes (to-symbol id) bike))

13
14 (def-method (move-bike! id new-location)

15 (def bike (get bikes (to-symbol id)))

16 (send! bike 'update-location! new-location))

17
18 (def-method (delete-bike! id)

19 (def bike (get bikes (to-symbol id)))

20 (remove! bikes (to-symbol id))

21 (terminate! bike)

22 (if (contains? trips (to-symbol id))

23 (let ((trip (get trips (to-symbol id))))

24 (remove! trips (to-symbol id))

25 (terminate! trip))))

26
27 (def-method (start-trip! id)

28 (def bike (get bikes (to-symbol id)))

29 (def trip-monitor (spawn-reactor! TripMonitor))

30 (react-to! trip-monitor id bike time 1 0.25)

31 (put! trips (to-symbol id) trip-monitor)

32 (monitor! trip-monitor.out 'update-trip!))

33
34 (def-method (stop-trip! id)

35 (def trip-monitor (get trips (to-symbol id)))

36 (terminate! trip-monitor)

37 (remove! trips (to-symbol id)))

38
39 (def-method (update-trip! id trip-time path total-dist cost)

40 (updateTrip! env id trip-time path total-dist cost)))

Listing 5.23: Main actor of the Bikey application.
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and terminated entirely. Terminating an actor automatically cleans up any
dependencies it has on streams, and vice-versa, dependencies from other actors
and reactors on its own streams. If a trip was active while the bike got removed,
the trip is terminated as well on lines 22 to 25. As a convenience we used the
same id for a bike and its corresponding trip.

start-trip! (line 27) A user clicked a button in the GUI signalling to start a
trip for a particular bike. In response, a new TripMonitor (see Listing 5.15
on page 92) is spawned on line 29, and subsequently instructed to react to the
desired values on line 30. The trip monitor is stored and its output stream is
monitored. Any updates by the reactor will be received by the Main actor as
an update-trip! message.

stop-trip! (line 34) A user clicked a button in theGUI signalling to stop the trip
of a particular bike. In response, the corresponding trip monitor is retrieved,
terminated and removed.

update-trip! (line 39) Whenever any trip monitor reactor produces an update,
the update is received as an update-trip! message because of the monitor!
statement on line 32. In response, the outside JavaScript world is notified via
a call to the updateTrip! method on env which invokes a foreign JavaScript
function.

5.8. Stella Cheat Sheet

It is typical summarise a programming language in a so-called “cheat sheet” that
provides a quick overview of a language’s syntax and operations. Stella’s cheat
sheet is provided in Figures 5.10 to 5.14 on pages 106 to 108. It provides an
overview of the object-oriented base language (Figure 5.10, actors and message
passing (Figure 5.11), reactors (Figure 5.12), the composition of actors and reactors
via streams (Figure 5.13), and flocks (Figure 5.14). Note that the reactor operator
deploy-* and flocks are included in the cheat sheet, but will be introduced in
Chapter 6.

5.9. Summary and Conclusion

In this section we set out to solve 2 of the problems discussed in Chapter 4,
namely the Reactive Thread Hijacking Problem (Section 4.1 on page 50) where
long lasting computations can stop a reactive program from being able to react,
and the Reactive-Imperative Impedance Mismatch (Section 4.2 on page 52) which
are the issues that arise when combining imperative and reactive code. Our
proposed solution is based on the hypothesis that there is no panacea to write
both imperative and reactive programs within a single unified language that
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Stella Cheat Sheet: Object-Oriented Base Language

(def-class Foo
  (def-fields field1 field2 ...)
  (def-constructor (default arg1 arg2) <body>)
  (def-method      (Name1 arg1 ...)    <body>)
  (def-routine     (Name2 arg1 ...)    <body>))

Define Classes

(set! id val)(def id val)
Define Variables & Assign to Variables

(if <condition> 
    <consequent>
    <alternative>)

(cond (<condition1>     <body>) 
      (<condition n...> <body>)
      (else <body>))

If / Conditional Expressions

(method-name receiver-object args...)
Invoke Methods/Routines

(new Foo ‘default arg1 arg2)
Make Objects

(newd Foo arg1 arg2)

Figure 5.10.: Stella Cheat Sheet: Object-oriented base language.

Stella Cheat Sheet: Actors & Messages

(def-actor Foo
  (def-stream stream-id arity1) 
  (def-fields field1 field2 ...)
  (def-constructor (default args...) <body>)
  (def-method      (Name1 args...)   <body>))

Define Actor Behaviours

(spawn-actor! <ActorBehaviour> ‘constructor args...)
Spawn Actors

(send!       <actor ref>               ‘selector args...) 
(send-after! <actor ref> <delay-in-ms> ‘selector args...)

Send Messages

Figure 5.11.: Stella Cheat Sheet: Actors and message passing.
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Stella Cheat Sheet: Reactors

(def-reactor (Foo signal1 signal2 ...)
  <body: def(-values)/if/new(d)/deploy(-*)/pre/bind/sample(-once)>
  (out signal1 signal2 ...))

Define Reactor Behaviours

(deploy   <ReactorBehaviour> args...) 
(deploy-* <ReactorBehaviour> arg)

Deploy Reactor Behaviours

(def-values (signal1 signal2 ...) (deploy ...))
Name Reactor Deployment’s Multiple Output Signals

(spawn-reactor! <ReactorBehaviour>)
Spawn Reactors

(pre signal)
Capture Signal’s “Previous Value”

(bind <ReactorBehaviour> signal1 signal2...)
Partial Application

Sample Signals
(sample val-signal rate-signal) (sample-once signal)

Figure 5.12.: Stella Cheat Sheet: Reactors.

Stella Cheat Sheet: Actor-Reactor Composition & Streams

(emit! stream-id val)
Emit to Actor’s Streams

Emit a value to a stream defined in the current actor. Number of arguments = arity of 
stream-id.

Use Stream in Reactors
object.stream-name   (qualification)
A qualification expression in the body of a reactor creates an automatic dependency on 
the stream.

(react-to! <reactor ref> val1 val2 ...)
Change Reactor’s Input Signals

Send a message to the designated reactor, changing the value of its input signals. 

Monitor a stream, and enter a ‘selector message into the current actor’s mailbox when-
ever the stream emits a value. 

(monitor! <stream obj> ‘selector)
Use Stream in Actors

Compose a new reactor behaviour out of the given reactor behaviours.
(ror <Output ReactorBehaviour> <Input ReactorBehaviours...>)

Compose Reactor Behaviours

Figure 5.13.: Stella Cheat Sheet: Actor and reactor composition via streams.
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Stella Cheat Sheet: Flocks

(def-flock Foo)
Define a Flock

Unpublish From Flock
(unpublish! <flock> <local actor or reactor ref>)

(publish! <flock> <local actor or reactor ref>)
Publish to a Flock

Figure 5.14.: Stella Cheat Sheet: Flocks.

exposes the same concepts and operations in both types of code. Instead, that
imperative and reactive programs are fundamentally incompatible, and that they
should be programmed whilst guaranteeing their own invariants. To this end the
Actor-Reactor Model introduced in Section 5.2 serves as a new mental model to
classify and design reactive systems.

Two aspects of Stella’s design are key to using the Actor-Reactor Model work in
practice. The first aspect is the object-oriented base language. Abstract data types
are defined using classes that, besides regular methods, contain routines that
always (eventually) terminate, and that are guaranteed to be free of side-effects.
They allow actors and reactors to share the same data structures, while the set of
operations they can invoke differ. Whereas actors can invoke both methods and
routines, reactors are restricted to invoking only routines.

The second aspect is the separation of different parts of the program in either
actors or reactors. Both are programmed in a different style. Actors are program-
ming using traditional imperative code. Their code is executed from top to bottom,
driven by the control flow of the program. Reactors are programmed in a style
akin to Functional Reactive Programming. Their computations are not driven by
the order of code statements, but by the flow of incoming data.

Our definition of reactors is atypical compared tomost other Functional Reactive
Programming languages and frameworks. We define distinct terminology for the
different stages of a reactive program: A reactor behaviour represents the code
of a reactive program, a reactor deployment is a specific “instance” of (part of)
the reactive program, and a reactor is a process that contains a reactive engine
that propagates values through one or more reactor deployments. Conceptually,
the reactive programs in many existing reactive programming languages are
analogous to one reactor with one deployment.

The Actor-Reactor Model avoids the Reactive Thread Hijacking Problem and the
Reactive-Imperative Impedance Mismatch, and actors and reactors are a natural
fit for distributed programming due to their isolated state and message passing
semantics. How to use Stella in a distributed context is the topic of the next
chapter.
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This chapter tackles the third and final problem introduced in Chapter 4, namely
the Acquaintance Maintenance Problem from Section 4.3 on page 56 which occurred
when programming distributed reactive programs for open networks. Due to the
open network assumption of Chapter 1, at every point in time, an application
must know its set of acquaintances that can be reached over the network at that
exact moment. Since the acquaintances vary throughout the lifetime of the applic-
ation as devices join and become unreachable, a central aspect is acquaintance
management, which we defined as the combination of 2 mechanisms:

1. An acquaintance discovery mechanism to discover acquaintances on the open
network. In Stella, acquaintances consist of actors and reactors.

2. An acquaintance maintenance mechanism to subscribe to discovered streams
in order to react as they appear, and to gracefully close the streams as they
disappear.

In Section 4.3 we discussed acquaintance maintenance in state of the art pro-
gramming languages and frameworks. This resulted in 2 different approaches
based on signals and event streams. Both lead to a different code style, and dif-
ferent problems. We found that code written using event streams is efficient,
but exhibits a lot of accidental complexity and seems to be more error-prone,
whereas code written using signals tends to be more compact and idiomatic, but
is inefficient.

The goal of this chapter is to define a mechanism that results in code that
is idiomatic like signals, but that is also efficient. Acquaintance discovery will
be conceived via a so-called flock, a new abstraction to automatically discover
acquaintances. A flock communicates the joining and leaving of acquaintances via
a stream, and a topology-reactive operator called deploy-* uses this information
to implement efficient acquaintance maintenance.
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Figure 6.1.: Screenshot of Whereabikes (using mock bicycle data).

6.1. Running Example: Whereabikes

The running example used in this chapter is an extension to Bikey from Section 5.1
on page 66, namely a reactive bike counter called “Whereabikes” that counts all
bikes that are availablewithin a user-designated area. A screenshot ofWhereabikes
is given in Figure 6.1, where a user placed a “counting marker” to count all bikes
within a radius of 750 meters of our university campus. Similar to Bikey, in the
absence of real-world data, this implementation is also completely user-controlled.
I.e., a user mocks data via the GUI by manually adding, removing, and moving
(via drag & drop) bikes and counting markers.

The example is conceptually simple, but challenging to implement. The pro-
grammer must ensure that bike counters correctly update in the following cir-
cumstances:

1. Bikes constantly move in and out of the designated area highlighted in blue.
2. Bikes spontaneously appear and disappear as a result of changing network

conditions, which is mocked by the user via GUI interactions.
3. A user may move the counting marker (drag & drop).
4. A user may change the radius wherein bikes are counted via a slider in the

pop-up.
To give the reader a notion of scale, in 2019 Villo!, the public bike sharing program
of Brussels, stationed 5000 bikes in the city dispersed over a total of 352 bike
stations [109]. Consequently, the programmer must ensure that the computation
is efficient.
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Prosumer 
(Reactive program DAG)

Data flow

Data flow over network

Application-level reactivity

Topology-level reactivity

...

...

Figure 6.2.: Illustration of the 2 different levels of reactivity (recap).

6.2. Recap: Application-level Reactivity vs.
Topology-level Reactivity

In Section 4.3.2 on page 58 we discussed acquaintance maintenance. To obtain
efficient acquaintancemaintenance, the language or framework needs to efficiently
support two levels of reactivity, namely application-level reactivity and topology-
level reactivity. We recap these two concepts since they are crucial to aid the
understanding of this chapter.

Consider a reactive program that computes the average temperature of all
thermometers that are connected to a network, and an acquaintance discovery
mechanism that is capable of discovering them. Speaking in terms of streams, the
average computation must appropriately react to streams appearing, disappear-
ing, and updating with new values. In Figure 6.2 we illustrate these interactions
between acquaintances and their streams. Each of the dashed rectangles repres-
ents one acquaintance, each containing a reactive program (visualised by a DAG).
At the top we draw N (possibly different) producers of data, e.g., thermometers,
and at the bottom we draw a sole consumer continuously reacts to data from the
producers. We discriminated 2 levels of reactivity that constitute acquaintance
maintenance:

Application-level reactivity: Whenever a source of one of the DAGs changes (at
the top), the reactive language or framework automatically recomputes the
dependent parts of the program that are affected by the change. We illustrate
one such propagation path in red. We called this application-level reactivity,

111



6. Distributed Reactive Programming in Stella

1 // spawn bike using 'init constructor

2 (def bike (spawn-actor! Bike 'init (new LngLat 'at 4.3951313 50.822023)))

3 // publish bike actor to the Bikes flock

4 (publish! Bikes bike)

5 // remove bike actor from the Bikes flock

6 (unpublish! Bikes bike)

Listing 6.1: Publishing and unpublishing (re)actors to and from a flock.

which equates to the “normal” propagation of values in existing work, e.g.,
temperature measurements that flow through the program.

Topology-level reactivity: Topology-level reactivity occurs in consumers ofwhich
the computations depend on an open number of producers, e.g., the average
calculation. The topology of the DAG needs to be continuously reconfigured
to accommodate the appearing or disappearing streams. This is illustrated in
Figure 4.1 in blue, denoting the appearing and disappearing of a stream (and
its dependencies) in the DAG of the consumer.

The key to efficient acquaintance maintenance will be to achieve both efficient
application-level reactivity and efficient topology-level reactivity.

6.3. Intensional Acquaintance Discovery via Flocks

In this section we propose a solution for acquaintance discovery, namely an ac-
quaintance discovery abstraction called a flock. A flock is implemented as an actor
that facilitates acquaintance discovery. In essence, a flock describes a collection
of (re)actor references that are automatically shared over the network with other
flocks that have the same name. Our definition of flocks was inspired by volatile
sets [62] and flocks for ambient-oriented programming [22]. Both offer intensional
acquaintance discovery in the same spirit as our flocks, but they have not been
conceived for reactive programming.

Flocks are defined in top-level scope with a unique name. For example, the
following code snippet defines a flock called Bikes.

(def-flock Bikes)

6.3.1. Publishing and Unpublishing Actors and Reactors

Local (re)actor references can be published to the network by adding them to a
flock via publish!. For example, the devices that are running Bike actors from
the previous chapter (Listing 5.9 on page 82) may (un)publish these actors as
demonstrated in Listing 6.1:
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time

Snapshot(a,b,c)

insert(d)

remove(a)
Bikes.contents

stream

current state: 
Snapshot(b,d)

{a,b,c,d} 
(re)actors

remove(c)

Figure 6.3.: Example of a stream that contains snapshots and patches.

Publishing or unpublishing (re)actors changes the contents of the flock, which
are reactively communicated to other actors and reactors which are using the
flock.

6.3.2. Reading the Contents of a Flock

Every flock exports a stream called contents, which is the primary means to
access its continuously evolving acquaintances. Thus, a reference to this stream is
obtained via the expression Bikes.contents.

The first value emitted by the flock to its contents stream is always a snapshot,
and all subsequent values are a patch. We use these terms to more easily describe
the use of a special IncrementalBag in combinationwith streams (inspired by [80,
116]).

Snapshot: The snapshot of a flock is an immutable IncrementalBag data struc-
ture (a set that may contain duplicate values) that records the contents of a
flock at a specific moment in time.

Patch: A patch is emitted whenever the contents of a flock changes. There exist 3
types of patches, namely the insert, update or remove patches which can be
applied to a snapshot. Concretely they are objects of the types PatchInsert,
PatchUpdate and PatchRemove.

As an example, consider the bikes.contents stream that is drawn in Figure 6.3
which depicts a potential scenario using snapshots and patches. In this diagram
time flows from left to right, meaning that the leftmost value is emitted first. The
first value emitted by the stream is a snapshot containing 3 (re)actor references,
followed by an insert patch and 2 remove patches. A receiver can use the patches
to keep its view of the flock up-to-date, which in this case results in a snapshot
containing only 2 (re)actor references b and d.

Snapshots andpatches are used to obtain efficient application-level and topology-
level reactivity. The semantics of snapshots and patches align with regular Stella
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semantics for streams, where any (re)actor that subscribes to a stream immediately
receives the most recently published value. For flocks this is always an up-to-date
snapshot, rather than the latest patch.

6.3.3. Distributed Flocks

A defining property of flocks is that their contents are automatically shared over
the network with all other flocks of the same type. Any additions via publish!
or removals via unpublish! are automatically propagated to the other flock
actors on the network, who incorporate those changes into their own contents.
References to local (re)actors are automatically transformed to remote references
when they are passed over the network. In the event of a peer or network failure,
each peer individually determines the (re)actors that can no longer be reached,
which are then automatically removed from that peer’s flock. On a technical level
we currently do so via heartbeats between all peers that share a flock. Whenever
a disconnected peer rejoins the network, the removed (re)actors are re-added
to the flock. This process of synchronising state and monitoring the network is
always running in the background for every flock, hence why they are explicitly
conceived as an actor.

The sharing of actor and reactor references is graphically depicted in Figure 6.4.
At the top, we draw 2 flocks that are connected via a network. The left flock
contains 3 local (re)actors in red, and the right flock contains 2 local (re)actors in
blue. When there is an active network connection between the two flocks, then
the flocks can exchange references to their local actors and reactors. The bottom
depicts the same flocks and (re)actors, but here the connection between the two
flocks was dropped. In this case each flock determines it can no longer reach the
remote (re)actors (red and blue respectively), and thus removes them from their
contents.

Our current implementation of Stellamakes use of a discovery server to facilitate
the discovery of the Stella interpreters running on different peers in the network. A
signalling (discovery) server is required by WebRTC [26] (which is used by Stella)
to exchange initial peer information without user interaction. Afterwards all
communication is directly peer-to-peer [4]. The discovery server is also responsible
for keeping a total overview of the complete contents of a flock, i.e., all (re)actors
that a peer should be able to reach via the network.

Currently, any other Stella program can publish (re)actors to a flock. From a
security point of view, we consider an authentication mechanism (e.g., to discover
only authorised (re)actors) to be an orthogonal concern. Such mechanisms can
be implemented on the meta-level (e.g., on the level of socket connections), via a
type system, etc. At the time a (re)actor is included in a flock, we already assume
that the other parties are trusted.
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Network Boundary Actor/ReactorFlock

Figure 6.4.: Sharing actor and reactor references via a flock over the network.

6.4. A Topology-Reactive Operator: “deploy-*”

We show how reactors are used in combination with reactor deployments (cf.
Section 5.5.4 on page 88) and flocks to support efficient application-level and
topology-level reactivity. We introduce an efficient topology-reactive operator for
reactors called deploy-*, and we demonstrate its semantics by implementing the
bike counters from the running example.

6.4.1. Calculating Distance Between Bikes and Counting Markers

Before showing how to count all bikes using deploy-*, we define an auxiliary
reactor behaviour called IsBikeWithinRadius that checks whether a bike is
within the radius of the counting region, i.e., the blue area in Figure 6.1 on
page 110. IsBikeWithinRadius is given in Listing 6.2. Its inputs are a point
(GPS coordinate) at the centre of the radius, a radius in meters, and one bicycle
(a reference to a Bike actor). The body calculates the distance between the point
and the current location of the bike, and outputs the bike if the distance is smaller
than the given radius.

Recall from Listing 5.9 on page 82 that the location of a bicycle was conceived
as a location stream exported by a Bike actor. To calculate the distance to such a
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1 (def-reactor (IsBikeWithinRadius point radius-meters bike)

2 (def distance-km (deploy DistanceBetween point bike.location))

3 (out (if (< (* distance-km 1000) radius-meters)

4 bike)))

Listing 6.2: The IsBikeWithinRadius reactor behaviour checks whether a bike falls
within the radius of a counting marker.

1 (def-reactor (CountingMarker id location radius)

2 (def all-bikes Bikes.contents)

3 (def bikes-nearby

4 (deploy-* (bind IsBikeWithinRadius location radius) all-bikes))

5 (out id (size bikes-nearby)))

Listing 6.3: Counting all bikes within a radius

bike, IsBikeWithinRadius reuses the DistanceBetween behaviour that we have
defined previously to calculate the great-circle distance between two coordinates
(defined in Listing 5.13 on page 90). Note that the if test is lacking an alternative
branch. In this case, the alternative branch is implied to be a constant value #none,
an “empty value” used by reactors.

6.4.2. Topology-level Reactivity in Whereabikes

Listing 6.3 implements a reactor behaviour called CountingMarker that counts
all bikes within an area. It has 3 sources: id is a unique identifier for the marker (a
string generated by the GUI), location is the centre of the circular area wherein
bikes are counted, and radius determines the radius (in meters) of the area. Its
body is structured as follows. Line 2 defines a variable all-bikes that refers to
the Bikes.contents stream, which emits all bikes that can be discovered on the
network (a snapshot followed by patches). Line 3 defines bikes-nearby as the
result of a deploy-* operation, which conceptually transforms a snapshot of all
bikes to a snapshot that contains only the bikes that fall within the given radius.
Line 5 declares 2 sinks, namely the id of the marker and the size of the bikes-
nearby collection. These 2 values are published together on the out stream of
the reactor whenever either of them changes.

6.4.3. The “deploy-*” Operator

The deploy-* operator can be thought of as a regular “map” operation for lists, but
instead of mapping a function over a list, deploy-* deploys (“instantiates”) a new
reactor behaviour for every element in the given collection. In simplified terms, the
type signature of deploy-* is given in Listing 6.4. Its first argument is the reactor
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Sources 

radius

Sinks 

sink #1

Logical connection Data flow

CountingMarker
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Sinks 
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*
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<
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Figure 6.5.: CountingMarker DAG representation (Listing 6.3).

deploy-* :: ReactorBehaviour → Collection → Collection

Listing 6.4: The type signature of deploy-*.

behaviour to “map” over the collection, in this case given by a bind expression.
The bind operator implements partial application for reactor behaviours (not to be
confused with monadic bind). The first two sources of IsBikeWithinRadius (cf.
Listing 6.2) will depend on location and radius, and its third source remains
“unconnected”. The second argument of deploy-* is a collection given by all-
bikes. At run-time, a new deployment of IsBikeWithinRadius is created for
each bike in the collection (in no particular order), and the corresponding bike
is propagated via the sole unconnected source of the deployment. The result of
deploy-* is a collection that contains the result of each created deployment, i.e.,
the value of their sinks (of which there must be exactly 1 for each deployment).

The creation of deployments is visualised in Figure 6.5 which depicts the
DAG representation of CountingMarker. The blue deploy-* node has created
one deployment of IsBikeWithinRadius whose sources are connected to the
corresponding nodes in the CountingMarker deployment. The sink node of
IsBikeWithinRadius is connected to the bikes-nearby implicit source. It is
called “implicit” because it is generated by the DAG compiler to receive val-
ues from outside the current deployment, and in the case of deploy-*, it also
constructs the correct output1.

