

A Meta-Level Architecture for
Stream-Based Programming Languages
and its Applications in Cyber-Physical

Systems

Christophe De Troyer

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

June, 2022

Promotors:

Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel
Prof. Dr. Jens Nicolay, Vrije Universiteit Brussel

Jury:

Prof. Dr. Abdellah Touhafi, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Ann Nowé, Vrije Universiteit Brussel, Belgium (chair)
Prof. Dr. Elisa Gonzalez Boix, Vrije Universiteit Brussel, Belgium
Prof. Dr. Hidehiko Masuhara, Tokyo Institute of Technology, Japan

Prof. Dr. Jens Nicolay, Vrije Universiteit Brussel, Belgium
Prof. Dr. Walter Cazzola, Università degli Studi di Milano, Italy

Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel, Belgium

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

© 2022 Christophe De Troyer

Alle rechten voorbehouden. Niets van deze uitgavemagworden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm,
elektronisch of op welke andere wijze ook, zonder voorafgaande schriftelijke
toestemming van de auteur.

All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel : +32 2 629 33 44
crazycopy@vub.be
www.crazycopy.be

ISBN 9789464443295
Nur Code 958
Thema UMA

If a man does not keep pace with his companions,
perhaps it is because he hears a different drummer.
Let him step to the music which he hears,
however measured or far away.

HENRY DAVID THOREAU, WALDEN

iii

iv

Abstract

Contemporary computer networks no longer consist of mainframes and desktop
computers. Due to the miniaturization and mass production of computer chips,
it has become feasible to embed computers into everyday objected, creating their
“digital twin”. The digital twin is causally connected to its physical counterpart;
changes in the digital twin affect the physical device and vice versa. A network
of digital twins is called a Cyber-Physical System (CPS). In a CPS, digital twins
communicate to achieve a common goal and improve the user experience of the
physical system. Examples of contemporary CPSs are smart factories, connected
cars, oil pipeline monitoring, smart electricity grids, etc.

Contemporary CPSs consist of up to thousands of heterogeneous devices con-
nected to the same network. Devices react to events and instructions emitted
by other devices and emit new events and instructions in response, causing
chain reactions throughout the system.

The different hardware and software traits of the devices affect the applications
deployed on these networks. Some devices are battery-powered, making them
unreliable in the long term. Some devices are connected using unreliable
networks, making them unpredictable in the short term. Some devices are
functionally equivalent (e.g., thermometers) but differ in their non-functional
aspects (e.g., encodings or protocols), affecting how they integrate into the
system. And finally, some devices are equipped with a computer that is not
suited for complex calculations.

In this dissertation, we propose a two-pronged approach to design contemporary
CPSs. First, we propose a novel distributed reactive stream-based architecture
to design CPSs. Reactive stream applications are declarative transformations of
possibly infinite streams of data. Additionally, distributed reactive streams al-
low multiple devices to work together on a single computation. The distributed
stream-based paradigm maps well to the event-driven large-scale event-driven
nature of CPSs. Secondly, we propose a meta-level architecture for stream
domain specific languages (DSL) to express the aforementioned non-functional
concerns of stream applications. We propose to use the meta-level architec-
ture to express the non-functional concerns and heterogeneous software and
hardware traits of the devices in a CPS.

We show that reactive streams is a valid paradigm to implement CPSs. The
reactive, distributed nature of stream programming enables the design of scal-
able, distributed, resilient, event-driven systems. The paradigm nudges the
programmer to design extensible applications that deal with open systems. The
meta-level architecture of the stream language separates the non-functional
and the logic necessary to integrate heterogeneous devices from the application

1

code.

We evaluate our stream paradigm by implementing a prototype stream Domain
Specific Language (DSL) called Creek. We develop a prototype meta-level
architecture in Creek called µCreek. We evaluate the meta-level architecture
by implementing shortcomings identified in the literature, such as pull-based
semantics, logging, encryption, and operator fusion. We evaluate the runtime
performance impact of the meta-level architecture. We evaluate our stream-
based approach for CPSs by implementing a prototype called Potato, and use
it to implement a smart building use case commonly found in the literature. We
show that our approach reduces much of the accidental complexity associated
with CPSs and that it results in maintainable and extensible applications.