Intuitively, deploy-* offers “filter-map” semantics where values that signify
“no value” (e.g., #undefined) are excluded from the result. This is the case in our
example, since the implementation of IsBikeWithinRadius (Listing 6.2) did not

1Compiling a statement to 2 nodes is a common pattern that we also used to compile a deploy
expression (see Section 5.6.2 on page 98) and a qualification (see Section 5.6.3 on page 99).
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provide an alternative branch for the if-test. When this is not desirable, deploy-*
accepts an optional third argument (not used here) to replace those empty values
with a default.

6.5. Obtaining Efficient Application-level and
Topology-level Reactivity

Efficient application-level and topology-level reactivity is achieved by meticu-
lously propagating snapshots and patches whenever a change occurs. For example:
Topology-level patching: Whenever the Bikes flock emits an insert patch that

adds a bike, then deploy-* also propagates an insert patch with the output
of the newly created IsBikeWithinRadius deployment.

Application-level patching: Whenever a bike is within the counting radius and
suddenly its location updates to being outside the counting radius, then deploy-
* propagates a remove patch that removes the bike from the output.
We have devised a set of rules that show how deploy-* transforms its input to

output, i.e., which snapshots or patches are propagated as output in response to a
particular change in the input. As reactive programs are conventionally drawn
as a DAG, we visualise these rules as a diagram that corresponds to a part of the
DAG. Their structure can be explained using Figure 6.6a:

• Arrows denote the direction in which data flows, i.e., from left to right.
• Ellipses correspond to nodes in the DAG. The ellipse on the left corresponds

to the main deploy-* node (the blue node in Figure 6.5), and the ellipse on
the right corresponds to its implicit source node (called bikes-nearby in
Figure 6.5).

• The input value of deploy-* is shown in the top left, and its output in the
top right. All values v within snapshots and patches are associated with a
deployment key d, denoted as d −→ v. A deployment key is a unique identifier
generated by the implementation of a snapshot (an IncrementalBag) when
a value is inserted.

• Reactor deployments are drawn as rectangles and labelled with a deploy-
ment key that identifies the deployment.

• The run-time state of deploy-* is a snapshot. In the bottom left we show
the pre-snapshot, i.e., the snapshot before the new input value has propag-
ated through the DAG. The post-snapshot is given in the bottom right, i.e.,
deploy-*’s new state after propagating the input value.
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Figure 6.6.: Topology-level reactivity snapshot and patching rules.
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6.5.1. Efficient Topology-level Reactivity

Snapshot (Figure 6.6a) The first value propagated by a flock is always a snapshot.
This propagation is depicted in Figure 6.6a where the pre-snapshot is empty.
A new deployment di is created for each deployment key d1 . . . di in the input
snapshot, and the corresponding value v1 . . . vi is propagated through the
corresponding deployment. The outputs oi are collected into a new snapshot
with the same deployment key. Since deployments can produce “no value”
(#none or #undefined), those values ∅ are omitted from the output and post-
snapshot.

Snapshot replace (Figure 6.6b) While the situation does not arise when using
flocks, in general the input of deploy-* can be replaced with an entirely new
snapshot. In this case all existing deployments di from the pre-snapshot are
replaced with new deployments dj . The output is a new snapshot containing
the outputs of the new deployments oj , and the post-snapshot is adjusted
accordingly.

Patch insert (Figure 6.6c) An insert patch adds a new deployment key d1 with
value v1. A new deployment d1 is created (highlighted in blue) with the new
value v1 as input. We omit the generated output and post-snapshot, denoted by
the dashed cloud, as these follow the same rules as application-level reactivity
(Section 6.5.2).

Patch update (Figure 6.6d) An update patch for a deployment key d1 replaces
its old value v1 with a new value v2. The new value v2 is propagated through
the existing deployment d1. The generated output and post-snapshot follow
the same rules as application-level reactivity (Section 6.5.2).

Patch remove (Figure 6.6e) To remove a value v1, the corresponding deployment
d1 is removed. Since the pre-snapshot denotes that deployment d1 previously
contributed a value o1 to the output, the new output is a remove patch with
deployment key d1 and value o1.

Patch remove* (Figure 6.6f) A corner case of a remove patch is when the deploy-
ment d1 did not contribute a value to the pre-snapshot. In this case no new
remove patch is propagated as output (i.e., the old result remains valid).

6.5.2. Efficient Application-level Reactivity

The set of rules in Figure 6.7 show the output that is generated after a reactor
deployment produces a new value. Each diagram omits the left part (denoted by
a dashed cloud).

Production (Figure 6.7a) A deployment d1 propagates a new value o2, and d1
is already associated with the output o1 in the pre-snapshot. In this case,

120



6. Distributed Reactive Programming in Stella

d1 deploy-* 
collector

Pre-snapshot:  
   {d1 → o1, ...}

Post-snapshot:  
    {d1 → o2, ...}

o2 Update{d1 → [o1/o2]}

(a) Production

d1 deploy-* 
collector

Pre-snapshot: {...} 
Post-snapshot:  
 {d1 → o1, ...}

Insert{d1 → o1}o1

(b) Sudden production

d1 deploy-* 
collectorPre-snapshot:  

  {d1 → o1, ...} Post-snapshot: {...}

Remove{d1 → o1}∅

(c) Remove production

d1 deploy-* 
collector

Post-snapshot:  
   {d1 → o1, ...}

o1
∅

Pre-snapshot:  
  {d1 → o1, ...}

(d) Equal production

d1
deploy-* 
collector

Post-snapshot: {...}

∅
∅

Pre-snapshot: {...}

(e) Empty production

Figure 6.7.: Application-level reactivity production rules.
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propagate an update patch that replaces value o1 with o2 and update the
post-snapshot.

Sudden production (Figure 6.7b) After a period of producing no value ∅, a de-
ployment d1 suddenly propagates a new value o1. In this case, propagate an
insert patch for o1, and add this value to the post-snapshot. This situation
arises, for example, when o1 is the first value propagated by the deployment d1
after its creation.

Remove production (Figure 6.7c) After a period of producing values, a deploy-
ment d1 suddenly produces “no value” (#undefined). In this case, propagate
a remove patch that contains o1 and remove o1 from the post-snapshot.

Equal production (Figure 6.7d) Since reactive programs are purely functional,
typically only distinct values are propagated. Thus, if a deployment d1 produces
the same value o1 included in the pre-snapshot, then no patch is propagated.

No production (Figure 6.7e) When a deployment d1 produces “no value” and d1
is not included in the pre-snapshot, then propagate nothing.

6.6. Discussion

There are a number of concerns and drawbacks related to our approach that
should be taken into account.
Method calls When propagating patches, all operations that are executed on

snapshots are automatically “patch-aware”. For example, the invocation of
size on bikes-nearby (in Listing 6.3 on line 5) automatically takes into
account patches, such that previously computed results can be incrementally
adapted. Some methods, such as a fold, require information about the values
thatwere removed and replaced, hencewhy these values are included in update
and remove patches.

Supported data structures In principle, deploy-* accepts any iterable collec-
tion as input value, but not all types are equally suitable. Stella currently
supports a Bag and IncrementalBag. Particularly an IncrementalBag lends
itself to an O(1) implementation of deploy-* for every insert, update, or
remove patch. Other data structures such as lists and vectors are likely to
introduce extra algorithmic complexity and computational overhead to the im-
plementation of deploy-*, specifically because extra work is required to create
and maintain order in the output collection [80], e.g., making sure indices in a
vector are sequential and without gaps.

Developer convenience Unfortunately snapshots and patches are not entirely
transparent, and programmers have to be aware of them. For example, consider
the AddAll reactor behaviour in Listing 6.5 that sums all numbers in a snapshot.
The fold method in the interface of IncrementalBag efficiently aggregates
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1 (def-reactor (AddAll snapshot-of-numbers)

2 (out (fold snapshot-of-numbers 0 '+ '-)))

Listing 6.5: The AddAll reactor behaviour accumulates the values of an IncrementalBag
by using a fold.

1 (def-flock Thermometers)

2 (def-reactor (SensorValue sensor) (out sensor.value))

3 (def-reactor (Average)

4 (def measurements (deploy-* SensorValue Thermometers.contents))

5 (def sum (fold measurements 0 '+ '-))

6 (out (/ sum (size measurements))))

Listing 6.6: Averaging the temperature of a set of thermometers in Stella.

its values. However, its expected arguments differ from a conventional fold:
besides an initial accumulator and the + method name to add values to the
accumulator, the programmer must also provide an operation to “reverse” the
accumulator, in this case - (minus) for numbers. Otherwise it is not possible
to efficiently update the accumulator after an update or remove patch.

6.7. Qualitative Evaluation: Comparison to State of the
Art

In Section 4.3.2 on page 58 we implemented an average computation that calcu-
lates the average temperature of a set of thermometers in two styles using reactive
streams (in RxJS) and signals (in REScala). We argued the RxJS code exhibits
substantial accidental complexity, whereas the REScala code is more idiomatic,
but inefficient. Our goal with Stella was to implement the example using idiomatic
code like signals, but also efficient. In this section we show an implementation of
the example in Stella. In Section 6.8 we will evaluate deploy-*’s performance.

Listing 6.6 implements the aforementioned average computation. It consists
of a Thermometers flock (line 1), a SensorValue reactor behaviour (line 2), and
the main logic which is implemented by the Average reactor behaviour (line 3).
In a nutshell, deploy-* is used to transform a snapshot of thermometers to a
snapshot of their latest measurements, which are subsequently averaged using
the fold operation discussed in Section 6.6. Stella’s programming style is more
similar to the signal-based REScala code.

Compared to RxJS, deploy-* seems to be more restricted in use than RxJS’
flatMap (used in Listing 4.3) and its siblings (e.g., switchMap). But these restric-
tions are no accident: the features and restrictions of deploy-* are due to it being
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tailored specifically for supporting topology-level reactivity, whereas flatMap
and its siblings operate at a broader level of abstraction. Hence, it is more difficult
to use them for topology-level reactivity, e.g., when dealing with disappearing
information (e.g., disconnecting thermometers).

The main difference between Stella’s code and the REScala code from Listing 4.4
is that topology-level reactivity is explicitly managed via deploy-*, whereas in
REScala it is implicitly managed as a consequence of using REScala in combination
with Scala’s fold. Using Stella’s approach, efficient topology-level reactivity is
achieved at the cost of one single line of code.

In both cases the guarantees provided by deploy-*, i.e., that application-level
and topology-level reactivity are correct and efficient, are very difficult to emulate.

6.8. Quantitative Evaluation: Algorithmic Complexity

We provide experimental evidence that our approach leads to efficient applica-
tion-level and topology-level reactivity. It is difficult to compare Stella to existing
systems (e.g., REScala) in terms of raw performance, since they are completely
different technological platforms. Therefore the benchmarks compare the al-
gorithmic complexity of our approach and of the typical approach taken by state
of the art RP languages such as REScala, but implemented using Stella.

6.8.1. System and Benchmarking Specifications

Experiments were run on Ubuntu 20.04.2 LTS and Node.js v14.16.0, with the
command-line options --trace-gc --max-old-space-size=65536. While Stella
is single-threaded, experiments were run on an AMD Ryzen™ Threadripper™
3990X with 128GB of DDR4-3200 RAM, of which 64GB were available to Node.js
(abundant for our application). We used Node.js’ “performance measurement
API”, which implements the W3C recommendation for high resolution time with
sub-millisecond precision [58].

6.8.2. Benchmarking Application-level Reactivity

We measure the time it takes (on average) for a value to propagate through a
CountingMarker reactor from Listing 6.3. To this end, we ran two sets of ex-
periments to propagate a varying number of bikes (from 1 to 1000) using an
IncrementalBag and a (non-incremental) Bag. The Bag experiments replicate
the algorithmic complexity of the same program implemented in an existing
signal-based RP language such as REScala. Then, we measure the time it takes
for the CountingMarker reactor to process 1 location update from a bike. To
obtain statistically reliable results and to exceed any internal VM thresholds for
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Figure 6.8.: Application-level reactivity experiments. Error bars = 99% confidence inter-
val (drawn, but barely visible due to their small size).

optimisation [12], we measured 100,000 updates evenly spread over all bikes in
the experiment. Total benchmark run-time ranged between 22 seconds (1 bike)
and 6 minutes (1000 bikes).

If our performance claims are valid and if our proposed mechanisms are correct,
then the measured execution time will grow with the number of bikes when using
a Bag, but will remain constant when using an IncrementalBag.

Results

Based on a manual inspection of the data (via a scatterplot), between 50-500
updates are required by the JavaScript VM (V8) to warm up, so we removed the
first 500 measurements for each experiment from the compiled results shown in
Figure 6.8. The graph shows that the run-time using a Bag grows linearly with
the number of bikes. This is as expected, since every time the location of one bike
is updated, deploy-* constructs and propagates a new Bag (which is the case in
existing signal-based RP literature such as the fold in Listing 4.4). In contrast,
when using an IncrementalBag, run-times remain constant as the number of
bikes increases because only a patch is propagated. Note that we draw error
bars denoting a 99% confidence interval, but they are barely visible due to their
small size. These results verify that application-level reactivity was implemented
correctly and efficiently.
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(a) Run-time cost of adding 1 bike.
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(b) Run-time cost of removing 1 bike.

Figure 6.9.: Topology-level reactivity: comparison of the Bag and IncrementalBag ex-
periments. Error bars = 99% confidence interval.

6.8.3. Benchmarking Topology-level Reactivity

We measure the time it takes (on average) to modify the topology of the DAG of
the CountingMarker reactor (Listing 6.3) when the number of bikes increases
or decreases. Similar to the application-level reactivity experiments, we ran two
sets of experiments using an IncrementalBag and Bag with a varying number of
bikes (from 1 to 1000). The Bag experiments replicate existing signal-based RP
implementations.

Each experiment starts from a (fixed) number of N bikes (between 1 and 1000).
First we propagate N-1 bikes through the CountingMarker reactor (notmeasured).
Then, we measure the time it takes for deploy-* to change the topology of the
DAG when adding or removing the Nth bike.

If our performance claims are valid, then the experiments using a Bag exhibit
longer execution times, because modifying the topology of the DAG involves more
work. At the very least this requires a complete traversal over the Bag (i.e., O(n)).

To obtain statistically reliable results, we repeated each addition and removal of
the Nth bike 500 times, except for the Bag experimentswhere N = {400,600,800,1000},
which were repeated 100 times to reduce total run-time. Total run-time ranged
between 2 seconds (1 bike) and 4 hours (1000 bikes). Note that the run-time is high,
because there can be a lot of application-level reactivity work between consecut-
ive measurements. This is already an indication that inefficient topology-level
reactivity can have compounding consequences for total application run-time.
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Results

Based on a manual inspection of the data (via a scatterplot) we determined that,
depending on the experiment (Bag or IncrementalBag) and number of bikes,
between 25-100 updates are required by the JavaScript VM (V8) to warm up. We
removed the first 100 repetitions for all experiments with 500 runs, and the first
25 for the Bag experiments with 100 runs (with N = {400,600,800,1000}).

We compiled themeasurements of adding 1 bike and removing 1 bike in separate
graphs, shown in Figures 6.9a and 6.9b respectively. Both show that the run-
time of deploy-* in the Bag experiments grows linearly with the number of
bikes, whereas it remains constant for IncrementalBag. These results verify that
topology-level reactivity was also implemented correctly and efficiently.

6.9. Case Study on Scalable Distributed Programming:
Villo!

We implemented a variation of Whereabikes (Section 6.1) based on real-world data
from Villo!, the public bike-sharing programme of Brussels, Belgium2. This
case study evaluates the scalability of deploy-* and flocks in a real prosumer
application, and demonstrates the distributed capabilities of Stella.

The Villo! API only provides data about its ∼352 stations where bikes are
picked up and dropped off, rather than data about individual bikes themselves.
Thus, we will count how many bikes are available for pickup at any given time.
A screenshot of the application running in a normal web browser is shown in
Figure 6.10, where each small blue marker represents a bike station.

Villo! bike stations are simulated. For each station, an actor replays the events
of bikes being taken and returned, which we recorded for an entire day. We evenly
distributed these actors over a computer cluster of 160 Raspberry Pis (version
3, model B), a small single-board computer. A photo of the cluster is shown in
Figure 6.11. At the time of writing, 147 of Raspberry Pis are operational for our
experiments, each of which simulated 2 or 3 bike stations.

To simulate the application with a larger load, we also ran it on a real cluster that
consists of 10 computers with an Intel® Xeon® E3-1240 v5 CPU and 32GB of RAM.
Here, we simulated 3000 bike stations, which is approximately the largest bike
sharing program in theworld (2965 stations inHangzhou, China [153]). We reused
Villo! data by simulating the same stations multiple times but with random
perturbations in the data. At this point interaction with the web browser became
slow due to the large number of stations, as shown in Figure 6.12, partly because

2Villo! — https://www.villo.be/en/home
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Figure 6.10.: Screenshot of the Villo! application. The popup reads “304 bikes available
(31 stations) 2047 meters”.

Figure 6.11.: Photo of the Raspberry Pi cluster. The Raspberry Pis are encased in LEGO®.
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Figure 6.12.: Screenshot of the Villo! application with 3000 simulated bike stations. The
pop-up reads “18398 bikes available (1609 stations) 5000 meters”.

of the Stella interpreter, and partly because of the many GUI items rendered by
the browser.

Lessons Learned We faced some practical network-related challenges when
using flocks on the clusters.
Simultaneous connections: Whenever a new peer joins the network, all other

peers with the same flocks simultaneously try to open a connection to the
newly discovered peer. To prevent overwhelming the new peer (causing it
to crash), connections have to be spread out over time, e.g., by introducing
random delays.

Bidirectional discovery: When a new peer is discovered via a flock, situations
can arise where 2 peers simultaneously open a socket connection to each other.
Since WebRTC sockets are bidirectional, a sufficient solution is to have the
peers deterministically decide on which of 2 sockets to use (e.g., using a peer’s
id) and which to close.

6.10. Summary

In this chapter we set out to provide a solution to the final problem presented in
Chapter 4 which was related to correctly and efficiently managing acquaintances
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throughout the reactive program. Managing acquaintances consisted of two
mechanisms:

1. An acquaintance discovery mechanism to discover acquaintances on the
open network.

2. An acquaintancemaintenancemechanism to subscribe to discovered streams
in order to react as they appear, and to gracefully close the streams as they
disappear.

Themain insight is that the problem should be tackled by carefully designing the
acquaintance discovery mechanism to work with the acquaintance maintenance
mechanism. As such, we defined flocks to intensionally discover (re)actors on
the network. The key insight of flocks is that they offer a stream to the reactive
program that propagates snapshots and patches. These patches are the key to
efficient computations in reactors, which we conceived as a topology-reactive
deploy-* operator that efficiently reacts to snapshots and patches. The resulting
code is idiomatic like signals, and at the same time efficient compared to the
traditional signal-based approaches.
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7. Qualitative Evaluation:
Comparison to the State of the
Art

This chapter provides a classification of related work on reactive programming
using the problems of Chapter 4 as main dimensions. We will show extensive
evidence that the problems tackled in this dissertation are important to the domain
of reactive programming, and that the problems are effectively present in existing
reactive programming languages and frameworks.

A taxonomy of related work on FRP and stream-based reactive programming is
given in Table 7.1 on page 132. The rows list the reactive programming languages
and frameworks that we previously considered in Chapters 2 to 3 (Table 2.1 on
page 12 and Table 3.1 on page 32). Every labelled column describes, to the best
of our knowledge, a property of the language or framework according to the
problems introduced in Chapter 4. We will discuss them from left to right in
Sections 7.1 to 7.4. Afterwards, in Section 7.5, we discuss how the Actor-Reactor
Model is already present in various related work.

The used acronyms and abbreviations are as follows:

RTHP Reactive Thread Hijacking Problem
RIIM Reactive/Imperative Impedance Mismatch
AD Acquaintance Discovery
AM Acquaintance Maintenance
I Imperative (code)
R Reactive (code)
Weak Weakly reactive
Eventual Eventually reactive
Strong Strongly reactive
M Meta-constructs
B Built-in primitives
A (A)Synchronous Input/Output
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RTHP RIIM AD AMI ⊂ R R ⊂ I
Reactive programming for interactive applications or GUIs
Dunai [102] Weak X M - -
Elm [36] Weak - B+A - -
Flapjax [88] Weak - M+B+A Extensional ∼
Fran [43] Weak X A - -
Frappé [33] Weak - M - -
FRPNow [106] Weak X A - -
FrTime [31, 65] Weak - M+B+A - -
Haai [97, 98] Strong X A - -
Hokko [116] Weak - M - X
NewFran [44] Weak X A - -
RxJS [121] Weak - M+A Extensional ∼
Scala.React [79] Weak - M - X
Yampa [63] Weak X M - -
Reactive programming for embedded systems (e.g., microcontrollers, networks)
Flask [81] Strong X M+B - -
Frenetic [48] Weak - M - -
Nettle [143] Weak X M - -
CFRP [136] Weak - M - -
EmFRP [127] Strong X M - -
Hae [150] Weak X M - -
ReactiFi [134] Weak - B+A - -
RT-FRP [149] Strong X A - -
Distributed reactive programming
Akka Streams [77, 119] Weak - A Intensional ∼
AmbientTalk/R [27] Weak - M Intensional ∼
Creek [138, 139] Weak - X Intensional -
DREAM [83, 84] Weak - M Extensional -
Gavial [118] Weak - M+A Extensional -
REScala [40, 90, 123] Weak - M+A Extensional ∼
ScalaLoci [152] Weak - M Intensional ∼
Stella [141, 147] Eventual X X Intensional X
XFRP [132, 151] Weak X X Extensional -
Other
ActiveSheets [142] Eventual X X Extensional* -
Coherence [41, 42] Weak X X - -
Lively RaTT [9] Eventual X X - -

Table 7.1.: Classification of reactive programming languages and frameworks according
to the problems introduced by Chapter 4.
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7.1. Reactive Thread Hijacking Problem (RTHP)

The Reactive Thread Hijacking Problem was discussed in Section 4.1 on page 50.
In summary, it describes the problem that occurs when some types of input data
for the reactive program (accidentally) cause a long lasting computation that com-
pletely “hijacks” the reactive program’s thread of execution. Consequently, this
computation stops the reactive program from being able to react to any incoming
data, and the run-time behaviour is essentially no longer reactive. In Section 4.1.1
we identified 3 levels of reactivity that reactive programming languages can adhere
to.

Weak Reactivity A reactive programming language or framework is weakly re-
active when it cannot bound the reaction time (i.e., the time to propagate one
update) to arbitrary input data. In other words, the reaction time may be
infinite.

Eventual Reactivity A reactive programming language or framework is eventu-
ally reactive when it can guarantee that the reaction time is bounded. I.e., a
reaction will eventually terminate.

Strong Reactivity A reactive programming language or framework is strongly
reactive when it can statically bound the reaction time to arbitrary input data.
I.e., it will always react in O(1) regardless of the size or format of the input
data.

We categorised related work in Table 7.1 according to weak, eventual, and strong
reactivity.

7.1.1. Weakly Reactive Languages and Frameworks

Nearly all of the listed languages and frameworks are weakly reactive. Most
of them are conceived as a library in a host language such as Haskell or Scala
that imposes no restrictions on the complexity of expressions (e.g., while loops
and infinite recursion). They are Dunai, Flapjax, Fran, Frappé, FRPNow, Hokko,
NewFran, RxJS, Scala.React, Yampa, Frenetic, Nettle, Hae, ReactiFi, Akka Streams,
AmbientTalk/R, DREAM, Gavial, REScala, and ScalaLoci. Other weakly reactive
work is conceived as languages that allow unrestricted loops or recursion, such as
Elm, FrTime, CFRP, XFRP and Coherence.

7.1.2. Eventually Reactive Languages and Frameworks

There are a couple of eventually reactive languages. Besides Stella, other even-
tually reactive languages include ActiveSheets and Lively RaTT. ActiveSheets is
an FRP language where programs consist of Microsoft Excel spreadsheets. Many
spreadsheet operations are always finite and in many cases O(1) (e.g., arithmetic).

133



7. Qualitative Evaluation: Comparison to the State of the Art

However, we call ActiveSheets eventually reactive because, for some formulas, the
reaction time of the program depends on the input given by an external program
or user. Examples include VLOOKUP to look up a value in a table, and the SEARCH
and REPLACE functions for searching in strings and replacing substrings. Thus,
whenever unexpectedly large strings enter the program, the reaction time may be
higher than expected, but still finite. Lively RaTT is a formalism that describes
an FRP language that guarantees liveness [5], i.e., that “something good” must
eventually happen.

7.1.3. Strongly Reactive Languages and Frameworks

The only strongly reactive programming language for interactive or distributed
applications (like Stella) that we could find is Haai, a language designed by a col-
league at our lab intended to further investigate reactive programming languages
and strong reactivity. Note that other types of languages exist where strong react-
ivity is important, e.g., synchronous languages which we discussed in Section 2.3
(page 23).

A notable observation is that even languages and libraries such as Frenetic,
Nettle, CFRP, Hae, and ReactiFi are weakly reactive, despite targeting embedded
systems with limited processing power and memory. Frenetic and Nettle are used
to program OpenFlow Software Defined Networking devices (e.g., routers and
switches). They are conceived as a reactive DSL in Python andHaskell respectively.
Since they allow ordinary Python or Haskell functions to be lifted to the level of
reactive signals, there are no guaranteeswith respect to the processing time of these
functions. CFRP is an FRP language for resource-constrained microcontrollers
that is compiled to C++, which we classify as weakly reactive because it supports
a foreign function interface that allows C++ functions to be called from within the
reactive program. Similarly, Hae is a Haskell DSL that is transformed to C++ code,
which allows (recursive) Haskell functions to be used in the reactive program.
Finally, ReactiFi is a Scala DSL that generates C code to program Wi-Fi chips.
While Wi-Fi chips have strict timing constraints, ReactiFi’s authors note that its
type checker cannot guarantee that the generated C functions terminate or use a
bounded amount of memory.

7.1.4. Bounding Reaction Time

We briefly summarise existing tools and techniques that we found that a reactive
programming language can use to enforce either eventual reactivity or strong
reactivity.
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Ensuring Eventual Reactivity

In general, there are both static and dynamic approaches to enforce eventual
reactivity, i.e., to ensure that a program will eventually terminate. Each of the
approaches has a varying level of restrictions that it imposes on the underlying
program.

Static enforcement includes work such as total functional programming [140],
primitive recursion [24], and Whalter recursion [85] that syntactically restrict
recursive definitions such that they are guaranteed to (eventually) terminate. Fur-
thermore, a program analysis such as T2 [25, 29] can be used to prove termination
of programs written in C.

Techniques that dynamically enforce program termination can make use of
both static information and run-time values, such as size-change termination [94]
which is used by Stella.

Ensuring Strong Reactivity

To ensure strong reactivity, the language must statically limit the run-time cost of
each execution step. For example, RT-FRP [149] statically limits the run-time cost
of each execution step with a constant to guarantee their execution in real-time.
EmFRP [127] excludes recursion from both its type and function definitions, and
is thus able to statically calculate an upper limit on the run-time memory required
to run a program.

Similar mechanisms are found in synchronous languages (cf. Section 2.3). For
example, Esterel [17] disallows recursive definitions and disallows looping within
the same reaction [137], and LUSTRE [59] allows recursion, but the number of
recursive calls must be known at compile-time.

7.1.5. Concluding Remarks

Most of the reactive programming languages and frameworks listed in Table 7.1
(page 132) are weakly reactive, even those in application domains (e.g., embed-
ded systems) that can benefit from stronger guarantees. Stella’s approach to
enforce eventual reactivity is novel compared to other general-purpose reactive
programming languages and frameworks. Furthermore, the distinction between
Stella’s actors and reactors is an important feature to be able to enforce stricter
constraints only on certain parts of the program (reactors). The alternative ap-
proaches either enforce no constraints at all (weakly reactive), or they enforce
strict constraints across the entire language (strongly reactive), thereby limiting
the kinds of applications that can be built.
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7.2. Reactive/Imperative Impedance Mismatch (RIIM)

The Reactive/Imperative Impedance Mismatch was discussed in Section 4.2 on
page 52. The term denotes the set of problems that occur when combining code
written in the reactive programming paradigm (i.e., code that is driven by data)
with code written in the traditional imperative programming paradigm (i.e.,
code that is driven by control flow). In Table 7.1 we distinguish between their
combination in both directions, namely the embedding of imperative code within
reactive code (denoted by I ⊂ R), and the embedding of reactive code within
imperative code (denoted by R ⊂ I).

7.2.1. Embedding Imperative Within Reactive Code (I ⊂ R)

The embedding of imperative code within reactive code allows side-effects to
be part of the reactive program’s execution. As we discussed in Section 4.2.1,
they are undesirable because they can cause tricky bugs due to the reactive pro-
gram’s update order, and have a detrimental effect on behaviour composition.
Recognising these issues, many reactive programming languages already forbid
side-effects. However, simply forbidding side-effects may not be enough. Before
disseminating the taxonomy of Table 7.1, we first discuss how side-effects are
handled in functionally pure FRP libraries.

Side-effects in Functionally Pure FRP Libraries

Reactive programming libraries for Haskell inherit their functional purity from
Haskell itself. However, programs written in Haskell are not devoid of side effects
and interaction with the outside world. To keep the programs pure, side-effects
are wrapped in so-called IO actions, which are themselves immutable values of
type IO that can be composed (e.g., via the IO monad [96]) into larger operations.
IO actions are eventually executed by the interpreter. Haskell remains pure by
using the type system to indicate which parts of the program are functionally
pure, and which are not (i.e., parts of type IO).

Whenever FRP Haskell libraries need to interact with the outside world, they
need to do so via such IO actions. Fran, the first FRP library, offers no general
method to interact with the outside world via IO actions. To solve this issue (as
well as other issues), Yampa introduces arrowized FRP where an FRP program is a
function type SF Input Output. Here, SF represents the type of a signal function,
which is a function that operates on time-varying values (i.e., signals). The Input
type represents all of the input values for the signal function, and the Output
type represents all output values. To perform IO actions using arrowized FRP, all
IO actions must flow through the top-level “main” function before being executed
by the interpreter. As depicted in Figure 7.1, IO input needs to be routed from the
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SF Input Output

SF I1 O1

SF I2 O2

SF I3 O3
...

IO input values IO output values

Interpreter

Figure 7.1.: Conceptual propagation of IO actions using Signal Functions SF.

top-level function to deep within the program, and any IO actions created deep
within the program need to be routed to the top level function. Consequently,
many type signatures of functions along the way need to be changed to incorporate
the new IO action. This has a detrimental effect on software development (as
noted by [106]), because adding an IO action deep within an existing program is
contagious.

Alternative approaches to arrowized FRP which do not suffer from the afore-
mentioned issue have been proposed, e.g., FRPNow [106] and the more general
Monadic Stream Functions [103] (MSFs). For example, Monadic Stream Functions
are functions of type MSF m Input Output where m is the type of a monadic
context (e.g., Haskell’s IO monad), and Input and Output are the type of the
input and output values respectively. By including a monadic context for each
MSF, IO actions no longer have to propagate to the top-level function, but can
instead be passed to the interpreter directly, as depicted in Figure 7.2.

Since MSFs allow IO actions to be “executed” (passed to the interpreter) at
arbitrary points in the reactive program, one must wonder whether the React-
ive/Imperative Impedance Mismatch has been reintroduced. More specifically
the problem where the relative order of side-effects cannot be easily determined
by the programmer, and which can potentially cause bugs if related side-effects
are not correctly ordered. In arrowized FRP this problem was not present, since
the programmer has to consciously compose IO actions in a particular order to be
able to propagate them to the top level. However, when using MSFs, the order in
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MSF m Input Output

MSF m I1 O1

MSF m I2 O2

MSF m I3 O3
...

IO input values IO output values

Interpreter

Figure 7.2.: Conceptual propagation of IO actions using Monadic Stream Functions

which MSFs are composed may depend on the MSF library. For example, consider
an MSF that is built via the “parallel” MSF combinator &&&, such as c = a &&&

b. This operator composes 2 MSFs (a and b), and broadcasts the input given to the
composed MSF c to its 2 constituents in parallel. When both a and b generate IO
actions, then the order in which they are executed depends on the implementation
of &&&. I.e., first a and then b, first b then a, or a and b concurrently. In this case
the programmer cannot tell in which order the IO actions are executed, since the
order depends on the implementation of the library.

I ⊂ R in Related Work

We categorised related work in Table 7.1 (page 132) with a checkmark when they
do not allow side-effects to be a part of the reactive program’s DAG. They are
either conceived as Haskell libraries and thus functionally pure (Dunai1, Fran,
FRPNow, NewFan, Yampa, Flask2 and Nettle), or they are conceived as fully

1Dunai avoids executing side-effects (IO actions) within the reactive program itself, which we
currently consider to be a sufficient separation between imperative and reactive code for IO.
We are currently unaware of a solution to also correctly order these side-effects when they are
executed by the interpreter.

2Flask is implemented in the Red programming language [11, 110], which is syntactically equival-
ent to Haskell. Red imposes additional constraints on Haskell 98 [105], the main ones which are
relevant to our discussion are the disallowing of recursive data types, closures, and recursive
functions.
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fledged programming languages that simply do not support operations with side-
effects (Haai, EmFRP, Hae, RT-FRP, Stella, XFRP, ActiveSheets, Coherence, and
Lively RaTT).

Of the various languages and frameworks that do not forbid side-effects, most of
them are conceived as libraries written in imperative languages (Flapjax, Frappé,
Hokko, RxJS, Scala.React, Frenetic, ReactiFi, Akka Streams, AmbientTalk/R,
DREAM, Gavial, REScala, and ScalaLoci). Sometimes languages do not allow
side-effects directly, but still allow them to be executed via a foreign function
interface. For example, CFRP is able to import C++ functions, and FrTime tightly
integrates with the Racket language [46]. Finally, Elm is an FRP language for
developing web applications that appears to be purely functional. However, since
side-effects are often essential, the language includes native functions such as
getImage to fetch an image from a URL, which is clearly a side-effect on the
network.

7.2.2. Embedding Reactive Within Imperative Code (R ⊂ I)

In practice, reactive code is always embedded within a program that is imperative.
On the one hand, the imperative code (e.g., a network or GUI) is responsible for
providing input values to the reactive program, e.g., by modifying the value of
a source and thus giving rise to a turn of the reactive program. On the other
hand, a reactive program that is purely functional does not do anything, and
thus side-effects are required to act on the output of the reactive program, e.g.,
to modify a GUI, send a message over the network, push a notification to a user,
etc. Often this coupling between the imperative code and the reactive code is
semantically ill-defined, or relies on mechanisms that are not broadly applicable.

In Section 4.2.2 on page 53 we discussed three general mechanisms that we
identified in related work to couple the imperative code to reactive code and
vice-versa. We briefly recap them, and describe how these mechanisms manifest
themselves in related work.

Built-in primitives (abbrev. “B”)

Built-in primitives are language features that perform a specific task, and which
a developer could not program otherwise by using the features of the language.
Typically this only applies to dedicated reactive programming languages and
DSLs.

There is some related work in Table 7.1 that offers built-in primitives. Elm
includes primitive signals that are automagically driven by the language run-time,
e.g., Mouse.position. Elm, FrTime and Flapjax include special primitives to
construct GUI widgets that automatically produce signals and incorporate signals
(e.g., the contents of a text input field). Flask includes a networking primitive to
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broadcast signals to the network, and to receive signals that others have broadcast.
Finally, ReactiFi has special primitives for programming Wi-Fi chips, e.g., to
switch Wi-Fi channel, or to send data to the operating system.

Meta-constructs (abbrev. “M”)

Reactive languages and frameworks often include non-reactive “meta” code that
makes the reactive program work, and which is written using imperative code
rather than reactive code. Crucially, the non-reactive (imperative) meta-code and
the reactive code are intermingled, and are executed by the same program thread.

Most languages and frameworks in Table 7.1 include meta-constructs. In most
cases they are libraries where non-reactive code creates the right library calls to
provide new input to the reactive program, and to be notified (e.g., using callbacks)
whenever new output is produced. For example, FrTime and REScala offer built-in
primitives to create and (imperatively) modify input signals of a reactive program.
Doing so causes a new propagation turn every time the value of an input signal is
modified. Streaming frameworks such as RxJS and Akka Streams offer a special
type of stream to which values can be imperatively pushed, e.g., a Subject in
RxJS. Most other related work includes a variation of these mechanisms to drive
the reactive program. We will briefly discuss the notable exceptions.

Flask is an FRP library for Reactive Wireless Sensor Networks. It includes a com-
binator called adc that samples the output of an external nesC [54] component3

at a specified rate. Thus, Flask’s meta program can be written in nesC.
CFRP and Hae are FRP languages for small-scale embedded systems. Their

top-level input signal signal declarations directly correspond to C++ classes that
are implemented by the developer to interface with external devices (e.g., sensors).
Similarly, programs written in EmFRP also declare their input signals, from which
the EmFRP compiler generates skeleton code in C with empty function bodies that
should be completed by the developer to drive the input of the EmFRP program.
Hence, the meta program that drives CFRP and Hae is written in C++, and the
meta program of EmFRP is written in C.

(A)synchronous input/output (abbrev. “A”)

Recognising the Reactive Thread Hijacking Problem, reactive programming lan-
guages and frameworks can make use of concurrency to separate different opera-
tions in their execution, e.g., to asynchronously execute long lasting computations.
Crucially, the combination of these (a)synchronous input/output features can still
cause issues for the reactive program, or the semantics of their interaction reactive

3nesC is a component-based, event-driven language to build applications for TinyOS.
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program are unclear. There are a wide range of mechanisms employed by related
work, which we summarise.

Elm is an FRP language for web applications, which features an async operation
to asynchronously schedule and execute a blocking computation (e.g., fetching an
image from a URL). A similar mechanism has been implemented in Gavial and
FRPNow.

Flapjax and FrTime contain features such as delayB (called delayBy in FrTime)
that delays the values of an input signal by a given number of milliseconds, i.e.,
it creates a new signal that asynchronously echoes the input signal, but with a
wall-clock time delay.

Fran, FrTime and Haai contain a built-in signal that represents the current time
(e.g., Unix time). Similarly, in ReactiFi a source of the reactive program can be
constructed from a timer that fires at regular intervals (e.g., every 10ms). These
time updates are driven by some (asynchronous) loop external to the reactive
program.

FrTime is an FRP language that tightly integrates with Racket [46], and which
developers can interact with via expressions entered into Racket’s Read-Eval-Print
Loop (REPL). By experimenting with FrTime and its implementation we found
that the REPL and the reactive program run in different program threads, and
that they interact via asynchronous message passing. Their interaction is not part
of the FrTime programming model.

RxJS is a reactive streaming library in JavaScript (and 17 other languages [112]).
The propagation of values through RxJS’s reactive streams is typically synchron-
ous from input signal to output signal. However, similar to other ReactiveX
implementations, RxJS contains different schedulers (execution contexts) whereby
streams scheduled on a different scheduler are updated concurrently [120]. By
using schedulers, the propagation of values can be switched from synchronous to
asynchronous, or a dynamic combination of both. Similarly, Akka Streams offers
a mechanism to concurrently execute certain operations on a stream [75].

REScala [123] is an FRP library for Scala that allows Scala code to synchronously
modify the value of the reactive program’s sources (i.e., the program blocks until
propagation is finished). While multi-threading is not part of REScala’s semantics,
from our experiments we learned that multiple Scala threads may change the
same sources simultaneously. REScala’s implementation requires these threads to
acquire a lock to prevent race conditions. When multiple threads supply input
values for sources, they may suffer from lock contention. Following REScala’s ori-
ginal paper [123], the authors devised a mechanism whereby source updates from
multiple threads can propagate through disjoint regions of the DAG concurrently
to improve performance. Essentially this modified implementation of REScala
does not change the language itself, but it changes the semantics of interactions
between imperative and reactive code.
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7.2.3. Concluding Remarks

There are a number of reactive languages and frameworks that completely avoid
the Reactive/Imperative Impedance Mismatch. They are labelled with a check-
mark in Table 7.1 for both RIIM columns. From these languages, ActiveSheets
(Microsoft Excel) and Lively RaTT (a formalisation) are not general purpose lan-
guages. XFRP is an actor-based FRP language that separates IO code from reactive
code using actors (just like Stella), which we will further discuss in Section 7.5.
Coherence defines an exotic programming model where code is divided in deriv-
ations and reactions. Derivation is used to automatically compute the program
output by deriving values from input via purely functional computations. The
interaction between derivations and reactions seems to be sound, but there are
many open questions before Coherence can be used to build distributed reactive
programs.

Stella’s approach, namely the Actor-Reactor Model, avoids the Reactive/Imper-
ative Impedance Mismatch by construction. The main benefit of our approach is
that some parts of applications are more natural to program either imperatively or
reactively. Stella supports both using actors and reactors, and specifies precisely
how they can interact with each other (via message passing).

7.3. Acquaintance Discovery (AD)

Acquaintance discovery was discussed in Section 4.3 on page 56. Here, we defined
two kinds of acquaintance discovery: extensional and intensional. Extensional
discovery encompassed techniques whereby a program obtains a reference to an
acquaintance by explicitly naming it, e.g., via a hostname, URL, or other types
of unique identifiers. Intensional discovery encompassed a range of discovery
mechanisms whereby groups of acquaintances are automatically discovered on
the network, e.g., based on common type tags or descriptions. We categorise the
related work in Table 7.1 (column AD) according to the support for extensional or
intensional discovery (or the lack thereof, indicated via a hyphen).

7.3.1. Extensional Discovery in Related Work

From the related work that supports extensional discovery, DREAM, REScala,
and XFRP discover acquaintances via a unique name. They publish references
to signals to a global registry such as Java’s remote object registry, or Erlang’s
global process registry. A different approach is taken by Gavial, a multi-tier
programming language that supports 3 tiers (client, server, and session). The
supported tiers are referred to extensionally via standard Scala variable references.
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Besides the languages and frameworks listed in the category of “distributed
reactive programming”, Flapjax, RxJS and ActiveSheets also support extensional
acquaintance discovery. They are not included in the category of distributed
reactive programming because their programming abstractions for reactive values
(e.g., a signal or stream) cannot be passed over the network. Essentially, RxJS
supports operators to create a new stream from a socket (e.g., a WebSocket) [87],
but the abstraction of a stream itself cannot be passed over the network. Flapjax
contains stream operations such as evalForeignScriptValE that continuously
fetches new JavaScript files from remote URLs, evaluates them, and pushes the
result of their computation on an output stream. Finally, users of ActiveSheets can
store a live spreadsheet on a remote server via GUI interactions. Using the GUI,
data from these live spreadsheets can be imported into other (local or distributed)
spreadsheets.

7.3.2. Intensional Discovery in Related Work

We found a number of intensional acquaintance discovery mechanisms in related
work. The common denominator is that they somehow allow multiple acquaint-
ances (e.g., actors or signals) to be referred to via the same reference (e.g., a
type or description). Akka Streams does so via a Receptionist abstraction [74]
that allows multiple actors to be published to the same topic (i.e., a topic-based
publish-subscribe mechanism). The crucial difference compared to extensional
mechanisms is that actors published to the same topic can be retrieved as a collec-
tion, rather than discovering each actor individually. Similarly, AmbientTalk/R
supports ambient references and volatile sets which are used to describe collections
of remote (reactive) objects that share a common type tag.

Creek, an actor-based streaming library in Elixir, offers a global stream to
the program that emits join and leave events whenever actors are discovered or
disconnected. Collections of related actors can be created based on these events.

ScalaLoci is a multi-tier reactive programming language where the various tiers
are joined via so-called ties. A single tier (e.g., a server tier) can be connected to
multiple other tiers (e.g., client tiers). The connected tiers are communicated to
the reactive program via a signal that carries them in a list. Additionally, event
streams are provided that notify the application of peers that join and leave.

Stella’s flocks are similar to other intensional discovery mechanisms, but they
are better integrated with the reactive program by propagating a snapshots and
patches that enable efficient reactions.
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7.4. Acquaintance Maintenance (AM)

Acquaintance maintenance was discussed in Section 4.3.2 on page 58, which
encompasses the mechanism to correctly and efficiently maintain the program
state of the varying number of acquaintances throughout the reactive program. We
discussed 2 mainstream approaches to perform acquaintance maintenance based
on streams and signals. The stream-based approach revolved around processing a
stream of join events whenever a new acquaintance is discovered on the network,
and the programmer is responsible for manually managing the application’s
topology and state whenever acquaintances join, disconnect, or propagate new
application-level updates. The signal-based approach exhibits much less code
complexity than the stream-based approach since it offers a continuously updating
list of connected acquaintances, which is typically processed inefficiently using
list operations such as maps and folds.

We have divided the related work in Table 7.1 (column AM) in 3 categories.
Note that we evaluated support for the mechanisms of acquaintance maintenance
regardless of their support for distributed programming.

• A hyphen (-) indicates that we could find no evidence that the language or
framework supports acquaintance maintenance.

• A tilde (∼) indicates that we could find some evidence of support for ac-
quaintance maintenance, but that it is inefficient or complex in the same
way as discussed in Section 4.3.2.

• A check (X) indicates support for idiomatic and efficient and acquaintance
maintenance.

Most languages and frameworks in Table 7.1 do not support acquaintance main-
tenance. Those that do have some support are Flapjax, RxJS, Akka Streams, Ambi-
entTalk/R, REScala and ScalaLoci. RxJS and Akka Streams are frameworks based
on reactive streams where acquaintance maintenance is supported but complex.
Similarly, we believe that Flapjax has support for acquaintance maintenance due
to its support for higher-order streams (streams whose values are other streams)
in combination with its switchE operator to “flatten” those streams (similar to
flatMap in RxJS). AmbientTalk/R, REScala and ScalaLoci support (inefficient)
signal-based acquaintance maintenance using regular functional programming
techniques such as maps and folds.