2

Abstract

Moderne computernetwerken bestaan niet langer enkel en alleen uit main-
frames en computers. Dankzij de miniaturisatie en massaproductie van com-
puterchips is het mogelijk geworden om kleine computerchips in dagdagelijkse
objecten te stoppen, en zo een “digitale tweeling” te maken. Deze digitale
tweeling is een virtuele causaal verbonden representatie van het object. Als er
iets verandert in het object, verandert de digitale tweeling en omgekeerd. Een
netwerk van digitale tweelingen noemen we een Cyber-Physical System (CPS).
Apparaten in een CPS communiceren om een gezamenlijk doel te bereiken, en
zo de gebruikerservaring van het gehele systeem te verbeteren. Moderne CPSen
bestaan uit productiemachines, auto’s, oliepijpleidingen, robots, etc.

Moderne CPSen kunnen bestaan uit duizenden heterogene apparaten, ver-
bonden op een gezamenlijk netwerk. Elk apparaat reageert op signalen en
instructies van andere apparaten, en kan op zijn beurt nieuwe signalen en
instructies op het netwerk sturen. Dit zorgt voor een kettingreactie doorheen
het hele systeem.

De verschillende hard- en software eigenschappen van de heterogene apparaten
in een CPS beïnvloeden op welke manier er software gemaakt wordt voor deze
systemen. Sommige apparaten werken op een batterij, wat ze onbetrouwbaar
maakt op de lange termijn. Sommige apparaten zijn verbondenmet het netwerk
door middel van onbetrouwbare verbindingen, wat ze onbetrouwbaar maakt
op korte termijn. Sommige apparaten zijn functioneel equivalent (e.g., ther-
mometers), maar verschillen in hun niet-functionele eigenschappen (e.g., data
representatie of protocol). Deze verschillend zorgen ervoor dat apparaten niet
uniform geïntegreerd kunnen worden in het netwerk. Ten laatste zijn er ob-
jecten wiens computer niet krachtig genoeg is om complexe berekeningen uit
te voeren.

In deze verhandeling stellen we een tweeledige aanpak voor ommoderne CPSen
te ontwikkelen. Als eerste luik stellen we een nieuwe gedistribueerde event-
driven architectuur voor op basis van reactieve stromen. Reactieve stroom
applicaties zijn gedefinieerd als declaratieve transformaties van potentieel
oneindige stromen van data. Gedistribueerde reactieve stromen maken het
mogelijk voor meerdere apparaten om samen te werken aan een gezamenlijke
berekening. Gedistribueerde stromen zijn uitermate geschikt om event-driven
gedistribueerde systemen zoals CPSen uit te drukken. In het tweede luik van
onze aanpak stellen we een meta-architectuur voor stromen voor om de non-
functionele verschillen van apparaten te scheiden van de applicatie.

We tonen aan dat reactieve stromen een goed paradigma zijn om CPSen te
implementeren. De reactieve en gedistribueerde eigenschappen van reactieve

3

stromen maken het mogelijk om schaalbare, gedistribueerde, veerkrachtige
event-driven systemen te ontwerpen. Het paradigma begeleidt de ontwikkelaar
om uitbreidbare en open systemen te ontwikkelen. De meta-level architectuur
van de stromen scheidt de niet-functionele eigenschappen van de apparaten
van de applicatie logica.

We evalueren ons stroom paradigma door een prototype stroom DSL te imple-
menteren genaamd Creek. We ontwikkelen een prototype meta-level architec-
tuur voor Creek, genaamd µCreek. We evalueren onze architectuur hiermee
door tekortkomingen geïdentificeerd door de literatuur te implementeren zoals
pull semantiek, logging, encryptie, en operator fusie. Verder evalueren we de
performantie impact van onze meta-level architectuur. Tenslotte evalueren we
onze CPS architectuur aan de hand van een prototype implementatie, genaamd
Potato. We gebruiken Potato om een smart-building use-case uit de literatuur
te implementeren. We tonen aan dat onze aanpak de accidentele complexiteit
reduceert die gepaard gaat met CPSen, en resulteert in onderhoudsvriendelijke
en uitbreidbare applicaties.

4

Acknowledgements

I would like to start these acknowledgments by thanking my promotors, Wolf-
gang De Meuter and Jens Nicolay. Jens, thank you for always listening to my
ramblings and almost always doing an honest effort of trying to make sense of
them. I hereby relieve you of your duty. Wolf, thank you for having insightful
comments and ideas that helped shape the work presented in this dissertation,
and most importantly, for allowing me to get a Ph.D. degree.

I would like to thank the members of my jury, in no particular order, Prof. Dr.
Elisa Gonzalez Boix, Prof. Dr. Walter Cazolla, Prof. Dr. Hidehiko Masuhara,
Prof. Dr. Ann Nowé, and Prof. Dr. Abdellah Touhafi. Thank you for taking the
time to read my dissertation and the insightful questions.

More than anyone, I want to thank my wife, Kimber, for always believing in
me and pushing me to do my best and persevere when the going got tough.
Apparently, I wasn’t always the most enjoyable person to be around in the past
years, but that might be fake news, I’m adorable. Without your support and
encouragement, I would certainly not be where I am today, and for that, I am
forever grateful. One day you will get that statue in the town square of Aalst
– the capital of the observable universe – which I think you truly deserve. I
would also like to thank myself for finishing one of the hardest things I ever
had to do.

During my career at the VUB, I have met many interesting people that I would
like to express gratitude to. Maarten, thanks for being your weird self, and
especially thanks for letting me rant every now and then. Florian “Smalle”
Myter, thanks for always making me look swole when I stand next to you, and
thanks for the many politically correct laughs we shared in the Church of Iron.
Arnold is Numero Uno. Tall Maarten, even though we only worked together
briefly, and you are a quitter, I’m glad I can count a true altruist amongst my
friends. Quentin, thanks for going on smoke breaks with me, and for the many
conversations we had about plants, economics, computer science, and countless
other topics.

A word of gratitude is also necessary for all the people in the IRC channel
#infogroep. The channel is filled with some of the smartest people I know,
and all of them have always been helpful in one way or another, and have always
been kind to me. A big thanks to, sorted in lexicographic order, Botje, ErgRbt,
Ian, Ichabod, inspiran, Numlock, omega, robbe, rubdos, and ward.

Finally, I want to thank my family. Ma, pa, without your support I would not
have had the chance to be where I am today. Dirk, Giselle, thanks for cheering
me on all these years. I promise I’m getting a job now, and yes, yes, it won’t be
as fun as doing a Ph.D.

- Christophe 5

6

Dankwoerd

’K zo geeren men begeloiders bedanken, de Wolf en de Jens. Zemmen eir best
gedoon ver te loisteren en mé te begroipen azzek gediereg ont afloeipen was
oever ’t iejn of ’t ander. Ik peis da ze dikkes gepeist emmen in eir oigen: “wa
nen destereer.” Mor allei kom, weir zen der gerokt zonder al teveel kweddelen.
Zonder eir zollek et gralek vermoeist emmen, echt woor, dikke merci.

Ik moeng die mensjen van menne jury oeik noig bedanken, want ’t zen dedie
die ’t oon eere resaur oin ver giejl den bataklang te moeten leizen. Ni just teis
ier, wa da ge goi na ont leizen zet. Prof. Dr. Elisa Gonzalez Boix, Prof. Dr.
Walter Cazolla, Prof. Dr. Hidehiko Masuhara, Prof. Dr. Ann Nowé, en Prof. Dr.
Abdellah Touhafi, dikke merci!

Kzal men vra, Kimber, oeik mor bedanken, of ’k gon paretten emmen tois.
Binsjt dak men pansj zitten afdroin ém oon da verrozjeken ier, ejje goi (’t schantj
toch, allei) me nen onverdraugelekken op a dek gezeiten. Een ander zol et ni
gedoon emmen, mor goi wel. Zonder a mochten ze moi e zottekliejd oondoeng
en binnesteiken, en oik zeiker giejnen doktoer geworren. Vazeleeven goje e
stambeltj kroigen op de groeite mert, want achter dees histoere ejjet miejr as
verdindj.

On aal de mensjen van ier in Brissel, merci vér alles. Kem dikkes gelachen, veel
geliejrd, en veel kamerooten gemokt. ’t Es zonne da da leste betjen cultuur na
vertrekt oit Brissel, mor ’t hangt ier men voetn oit en ’k ben den of af. Merci
allemool, noste kiejr est bé ons.

As leste moenek mé ma en mé pa toch oeik bedanken. Azzek jonk was emmek
er dikkes men voetn oon geveegd en tei vriejt lank gedierd, mor ’k ben der toch
gerokt. Merci vér de possensje. Dirk en Giselle, ’k wil eir toch oeik bedanken
ver azoei te supporteren. Da zejje oeik wel moei zen na. Merci ein.

Allei, kert en goed, ’t es enjelek gedoon me schoefelen op eir kosten, plasjt isj in
eir annen. Na kennen ze met’nienen iet nuttig doeng me eer belastingen. ’t Was
petank giejsteg vér den toid dat gedierd eit.