There are 2 libraries that support efficient acquaintance maintenance, namely
Hokko and Scala.React. Both propose a mechanism that involves incremental
data structures to obtain efficient computations within a reactive program. The
design of Stella’s snapshots and patches are inspired by both of their approaches.
Note that Hokko and Scala.React do not support distributed programming, and
we cannot verify whether their mechanisms still work when acquaintances are
distributed over a network.
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Stella’s approach is conceived as the topology-reactive deploy-* operator which
integrates with Stella’s flocks. It ensures that the reactive program correctly re-
acts on both the application-level and the topology-level, which is a common
type of computation when implementing reactive applications for open networks.
Without deploy-*, a programmer has to implement similar functionality them-
selves, which we found to be difficult to do correctly.

7.5. Precursors to the Actor-Reactor Model

One of the main contributions of this dissertation is the Actor-Reactor Model as a
new programming model for distributed reactive systems. There is some evidence
that some weak form of actors and reactors are already present in related work,
without them being identified as such. Hence, in this section we briefly discuss
the precursors of the Actor-Reactor Model that we could identify in related work.

7.5.1. Akka Streams

The most notable example of actors and reactors in practice is Akka Streams [77,
119], a stream-based reactive programming library built on top of the Akka actor
library for Scala, which we previously introduced in Section 2.2.2 (page 21). Akka
Streams allows developers to construct and compose flows which correspond to
a reactive program’s logic. Flows are executed by dedicated actors that are re-
sponsible for propagating values through the flow. When using our terminology,
a flow corresponds to a reactor behaviour, and an instance of a flow managed by a
particular Akka actor corresponds to a reactor deployment. Finally, the actor that
manages the data inputs and outputs of a flow typically has no other purpose than
to process messages by propagating them through a flow, and to send messages
to different actors which are the output of the flow. Hence, Akka Streams’ actors
that manage flows are conceptually similar to Stella’s reactors. However, Akka
Streams offers no guarantees that these actors only execute reactive code, i.e.,
they are subject to the Reactive Thread Hijacking Problem, the Reactive/Imper-
ative Impedance Mismatch, and Acquaintance Maintenance remains a manual
programmer effort.

7.5.2. Creek

Creek is a stream-based reactive programming library for Elixir in the domain
of the Internet of Things. Similar to Akka Streams, Creek distinguishes between
the application logic of streams, instances of streams, and the run-time processes
(actors) that propagate values through the streams. Using our terminology, Creek’s
actors that manage the propagation of values through its streams fulfil the same
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purpose as Stella’s reactors. However, the code executed by Creek actors can
contain a mix of imperative and reactive code, and they are subject to the problems
discussed of this dissertation (cf. Table 7.1).

7.5.3. FrTime

FrTime is a reactive programming language that tightly integrates with Racket and
its REPL. Racket’s REPL is used by FrTime developers to interact with a running
FrTime program. To ensure that the user does not block the reactive program via
expressions that are evaluated in the REPL, FrTime makes use of multi-threading.
A dedicated program thread manages the reactive engine while the main program
thread is responsible for the GUI and REPL.

Developers may enter expressions into the REPL to imperatively change the
values of source nodes of the DAG. When doing so, from FrTime’s implementation
we distilled that the main thread asynchronously “sends” (via a message) these
new input values to the reactive thread. The reactive thread has a mailbox that
continuously dequeues and processes messages. Conversely, a programmer may
monitor the value of a signal by entering its name in the REPL, which displays
the value of the signal in the GUI. Behind the scenes a dependency is created
from the REPL thread to the reactive program thread, such that the value of the
specified signal is continuously “sent” to the REPL thread as it updates over time.
Hence, using our terminology, both the REPL thread can be seen as an actor, and
the reactive program thread as a reactor. The REPL actor sends new values to the
reactor to modify its input signals, and it may monitor the output signals of the
reactor. However, the interaction between these different program threads is not
part of the FrTime programming model, leading to (among other problems) the
Reactive/Imperative Impedance Mismatch.

7.5.4. XFRP

XFRP is an actor-based reactive programming language for distributed applica-
tions that compiles to Erlang code. In essence, the reactive program is compiled to
one or more Erlang actors which contain the necessary logic to propagate values
through a DAG, i.e., using our terminology they are reactors. Since XFRP is purely
functional, I/O code is not written in XFRP itself, but using Erlang actors that
send asynchronous messages to the reactors in order to start a propagation turn.
In the reverse direction, whenever the output signals of the reactive program
update, the new values are sent to Erlang via an asynchronous message. However,
XFRP is subject to the Reactive Thread Hijacking Problem and the Acquaintance
Maintenance Problem (cf. Table 7.1). Furthermore, in this case the imperative
actors are written in a different language than XFRP itself, namely Erlang. A
benefit of integrating both actors and reactors in the same language is that it
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enables them to share abstract data type definitions, e.g., Stella’s classes which
are shared between actors and reactors. Consequently, Stella’s actors and reactors
operate on the same data structures with the same methods and routines.

7.6. Summary and Conclusion

In this chapter we provided extensive evidence that the the problems discussed
in Chapter 4 pop up in related work. Any reactive programming language or
framework that is suitable for building distributed reactive programs for open
networks has to provide a solution for:

Reactive Thread Hijacking Problem (RTHP) Weak reactivity is incompatible
with our philosophy of reactive systems. Hence we advocate for any reactive
language or framework to offer at least some guarantees with respect to their
reaction time, i.e., eventual or strong reactivity. Stricter enforcement will
result in reactive programs that have stronger guarantees with respect to the
processing of their input. However, the trade-off is that the types of programs
that can be written is also reduced.

Reactive/Imperative Impedance Mismatch (RIIM) The reactive and imperat-
ive programming paradigms are fundamentally incompatible, and their code
should not be mixed to completely avoid the Reactive/Imperative Impedance
Mismatch. Furthermore, language designers should be careful when adding a
foreign function interface into their language, as allowing reactive programs
to arbitrarily execute foreign functions may accidentally (re)introduce the
problems of the Reactive/Imperative Impedance Mismatch.

Acquaintance Discovery (AD) Extensionally enumerating all possible acquaint-
ances is impossible by definition of an open network. Hence, any reactive
language or framework for open networks requires an intensional acquaint-
ance discovery mechanism.

Acquaintance Maintenance (AM) Acquaintances are expected to continuously
appear and disappear, and the reactive program should react to those events cor-
rectly and efficiently. Hence, a built-in acquaintance maintenance mechanism
that does so is essential.

Based on our assessment of related work, to the best of our knowledge, Stella is
the only language that meets these requirements.
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Reactors in Stella

Stella’s implementation spans 23064 lines of code and is not an accessible way to
reproduce the research. Instead, we adopt the approach that is used by Abelson &
Sussman [1] for Scheme, and we implemented (a part of) Stella within Stella itself.
This meta implementation is called Mira, which is a meta implementation of
reactors using actors that specifies the semantics of reactors. In particular, Mira
sheds light on:

1. how the program text is compiled to a reactor behaviour, i.e., a Directed
Acyclic Graph (DAG),

2. the semantics of spawning reactors, and the different steps involved in
making the reactive program react to incoming values,

3. and the reactive engine that every reactor has, which schedules and propag-
ates values without causing glitches.

Mira supports the complex features of reactors, which are themost difficult aspects
of Stella to reproduce in another language or framework.

Compared to Stella’s implementation of reactors which spans 4683 LOC, the
complete implementation of Mira is 889 lines of Stella code (excluding comments
and blank lines). Still, we cannot show the implementation in its entirety in the
course of a chapter. However, we will explain the main parts of its architecture
using code, and further highlight other parts of the implementation through
diagrams. Mira in combination with this dissertation should allow the reader to
reproduce Stella’s reactors.

Mira’s complete code is included in Appendix C (page 191).
We preface the implementation of Mira with a brief overview of Stella’s imple-

mentation.
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8.1. Preface: The Implementation of Stella

Stella is implemented as a parser, analyser, and interpreter in TypeScript. Over
the years Stella’s implementation has grown to 23064 lines of code (without blank
lines, comments, and generated code files) spread over 443 files. Stella can be run
in standard web browsers and Node.js [49] on laptops, desktop computers and
servers. The smallest device that we tested is a Raspberry Pi Model 3B1 used in
Chapter 6, which currently costs around e38.

Stella’s interpreter is written in Continuation-passing Style (CPS) and is based
on the CPS Scheme interpreter (with trampolines) presented by Friedman &
Wand [50]. This approach facilitates the concurrent execution of actors and
reactors on a target platform (JavaScript) where concurrency is otherwise difficult
to achieve. More specifically, it is important for Stella that any (potentially infinite)
computation performed a process such as an actor cannot block reactors. Therefore
the interpreter must be able to preempt the execution of processes, which is made
possible by using a CPS interpreter.

Most of Stella’s 23064 lines of code (LOC) are devoted to implement said CPS
interpreter. They can be broken down as follows:
Parser Stella’s parser is written using the PEG.js parser generator [82]. The parser

that is generated by PEG.js spans around 10980 LOC, which we did not include
when counting Stella’s LOC.

Analyser Before executing a Stella program we analyse the parsed AST to check
for undefined variable references, and to compile actor behaviours, reactor
behaviours, and classes. The analyser contributes 2693 LOC (82 files).

Interpreter Stella’s interpreter spans 17349 LOC (319 files). We can further
break down the lines of code in the following main categories which cover the
interpreter’s main functionality:

• Object-oriented base language: 2971 LOC (102 files).
• Native classes and foreign function interface: 7049 LOC (75 files).
• Actors and messages: 1036 LOC (20 files), excluding code that is shared

with reactors (generic processes).
• Reactors: 4117 LOC (72 files), excluding code shared with actors and code

to construct a DAG (556 LOC that are a part of the analyser).
• Networking and discovery: 913 LOC (7 files).

We briefly discuss in more detail what the categories of the interpreter encom-
pass.

1A single-board computer with a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU and 1GB of
RAM.
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8.1.1. Object-oriented Base Language, Native Classes, and Foreign
Function Interface

The object-oriented base language concerns the definition of classes, objects,
and all expressions that are evaluated synchronously, e.g., spawning actors and
reactors, sending messages, creating objects, invoking methods, conditionals, etc.

The size-change termination algorithm discussed in Section 5.2.2 (page 70) is
implemented on the level of classes. Whenever a routine is invoked, the interpreter
tracks a call stack analogous to the original Scheme-based implementation by the
algorithm’s authors [94], which is used to check the size-change principle every
time a routine is called. Anecdotally, we found that the Scheme implementation
of the authors translates well to another language such as TypeScript if one can
read past the (often verbose) Racket2 macros used in the original implementation.

Stella’s library of native classes was implemented on a “by need” basis. Al-
though it looks extensive based on the high number of lines of code, currently
implementing native classes (in TypeScript) requires a lot of boilerplate code.
Furthermore, we often found ourselves writing very similar code for different
classes (e.g., to support iterators), hence inflating the number of lines of code.

Stella’s foreign function interface is implemented as a native class (of the type
JSObjectProxy) that contributes only 236 LOC. The class’s only purpose is to
identify the desired operation based on the structure of the method call (i.e., field
get, set, or function call, see Section 5.3.3 on page 77), and to use JavaScript’s
reflection API to execute the correct action on JavaScript objects.

8.1.2. Actors, Reactors and Messages

The implementation of actors includes the representation of actor behaviours, the
actor itself which processes messages, and the necessary bookkeeping abstractions
to manage an actor’s exported streams and the streams that an actor is monitoring
(i.e., publish-subscribe bookkeeping).

A main part of Stella’s interpreter, both in terms of lines of code and the density
of logic, is to support the features of reactors which were introduced in Chapters 5
and 6. These features include qualification expressions where a reactor can react
to the values of other (re)actor’s streams, reactor deployments where a reactor
can deploy multiple instances of a reactor behaviour, and the topology-reactive
operator deploy-* which dynamically creates and removes reactor deployments.
Together with the analyser’s logic to construct reactor behaviours, the logic to
support reactors spans 4683 LOC. Compared to the other features of Stella we con-
sider this part of the implementation to contain most of the “black box magic” for
which there exist no well-known principles on how to implement them (compared

2A dialect of Scheme [46].
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'(def-reactor ...)

DAG Compiler Reactor EmulatorProgram Text

ReactorBehaviour (class)

Figure 8.1.: General architecture of Mira.

to actors or an object-oriented language). To this end, Stella’s implementation
in 4683 LOC will not help either. Therefore, in this chapter we present Mira, an
implementation of the same features which is not written in CPS, and which does
not concern itself with other implementation details of an interpreter. In contrast
to the TypeScript implementation of reactors, the Mira implementation spans 889
LOC.

8.2. Mira Architecture Overview

The general architecture of Mira is shown in Figure 8.1. It consists of 3 main parts,
from left to right:

1. The program text of a reactor behaviour, specified as a Stella value.
2. A compiler transforms the program text to Mira’s representation of a reactor

behaviour. The different nodes of the DAG contain the logic of different
types of expressions in the reactive program, e.g., routine invocations, quali-
fications, deploy expressions, etc.

3. An actor is used to emulate a reactor. This actor turns Mira’s representation
of a reactor behaviour into a running reactive program. Just like Stella’s
reactors, the emulated reactor responds to messages sent by other (re)actors.

The Main actor in Listing 8.1 shows the different steps of Figure 8.1 but ex-
pressed in Stella. It emulates a simple Plus reactor that adds 2 numbers. The
code contains the following parts:
The environment Line 3 defines a simple environment (a dictionary) that is used

during the compilation process to store compiled reactor behaviours. Any
subsequently compiled reactor behaviours (none in this example) can use this
environment to lookup reactor behaviours when they are used at compile-time,
e.g., in a deploy expression.

The program AST The “program text” of a reactor behaviour is an s-expression
that contains symbols, numbers, booleans and strings. Stella’s supports literal
expressions of the form '(...), which is shorthand for constructing a Vector
object. For example, the program text specified on line 4 corresponds to the
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1 (def-actor Main

2 (def-constructor (start env)

3 (def env (newd Dictionary))

4 (def program '(def-reactor (Plus x y) (out (+ x y))))

5 (def behaviour (new ReactorBehaviour 'compile program env))

6 (def reactor (spawn-actor! Reactor 'init behaviour))

7
8 // change x and y sources

9 (send! reactor 'react! '(1 1))

10 (send! reactor 'react! '(2 2))

11 (send! reactor 'react! '(3 3))))

Listing 8.1: Running a Plus reactor in Mira.

usual Stella syntax for a Plus reactor behaviour. All identifiers in the body
of the expression (e.g., def-reactor, Plus, …) are symbols in the resulting
vector ('def-reactor, 'Plus, …). Numbers, booleans and strings remain
present in the vector as-is, and nesting parenthesis creates nested vectors, thus
producing a reactor behaviour’s Abstract Syntax Tree (AST).

The meta reactor behaviour The class ReactorBehaviour is Mira’s represent-
ation of a reactor behaviour, and it also implements the logic to construct
DAGs. Line 5 instantiates the class using the compile constructor that accepts
a program’s AST and environment as input, and transforms the AST to a DAG
that is stored within the instantiated ReactorBehaviour object.

The emulated reactor A reactor is emulated by an actor. The actor behaviour
that implements the logic of the emulation is called “Reactor”. Line 6 spawns
this actor using its init constructor. The constructor accepts 1 argument,
namely the aforementioned ReactorBehaviour object. This will serve as the
root deployment of the emulated reactor.

Propagating values To propagate values, the emulated meta reactor accepts
'reactmessages3. For example, lines 9 to 11 send various values to the reactor.
The sole value of a 'react message is a Vector that contains the new values
for the input signals. The vectors contain 2 values since the Plus reactor in
this example has 2 input signals, namely x and y.
In the following sections we will explain the core parts of Mira that turn the

program text to a running program. Section 8.3 explains how the program text
is transformed to a DAG. Section 8.4 explains how reactors are emulated using
actors, and in Section 8.5 we further detail the reactive engine that is used to
propagate values.

3Stella’s reactors process react-to! messages instead of react! messages. We could not use
react-to! inMira for technical reasons, namely because “react-to!” is reserved as a keyword
in Stella’s current parser. This means that an actor cannot define a method to process react-to!
messages.
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1 (class ReactorBehaviour

2 (def-fields name all-nodes sources sinks env)

3
4 (def-constructor (compile sexp _env)

5 (def header (head (tail sexp)))

6 (def body (tail (tail sexp)))

7 (def footer (pop! body))

8
9 (def localenv (newd Dictionary))

10 (make-sources! #this localenv header)

11 (make-body! #this localenv body)

12 (make-sinks! #this localenv footer)

13 (put! env name #this))

14
15
16 (def-method (make-sources! localenv header) ...)

17 (def-method (make-body! localenv body) ...)

18 (def-method (make-sinks! localenv expression) ...)

19 (def-method (make-node! localenv expression) ...)

20
21 // methods omitted: get-name, get-sources, get-sinks, get-all-nodes,

make-define-node!, make-constant-node!, make-qualification-node!,

make-application-node!, make-deploy-node!, make-deploy-star-node!

22 )

Listing 8.2: General structure of the ReactorBehaviour class in Mira.

8.3. Constructing the DAG

The ReactorBehaviour class represents a reactor behaviour in Mira and contains
the necessary code to transform program text (specified as a Vector) to a DAG.
The general idea of its implementation is shown in Listing 8.2. Every reactor
behaviour has a number of local fields declared on line 2. These fields contain the
following values:
name The name of the reactor behaviour
all-nodes A vector of all nodes in the DAG.
sources A vector of source nodes. Note that this vector only contains the nodes
that correspond to the input signals, and not the implicit source nodes.
sinks A vector of sink nodes.
env The aforementioned environment that stores already compiled reactor
behaviours.

The body of the compile constructor on lines 4 to 13 initialises those fields by
deconstructing the program AST and creating the DAG of the reactive program.
We will show the general idea of doing so.
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Header

Footer
Body

'(def-reactor (Plus x y)
  (def result (+ x y))
  (out result))

Figure 8.2.: Structure of an s-expression reactor behaviour in Mira.

The first part of constructing the DAG involves deconstructing the AST into
its constituents. Listing 8.2 deconstructs the AST on lines 5 to 7 into a header,
body and footer. For example, these parts are labelled in Figure 8.2 using a Plus
reactor behaviour.

1. The header of the reactor behaviour is highlighted in (light) red. This is the
second value in the AST’s vector. It is referred to on line 5 by extracting the
head (returns the first element) from the tail (returns a new vector with
all elements except the first) of the program text4. The header itself is also a
vector whose first value is the reactor behaviour’s name, and the rest of the
values are the input signals.

2. The body denotes all expressions between the header and the footer, in this
case a single value definition highlighted in (lavender) blue.

3. The footer is the out expression that contains the output signals of the reactor
behaviour. In this case there is a single output signal, namely result. It is
extracted from the body via pop!, which is a destructive vector operation
that removes and returns the last element of a vector.

Lines 9 to 12 turn the header, body and footer into a DAG. A local environment
is used to map variables used within the reactor behaviour to their nodes, e.g.,
the input signals of the Plus reactor behaviour are called x and y, which will be
stored in the local environment with the generated source node for those signals.
Similarly, local variable definitions such as result are mapped to the DAG node
that results from compiling the defined expression.

8.3.1. Compiling Expressions

We now present the implementation of the make-sources!, make-sinks!, make-
body! and make-node! methods that were omitted from Listing 8.2. They show
how the various parts of the AST are transformed to connected DAG nodes.

4The complete interface of Stella’s Vector can be found in Table 5.2 on page 78.
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1 (def-method (make-sources! localenv header)

2 (set! sources (newd Vector))

3 // (for/iterable (variable iterable-obj) body ...)

4 (for/iterable (signal-name (tail header))

5 (def node (newd SourceNode signal-name))

6 (put! localenv signal-name node)

7 (push! sources node)

8 (push! all-nodes node)))

Listing 8.3: The implementation of a ReactorBehaviour’s make-sources! method.

Compiling Input Signals

The implementation of make-sources! is given in Listing 8.3. Essentially it
loops over each input signal in the header using Stella’s for/iterable loop. A
for/iterable expression is used to iterate over all entires of a collection, such
as a vector. It defines a variable to be used in each iteration, in this case signal-
name, and the collection of values to iterate over, in this case the tail of the header5.
The rest of the expressions are its body which is evaluated for each entry in the
iterable object. The body creates a new SourceNode object for each input signal.
This source node is stored in the local environment as well as the vectors sources
and all-nodes (fields of the ReactorBehaviour class).

Compiling Output Signals

The implementation of make-sinks! is given in Listing 8.4. Its purpose is the
same as make-sources! (but for sink nodes), and its implementation is very
similar. There are 2 notable differences. Firstly, we keep a counter sink-id that is
used for debugging purposes to identify the position of a sink node (first, second,
…). Secondly, each expression in the footer besides the out keyword can contain
arbitrary expressions such as routine invocations. Note that these expressions
are still part of the reactor behaviour’s body. They are compiled via a call to
make-node! on line 5 which compiles body expressions. The return value is a
node that supplies the values for the sink node.

Compiling Body Expressions

Listing 8.5 provides the implementation of make-body!. Compared to make-

sources! and make-sinks! its implementation is simpler, because compiling
the body amounts to creating a node for each expression in the body via the
make-node! method.

5The first element is skipped because it is the reactor behaviour’s name
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1 (def-method (make-sinks! localenv footer)

2 (set! sinks (newd Vector))

3 (def sink-id 1) // for debugging purposes

4 (for/iterable (sink-expression (tail footer))

5 (def expr-node (make-node! #this localenv sink-expression))

6 (def sink-node (newd SinkNode sink-id expr-node))

7 (set! sink-id (+ sink-id 1))

8 (push! all-nodes sink-node)

9 (push! sinks sink-node)))

Listing 8.4: The implementation of a ReactorBehaviour’s make-sinks! method.

1 (def-method (make-body! localenv body)

2 (for/iterable (expression body)

3 (make-node! #this localenv expression)))

Listing 8.5: The implementation of a ReactorBehaviour’s make-body! method.

The make-node! method is a recursive method that compiles all possible
expressions in the body of a reactor behaviour. Its implementation is shown in
Listing 8.6. There are 2 formal parameters: expression corresponds to a part
of the program text (e.g., (def a b)), and environment is the aforementioned
dictionary for local variables definitions (a mapping of symbols to DAG nodes).

Expressions and sub-expressions are compiled similar to how a metacircular
evaluator of Scheme evaluates S-expressions [2]. In essence, it dispatches on the
type of the expression and recursively compiles any constituent expressions. The
conditional expression in Listing 8.6 implements this dispatch based on the type
of expression6. For example, when the expression is a symbol (i.e., a variable in
the body of the program text), then line 4 looks up the corresponding node in the
environment. Otherwise, methods such as make-constant-node! (line 10) and
make-application-node! (line 25) will process the given expression.

Note that Mira does not support the dot-notation for qualification expressions
that is used by Stella. Instead, as shown on line 14, we use an expression whose
first value is the symbol 'qualification, its second value is an expression which
yields the origin of the stream, and the third value yields the name of the stream.