- Christophe

7

8

Contents

1 Introduction 19
1.1 Towards Stream-Based Cyber Physical Systems (CPSs) 20

1.1.1 Challenge 1: Hetereogeneous Devices 21
1.1.2 Challenge 2: Large Scale 22
1.1.3 Challenge 3: Unreliable Systems 22
1.1.4 Challenge 4: Open Systems 23
1.1.5 Challenge 5: Limited Computational Power 23

1.2 Research Context . 24
1.3 Research Goal . 24
1.4 Approach . 25
1.5 Contributions . 25
1.6 Supporting Publications . 26
1.7 Outline of the Dissertation . 27

2 Creek: A Prototypical Stream DSL 29
2.1 Stream Domain Specific Language (DSL) Properties 29
2.2 Creek: A Novel Stream Programming DSL 34

2.2.1 Hello, Creek! . 34
2.2.2 Operators . 36
2.2.3 DAGs . 39
2.2.4 Streams . 41
2.2.5 The Canonical Stream Protocol 42

2.3 Stream Termination Protocol . 47
2.4 Summary of Chapter . 49

3 µCreek: A Meta-Programming Approach for Stream Languages 51
3.1 Motivation . 51

9

3.2 Problem Statement . 52
3.2.1 Problem #1: Lack of Canonical Non-Functional Operators 53
3.2.2 Problem#2: Entanglement of Functional andNon-functional

Operators . 56
3.2.3 Problem #3: Hard-coded Execution Semantics 58

3.3 Meta-Programming: Terminology 60
3.4 Separating Domain Logic in Streams 61

3.4.1 µCreekC : Compile-Time Meta 61
3.4.2 µCreekR: Run-Time Meta 73

3.5 Discussion . 82
3.5.1 Design Philosophy . 85

3.6 Evaluation . 86
3.6.1 Creek Debugger . 87
3.6.2 Performance Benchmarks 91

3.7 A Note on Related Work . 93
3.8 Summary of Chapter . 95

4 Potato: A Streaming Platform for CPS 97
4.1 Motivating Scenario: VUB 4.0 Campus 99

4.1.1 Scenarios . 100
4.1.2 Conclusion . 101

4.2 Design Challenges in Cyber-Physical Systems 101
4.3 Potato: A Stream-Based CPS Framework 104

4.3.1 Node Descriptor: Device Identification 106
4.3.2 World Stream: Service Discovery 107
4.3.3 First-Class Reactive Programs: Dynamic Updates 110
4.3.4 Data Stream: Data Dissemination 111
4.3.5 Update Stream: Real-Time Updates 112

4.4 Building Applications with Potato 114
4.4.1 Stream-Based Service Discovery 114
4.4.2 Code Deployment & Offloading 115
4.4.3 Handling Failures . 117
4.4.4 Dedicated Streams . 118

4.5 Separating Concerns in Potato with Creek 119
4.6 Related Work . 121

4.6.1 Wireless Sensor Networks 121
4.6.2 Internet of Things . 123
4.6.3 Conclusion . 126

4.7 Evaluation . 128
4.7.1 Potato Compared To General Purpose Language 128
4.7.2 Recurring Patterns . 130
4.7.3 Memory Footprint . 135

10

4.8 Summary of Chapter . 139

5 Implementation 141
5.1 Elixir as a Language Laboratory 141

5.1.1 Macros . 142
5.1.2 Creek DSL Design . 144

5.2 Creek Implementation . 145
5.2.1 Implementing Operators 145
5.2.2 Implementing Directed Acyclic Graph (DAG)s 147
5.2.3 Implementing Streams . 147
5.2.4 Implementing Distributed Streams 148
5.2.5 Implementing µCreekR 150
5.2.6 The µCreekC Compilation Pipeline 152

5.3 Potato . 153
5.3.1 Implementing Node Discovery 153
5.3.2 Implementing Mobile Code 154

5.4 Summary of Chapter . 154

6 Conclusion 155
6.1 Revisiting Problem Statement . 155
6.2 Summary . 156
6.3 Revisiting The Contributions . 157

6.3.1 The Creek & µCreek Models 158
6.3.2 The Potato Framework . 158

6.4 Limitations and Future Work . 159
6.5 Closing Remarks . 163

A A Primer on Elixir Programming 165

B Source Code Logging 177

C Source Code Operator Fusion in µCreekC 179

D Source Code Parallelization in µCreekC 181

E Source Code Pull Semantics in µCreekR 185

F Decoding Thermometer Measurements in µCreekR 189

G Source Code Anabranch DAG in µCreekR 191

H Source Code for Potato Scenarios 195

11

12

Acronyms

CPS Cyber-Physical System.

CSP Canonical Stream Protocol.

DAG Directed Acyclic Graph.

DSL Domain Specific Language.

IoT Internet of Things.

WSAN Wireless Sensor and Actuator Network.