We will not show the compilation of all types of expressions, because in all cases
the code is quite tedious. It essentially boils down to traversing the program’s
AST, compiling any subexpressions via a call to make-node!, and instantiating the
correct type of DAG node. For example, the compilation of a routine invocation is
shown in Listing 8.7. A routine invocation is an expression of the form (selector

obj ...args)where the selector denotes the routine to invoke, obj is the receiver

6The syntax of cond in Stella is shared with the cond expression in Scheme [3]
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1 (def-method (make-node! environment expression)

2 (cond

3 // identifier: lookup identifier in env

4 ((eq? (type-of expression) 'Symbol)

5 (get environment expression))

6 // constants

7 ((or (eq? (type-of expression) 'Number)

8 (eq? (type-of expression) 'String)

9 (eq? (type-of expression) 'Boolean))

10 (make-constant-node! #this environment expression))

11 // (def var expr)

12 ((eq? (first expression) 'def)

13 (make-define-node! #this environment expression))

14 // (qualification expr stream-name)

15 ((eq? (first expression) 'qualification)

16 (make-qualification-node! #this environment expression))

17 // (deploy behaviour-name ...exprs)

18 ((eq? (first expression) 'deploy)

19 (make-deploy-node! #this environment expression))

20 // (deploy-* behaviour-name expr)

21 ((eq? (first expression) 'deploy-*)

22 (make-deploy-star-node! #this environment expression))

23 // (symbol obj ...args)

24 ((eq? (type-of (first expression)) 'Symbol)

25 (make-application-node! #this environment expression))

26 (else (println! "Unsupported expression: " expression))))

Listing 8.6: The make-node! method of the ReactorBehaviour class dispatches on the
type of expression to compile the various types of DAG nodes.
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1 (def-method (make-application-node! environment expression)

2 (def operator (first expression))

3 (def operands (tail expression))

4 (def operand-nodes (newd Vector))

5 (for/iterable (operand operands)

6 (push! operand-nodes (make-node! #this environment operand)))

7 (newd ApplicationNode operator operand-nodes))

Listing 8.7: The make-application-node! method compiles a routine invocation to an
ApplicationNode.

Node

SourceNode
ImplicitSourceNode

DeployStarImplicitSourceNode

SinkNode

ConstantNode

ApplicationNode

QualificationNode

DeployNode

DeployStarNode

Figure 8.3.: Class hierarchy of DAG nodes in Mira.

object, and the rest are the arguments. These values are extracted from the
vector on lines 2 to 3. Since the receiver object and the invocation arguments
are subexpressions, they are compiled on line 6 via a recursive call to make-

node!. Finally, a new ApplicationNode is created on line 7 with the operator
and compiled receiver object and arguments as input.

8.3.2. The Node Class

Every node in the DAG performs a specific function that is related to the applic-
ation logic of the expression. E.g., a node of type ApplicationNode performs
a routine invocation every time the receiver object changes, or when any of the
argument values changes. The complete class hierarchy of DAG nodes is shown
in Figure 8.3.

In general, all types of DAG nodes share 2 main methods that are implemented
in the Node superclass:

1. Every node stores its dependencies (nodes that supply a node’s data) and
dependents (nodes that receive a node’s data).

2. Nodes can be ordered via a < method.
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1 (class Node

2 (def-fields name id height dependencies dependents)

3
4 (def-constructor (default _name _dependencies)

5 (set! name _name)

6 (set! id (make-uuid (newd Random)))

7 (set! dependencies _dependencies)

8 (set! dependents (newd Vector))

9
10 (def computed-height 1)

11 (for/iterable (dependency dependencies)

12 (add-dependent! dependency #this)

13 (set! computed-height

14 (max computed-height (get-height dependency))))

15 (set! height (+ computed-height 1)))

16
17 (def-routine (< other-node) (< height (get-height other-node)))

18 (def-method (compute! deployment) #true)

19
20 // methods omitted: get-id, get-name, get-height, get-dependents,

add-dependent!, get-dependencies, collect-dependency-values, is-source?,

to-string, is-computable?

21 )

Listing 8.8: The Node class in Mira is the superclass of all DAG nodes.

Additionally, every subclass of Node should provide a compute! method that
recomputes the current value of a node, which depends on the type of node.

The excerpt of Node in Listing 8.8 presents the essence of how nodes are used.
The constructor on line 4 accepts a name (for debugging purposes) and a vector
of dependencies, i.e., an ordered list of nodes on which the new node depends.
The for/iterable loop on lines 10 to 15 performs 2 tasks. First, it registers the
current node as a dependent of all nodes in the dependencies vector (line 12).
Second, it computes a height of the current node in the DAG, which will be used
to topologically sort them (see Section 2.1.5 on page 17). We will further discuss
node height in Section 8.5, where we discuss Mira’s strategy to propagate values
through the DAG.

8.3.3. The ApplicationNode Subclass

Every subclass of Node overrides the compute! method that recomputes the
value of a node of that class. For brevity we will only show the implementation
of ApplicationNode that represents a routine invocation in the DAG. All other
subclasses of Node are implemented in a similar way, but oftenwithmore elaborate
implementations (e.g. for deploy-*).
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The complete implementation of ApplicationNode is given in Listing 8.9. The
default constructor accepts 2 arguments:

1. The first argument op is the name of the method to invoke, which is expected
to be a symbol.

2. The second argument ops is a vector of operands, where each operand is a
DAG node that is the result of compiling the corresponding expression in
the program text.

The body of the constructor initialises the superclass with its default constructor
and 2 arguments, namely the node’s name (for debugging purposes) and a vector
of nodes on which the ApplicationNode depends (the operands).

The compute! method on lines 11 to 15 has exactly 1 argument, namely the
reactor deployment which the ApplicationNode is a part of when it is deployed
in a reactor. Essentially, access to the reactor deployment allows a node to retrieve
the most recently computed value of other nodes, such as its dependencies. Ad-
ditionally, although it is not used by ApplicationNode, the reactor deployment
can also be used to store additional run-time information that a node needs to
operate correctly (e.g., created deployments in the case of deploy and deploy-*).
This information must be stored in the reactor deployment because when the same
reactor behaviour (which includes the DAG nodes) is used multiple times, each
instance has a different run-time state.

The body of ApplicationNode’s compute! method is straightforward. First,
line 12 retrieves a vector of the latest computed values of each of the dependencies7.
Next, the receiver object and the arguments are extracted from the vector. Finally,
on line 15, the applymethod of the operator (a symbol) is called. Its first argument
denotes the receiver object on which the method will be called, and the second
argument is a vector of arguments of the method call.

8.4. Emulating Reactors

An actor is used to emulate a reactor. Concretely, Mira has an actor behaviour
called Reactor that implements all of the logic that is usually hidden by the
implementation of Stella.

The general architecture of an actor spawned with the Reactor behaviour is
depicted in Figure 8.4. We depict a single instance (an actor) that processes
asynchronous messages from its mailbox (top left). Figure 8.4 also depicts (as
rectangles) the objects referred to by the actor and their interactions to propagate
values through the DAG. Whenever the actor behaviour processes a message, this

7Note that, due to the order in which the reactive engine computes nodes, all dependency nodes
are guaranteed to be updated to the latest value before the compute! method of the current
node is called.
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1 (class ApplicationNode

2 (extends Node)

3 (def-fields operator)

4
5 (def-constructor (default op ops)

6 (super 'default

7 (append "<ApplicationNode " (to-string op) ">")

8 ops)

9 (set! operator op))

10
11 (def-method (compute! deployment)

12 (def dependency-values (collect-dependency-values #this deployment))

13 (def receiver (head dependency-values))

14 (def arguments (tail dependency-values))

15 (apply operator receiver arguments)))

Listing 8.9: The ApplicationNode class in Mira.

leads to the invocation of various methods in the (object-based) implementation
of a reactor.

In this section we show the implementation of the actor behaviour called
Reactor and the classes depicted in Figure 8.4. They will show the different
steps involved in processing a react! message from the mailbox of the actor. The
next section (Section 8.5) will further detail the reactive engine which implements
the DAG propagation algorithm.

8.4.1. The “Reactor” Actor Behaviour

The Reactor actor behaviour is responsible for all asynchronous interactions with
other actors and reactors. Its 3 main tasks are:

1. to process react! messages, i.e., to initiate the propagation of values
through the emulated reactor,

2. to handle subscribing and unsubscribing from streams, which are indicated
by qualification expressions in the body of the emulated reactor, and

3. to emit the output of the reactor that is being emulated.
The implementation of Reactor is given in Listing 8.10. It declares 1 stream

called output (equivalent to the out stream of Stella’s reactors), and 2 local fields:
sync-reactor stores an instance of the aforementioned SynchronousReactor

class, and subscription-handles is a dictionary that stores the subscriptions to
streams that are created by the emulated reactor. The init constructor on line 5
expects a ReactorBehaviour object as input and initialises those local fields.

Once the actor is spawned, it accepts 3 messages.
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Figure 8.4.: Overview of a simulated reactor’s synchronous and asynchronous interactions.

1 (def-actor Reactor

2 (def-stream output 1)

3 (def-fields sync-reactor subscription-handles)

4
5 (def-constructor (init behaviour)

6 (set! sync-reactor (newd SynchronousReactor behaviour))

7 (set! subscription-handles (newd Dictionary)))

8
9 (def-method (react! new-values)

10 (emit! output (react! sync-reactor new-values)))

11
12 (def-method (monitor-stream! id stream)

13 (def wrapper (spawn-actor! StreamWrapper 'init stream id))

14 (def handle (monitor! wrapper.output 'receive-publication!))

15 (put! subscription-handles id handle))

16
17 (def-method (receive-publication! id value)

18 (emit! output (receive-publication! sync-reactor id value)))

19
20 // method omitted: unmonitor-stream!

21 )

Listing 8.10: The actor behaviour “Reactor” emulates reactors.
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react! Sending a react! message to an emulated reactor is the Mira equivalent
of using react-to! in Stella. Whenever the emulated reactor receives such a
message, it is processed by the react! method on line 9 which synchronously
propagates the given values through the DAG. The updated output of the DAG
is emitted to the emulated reactor’s output stream.

monitor-stream! Whenever a qualification expression is used within the re-
active program, the DAG’s QualificationNode establishes a subscription to
the given stream. Establishing the subscription is asynchronous (just like in
Stella’s reactors). To initiate the process, the QualificationNode sends a
monitor-stream! message to the current actor.
The monitor-stream! method on line 12 accepts 2 arguments, namely a
unique identifier and the stream to monitor. Since, in general, there is no way
to identify the origin of an emission, the given id is manually added by Mira to
each publication. Essentially, the stream is wrapped by a new StreamWrapper

actor that echoes the values emitted by the given stream together with the id.
A “handle” of the subscription is stored such that the subscription can later be
cancelled (and the wrapper actor killed) when the subscription is stopped by
the same QualificationNode (omitted from Listing 8.10 for brevity).

receive-publication! Stream emissions will be received as a receive-pu-

blication! message (line 17). The new values are synchronously propagated
through the DAG, and the new output of the reactor is emitted to the emulated
reactor’s output stream.

8.4.2. The “SynchronousReactor” Class

The SynchronousReactor class tracks reactor deployments and prepares the
synchronous propagation of values through the DAG. Its implementation is shown
in Listing 8.11, which we briefly summarise.

The default constructor on line 4 accepts a reactor behaviour which was given
when spawning the emulated reactor. The body initialises a reactive engine and
deploys the behaviour by instantiating Mira’s ReactorDeployment class8. Fi-
nally, every reactor deployment is tracked in a Vector that initially contains
the root deployment. Two bookkeeping methods that we omitted from List-
ing 8.11 are used by the DAG nodes (namely those generated for deploy and
deploy-* expressions) whenever deployments are added or removed, such that
the SynchronousReactor always has a reference to every deployment within the
emulated reactor.

8Wewill not further detail the various constructor arguments given to ReactorDeployment, which
are used to track dependencies between reactor deployments.
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1 (class SynchronousReactor

2 (def-fields reactive-engine root-deployment deployments)

3
4 (def-constructor (default behaviour)

5 (set! reactive-engine (newd ReactiveEngine))

6 (set! root-deployment

7 (newd ReactorDeployment

8 behaviour reactive-engine #this #false #false))

9 (set! deployments (newd Vector root-deployment)))

10
11 // omitted methods: add-deployment!, remove-deployment!, monitor-stream!,

unmonitor-stream!

12
13 (def-method (react! new-values)

14 (change-sources! root-deployment new-values)

15 (update-loop! reactive-engine)

16 (get-sink-values root-deployment))

17
18 (def-method (receive-publication! subscription-id value)

19 (for/iterable (deployment deployments)

20 (receive-publication! deployment subscription-id value))

21 (update-loop! reactive-engine)

22 (get-sink-values root-deployment)))

Listing 8.11: The SynchronousReactor class.

165



8. Mira: A Meta Specification of Reactors in Stella

The react! and receive-publiction! methods are responsible for modify-
ing the value(s) of source node(s), starting a propagation turn, and returning the
new values of the sink nodes.
react! The react! method on line 13 changes the source nodes of the root

deployment. In this case a vector of new values is provided, where each value
in the vector corresponds to the new value for a source node. For example,
the Plus reactor behaviour in Figure 8.2 on page 155 has 2 source nodes, so a
possible vector of values is '(1 2). Line 14 notifies the root deployment to
change the value of its sources, and line 15 propagates those values by starting
the update loop of the reactive engine. The return value of react! are the
values of the sink nodes of the root deployment.

receive-publication! The receive-publication! method on line 18 is in-
voked by the Reactor actor behaviour whenever a stream to which the emu-
lated reactor is subscribed emits a new value. On line 19, every deployment in
the reactor is notified of the publication, which consists of an id and a value.
Each deployment will decide whether a publication with the specified id is
destined for a node in their DAG, and if not they simply ignore it. Note that we
notify each deployment only to simplify Mira’s code. The inefficiency is easily
removed via additionally bookkeeping (e.g., using a dictionary) that tracks
which deployment should receive publications with the given identifier.

8.4.3. The “ReactorDeployment” Class

Reactor deployments are implemented via the ReactorDeployment class. As
introduced in Section 5.5.4 on page 88, a reactor deployment stores all run-time
state of a reactor behaviour. For brevity we will not show the implementation of
ReactorDeployment because it is mostly bookkeeping code. However, we will
detail the information that is stored by a reactor deployment and the tasks it
performs.

Every reactor deployment tracks the following information.

Reactor behaviour The reactor behaviour of which the reactor deployment is an
“instance”.

Node values Every node in the reactor behaviour has a value that is tracked by the
reactor deployment (initially #undefined). This value is updated whenever a
node is recomputed.

Stream subscriptions Nodes in the DAG can create subscriptions to streams, e.g.,
whenever the DAG contains a qualification node. Since these subscriptions
can be different for each use of a reactor behaviour, they are tracked by the
reactor deployment. More specifically, for any incoming publication (contain-
ing an id and a value), the reactor deployment can look up which node in
the DAG is affected by the publication, and schedule this node to recompute
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its value. As a concrete example, remember that a qualification expression
is compiled to 2 nodes, namely a QualificationNode that manages the sub-
scription, and an ImplicitSourceNode that receives the values emitted by
the stream. The QualificationNode will register its subscriptions with the
reactor deployment, thereby indicating to the reactor deployment that any
publications received from the subscription should change the value of the
implicit source node. Whenever such a publication is received, the implicit
source node is scheduled for recomputation.

Cross-deployment dependents Besides dependencies between the nodes of the
DAG (which are stored by the nodes themselves), the deploy and deploy-*

expressions introduce dependencies between nodes of different reactor deploy-
ments. Both dependencies to other reactor deployments as well as dependent
reactor deployments are tracked. To more easily discuss why this is so, we will
call the reactor deployment that creates a new deployment the deployer, and
the created reactor deployment is called the deployee.
The relation between the nodes of the deployer and the deployee is depicted in
Figure 8.5. Whenever new values are propagated through the deployee, then
the deployer will be updated as well. The internal mechanism that causes data
to propagate from the deployee to the deployer is the registering of these so-
called cross-deployment dependencies. While the concrete behaviour behind
these deployments is unimportant, Deployee stores the relationship between
its sink x and the implicit source y in Deployer. Thus, whenever the value of
x changes, then this value is propagated to node y in Deployer. Note that the
relation is also tracked in the reverse direction, which is necessary to clean up
any data structures when a reactor deployment is removed.

Priority vector Every deployment stores a so-called priority vector. As we will
discuss in Section 8.5, this is deployment-specific information to determine a
correct topological order between the DAG nodes of different deployments.

8.5. The Reactive Engine

A reactive engine drives the propagation of values through the reactive program.
Recompute nodes: Whenever the value of a node in the DAG changes, then the

reactive engine should also recompute the dependent nodes. E.g., when a
source node is updated, the reactive engine recompute its dependents, the
dependents of the dependents and so forth, until every affected node in the
DAG has been updated to the latest program state. The process stops at the
sink nodes which have no dependents. Similar to other reactive languages, the
order in which nodes are recomputed should respect the topological order of
the DAG to prevent glitches.
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Figure 8.5.: Depiction of cross-deployment dependencies.

We will first recap the basic strategy used by other reactive programming
languages and frameworks in Section 8.5.1 (previously introduced in Section 2.1.5
on page 16). We then adapt this strategy to work with Stella’s reactor deployments
in Section 8.5.2, and finally we show the implementation of the reactive engine in
Section 8.5.3.

8.5.1. A Conventional DAG Propagation Algorithm

We discussed glitches in Section 2.1.5 (page 16). In summary, a glitch is caused
when the value of a DAG node is computedmultiple times during a single propaga-
tion cycle, and the strategy to prevent glitches is to delay the recomputing of
a node as long as possible, i.e., until all of its predecessors (the dependencies)
have been recomputed. To this end, reactive programming languages usually
use a smart propagation algorithm that prevents glitches. For example, RES-
cala [123] and Flapjax [88] use a propagation algorithm based on FrTime [31],
where glitches are avoided by assigning a height to every node in the DAG. We
previously showed that Mira also assigns such a height to each node during the
construction of the DAG. For example, Figure 8.6 draws the DAG of a Plus reactor
behaviour that adds 2 numbers, where the number besides each node depicts its
(statically computed) height in the DAG.

Nodes can be sorted at run-time by scheduling them in a priority queue, where
the priority is determined by the height assigned to the node. This means that the
recomputation of a node is naturally delayed until all nodes with a higher priority
(i.e., its dependencies) have already been processed. However, this propagation
algorithm no longer prevents glitches in the context of Stella (and Mira) with
reusable reactor behaviours and reactor deployments. We will first show the
problem at hand, and then formulate a solution.
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Figure 8.6.: The statically computed heights of nodes in the DAG of a Plus reactor.

Consider the DAG of an arbitrary reactive program depicted in Figure 8.7,
where every node is labelled with its statically computed height in the DAG of
their reactor behaviour (note that the dashed-line boxes are deployments of two
different reactor behaviours). The DAG of Deployer contains a deploy expression
that results in Deployee (the double-bordered node on the blue path). As we
previously showed in Section 5.6.2 (page 98), a deploy expression is split up in a
node that manages the created deployment, and an implicit source node that is
responsible for receiving the values from the sink of the deployee. When nodes
are recomputed according to their height in the DAG, a glitch occurs in the node
highlighted in red. Concretely, its computation is executed two times instead of
only once. The first computation is redundant and should be avoided. As a visual
aid, we highlighted the two paths of execution in red and blue that both cause an
update of the red node at different moments in the propagation cycle.

Nodes with the same height (priority) may be executed in an arbitrary order,
and a lower number denotes a higher priority. The problem occurs when the
source node of deployment A has a new value, and gradually all dependents on
the red and blue paths are scheduled. Since the red node has a priority of 3, it is
computed once after all nodes of priority 2 have been computed. However, via the
blue path it indirectly depends on a sink node with the lower priority 4. Whenever
this sink node changes, it will schedule its dependents for recomputation, and
eventually the red node is recomputed once again.

8.5.2. Stella’s DAG Propagation Algorithm

Stella’s (and thus Mira’s) propagation algorithm is still based on a priority queue,
but we modify the way priorities are determined to also take into account a correct
ordering of nodes across multiple reactor deployments.
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Figure 8.7.: Example of 2 reactor deployments where using the node height as priority
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1 (def-routine (priority<? priority1 priority2)

2 (if (or (empty? priority1) (empty? priority2))

3 (< (length priority) (length priority2))

4 (or (< (first priority1) (first priority2))

5 (priority<? #this (tail priority1) (tail priority2)))))

Listing 8.12: Routine to compare priority vectors.

Our solution is to ensure that there is a “globally” (within the same reactor)
correct ordering between nodes of different reactor deployments. Instead of using
a single number (height) to represent priority, priorities now consist of a vector of
heights which includes the priority of the predecessing deployment(s). Consider
the diagram in Figure 8.8, which is the same diagram as Figure 8.7, but using
our system of assigning priorities. If we assume Deployer is the root deployment
of the reactor, then the priorities of its nodes are now represented by singleton
vectors with the same heights as Figure 8.7. Whenever a new deployment is
created, such as Deployee which is created by the blue deploy node, then the
priorities of all nodes in the deployee are prefixed with the deploy node’s priority.
In this case the prefix is the vector '(2), which is added in front of the statically
computed heights of the deployee’s DAG.

To determine the order of nodes in the priority queue, priority vectors are
compared left-to-right according to the Stella routine in Listing 8.12. The routine
priority<? returns whether its first argument priority1 has a higher priority
than its second argument priority2.

• When either of the priority vectors is empty, then the smallest of the vectors
should be ordered earlier in the priority queue. For example, this means
nodes such as the aforementioned deploy node with priority '(2) take
precedence over all of reactor deployment B’s nodes, e.g., the source node
'(2 1).

• When both priority vectors contain values, then those values are compared
pairwise from left to right. The vector priority1 has a higher priority
whenever a height is found that is smaller than the height on the same index
in priority2. For example, the vector '(3 4 2) has a higher priority than
'(3 5 2) because the height on index 1 in priority1 is smaller the height
on index 1 in priority2.

Note that the length of the vector depends on how deep reactor behaviours are
nested. While most of the reactor behaviours presented in this dissertation are
shallow, it remains future work to optimise the comparison of priorities for deeply
nested reactor behaviours.
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Figure 8.9.: Example of 2 reactor deployments, where an Increment reactor behaviour
(d1) uses a Plus reactor behaviour (d2) to increment its input.

8.5.3. The Reactive Engine’s Implementation

The implementation of the reactive engine is given in Listing 8.13, which we
will explain throughout this section. It defines 2 local fields on line 2, which are
initialised in the constructor (not shown in Listing 8.13). The aforementioned
priority queue is stored in the pq field. Since our implementation of a priority
queue does not contain methods to efficiently retrieve entries in the queue, we
store an additional dictionary in the scheduled-nodes fields that will store all
entries that are currently scheduled in the priority queue by a unique id.

We will discuss each of the methods in the body of ReactiveEngine, which
are responsible for the following logical steps that comprise the reactive engine’s
update loop:

1. Scheduling nodes
2. Recomputing nodes
3. Storing node values and scheduling dependents
We explain each of these steps by using the example of a reactor that contains

the deployments of Figure 8.9, where deployment d1 is the root deployment.

Scheduling Nodes

Suppose that the reactor receives a 'react message with a value of 50. This mes-
sage should change the value of the corresponding source node x of deployment
d1 (from Figure 8.9). The first step is to schedule the node in the reactive engine’s
(initially empty) priority queue. In general nodes are scheduled via the reactive
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1 (class ReactiveEngine

2 (def-fields pq scheduled-nodes)

3
4 (def-method (schedule-node! node deployment)

5 (def node-id (get-id node deployment))

6 (if (not (contains? scheduled-nodes node-id))

7 (let ((scheduled-node (newd ScheduledNode node deployment)))

8 (put! scheduled-nodes (get-id node deployment) scheduled-node)

9 (enqueue! pq scheduled-node))))

10
11 (def-method (update-loop!)

12 (when (not (empty? pq))

13 (recompute-next! #this)

14 (update-loop! #this)))

15
16 (def-method (recompute-next!)

17 (def scheduled-node (serve! pq))

18 (def node (get-node scheduled-node))

19 (def deployment (get-deployment scheduled-node))

20 (remove! scheduled-nodes (get-id node deployment))

21 (if (is-source? node)

22 (let ((activations (get-activations scheduled-node)))

23 (def new-val (activate-source! node deployment activations))

24 (store-and-schedule! #this deployment node new-val))

25 (when (is-computable? node deployment)

26 (let ((result (compute! node deployment)))

27 (store-and-schedule! #this deployment node result)))))

28
29 (def-method (store-and-schedule! deployment node new-value)

30 (def old-value (get-node-value deployment node))

31 (if (and (eq? (type-of old-value) 'IncrementalBag)

32 (eq? (type-of new-value) 'IncrementalDatastructureDeltaList))

33 (set! new-value (apply-patch old-value new-value)))

34 (set-node-value! deployment node new-value)

35 (schedule-dependents! #this deployment node))

36
37 (def-method (schedule-dependents! deployment node)

38 (def dependents (get-dependents node))

39 (for/iterable (dependent dependents)

40 (schedule-node! #this dependent deployment))

41 (schedule-cross-deployment-dependents! deployment node))

42
43 // omitted methods: schedule-source-node!, schedule-source-node*!,

schedule-source-activation!

44 )

Listing 8.13: The ReactiveEngine class.
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engine’s schedule-node! method defined in Listing 8.13 on lines 4 to 9. To
avoid scheduling the same node node multiple times, we first check whether the
node is already in the priority queue using a node-id which uniquely identifies
a particular node in a particular reactor deployment. If the node has not been
scheduled already, it is wrapped in a ScheduledNode object that also tracks which
reactor deployment the node belongs to. The wrapped object is then scheduled in
the priority queue pq, and added to the scheduled-nodes dictionary.

Source nodes are not scheduled via the schedule-node! method, but via other
methods that we omitted from Listing 8.13. Their implementation is very sim-
ilar, but source nodes are wrapped in a ScheduledSourceNode object instead of
ScheduledNode. This wrapper additionally tracks a vector of so-called activations.
Each activation is an object that contains the new value for the source node and
information about the origin of the data, i.e., which reactor deployment and which
sink node the data originated from. This information is important to implement
deploy-* efficiently, such that deploy-* can efficiently update its output value
whenever a reactor deployment produces a new value. The contents of the priority
queue after scheduling the x source node with a value of 50 is depicted in the
top left of Figure 8.10 (the area labelled “loop 1”). Since the source node was
“activated” by a message sent to the reactor, the information about the origin of
the data is #false.

Recomputing Nodes

Once the first source node is scheduled, the update loop will propagate this value
through the reactor. The update loop is implemented in Listing 8.13 on lines 11
to 14 as a classic recursive method that keeps looping until the priority queue is
empty, which means all nodes from source to sink were recomputed9.

The logic to recompute a node is implemented by the recompute-next! method
on lines 16 to 27. Lines 17 to 19 serve a ScheduledNode (or ScheduledSource-
Node) object from the priority queue and extract the DAG node and its reactor
deployment. The logic to process the node is different for source nodes and the
other types of nodes.

Source nodes: The source node is “activated” on line 23 with a vector of activ-
ations which we previously discussed. In a nutshell, there will be a single
object in this vector for each value provided to the source node. Currently the
only case where a source node may be provided with multiple activations is
deploy-*, whose corresponding (implicit) source node reacts to the values
produced by multiple deployments. Activating the source on line 23 returns
the new value computed by the source node. In most cases this will be the

9Stella’s (when condition exprs...) expression is syntactic sugar for (if condition

(begin exprs...)).
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when an Increment reactor (of Figure 8.9) processes a 'reactmessage with
value 50.
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value contained in the sole activation, but in the case of deploy-* this will be
an updated collection. Finally, on line 24 the reactive engine stores this value
and schedules the dependent nodes.

Internal & sink nodes: Internal nodes and sink nodes are treated similarly to
source nodes, but instead of “activating” them, the reactive engine calls their
compute! method on line 26. We have previously shown one such implement-
ation for the ApplicationNode in Section 8.3.3. Just like source nodes, this
new value will be stored and any dependent nodes will be scheduled.

Storing Values and Scheduling Dependents

After a node has been recomputed, the reactive engine stores the newly com-
puted value via the store-and-schedule! method defined on lines 29 to 35 of
Listing 8.13. Its arguments are the reactor deployment of the recomputed node,
the node itself, and the newly computed value. In principe the only required
action is to store the value unmodified in the corresponding reactor deployment.
However, we implement a special case on lines 31 to 33 to support incremental
data structures which are used by deploy-*. Whenever the node’s old value was
a snapshot of type IncrementalBag and the newly computed value is a patch of
type IncrementalDatastructureDeltaList, then the patch is applied to the
data, yielding an updated collection.

Updating the value of a node means that all dependent nodes should be sched-
uled in the priority queue. This scheduling is initiated on line 35 via the schedule-
dependent! method. The implementation of the method on lines 37 to 41 sched-
ules both direct dependent nodes within the DAG of the same deployment, as
well as any cross deployment dependents, i.e., potential dependent source nodes
within different deployments.

Continuing the example given in Figure 8.10 (page 175), the area labelled as
“loop 2” (update loop iteration 2) depicts the content of the priority queue after
scheduling the dependents of the x source node (the corresponding DAG is given
in Figure 8.9). In this case there is 1 dependent deploy node within the same
deployment. When this node is processed, the content of the priority queue just
before “loop 3” shows that 2 nodes from a different reactor deployment d2 were
scheduled. Note in particular that the information about the origin of the data is
no longer #false, but that the origin is the deploy node in reactor deployment
d1.

The update loop continues until the priority queue is empty, after which all
affected nodes in the reactive program were updated, and the values of the sink
nodes can be emitted to the reactor’s output stream.
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8.6. Summary and Conclusion

In this section we presented Mira, a meta implementation of reactors using actors.
The implementation covers important features of reactors such as:
Constructing a DAG The program text of a Mira program is specified as a vector

of symbols. We specified a compiler that turns the program text into a DAG.
Just like Stella, the DAG construction occurs once when a reactor behaviour is
created (i.e., at compile-time). Mira implements the same types ofDAGnodes as
Stella. While we have not shown the compilation and implementation of nodes
such as the QualificationNode, DeployNode and DeployStarNode, their
implementation aligns with the diagrams and descriptions that we provided
when explaining the corresponding features10.

Emulating reactors We showed how an actor can be used to emulate a reactor.
More specifically, Mira shows how reactors process messages from their mail-
box, and how they asynchronously (via messages) establish subscriptions to
the streams of other (re)actors. The semantics of emulated reactors in Mira
accurately reflect the implementation of Stella.

Propagating values A reactive program is a collection of DAGs within various
connected reactor deployments. The concept of reactor deployments is, in
our opinion, a key enabler of operation such as deploy-*. Using reactor
deployments means that the implementation of Stella needs to carefully ensure
that glitches cannot occur. To this end, Mira reimplements Stella’s reactive
engine, and we detailed the method used by Stella to determine the order in
which nodes are recomputed.
The complete code is included in Appendix C (page 191).

10The compilation of qualification and deploy was discussed in Section 5.6, and deploy-* was
discussed in Section 6.4.
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This dissertation investigated various concerns of building distributed reactive
software for open networks. In general, we focussed on 2 research areas. First, we
investigated the combination of imperative code and reactive code which occurs
in all reactive programs, and second, we investigated reactive programming to
program applications whose distribution model involves open networks. In this
final chapter we summarise this dissertation and we will discuss avenues for
future work.

9.1. Summary

We started the dissertation by describing the need for reactive programming to
develop modern software. Devices such as laptops, smartphones, smartwatches,
and home automation devices connect to each other on open networks in order
to continuously share information. Users expect the software that is running on
these devices to behave reactively, such that the information presented to them is
always up-to-date. Traditional approaches to develop reactive software such as
callbacks and the Observer pattern have well-known drawbacks. The emerging
reactive programming paradigm aims to avoid these issues, and has been used in
many different application domains, such as embedded systems with extremely
limited resources, and distributed systems.

When using reactive programming to develop distributed reactive applications,
we identified 2 different levels on which the reactive program needs to react to
change. First, application-level reactivity denoted the flow of application-level
values such as sensor measurements that flow from one device to another, which is
the main type of reactivity supported by existing reactive programming languages
and frameworks. Second, topology-level reactivity is a new type of reactivity which
occurs on an open network, where a modern reactive program continuously
interacts with a constellation of devices which continuously join and leave the
network. Topology-level reactivity denotes how the structure (i.e., the topology)
of the reactive program adapts to the changing constellation of devices, which is
not supported by most existing reactive programming languages and frameworks.

In Chapter 4 (page 49) we identified 3 problems that occur in existing reactive
programming languages and frameworks. In the context of application-level react-
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ivity, we identified the Reactive Thread Hijacking Problem and the Reactive/Im-
perative Impedance Mismatch which are caused by the uncontrolled combination
of imperative and reactive code. In the context of topology-level reactivity, we
identified the Acquaintance Maintenance Problem which occurs when a program-
mer tries to use existing reactive programming languages and frameworks for
open network applications, despite the lack of built-in support. In summary:

Reactive Thread Hijacking Problem Long lasting computations that are part
of a reactive program can (accidentally) block the reactive program’s update
thread, thus stopping said program from being able to react to any other input
values. This is especially problematic when dealing with open networks, since
the input values originates from devices that are not necessarily part of the
same application.

Reactive/Imperative Impedance Mismatch We investigated the combination of
imperative code and reactive code in both directions of their embedding. In one
direction, expressions that contain side-effects (e.g., sockets, message passing,
or simple assignments) can cause issues when they are embedded in subexpres-
sions of a reactive program. That is because the order of their execution cannot
be determined beforehand, they are very difficult to coordinate, and have a
detrimental effect on program composition. In the other direction, existing
reactive programming languages and frameworks have no well-defined and
sufficiently general mechanism to embed reactive code within imperative code
without (accidentally) allowing imperative code to be embedded within reactive
code.

Acquaintance Maintenance Problem The existing reactive programming lan-
guages and frameworks are not designed to manage the ever changing ac-
quaintances (i.e., devices) throughout the reactive program. When doing so,
they are either inefficient, or require a complex and error-prone mix of code
when performing acquaintance maintenance.

The basis of our solution to these problems emerged from the fundamental
assumption that imperative code and reactive code cannot be reconciled in a
single, unified programming model. Hence, we designed the Actor-Reactor Model
to keep them separate in actors and reactors respectively, and to carefully specify
the semantics of their interaction via message passing.

Stella’s implementation of the Actor-Reactor Model demonstrates a practical
way in which real applications can be built using actors and reactors. In Chapter 5
we implemented Bikey, an application to rent shared bicycles which demonstrated
actors and reactors. An extension of this application called Whereabikes was
used in Chapter 6 to demonstrate Stella’s solution for acquaintance discovery
and acquaintance maintenance, namely flocks and the topology-reactive operator
deploy-*. Furthermore, we demonstrated Stella’s capabilities to program real
distributed applications via a case study using real data from “Villo!”, Brussels
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bike sharing program, whose network we simulated on a cluster computer of 240
Raspberry Pi’s.

9.2. Restating the Contributions

Our first contribution is a new taxonomy of reactive programming languages
and frameworks. We provided a taxonomy of the state of the art in reactive
programming in Chapter 2, and distributed reactive programming in Chapter 3.
Furthermore, Chapter 7 classifies these languages and frameworks according to
the problems highlighted by this dissertation. We found that these problems are
indeed prevalent, and are important to solve.

The second contribution is a thorough problem analysis that identifies the three
problems formulated in this dissertation. We specified terms such as application-
level reactivity and topology-level reactivity which are two distinct forms of
reactivity that occur when developing reactive applications for open networks.
Furthermore, we used the terms weak reactivity, eventual reactivity and strong
reactivity to describe the degree to which a reactive program guarantees that it
will be able to react to new data.

Third, we proposed the Actor-Reactor Model as a programming model to
describe and implement reactive programs. Besides a practical implementation of
the Actor-Reactor Model in Stella, in Chapter 7 we found precursors of the model
in related work. This indicates that a programming model such as the Actor-
Reactor Model naturally arises in other implementations of reactive programs as
well, without being identified as such.

Fourth, we design flocks as a new programming abstraction to discover actors
and reactors on an open network, and we introduced deploy-*, a new topology-
reactive operator for reactive programs which complements flocks, and which
is used to implement correct and efficient computations based on constantly
fluctuating actor and reactors.

Our final contribution is a result of an artefact-based researchmethod. Besides
the scientific formulation of concepts such as the Actor-Reactor Model, flocks and
deploy-*, we implemented and tested the proposed solutions in Stella to verify
that they work in practice as well as in theory. Furthermore, since Stella’s reactors
hide a lot of application complexity as a black box, in Chapter 8 we provided a
meta-implementation of reactors in Stella itself.

9.3. Limitations and Future Work

We will briefly discuss Stella’s limitations, and highlight avenues for future re-
search.
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9.3.1. Stella’s Technical Limitations

Building a completely new programming language is difficult, especially when the
design and the scope of the language is continuously evolving over time. Hence,
there are certain features that are expected from (production-ready) programming
languages which are not supported by Stella.

No Exception Handling While Stella’s interpreter is capable of correctly execut-
ing correct Stella problems, it currently has no features for exception handling
(e.g., throw and try/catch expressions).

Limited Standard Library Stella’s standard library was implemented on a “by
need” basis, and as such it only supports a limited set of data structures.
Features such as GUIs and (file) IO can be accessed via Stella’s foreign function
interface to JavaScript.

9.3.2. Reactive Exception Handling

Similar to how Stella is specified in two levels, namely a sequential (object-
oriented) base language and the concurrent level of actors and reactors, an ex-
ception handling mechanism for Stella will likely exist on both levels. Firstly,
a traditional throw and try/catch mechanism can be implemented for the se-
quential base language, which is not a research problem. Secondly, we envision
that there is a need for reactive exception handling that deals with exceptions that
occur on the level of actors and reactors. Since they are connected via streams, it
can be beneficial when a receiver of data (e.g., a reactor) can signal a producer
of data (e.g., an actor) that an exception occurred, such that the producer of data
can (automatically) adapt such that the error no longer occurs.

A possible use case for reactive exception handling is known as backpressure,
which means that a downstream component (e.g., a reactor) is not fast enough
to process all of the data that it receives. In Stella this currently means that the
(unbounded) mailbox of the receiver fills up until the program is out of memory
and crashes. Reactive exception handling can be used to avoid that a receiver is
overwhelmed with messages by throwing an exception, after which producers of
data can slow down the rate at which messages are sent, or risk that some of their
messages are dropped.

9.3.3. Security

Stella’s distribution model assumes that, if other actors and reactors can be dis-
covered, that they are trustworthy and can be interacted with. An avenue for
future research is to no longer assume such trust, for which we envision the
following research avenues.
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A first avenue is that not all actors and reactors should be discoverable via a
flock by the entire network. For example, an application could make its (re)actors
discoverable to only other (re)actors within a trusted network. A second avenue is
to allow certain kinds of communication between untrusted parties, but to restrict
on the language level which kinds of data can be communicated via messages. For
example, the language can restrict via security policies (e.g., both statically and
dynamically) that sensitive credit card information cannot flow from (re)actors
on a trusted network to (re)actors in an untrusted network. There are research
opportunities to make such security policies reactive as well, e.g., to learn what
kinds of data is typically passed between two actors, and to automatically flag
whenever a kind of data is passed over a stream that is not expected from the
producing (re)actors.

9.4. Closing Remarks With Respect to Applicability

Throughout this dissertation we have extensively discussed and shown the preval-
ence of the identified problems in existing reactive programming languages and
frameworks, and we proposed a solution to solve those problems. We envision that
other reactive programming languages and frameworks can adopt the solution
proposed in this dissertation as follows:

Reactive Thread Hijacking Problem This problem is arguably the most tricky
to solve when implementing a reactive programming language, and especially
when implementing reactive programming features as a library in a different
language. Regardless, other reactive programming languages exist that already
enforce eventual reactivity or weak reactivity on the programs that are accepted
by the language. These languages can continue to enforce those constraints
by using reactors, and also expand their application domain by using actors
to build the parts of the application which cannot be expressed within the
constraints of the reactive parts of the language. Designers of reactive program-
ming frameworks will have more difficulties enforcing eventual reactivity or
strong reactivity since they cannot control all aspects of the used programming
language. They may be able to use static analysis tools to provide programmer
hints (e.g., in the development environment) that indicate whether a certain
part of a reactive program has the potential to be unexpectedly slow (e.g.,
infinitely loop) for certain types of input values.

Reactive/Imperative Impedance Mismatch Our solution is based on a key tech-
nology – the actor model – that is already used in many other programming
languages, either as a built-in feature or as a library. Therefore, we believe
that it is feasible for other reactive programming languages and frameworks
to adopt the Actor-Reactor Model as well, such that they can also avoid the
Reactive/Imperative Impedance Mismatch.
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Acquaintance Maintenance Problem Not all reactive programming languages
and frameworks will be used to program reactive applications for open net-
works. However, extensions can be built for existing distributed reactive lan-
guages and frameworks (e.g., ReactiveX or Akka Streams) to incorporate a
discovery mechanism such as a flock, together with a complementary topology-
reactive operator such as deploy-* to correctly and efficiently manage the
reactive program’s application state.

In this dissertation we have identified and tackled problems that have been a
part of reactive programming since its inception in 1997 (Fran [43]), and we have
broadened the application to also include distributed reactive programming for
open networks. By naming these issues and providing a feasible path to solve
them in other languages and frameworks, we aim to further support the adoption
of reactive programming to build reactive applications.

184



A. Topology-level Reactivity in
RxJS: A Semantic Bug

An early paper submission on topology-level reactivity in RxJS featured a different
solution to the problem at hand used in Section 4.3.2, namely that of averaging
the measurements of thermometers. The solution contained a semantic bug. We
believe it is realistic that other developers will make samemistake as well, possibly
leading to a solution that contains such a bug. Arguably, we think that the (at least)
two different ways to think about the problem may actually be part of the problem
itself, i.e., part of the problem of accidental complexity when using topology-level
reactivity. In this appendix we explain our buggy implementation, and at the end
explain why it is buggy.

The main ideas can be explained via the average computation that computes
the average value of all thermometers connected to a network, which we imple-
mented in RxJS [121], a state of the art JavaScript framework based on reactive
streams (see Section 2.2 on page 18). Listing A.1 implements this computation
via an RxJS stream called average$ ($ is a naming convention for streams). To
communicate the continuously appearing and disappearing sensors to the re-
active program, we used a stream called sensorDiscoveryService.sensors$

(not defined here) from which average$ is derived. This stream propagates an
updated Set of all sensors every time a sensor appears or disappears. In RxJS,
the average$ stream is defined by “piping” the values from sensors$ through a
sequence of RxJS stream operators. The operators in the example work as follows:

1 const average$ = sensorDiscoveryService.sensors$.pipe(

2 rxjs.switchMap((allSensors) =>

3 rxjs.from(allSensors).pipe(

4 rxjs.flatMap((sensor) =>

5 sensor.value$.pipe(

6 rxjs.map((val) => [sensor.id, val]))),

7 rxjs.scan((tracker, [id, val]) => tracker.update(id, val),

8 new AverageTracker()),

9 rxjs.map((tracker) => tracker.getAverage()))));

Listing A.1: Topology-level reactivity in RxJS, calculating an average of all sensors.
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switchMap((   ) =>                      )

Stream Stopped stream Logical connection

Output

Stream1

Stream2

Input

Time

Figure A.1.: Illustration of the switchMap operator in RxJS. The diagram is simplified for
brevity (it does not consider higher-order streams, i.e., streams whose values
are other streams).

Line 2, switchMap: The lambda passed to switchMap accepts a set of sensors
as argument, and will generate a new stream whenever a new set of sensors
is propagated. switchMap echoes the values of the most recently generated
stream, in this case the average of all sensor values. Since a textual explanation
of switchMap is often difficult to comprehend, it is visualised in Figure A.1
in terms of the different streams involved (time flows from left to right). At
the top, we depict switchMap as an operation that transforms values of type
“circle” to a stream of values of type “square”. Whenever the input stream
contains a red circle, then the lambda passed to switchMap generates a stream
of red squares, which are echoed on the output stream. As soon as the input
stream contains a new value such as a blue circle, then a new stream of blue
squares is generated. Consequently the stream of red squares is forgotten, and
the output stream now echoes blue squares instead.
The body of the lambda on line 2 generates a stream via the from operator
(line 3) that transforms a collection of sensors to a stream that emits the ele-
ments in the collection one by one. This stream is further transformed to
eventually compute the average of all sensor values.

Line 3, flatMap: The lambda passed to flatMap generates a stream. flatMap
remembers all streams it has generated and echoes their values on a first-in
first-out basis. In this case we use it to transform a stream of sensors to a
stream of tuples [id, val]where id is the unique identifier of the sensor and
val is its latest value. A new [id, val] tuple is propagated every time the
sensor.value$ stream contains a new temperature measurement.
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flatMap((   ) =>                      )

Time

Stream

Output

Input

Stream1

Stream2

Logical connection

Figure A.2.: Illustration of the flatMap operator in RxJS. The diagram is simplified for
brevity (it does not consider higher-order streams, i.e., streams whose values
are other streams).

Similar to how we visualised switchMap, flatMap is visualised in Figure A.2.
The main difference is that when the input stream contains a new value such
as a blue circle, then the previously generated stream of red squares is not
stopped. Instead flatMap remembers both the stream of red squares and blue
squares, and echoes both of their values on its output stream. Hence, whenever
any sensor.value$ stream is updated, a new [id, val] tuple is propagated
by flatMap.

Line 7, scan: Most of the actual application logic is tackled by the scan operator
that essentially implements a fold operation for streams where the accumu-
lator is emitted every time the input changes. The accumulator is a purely
functional AverageTracker (implemented elsewhere) that tracks the latest
value produced by each sensor. The subsequent map (line 9) extracts the current
average.