WSN Wireless Sensor Network.

13

14

List of Listings

1 Composing source, sink, and transformations in Akka Stream. . 31
2 RxJava requires source and operations to be defined in a single

expression. 31
3 Parallelizing a stream in RxJava. 32
4 A first look at Creek: Generating a list of the first 100 squares of

even numbers. 35
5 An example of an open DAG. The DAG expects log messages and

only prints out the error messages. 40
6 A DAG to compute the product of a stream. 41
7 An example of a closed DAG. The actor sockets log_src and

log_snk will be replaced with actors once the DAG is deployed. 41
8 Example of deploying a DAG in Creek. 42
9 Implementation of the filter operator in Creek. 45
10 The implementation of the range operator in Creek. Every time

the tick event is received from the runtime, the range operator
generates the next value in the interval. When all values have
been emitted, the range operator completes. 46

11 Implementation of the to_list operator in Creek. 48
12 Error handling in Akka Streams using Decider. All Illegal c

ArgumentExceptions cause a restart, and other exceptions stop
the stream execution. 53

13 AnRxJava Streamprogram that applies longLastingComputation
over each datum in the stream. The sequential program is shown
on the left, and a parallelized version on the right. The paral-
lelization factor is hidden in the Schedulers definition. 55

15

14 AnAkka Streamprogram that applies longLastingComputation
over each datum in the stream. The sequential program is shown
on the left, and a parallelized version that uses a parallelization
factor of 2 is shown on the right. 55

15 Computing the average sentiment of tweets related to COVID-19
sequentially in Akka Streams. 57

16 Computing the average sentiment of tweets related to COVID-19
in parallel in Akka Streams. 57

17 Processing temperature measurements with a buffer operator
to simulate pull-based semantics in Akka Streams. 59

18 Psuedo-code to fold the instruction stream into a DAG. 64
19 Meta-program that logs the input and output of each map opera-

tor in a base-level DAG. 68
20 A DAG that extracts IP addresses from binary data. The DAG is

compiled with verbose logging (line 3). 69
21 Example of a meta stream fusing consecutive map operators to-

gether. 71
22 Meta-DAG to log all the incoming values and outgoing values of

each operator in a stream. 78
23 Example application that loads the Loggingmeta-DAG. 79
24 Example output of the Loggingmeta-DAG. 79
25 Handling initmessages for source operators in pull-based streams. 80
26 Handling tickmessages for source operators in pull-based streams. 81
27 Handling demand messages for source operators in pull-based

streams. 81
28 Handling demand messages for source operators in pull-based

streams. 82
29 The debugger meta-DAG for source operators. 91
30 Identity Meta behavior . 92
31 A Potato application that turns of all the heating systems in the

same room as the laptop. 107
32 Node descriptor for Professor Boole’s smartphone. 108
33 Example of a datum emitted by the world stream. 108
34 Example of designation using the world stream in Potato. . . . 108
35 Afirst-class program that sets the target temperature of theHVAC

system to 24 degrees. 110
36 Reactive DAG to continuously read out a sensor and emit onto

the network through the data stream. The local data_stream
is used as a sink in the emit_temperature DAG. 112

37 Device A deploying an update on a remote device, B. 113
38 Printing out the identifier of all the thermometers in the network.115

16

39 Computing the average temperature per minute of all thermome-
ters. 116

40 Decoding the values coming from a source. 121
41 Skeleton code to discover devices on the network in Elixir. . . . 132
42 Skeleton code to discover devices on the network in Potato. . . . 132
43 Process that can be subscribed to in Elixir. 133
44 Process that can be subscribed to in Potato. 133
45 Linking to subscribed processes. 134
46 Skeleton code to handle failures in a stream in Potato. 134
47 Deploying a function on a remote device in Elixir. 135
48 Deploying a program on a remote device in Potato. 135
49 An unless expression, and the equivalent if expression that the

macro (see listing 51) turns it into. 143
50 The AST of unless 5 != 5, do: 1 143
51 The macro definition of unless. 144
52 Operator behavior in Creek. 146
53 Implementation of the map operator. 146
54 Example of a deploy statement. 148
55 The skeleton of an operator actor in Creek. 149
56 Code to deploy themeta-DAGwhen an operator process is started.