This code incorrectly implements the desired computation. The bug is caused
by the propagation of a Set of sensors – a solution that is conceptually similar
to the solution in signal-based reactive programming languages (discussed in
Section 4.3.2). This is because an entirely new Set of sensors is propagated every
time a sensor is added or removed by the discovery service, and the entire result
is recomputed from scratch. This means that, internally, all dependencies to the
“old” sensors are removed, and new dependencies are established to the “new”
sensors (despite their overlap). Because the sensors are connected via a network,
this swapping of dependencies would currently cause unnecessary network traffic
and delays. Worse, every time the set of sensors changes, the final output stream
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emits all intermediate values until all sensors are known (again) to flatMap,
which is semantically incorrect.
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The interface of the ImmutableVector class can be found in Table B.1.
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C. Complete Code of Mira

The complete implementation of Mira is provided in Listing C.1.
1 (def-actor Main

2 (def-constructor (start env)

3 (send! #self 'run-qualification-reactor))

4
5 (def-method (run-plus-reactor)

6 (def env (newd Dictionary))

7 (def program '(def-reactor (Plus x y) (out (+ x y))))

8 (def behaviour (new ReactorBehaviour 'compile program env))

9 (def reactor (spawn-actor! Reactor 'init behaviour))

10 (send! reactor 'react! '(1 1))

11 (send! reactor 'react! '(2 2))

12 (send! reactor 'react! '(3 3)))

13
14 (def-method (run-qualification-reactor)

15 (def env (newd Dictionary))

16 (def number-producer (spawn-actor! NumberProducer 'init))

17 (def number-producer2 (spawn-actor! NumberProducer 'init))

18 (def program '(def-reactor (Increment x) (out (+ (qualification x number) 1))))

19 (def behaviour (new ReactorBehaviour 'compile program env))

20 (def reactor (spawn-actor! Reactor 'init behaviour))

21 (send! reactor 'react! (newd Vector number-producer))

22 (send! number-producer 'emit-number 5)

23 (send! number-producer2 'emit-number 6)

24 (send! reactor 'react! (newd Vector number-producer2)))

25
26 (def-method (run-deploy-reactor)

27 (def env (newd Dictionary))

28 (def increment (new ReactorBehaviour 'compile

29 '(def-reactor (Increment x) (out (+ (qualification x number) 1))) env))

30 (def plus (new ReactorBehaviour 'compile

31 '(def-reactor (Plus x) (out (+ (deploy Increment x) 1))) env))

32 (def reactor (spawn-actor! Reactor 'init plus))

33
34 (def number-producer (spawn-actor! NumberProducer 'init))

35 (send! reactor 'react! (newd Vector number-producer))

36 (send! number-producer 'emit-number 5)

37 (send! number-producer 'emit-number 6))

38
39 (def-method (run-deploy-star-reactor-non-incremental)

40 (def env (newd Dictionary))

41 (def add-1 (new ReactorBehaviour 'compile

42 '(def-reactor (Add1 x) (out (+ (qualification x number) 1))) env))

43 (def add-1-to-all (new ReactorBehaviour 'compile

44 '(def-reactor (Add1ToAll xs) (out (deploy-* Add1 xs))) env))

45 (def reactor (spawn-actor! Reactor 'init add-1-to-all))

46
47 (def number-producer1 (spawn-actor! NumberProducer 'init))
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48 (def number-producer2 (spawn-actor! NumberProducer 'init))

49 (send! reactor 'react! (newd Vector (newd Bag number-producer1 number-producer2))

)

50 (send! number-producer1 'emit-number 1)

51 (send! number-producer2 'emit-number 1)

52
53 (def number-producer3 (spawn-actor! NumberProducer 'init))

54 (def number-producer4 (spawn-actor! NumberProducer 'init))

55 (send! reactor 'react! (newd Vector (newd Bag number-producer3 number-producer4))

)

56 (send! number-producer3 'emit-number 10)

57 (send! number-producer4 'emit-number 10))

58
59 (def-method (run-deploy-star-reactor-incremental)

60 (def env (newd Dictionary))

61 (def add-1 (new ReactorBehaviour 'compile

62 '(def-reactor (Add1 x) (out (+ (qualification x number) 1))) env))

63
64 (def add-1-to-all (new ReactorBehaviour 'compile

65 '(def-reactor (Add1ToAll xs) (out (deploy-* Add1 xs))) env))

66 (def reactor (spawn-actor! Reactor 'init add-1-to-all))

67
68 (def number-producer1 (spawn-actor! NumberProducer 'init))

69 (def inc-bag (newd IncrementalBag number-producer1))

70 (send! reactor 'react! (newd Vector inc-bag))

71 (send! number-producer1 'emit-number 10)

72
73 (def number-producer2 (spawn-actor! NumberProducer 'init))

74 (def inc-bag2 (add inc-bag number-producer2))

75 (def patch (get-patch inc-bag2))

76 (send! reactor 'react! (newd Vector patch))

77 (send! number-producer2 'emit-number 20)))

78
79 (def-actor NumberProducer

80 (def-stream number)

81 (def-constructor (init) #true)

82 (def-method (emit-number x)

83 (emit! number x)))

84
85 (class ReactorBehaviour

86 (def-fields name all-nodes sources sinks env)

87
88 (def-constructor (compile sexp _env)

89 (def header (head (tail sexp)))

90 (def body (tail (tail sexp)))

91 (set! name (head header))

92 (set! all-nodes (newd Vector))

93 (set! env _env)

94 (def footer (pop! body))

95 (def localenv (newd Dictionary))

96 (make-sources! #this localenv header)

97 (make-body! #this localenv body)

98 (make-sinks! #this localenv footer)

99 (put! env name #this))

100
101 (def-routine (get-name) name)

102 (def-routine (get-sources) sources)

103 (def-routine (get-sinks) sinks)

104 (def-routine (get-all-nodes) all-nodes)
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105
106 (def-method (make-sources! localenv header)

107 (set! sources (newd Vector))

108 (for/iterable (signal-name (tail header))

109 (def node (newd SourceNode signal-name))

110 (put! localenv signal-name node)

111 (push! sources node)

112 (push! all-nodes node)))

113
114 (def-method (make-body! localenv body)

115 (for/iterable (expression body)

116 (make-node! #this localenv expression)))

117
118 (def-method (make-sinks! localenv footer)

119 (set! sinks (newd Vector))

120 (def sink-expressions (tail footer))

121 (def sink-id 1)

122 (for/iterable (sink-expression sink-expressions)

123 (def expr-node (make-node! #this localenv sink-expression))

124 (def sink-node (newd SinkNode sink-id expr-node))

125 (set! sink-id (+ sink-id 1))

126 (push! all-nodes sink-node)

127 (push! sinks sink-node)))

128
129 (def-method (make-node! localenv expression)

130 (cond

131 ((eq? (type-of expression) 'Symbol)

132 (get localenv expression))

133 ((or (eq? (type-of expression) 'Number)

134 (eq? (type-of expression) 'String)

135 (eq? (type-of expression) 'Boolean))

136 (make-constant-node! #this localenv expression))

137 ((eq? (first expression) 'def)

138 (make-define-node! #this localenv expression))

139 ((eq? (first expression) 'qualification)

140 (make-qualification-node! #this localenv expression))

141 ((eq? (first expression) 'deploy)

142 (make-deploy-node! #this localenv expression))

143 ((eq? (first expression) 'deploy-*)

144 (make-deploy-star-node! #this localenv expression))

145 ((eq? (type-of (first expression)) 'Symbol)

146 (make-application-node! #this localenv expression))

147 (else (println! "!!!! Unsupported node type: " expression))))

148
149
150 (def-method (make-define-node! localenv expression)

151 (def identifier (second expression))

152 (def body (third expression))

153 (def body-node (make-node! #this localenv body))

154 (put! localenv identifier body-node)

155 body-node)

156
157 (def-method (make-constant-node! localenv expression)

158 (def node (newd ConstantNode expression))

159 (push! all-nodes node)

160 node)

161
162 (def-method (make-qualification-node! localenv expression)

163 (def source (second expression))
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164 (def stream-name (third expression))

165 (def implicit-source (newd ImplicitSourceNode (to-string stream-name)))

166 (def data-source (make-node! #this localenv source))

167 (def qualification-node (newd QualificationNode data-source stream-name

implicit-source))

168 (push! all-nodes qualification-node)

169 (push! all-nodes implicit-source)

170 implicit-source)

171
172 (def-method (make-application-node! localenv expression)

173 (def operator (first expression))

174 (def operands (tail expression))

175 (def operand-nodes (newd Vector))

176 (for/iterable (operand operands)

177 (push! operand-nodes (make-node! #this localenv operand)))

178 (def application-node (newd ApplicationNode operator operand-nodes))

179 (push! all-nodes application-node)

180 application-node)

181
182 (def-method (make-deploy-node! localenv expression)

183 (def behaviour-name (second expression))

184 (def behaviour-to-deploy (get env behaviour-name))

185 (def arguments (newd Vector))

186 (for/iterable (arg (tail (tail expression)))

187 (push! arguments (make-node! #this localenv arg)))

188 (def implicit-source (newd ImplicitSourceNode "Deploy"))

189 (def deploy-node (newd DeployNode behaviour-to-deploy arguments implicit-source))

190 (push! all-nodes deploy-node)

191 (push! all-nodes implicit-source)

192 implicit-source)

193
194 (def-method (make-deploy-star-node! localenv expression)

195 (def behaviour-name (second expression))

196 (def behaviour-to-deploy (get env behaviour-name))

197 (def data-source (make-node! #this localenv (third expression)))

198 (def implicit-source (newd DeployStarImplicitSourceNode))

199 (def deploy-star-node (newd DeployStarNode behaviour-to-deploy data-source

implicit-source))

200 (push! all-nodes deploy-star-node)

201 (push! all-nodes implicit-source)

202 implicit-source))

203
204
205 (class Node

206 (def-fields name id height dependencies dependents)

207
208 (def-constructor (default _name _dependencies)

209 (set! name _name)

210 (set! id (make-uuid (newd Random)))

211 (set! dependencies _dependencies)

212 (set! dependents (newd Vector))

213
214 (def computed-height 1)

215 (for/iterable (dependency dependencies)

216 (add-dependent! dependency #this)

217 (set! computed-height (max computed-height (get-height dependency))))

218 (set! height (+ computed-height 1)))

219
220 (def-routine (get-id deployment) (append id "-" (get-id deployment)))
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221 (def-routine (get-name) name)

222 (def-routine (get-height) height)

223 (def-routine (get-dependents) dependents)

224 (def-routine (get-dependencies) dependencies)

225 (def-routine (< other-node) (< height (get-height other-node)))

226
227 (def-method (add-dependent! node) (push! dependents node))

228
229 (def-method (collect-dependency-values deployment)

230 (def values (newd Vector))

231 (for/iterable (dependency dependencies)

232 (push! values (get-node-value deployment dependency)))

233 values)

234
235 (def-method (compute! deployment) #true)

236 (def-routine (is-source?) #false)

237 (def-routine (to-string)

238 (append "[" (to-string (type-of #this)) " | " (get-name #this) "]"))

239
240 (def-method (is-computable? deployment)

241 (def is-computable #true)

242 (for/iterable (input (collect-dependency-values #this deployment))

243 (if (eq? (type-of input) 'Undefined)

244 (set! is-computable #false)))

245 is-computable))

246
247 (class SourceNode

248 (extends Node)

249 (def-constructor (default name)

250 (super 'default (append "<SourceNode " (to-string name) ">") '()))

251
252 (def-method (activate-source! deployment activations)

253 (def activation (first activations))

254 (get-value activation))

255 (def-routine (is-source?) #true))

256
257 (class ImplicitSourceNode

258 (extends SourceNode)

259 (def-constructor (default name)

260 (super 'default (append "ImplicitSourceNode " (to-string name)))))

261
262 (class SinkNode

263 (extends Node)

264 (def-constructor (default sink-nr dependency)

265 (super 'default

266 (append "<SinkNode #" (to-string sink-nr) ">")

267 (newd Vector dependency)))

268
269 (def-method (compute! deployment)

270 (def dependency-values (collect-dependency-values #this deployment))

271 (get dependency-values 0)))

272
273 (class ConstantNode

274 (extends Node)

275 (def-fields value)

276 (def-constructor (default _value)

277 (super 'default

278 (append "<ConstantNode " (to-string value) ">")

279 (newd Vector))
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280 (set! value _value))

281 (def-routine (get-value) value))

282
283 (class ApplicationNode

284 (extends Node)

285 (def-fields operator)

286
287 (def-constructor (default op ops)

288 (super 'default

289 (append "<ApplicationNode " (to-string op) ">")

290 ops)

291 (set! operator op))

292
293 (def-method (compute! deployment)

294 (def dependency-values (collect-dependency-values #this deployment))

295 (def receiver (head dependency-values))

296 (def arguments (tail dependency-values))

297 (apply operator receiver arguments)))

298
299 (class QualificationNodeDeploymentInfo

300 (def-fields subscription-id)

301
302 (def-method (set-subscription-id! new-sub-id)

303 (set! subscription-id new-sub-id))

304 (def-routine (get-subscription-id) subscription-id))

305
306
307 (class QualificationNode

308 (extends Node)

309 (def-fields implicit-source stream-name)

310
311 (def-constructor (default data-source _stream-name _implicit-source)

312 (super 'default

313 (append "<QualificationNode " _stream-name ">")

314 (newd Vector data-source))

315 (set! implicit-source _implicit-source)

316 (set! stream-name _stream-name))

317
318 (def-method (compute! deployment)

319 (def dependency-values (collect-dependency-values #this deployment))

320 (def new-data-source (first dependency-values))

321 (def deployment-info (get-deployment-info #this deployment))

322 (def old-subscription-id (get-subscription-id deployment-info))

323 (if old-subscription-id

324 (unsubscribe-from-stream! deployment old-subscription-id))

325 (def new-subscription-id (subscribe-to-stream! deployment new-data-source

stream-name implicit-source))

326 (set-subscription-id! deployment-info new-subscription-id)

327 #undefined)

328
329 (def-method (get-deployment-info deployment)

330 (def existing-deployment-info (get-deployment-info deployment #this))

331 (if existing-deployment-info

332 existing-deployment-info

333 (let ((new-deployment-info (newd QualificationNodeDeploymentInfo)))

334 (save-deployment-info! deployment #this new-deployment-info)

335 new-deployment-info))))

336
337 (class DeployNodeDeploymentInfo
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338 (def-fields deployment)

339
340 (def-constructor (default _deployment)

341 (set! deployment _deployment))

342
343 (def-routine (get-deployment) deployment))

344
345 (class DeployNode

346 (extends Node)

347 (def-fields behaviour implicit-source)

348
349 (def-constructor (default _behaviour _args _source)

350 (super 'default

351 (append "<DeployNode " (get-name _behaviour) ">")

352 _args)

353 (set! behaviour _behaviour)

354 (set! implicit-source _source))

355
356 (def-method (compute! deployment)

357 (def dependencies (get-dependencies #this))

358 (def dependent-deployment (get-or-create-deployment! #this deployment))

359 (def argument-values (collect-dependency-values #this deployment))

360 (def sources (get-sources (get-behaviour dependent-deployment)))

361 (for (i 0 (< i (length argument-values)) (+ i 1))

362 (def data-origin (get dependencies i))

363 (def new-value (get argument-values i))

364 (def source (get sources i))

365 (change-source*! dependent-deployment data-origin deployment source new-value))

366 #undefined)

367
368 (def-method (get-or-create-deployment! deployment)

369 (def deployment-info (get-deployment-info deployment #this))

370 (if deployment-info

371 (get-deployment deployment-info)

372 (let ((new-deployment (make-deployment! #this deployment)))

373 (def deployment-info (newd DeployNodeDeploymentInfo new-deployment))

374 (save-deployment-info! deployment #this deployment-info)

375 (link-deployments! #this deployment new-deployment)

376 new-deployment)))

377
378 (def-method (make-deployment! deployment)

379 (def reactive-engine (get-reactive-engine deployment))

380 (def owner (get-owner deployment))

381 (def new-deployment (newd ReactorDeployment behaviour reactive-engine owner

deployment #this))

382 (add-deployment! owner new-deployment)

383 (add-derived-deployment! deployment new-deployment)

384 new-deployment)

385
386 (def-method (link-deployments! this-deployment dependency-deployment)

387 (def sink (first (get-sinks (get-behaviour dependency-deployment))))

388 (add-cross-deployment-dependency! this-deployment implicit-source sink

dependency-deployment)))

389
390
391 (class DeployStarDeploymentManager

392 (def-fields behaviour

393 current-deployment

394 reactor
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395 reactive-engine

396 deploy-star-node

397 implicit-source-node

398 deployments

399 deployment-keys)

400
401 (def-constructor (default _behaviour _deployment _deploy-star-node _implicit-source)

402 (set! behaviour _behaviour)

403 (set! current-deployment _deployment)

404 (set! reactor (get-owner current-deployment))

405 (set! reactive-engine (get-reactive-engine current-deployment))

406 (set! deploy-star-node _deploy-star-node)

407 (set! implicit-source-node _implicit-source)

408 (set! deployments (newd Dictionary))

409 (set! deployment-keys (newd Dictionary)))

410
411 (def-method (get-all-deployments)

412 (values deployments))

413
414 (def-method (new-deployment! key input-value)

415 (def deployment (newd ReactorDeployment behaviour reactive-engine reactor

current-deployment deploy-star-node))

416 (add-deployment! reactor deployment)

417 (add-derived-deployment! current-deployment deployment)

418 (def sink (first (get-sinks behaviour)))

419 (add-cross-deployment-dependency! current-deployment implicit-source-node sink

deployment)

420 (put! deployments key deployment)

421 (put! deployment-keys deployment key)

422 (update-deployment! #this key input-value))

423
424 (def-method (update-deployment! key input-value)

425 (def deployment (get deployments key))

426 (def source (first (get-sources behaviour)))

427 (change-source*! deployment deploy-star-node current-deployment source input-value)

)

428
429 (def-method (remove-deployment! key)

430 (def deployment (get deployments key))

431 (def sink (first (get-sinks behaviour)))

432 (remove! deployments deployment)

433 (remove! deployment-keys key)

434 (remove-cross-deployment-dependency! current-deployment implicit-source-node sink

deployment)

435 (clean-up! deployment))

436
437 (def-method (remove-all-deployments!)

438 (for/iterable (deployment (values deployments))

439 (def key (get deployment-keys deployment))

440 (remove-deployment! #this key)))

441
442 (def-method (has-deployment? key)

443 (contains? deployments key))

444
445 (def-method (get-deployment-key deployment)

446 (get deployment-keys deployment))

447
448 (def-method (get-all-deployment-keys)

449 (values deployment-keys)))
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450
451 (class DeployStarDeploymentInfo

452 (def-fields input-data deployment-manager)

453 (def-constructor (default _manager)

454 (set! deployment-manager _manager))

455 (def-method (get-deployment-manager) deployment-manager)

456 (def-method (get-input) input-data)

457 (def-method (set-input! new-input)

458 (set! input-data new-input)))

459
460 (class DeployStarActivation

461 (def-fields changed-input type)

462 (def-constructor (default _changed-input _type)

463 (set! changed-input _changed-input)

464 (set! type _type))

465 (def-routine (get-changed-input) changed-input)

466 (def-routine (get-type) type))

467
468 (class DeployStarNode

469 (extends Node)

470
471 (def-fields behaviour implicit-source)

472
473 (def-constructor (default _behaviour _data-source _implicit-source)

474 (super 'default

475 (append "<DeployStarNode " (get-name _behaviour) ">")

476 (newd Vector _data-source))

477 (set! behaviour _behaviour)

478 (set! implicit-source _implicit-source))

479
480 (def-method (compute! deployment)

481 (def deployment-info (get-deployment-info! #this deployment))

482 (def deployment-manager (get-deployment-manager deployment-info))

483
484 (def old-input (get-input deployment-info))

485 (def new-input (first (collect-dependency-values #this deployment)))

486 (set-input! deployment-info new-input)

487
488 (cond ((and (eq? (type-of new-input) 'IncrementalBag)

489 (is-derived-from? new-input old-input))

490 (map-patch! #this (get-patch new-input) deployment deployment-info))

491 ((or (eq? (type-of new-input) 'Bag)

492 (eq? (type-of new-input) 'IncrementalBag))

493 (map-new! #this new-input deployment deployment-info)))

494 (else "!!! DeployStarNode cannot process input !!!"))

495
496 #undefined)

497
498 (def-method (get-deployment-info! deployment)

499 (def deployment-info (get-deployment-info deployment #this))

500 (if deployment-info

501 deployment-info

502 (let ((deployment-manager (newd DeployStarDeploymentManager behaviour

deployment #this implicit-source))

503 (new-deployment-info (newd DeployStarDeploymentInfo deployment-manager)))

504 (save-deployment-info! deployment #this new-deployment-info)

505 (save-deployment-info! deployment implicit-source new-deployment-info)

506 new-deployment-info)))

507

199



C. Complete Code of Mira

508 (def-method (map-new! collection deployment deployment-info)

509 (def deployment-manager (get-deployment-manager deployment-info))

510 (remove-all-deployments! deployment-manager)

511 (change-source-with-activation! deployment implicit-source (newd

DeployStarActivation collection 'Total))

512
513 (for/iterable (key value collection)

514 (new-deployment! deployment-manager key value)))

515
516
517 (def-method (map-patch! patches deployment deployment-info)

518 (def deployment-manager (get-deployment-manager deployment-info))

519 (change-source-with-activation! deployment implicit-source (newd

DeployStarActivation patches 'Incremental))

520
521 (for/iterable (patch patches)

522 (def patch-key (get-key patch))

523 (def patch-value (get-value patch))

524
525 (cond ((eq? (patch-type patch) 'insert)

526 (new-deployment! deployment-manager patch-key patch-value))

527 ((eq? (patch-type patch) 'update)

528 (update-deployment! deployment-manager patch-key patch-value))

529 ((eq? (patch-type patch) 'remove)

530 (remove-deployment! patch-key))))))

531
532
533
534
535 (class DeployStarImplicitSourceNode

536 (extends SourceNode)

537
538 (def-constructor (default)

539 (super 'default "DeployStarNode"))

540
541 (def-method (activate-source! deployment activations)

542 (if (eq? (type-of (first activations)) 'DeployStarActivation)

543 (let ((deploy-star-activation (first activations))

544 (other-activations (tail activations)))

545 (change-output-after-input-change! #this deployment deploy-star-activation

other-activations))

546 (change-output-after-deployment-change! #this deployment activations)))

547
548 (def-method (change-output-after-input-change! deployment deploy-star-activation

other-activations)

549 (cond ((eq? (get-type deploy-star-activation) 'Total)

550 (change-output-after-total-input-change! #this deployment))

551 ((eq? (get-type deploy-star-activation) 'Incremental)

552 (def changed-input (get-changed-input deploy-star-activation))

553 (change-output-after-incremental-input-change! #this deployment

changed-input other-activations))

554 (else (println! "!!! Unknown activation type !!!"))))

555
556 (def-method (change-output-after-total-input-change! deployment)

557 (def deployment-info (get-deployment-info deployment #this))

558 (def deploy-star-input (get-input deployment-info))

559 (def all-values (get-all-values #this deployment))

560 (cond ((eq? (type-of deploy-star-input) 'Bag)

561 (new Bag 'from-vector all-values))
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562 ((eq? (type-of deploy-star-input) 'IncrementalBag)

563 (new IncrementalBag 'from-vector all-values))

564 (else (println! "!!! Unknown input data structure !!!"))))