Code is redacted for readability, for full implementation see
https://github.com/softwarelanguageslab/creek. 150

57 Conditional structure to process internal messages in an operator
process. Code is redacted for readability, for full implementation
see https://github.com/softwarelanguageslab/creek. . . 151

58 REPL session to showcase pattern matching. 167
59 Iterative factorial implementation in Elixir. 168
60 REPL session to calculate the factorial of 5. 168
61 REPL session to calculate the factorial of 5 using higher-order

functions. 169
62 REPL session to create a database process in a separate process. . 169
63 Syntax of the receive statement. 170
64 Example of a monitor message. The monitored process encoun-

tered a division by zero. 171
65 An echo server that echos the sent messages and keeps track of

how many messages it received. 173
66 A macro that adds a while loop to Elixir. 174
67 A function that uses the whilemacro. The function blocks until

the given pid terminates. 174
68 Full source code for logging in µCreekR. 178
69 Full source code for operator fusion in µCreekC 180
70 Full source code for parallelizing operators in µCreekC 183

17

https://github.com/softwarelanguageslab/creek
https://github.com/softwarelanguageslab/creek

18

71 Full source code for pull-based semantics in µCreekR. 188
72 Full source to decode the values from thermometers. 190
73 Full source code for operator fusion in µCreekC 194

Chapter 1
Introduction

Cyber Physical Systems (CPSs) are the integration of physical systems and
computational processes. Physical devices are augmented with embedded com-
puters that represent the state of the physical device and allow remote control
of the physical device by means of software. The embedded computers are
networked, making it possible to exchange data and commands. The software
that runs on top of these networks is built to increase the efficacy of the physi-
cal systems. CPSs have been applied to increase response time in oil pipeline
leaks [13], improve traffic flow at intersections [53], improve the sustainabil-
ity and energy efficiency of large office spaces [50], and improve the energy
distribution between households [5].

Designing CPS applications that run on top of these networks poses a unique
set of software design challenges that have to be addressed by these application.
CPSs are large-scale systems that can consist of hundreds of heterogeneous devices.
Integrating many heterogeneous devices forces the application logic to cater to
their different traits, polluting the application logic with non-functional concerns
and hindering extensibility. Some devices participating in a CPS can be limited
in their computational power, impacting the types of services they can provide
to the application. The only way for devices with limited resources to provide
complex services is to involve other devices in their computations. Finally,
devices in a CPS may join or leave the network at undefined times, which forces
the application to either use equivalent devices, or wait for the network to be
restored to continue operation.

Developers need the appropriate tools to express such applications. The in-
dividual challenges just outlined have been thoroughly researched, but our
literature study (see section 4.6) leads us to conclude that there is no approach

19

20 Towards Stream-Based CPSs

Figure 1.1: Graphical Depiction of a CPS. All types of devices are connected to a network to
exchange information and instructions.

that addresses all the challenges in a unified paradigm, and no approach exists
that uses the stream paradigm. In brief, contemporary approaches do not address
all these challenges, requiring the application developer to address them in an ad-hoc
way, as part of the application code.

At the heart of a CPS is a perpetual feedback loop, because it is an event-driven
system connected to the physical world at its very core. CPS applications define
data streams between devices, and the instructions that are sent to devices.
Reactive stream programming is designed to express event-driven systems [54, 16]
such as GUI programming [69], robotics [61], and data processing [96]. In this
dissertation we propose reactive streams as a foundation for CPS applications.

The data exchange between devices can be trivially expressed as a reactive
stream, however, the dynamic network evolution, network failures, and het-
erogeneous devices and their range of non-functional concerns are not directly
translated to a stream-based approach. In this work, we explore how we can
incorporate these challenges in the stream paradigm.

1.1 Towards Stream-Based CPSs

The reactive stream paradigm describes what happens to a stream of data,
rather than how. Consider the example below of a stream of Kelvin temperature
measurements. Two declarative transformations filter out all the measurements
that are below 35 degrees Celcius.

Introduction 21

thermometer
~> map(fn k -> k - 273.15 end) # Kelvin to Celsius
~> filter(fn c -> c > 35.0 end) # Only values above 35.0 Celsius

The above stream definition describes the transformations that should happen
(i.e.,what) when the thermometer stream emits a newmeasurement. The above
application is event-driven because the thermometer is an external process
that triggers the computation. This inversion of control is inherent to event-
driven systems, and is characteristic of CPSs as well. Traditionally, event-
driven systems are programmed using callbacks. Callbacks contain a part of the
application logic that is executed in reaction to an external event. The downside
of callbacks is that application logic is spread over multiple callbacks, which
reduces the program structure. Stream-based programming is an alternative to
programming with callbacks. A stream declaratively specifies what happens in
reaction to an event, while preserving the application logic structure.

We envision a programming framework where CPSs are defined entirely as
stream-based applications. However, in the state of the art, not every challenge
can be trivially addressed from within the stream paradigm. In what follows,
we explain the design challenges of CPSs, and how we propose to tackle them
in the stream paradigm. The result will be a framework where all concerns
related to a CPS will be expressed in the stream paradigm.

1.1.1 Challenge 1: Hetereogeneous Devices

The devices in a CPSmay represent a wide array of physical devices, resulting in
a network of heterogeneous devices. The differences between these devices hinder
integration into the application because the application has to cater to each
device its specific properties. Additionally, the data streams between devices
can have different non-functional concerns, such as security, performance, and
quality of service. In software engineering, these non-functional concerns and
differences between devices should be addressed separately from the application
logic. Consider the case of two thermometers. Both thermometers measure
their environmental temperature, but non-functionally, they can differ in the
encoding of the values (e.g., XML vs. JSON), or the scale they use (e.g., Kelvin
vs. Celcius).

Two popular approaches for dealing with non-functional concerns in appli-
cations are aspect-oriented programming [59, 60] and meta-level program-
ming [20, 15, 42]. Research into meta-level programming has been done for
object-oriented programming [15, 20], logic programming [19], and procedural

22 Towards Stream-Based CPSs

languages [89]. To the best of our knowledge, no meta-programming approach
exists for stream-based languages.

Conclusion The heterogeneity in a CPS requires application developers to
adapt the application logic to address non-functional differences between de-
vices. Meta-level programming is a well-established approach to solve this problem,
but no approaches exist for stream-based languages.

1.1.2 Challenge 2: Large Scale

In practice, CPSs can contain hundreds of devices that each provide a service to
the network, resulting in a complex web of communication channels between
these devices and continuous streams of data. Manually defining pairwise
communication in an application is not scalable; the approach becomes incon-
venient beyond a few dozen devices. There is a need for abstractions that help
to define a large number of communication channels without burdening the
programmer to define them separately.

Streams excel at defining data transformations between devices, but offer little
help in configuring transformations at a larger scale.

Conclusion The large-scale of CPSs burdens the programmer with setting up
data dependencies between individual devices. Current stream-based frame-
works can express many-to-many communication, but the streams between the
devices need to be configured individually. We propose scalable stream-based
abstractions to designate devices and configure data streams between them.

1.1.3 Challenge 3: Unreliable Systems

Some devices in a CPS are connected over an unreliable connection or have a
limited power source, resulting in failures in parts of the application. As a result,
the data streams defined between devices can be interrupted at undefined times.
As a result, devices cannot rely on the availability of the services they consume,
and interruptions must be handled by the application accordingly.

Contemporary stream libraries such as Akka Streams and RxJava feature a form
of asynchronous failure handling to handle fatal application errors. However,
we argue that a network failure in a CPS is not a fatal error, but a normal part
of the application. This too, should be expressed in the stream paradigm.

Conclusion The unpredictable nature of CPS networks requires the appli-
cation to deal with scenarios where a data stream is interrupted abruptly. We
propose network interruptions and device failures to be exposed at the application

Introduction 23

level as a stream of regular network events, rather than failures, so the network
failures can be addressed as part of the stream-based application logic.

1.1.4 Challenge 4: Open Systems

The network of a CPS is not static, because devices can join and leave the
network at undefined times during the entire lifespan of the application. For
example, mobile devices, broken devices, and replacements for broken devices,
can cause changes in the topology of the network. When devices are part of a
distributed service, the service breaks down when a device disconnects. The
application has to define its data streams between devices in such a way that
they deal with a changing network topology.

The stream paradigm in its original form does not provide any mechanisms to
handle changes in the network topology. When part of a stream is unavailable,
a program fault occurs. Services and their data streams should be defined such
that a change in the network topology does not cause a program fault.

Conclusion The open nature of CPSs requires the application to define data
streams between devices in terms of a dynamic network topology. We propose
a stream of network events that can be used to express applications that adapt to
changes in the network.

1.1.5 Challenge 5: Limited Computational Power

A CPS may contain devices that have limited computational power that cannot
provide complex services on their own, but serve as a source of data in the
system. Examples of such devices are thermometers, displays, and speakers.
Creating services on these devices requires other devices to execute the complex
computations.

Distributed stream programming can solve the challenge of involving other de-
vices in a computation, but does not directly address the distribution of the
computation on the network. It is unfeasible to provide all the necessary logic
for a plethora of services when deploying a CPS application, especially in an
open network. A dynamic approach is required that allows application logic to
be distributed at runtime.