565
566 (def-method (change-output-after-incremental-input-change! deployment patches

activations)

567 (def old-output (get-node-value deployment #this))

568 (def deployment-info (get-deployment-info deployment #this))

569 (def deployment-manager (get-deployment-manager deployment-info))

570
571
572 (def activation-values (newd Dictionary))

573 (for/iterable (activation activations)

574 (def source-deployment (get-source-deployment activation))

575 (def key (get-deployment-key deployment-manager deployment))

576 (put! activation-values key (get-value activation)))

577
578 (def output-patches (newd Vector))

579 (for/iterable (patch patches)

580 (def patch-key (get-key patch))

581 (cond ((eq? (patch-type patch) 'insert)

582 (let ((new-value (get activation-values patch-key)))

583 (if (and (not (eq? new-value #undefined)) (not (eq? new-value #none)))

584 (push! output-patches (newd IncrementalDatastructureDeltaInsert

patch-key new-value)))))

585 ((eq? (patch-type patch) 'update)

586 (let ((new-value (get activation-values patch-key))

587 (replaced-value (_get-value-by-key old-output patch-key)))

588 (if (and (not (eq? new-value #undefined)) (not (eq? new-value #none)))

589 (push! output-patches (newd IncrementalDatastructureDeltaUpdate

patch-key replaced-value new-value))

590 (push! output-patches (newd IncrementalDatastructureDeltaRemove

patch-key replaced-value)))))

591 ((eq? (patch-type patch) 'delete)

592 (let ((removed-value (_get-value-by-key old-output patch-key)))

593 (push! output-patches (newd IncrementalDatastructureDeltaRemove

patch-key removed-value))))))

594 (if (empty? output-patches)

595 old-output

596 (new IncrementalDatastructureDeltaList 'from-vector output-patches)))

597
598 (def-method (change-output-after-deployment-change! deployment activations)

599 (def deployment-info (get-deployment-info deployment #this))

600 (def deployment-manager (get-deployment-manager deployment-info))

601 (def old-output (get-node-value deployment #this))

602 (cond ((eq? (type-of old-output) 'Bag)

603 (def all-values (get-all-values #this deployment))

604 (new Bag 'from-vector all-values))

605 ((eq? (type-of old-output) 'IncrementalBag)

606 (def new-deltas (newd Vector))

607 (for/iterable (activation activations)

608 (def source-deployment (get-source-deployment activation))

609 (def key (get-deployment-key deployment-manager source-deployment))

610 (def value-in-old-output (_get-value-by-key old-output key))

611 (def new-value (get-value activation))

612
613 (if (and (not (eq? new-value #undefined))

614 (not (eq? new-value #none)))

615
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616 (if (_contains-key? old-output key)

617 (push! new-deltas (newd IncrementalDatastructureDeltaUpdate key

value-in-old-output new-value))

618 (push! new-deltas (newd IncrementalDatastructureDeltaInsert key

new-value)))

619
620 (if (_contains-key? old-output key)

621 (push! new-deltas (newd IncrementalDatastructureDeltaRemove key

value-in-old-output)))))

622 (if (empty? new-deltas)

623 old-output

624 (new IncrementalDatastructureDeltaList 'from-vector new-deltas)))

625 (else (println! "!!! Unknown output data structure !!!"))))

626
627 (def-method (get-all-values deployment)

628 (def deployment-info (get-deployment-info deployment #this))

629 (def deployment-manager (get-deployment-manager deployment-info))

630 (def all-deployments (get-all-deployments deployment-manager))

631 (def values (newd Vector))

632 (for/iterable (deployment all-deployments)

633 (def sink-values (get-sink-values deployment))

634 (def sink-value (first sink-values))

635 (if (and (not (eq? sink-value #undefined))

636 (not (eq? sink-value #none)))

637 (push! values (first sink-values))))

638 values))

639
640
641 (class CrossDeploymentDependent

642 (def-fields dependent-node dependent-deployment)

643 (def-constructor (default node deployment)

644 (set! dependent-node node)

645 (set! dependent-deployment deployment))

646 (def-routine (get-dependent-node) dependent-node)

647 (def-routine (get-deployment) dependent-deployment))

648
649 (class CrossDeploymentDependentsManager

650 (def-fields dependents)

651 (def-constructor (default)

652 (set! dependents (newd Dictionary)))

653
654 (def-method (add-dependent! node dependent-node dependent-deployment)

655 (def dependent (newd CrossDeploymentDependent dependent-node dependent-deployment))

656 (if (contains? dependents node)

657 (push! (get dependents node) dependent)

658 (put! dependents node (newd Vector dependent))))

659
660 (def-method (has-dependents? node)

661 (contains? dependents node))

662
663 (def-method (get-dependents node)

664 (if (has-dependents? #this node)

665 (get dependents node)

666 (newd Vector)))

667
668 (def-method (remove-dependent! node dependent-node dependent-deployment)

669 (def node-dependents (get dependents node))

670 (for/iterable (dependent node-dependents)

671 (if (and (eq? dependent-deployment (get-deployment dependent))
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672 (eq? dependent-node (get-dependent-node dependent)))

673 (delete! node-dependents dependent)))))

674
675
676 (class CrossDeploymentDependency

677 (def-fields dependency-node dependency-deployment)

678 (def-constructor (default node deployment)

679 (set! dependency-node node)

680 (set! dependency-deployment deployment))

681 (def-routine (get-dependency-node) dependency-node)

682 (def-routine (get-deployment) dependency-deployment))

683
684 (class CrossDeploymentDependencyManager

685 (def-fields dependencies)

686 (def-constructor (default)

687 (set! dependencies (newd Dictionary)))

688
689 (def-method (add-dependency! dependency-node dependency-deployment dependent-node)

690 (def dependency (newd CrossDeploymentDependency dependency-node

dependency-deployment))

691 (if (contains? dependencies dependent-node)

692 (push! (get dependencies dependent-node) dependency)

693 (put! dependencies dependent-node (newd Vector dependency))))

694
695 (def-method (has-dependencies? node)

696 (contains? dependencies node))

697
698 (def-method (get-dependencies node)

699 (if (has-dependencies? #this node)

700 (get dependencies node)

701 (newd Vector)))

702
703 (def-method (remove-dependency! dependent-node dependency-node dependency-deployment)

704 (def node-dependencies (get dependencies dependent-node))

705 (for/iterable (dependency node-dependencies)

706 (if (and (eq? dependency-deployment (get-deployment dependency))

707 (eq? dependency-node (get-dependency-node dependency)))

708 (delete! node-dependencies dependency)))))

709
710 (class DeploymentSubscriptionManager

711 (def-fields subscription-to-node)

712
713 (def-constructor (default)

714 (set! subscription-to-node (newd Dictionary)))

715
716 (def-method (store-subscription! subscription-id data-source source-node)

717 (put! subscription-to-node subscription-id source-node))

718 (def-method (get-node subscription-id)

719 (get subscription-to-node subscription-id))

720 (def-routine (has-subscription? subscription-id)

721 (contains? subscription-to-node subscription-id))

722 (def-method (remove-subscription! subscription-id)

723 (remove! subscription-to-node subscription-id))

724 (def-method (get-subscriptions) (keys subscription-to-node)))

725
726 (class ReactorDeployment

727 (def-fields id behaviour reactive-engine node-values subscription-manager owner

node-deployment-info cross-deployment-dependencies cross-deployment-dependents

height-prefix derived-deployments)
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728
729 (def-constructor (default _behaviour _reactive-engine _owner parent-deployment

parent-node)

730 (set! id (make-uuid (newd Random)))

731 (set! node-values (newd Dictionary))

732 (set! behaviour _behaviour)

733 (set! reactive-engine _reactive-engine)

734 (set! subscription-manager (newd DeploymentSubscriptionManager))

735 (set! node-deployment-info (newd Dictionary))

736 (set! owner _owner)

737 (set! cross-deployment-dependencies (newd CrossDeploymentDependencyManager))

738 (set! cross-deployment-dependents (newd CrossDeploymentDependentsManager))

739 (set! derived-deployments (newd Vector))

740
741 (if parent-deployment

742 (let ((their-height-prefix (get-height-prefix parent-deployment)))

743 (set! height-prefix (new Vector 'from-vector their-height-prefix))

744 (push! height-prefix (get-height parent-node)))

745 (set! height-prefix (newd Vector)))

746
747 (for/iterable (node (get-all-nodes behaviour))

748 (if (eq? (type-of node) 'ConstantNode)

749 (set-node-value! #this node (get-value node)))))

750
751 (def-routine (get-id) id)

752 (def-routine (get-behaviour) behaviour)

753 (def-routine (get-reactive-engine) reactive-engine)

754 (def-routine (get-owner) owner)

755 (def-routine (get-node-value node) (get node-values node))

756 (def-routine (get-height-prefix) height-prefix)

757
758 (def-method (set-node-value! node new-value) (put! node-values node new-value))

759 (def-routine (get-node-value node) (get node-values node))

760
761 (def-method (get-sink-values)

762 (def values (newd Vector))

763 (def sinks (get-sinks behaviour))

764 (for/iterable (sink sinks)

765 (push! values (get-node-value #this sink)))

766 values)

767
768 (def-method (change-sources! new-values)

769 (def sources (get-sources behaviour))

770 (for (i 0 (< i (length sources)) (+ i 1))

771 (def source (get sources i))

772 (def new-value (get new-values i))

773 (if (not (eq? new-value #undefined))

774 (change-source! #this source new-value))))

775
776 (def-method (change-source! source new-value)

777 (schedule-source-node! reactive-engine source #this new-value))

778
779 (def-method (change-source*! origin-node origin-deployment source-node new-value)

780 (schedule-source-node*! reactive-engine origin-node origin-deployment source-node

#this new-value))

781
782 (def-method (change-source-with-activation! source activation)

783 (schedule-source-activation! reactive-engine source #this activation))

784
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785 (def-method (subscribe-to-stream! publisher stream-name source-node)

786 (def stream (newd LocalStream publisher stream-name))

787 (def subscription-id (make-uuid (newd Random)))

788 (store-subscription! subscription-manager subscription-id stream source-node)

789 (monitor-stream! owner subscription-id stream)

790 subscription-id)

791
792 (def-method (unsubscribe-from-stream! subscription-id)

793 (remove-subscription! subscription-manager subscription-id)

794 (unmonitor-stream! owner subscription-id))

795
796
797 (def-method (add-derived-deployment! deployment)

798 (push! derived-deployments deployment))

799
800 (def-method (clean-up!)

801 (def subscriptions (get-subscriptions subscription-manager))

802 (for/iterable (subscription subscriptions)

803 (unsubscribe-from-stream! #this subscription))

804
805 (remove-deployment! owner #this)

806 (for/iterable (deployment derived-deployments)

807 (clean-up! deployment)))

808
809 (def-method (receive-publication! subscription-id value)

810 (if (has-subscription? subscription-manager subscription-id)

811 (let ((source-node (get-node subscription-manager subscription-id)))

812 (change-source! #this source-node value))

813 (println! "deployment does not have subscription")))

814
815 (def-method (save-deployment-info! node info)

816 (put! node-deployment-info node info))

817
818 (def-method (get-deployment-info node)

819 (get node-deployment-info node))

820
821
822 (def-method (add-cross-deployment-dependency! dependent-node dependency-node

dependency-deployment)

823 (on-deployment-dependent-added! dependency-deployment dependency-node

dependent-node #this)

824 (add-dependency! cross-deployment-dependencies dependency-node

dependency-deployment dependent-node))

825
826 (def-method (remove-cross-deployment-dependency! dependent-node dependency-node

dependency-deployment)

827 (remove-dependency! cross-deployment-dependencies dependent-node dependency-node

dependency-deployment)

828 (on-deployment-dependent-removed! dependency-deployment dependency-node

dependent-node #this))

829
830 (def-method (on-deployment-dependent-added! dependency-node dependent-node

dependent-deployment)

831 (add-dependent! cross-deployment-dependents dependency-node dependent-node

dependent-deployment))

832
833 (def-method (on-deployment-dependent-removed! dependency-node dependent-node

dependent-deployment)
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834 (remove-dependent! cross-deployment-dependents dependency-node dependent-node

dependent-deployment))

835
836 (def-method (schedule-cross-deployment-dependents! node)

837 (def node-value (get-node-value #this node))

838 (def dependents (get-dependents cross-deployment-dependents node))

839 (for/iterable (dependent dependents)

840 (def dependent-node (get-dependent-node dependent))

841 (def dependent-deployment (get-deployment dependent))

842 (schedule-source-node*! reactive-engine node #this dependent-node

dependent-deployment node-value))))

843
844 (class ScheduledNode

845 (def-fields node deployment priority)

846
847 (def-constructor (default _node _deployment)

848 (set! node _node)

849 (set! deployment _deployment)

850 (def deployment-priority (get-height-prefix deployment))

851 (def node-priority (get-height node))

852 (set! priority (new Vector 'from-vector deployment-priority))

853 (push! priority node-priority))

854
855 (def-routine (get-node) node)

856 (def-routine (get-deployment) deployment)

857 (def-routine (get-priority) priority)

858
859 (def-routine (< other-scheduled-node)

860 (def other-node-priority (get-priority other-scheduled-node))

861 (priority<? #this priority other-node-priority))

862
863 (def-routine (priority<? priority1 priority2)

864 (if (or (empty? priority1) (empty? priority2))

865 (< (length priority) (length priority2))

866 (or (< (first priority1) (first priority2))

867 (priority<? #this (tail priority1) (tail priority2))))))

868
869 (class ScheduledSourceNode

870 (extends ScheduledNode)

871 (def-fields activations)

872 (def-constructor (default node deployment activation)

873 (super 'default node deployment)

874 (set! activations (newd Vector activation)))

875 (def-routine (get-activations) activations)

876 (def-method (add-activation! activation)

877 (push! activations activation)))

878
879 (class NodeActivation

880 (def-fields source-deployment source-node value)

881
882 (def-constructor (default _source-deployment _source-node _value)

883 (set! source-deployment _source-deployment)

884 (set! source-node _source-node)

885 (set! value _value))

886
887 (def-routine (get-source-deployment) source-deployment)

888 (def-routine (get-source-node) source-node)

889 (def-routine (get-value) value))

890
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891
892 (class ReactiveEngine

893 (def-fields pq scheduled-nodes)

894
895 (def-constructor (default)

896 (set! pq (newd PriorityQueue '<))

897 (set! scheduled-nodes (newd Dictionary)))

898
899 (def-method (schedule-node! node deployment)

900 (def node-id (get-id node deployment))

901 (if (not (contains? scheduled-nodes node-id))

902 (let ((scheduled-node (newd ScheduledNode node deployment)))

903 (put! scheduled-nodes (get-id node deployment) scheduled-node)

904 (enqueue! pq scheduled-node))))

905
906 (def-method (schedule-source-node! node deployment new-value)

907 (def activation (newd NodeActivation #false #false new-value))

908 (schedule-source-activation! #this node deployment activation))

909
910 (def-method (schedule-source-node*! source-node source-deployment dependent-node

dependent-deployment new-value)

911 (def activation (newd NodeActivation source-deployment source-node new-value))

912 (schedule-source-activation! #this dependent-node dependent-deployment activation))

913
914 (def-method (schedule-source-activation! node deployment activation)

915 (def node-id (get-id node deployment))

916 (if (contains? scheduled-nodes node-id)

917 (let ((scheduled-node (get scheduled-nodes node-id)))

918 (add-activation! scheduled-node activation))

919 (let ((scheduled-node (newd ScheduledSourceNode node deployment activation)))

920 (enqueue! pq scheduled-node)

921 (put! scheduled-nodes (get-id node deployment) scheduled-node))))

922
923 (def-method (update-loop!)

924 (when (not (empty? pq))

925 (recompute-next! #this)

926 (update-loop! #this)))

927
928 (def-method (recompute-next!)

929 (def scheduled-node (serve! pq))

930 (def node (get-node scheduled-node))

931 (def deployment (get-deployment scheduled-node))

932 (remove! scheduled-nodes (get-id node deployment))

933
934 (if (is-source? node)

935 (let ((activations (get-activations scheduled-node)))

936 (def new-source-value (activate-source! node deployment activations))

937 (store-and-schedule! #this deployment node new-source-value))

938 (when (is-computable? node deployment)

939 (let ((result (compute! node deployment)))

940 (store-and-schedule! #this deployment node result)))))

941
942 (def-method (store-and-schedule! deployment node new-value)

943 (def old-value (get-node-value deployment node))

944 (if (and (eq? (type-of old-value) 'IncrementalBag)

945 (eq? (type-of new-value) 'IncrementalDatastructureDeltaList))

946 (set! new-value (apply-patch old-value new-value)))

947 (set-node-value! deployment node new-value)

948 (schedule-dependents! #this deployment node))
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949
950 (def-method (schedule-dependents! deployment node)

951 (def dependents (get-dependents node))

952 (for/iterable (dependent dependents)

953 (schedule-node! #this dependent deployment))

954 (schedule-cross-deployment-dependents! deployment node)))

955
956
957 (def-actor StreamWrapper

958 (def-stream output 2)

959 (def-fields id)

960 (def-constructor (init source-stream _id)

961 (set! id _id)

962 (monitor! source-stream 'emit-value!))

963 (def-method (emit-value! original-value)

964 (emit! output id original-value)))

965
966
967 (class SynchronousReactor

968 (def-fields reactive-engine root-deployment deployments)

969
970 (def-constructor (default behaviour)

971 (set! reactive-engine (newd ReactiveEngine))

972 (set! root-deployment (newd ReactorDeployment behaviour reactive-engine #this

#false #false))

973 (set! deployments (newd Vector root-deployment)))

974
975 (def-method (react! new-values)

976 (change-sources! root-deployment new-values)

977 (update-loop! reactive-engine)

978 (get-sink-values #this))

979
980 (def-method (receive-publication! subscription-id value)

981 (for/iterable (deployment deployments)

982 (receive-publication! deployment subscription-id value))

983 (update-loop! reactive-engine)

984 (get-sink-values #this))

985
986 (def-method (get-sink-values)

987 (get-sink-values root-deployment))

988
989 (def-method (add-deployment! deployment)

990 (push! deployments deployment))

991
992 (def-method (remove-deployment! deployment)

993 (delete! deployments deployment))

994
995 (def-method (monitor-stream! subscription-id stream)

996 (send! #self 'monitor-stream! subscription-id stream))

997 (def-method (unmonitor-stream! subscription-id)

998 (send! #self 'unmonitor-stream! subscription-id)))

999
1000 (def-actor Reactor

1001 (def-stream output 1)

1002 (def-fields sync-reactor subscription-handles)

1003
1004 (def-constructor (init behaviour)

1005 (set! sync-reactor (newd SynchronousReactor behaviour))

1006 (set! subscription-handles (newd Dictionary)))
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1007
1008 (def-method (monitor-stream! subscription-id stream)

1009 (def wrapper (spawn-actor! StreamWrapper 'init stream subscription-id))

1010 (def handle (monitor! wrapper.output 'receive-publication!))

1011 (put! subscription-handles subscription-id handle))

1012
1013 (def-method (unmonitor-stream! subscription-id)

1014 (def handle (get subscription-handles subscription-id))

1015 (unsubscribe! handle)

1016 (terminate! (get-source handle))

1017 (remove! subscription-handles subscription-id))

1018
1019
1020 (def-method (react! new-values)

1021 (def sink-values (react! sync-reactor new-values))

1022 (println! "*** Reactor output: " sink-values)

1023 (emit! output sink-values))

1024
1025 (def-method (receive-publication! subscription-id value)

1026 (def sink-values (receive-publication! sync-reactor subscription-id value))

1027 (println! "*** Reactor output: " sink-values)

1028 (emit! output sink-values)))

Listing C.1: The complete implementation of Mira from Chapter 8.
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Glossary

Actor In Stella, an actor is a process with a mailbox that continuously processes
messages from its mailbox. Analogous to the well known actor model in other
language (e.g., Erlang). See Section 5.4 (page 80).

Actor behaviour In Stella, an actor behaviour can be seen as the class of an actor,
i.e., the program logic that describes the local state of an actor, the streams that
an actor exports, and the types of messages that an actor can process. Spawning
an actor behaviour yields an actor (the process) with the given actor behaviour.
See Section 5.4 (page 80).

API Application Programming Interface
Behaviour A type of time-varying value in reactive programming languages and

frameworks. The literature on reactive programming often makes a distinc-
tion between “events” and “behaviours” to distinguish between discrete and
continuous time-varying values. In this dissertation we instead use the termin-
ology of a signal, and reserve the term behaviour for actors and reactors (cf.
actor behaviour and reactor behaviour).

CPS Continuation-passing Style.
CRDT Conflict-free Replicated Data Type. See Section 3.2 (page 34).
DAG Directed Acyclic Graph.
DSL Domain Specific Language.
Eventually reactive, eventual reactivity See Section 4.1.1 (page 50).
FIFO First in, first out.
FRP Functional Reactive Programming, a programming paradigm for reactive

programming that combines functions (e.g., in a functional programming
language such as Haskell) with time-varying values (signals) to build reactive
programs.

Glitch A glitch is an incorrectly computed result by an FRP language or frame-
work. It occurs when the reactive programming language or framework does
not recompute parts of the reactive program in the correct order. See Sec-
tion 2.1.5 (page 16).

IoT Internet of Things.
Lifting In the context of functional reactive programming, lifting is a technique

applied by FRP languages and frameworks to “lift” non-reactive functions
or methods in the base language to the level of the reactive framework [43].
Given a function f that works on non-reactive values, the process of lifting
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creates a new function liftedf that can be applied to signals, and which will
be recomputed automatically whenever the value of one the signals changes.
See Section 2.1.2 (page 13).

LOC Lines of code.
Reaction time The time it takes for a value to propagate completely through

a reactive program (from start to completion), i.e., the time it takes for the
program to react to an incoming value. See Section 4.1.1 (page 50).

Reactor In Stella, a process with a mailbox that encapsulates a reactive program,
and which continuously propagates messages from its mailbox by propagating
the message’s values through the reactive program. See Section 5.5 (page 84).

Reactor behaviour In Stella, a reactor behaviour can be seen as the class of a
reactor, i.e., the program logic that describes how a reactor processes values. A
reactor behaviour is a DAG that describes how values flow through the reactive
program. See Section 5.5 (page 84).

Reactor deployment In Stella, reactor behaviours can be composed and used
by multiple reactors. Since each use of a reactor behaviour within a reactor
has a different application state at run-time, we call a reactor deployment a
particular instance of a reactor behaviour. See Section 5.5.4 (page 88).

REPL Read-Eval-Print Loop.
SCT Size-Change Termination, a technique used to detect whether a function

call will eventually terminate [94]. In the context of Stella, see Section 5.3.1
(page 73).

Strongly reactive, strong reactivity See Section 4.1.1 (page 50).
Time-varying value An umbrella term used to denote an abstraction of a reactive

language or framework for a program value whose value can (automatically)
change over time. In this dissertation we prefer to use the term signal.

Weakly reactive, weak reactivity See Section 4.1.1 (page 50).
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