Conclusion Devices with limited resources in a CPS can provide services
to the system if they involve other devices through distributed computations.
Streaming data between devices on a network is not problematic in itself, how-
ever, deploying the necessary logic on the devices beforehand is required. We

24 Research Goal

propose to stream application logic (i.e., mobile descriptions of streams) to remote
devices at runtime.

1.2 Research Context

Our research is situated at the intersection of:

1. Cyber-Physical Systems Our research is centered around CPSs. As we
have explained above, we explore the applicability of the stream paradigm as
a viable approach to express cyber-physical system applications.

2. Software Architecture In this dissertation, we propose a stream-based
software architecture for CPSs to tackle the challenges currently present
in the design of CPSs. Devices and their data exchange can be naturally
expressed as a data stream. We argue that network events and code
deployment can be expressed in the stream paradigm, leading to a unified
programming paradigm to tackle all the challenges listed in section 1.1.

3. Meta Programming The heterogeneous nature of the devices in a CPS
creates variations in their non-functional concerns, which hinders integra-
tion. In this dissertation, we define and implement a meta-level architecture
for stream-based programming and use it to address those variations.

1.3 Research Goal

This dissertation investigates how a stream-based approach can be used
all the way down (i.e., application logic and non-functional concerns) to
designCPSs. Streams are a promising paradigm to express CPSs, but additional
research is necessary on how to address the challenges of CPSs. In particular,
we wish to represent all concepts of a CPS as a stream, i.e., the network, the
data exchange between devices, and the non-functional concerns. We impose
the following requirements to our approach.

1. Data exchange between devices must be represented as a stream.

2. The open and volatile network must be represented as a stream.

3. Devices must be able to set up distributed streams at runtime.

4. The non-functional concerns of the devices must be expressed as a stream,
separated from the application logic.

Introduction 25

1.4 Approach

This dissertation proposes a novel stream-based approach to develop CPSs. We
tackle this using two approaches.

1. We distill the commonalities of contemporary stream Domain Specific Lan-
guages (DSLs) based on a state of the art survey (section 2.1). We implement
a DSL prototype in a mainstream general-purpose programming language,
called Creek, based on the survey (section 2.2.1).

2. We investigate how non-functional concerns are addressed by contemporary
stream DSLs (section 3.2).

3. We present the design of a meta-level architecture for stream DSLs, and build
a prototype on top of our stream DSL called µCreek (section 3.4).

4. We evaluate our meta-level architecture by implementing four non-functional
concerns found in the literature (section 3.4.1). Additionally, we implement
a prototype debugger on top of the meta-level architecture to show its
expressiveness (section 3.6).

5. We propose a framework to express CPSs in the stream paradigm, called
Potato (section 4.3).

6. We evaluate our framework by implementing a smart-building use case from
literature. We qualitatively compare our approach to related work (sec-
tion 4.7).

1.5 Contributions

This dissertation makes the following contributions.

A stream-based framework for CPSs. We propose a novel stream-based frame-
work called Potato to design CPS applications that represents all concepts
from a CPS, such as the network, the data, and the devices as streams. Potato
represents all concerns in a CPS to the programmer as a stream, allowing appli-
cations to deal with concerns such as scalability, service discovery, scalability
and code offloading from within the stream paradigm.

A meta-level architecture for stream DSLs. A proposal for a meta-level archi-
tecture design for stream DSLs, called µCreek. The architecture is designed
according to the design guidelines set forth by related work inmeta-level design.
µCreek makes it possible to address the heterogeneity of devices in a CPS. All
the logic necessary to address the differences between devices is expressed as a
meta-level application, rather than polluting the base level code.

26 Supporting Publications

Prototypical Implementations. We provide a prototypical implementation
of a stream DSL, a meta-level architecture on top of this stream DSL, and a
framework for CPSs based on these prototypes. All the artifacts are available
online1.

1.6 Supporting Publications

The work presented in this dissertation is published at peer-reviewed venues.
We list and summarize them below.

• Building Internet of Things (IoT) Systems using Distributed First-
Class Reactive Programming Christophe De Troyer, Jens Nicolay, Wolfgang
De Meuter IEEE International Conference on Cloud Computing Technol-
ogy and Science, 2018.

This paper discusses the approach of the Potato middleware in the con-
text of IoT systems. It introduces the stream-based paradigm around
which Potato revolves, and shows it is well-suited to design large-scale
distributed event-based systems.

• The Art Of The Meta Stream Protocol Christophe De Troyer, Jens Nicolay,
Wolfgang De Meuter Art Science and Engineering of Programming, 3(3):5,
2021.

This paper introduces meta-level facilities into the stream paradigm used
in our other work [94]. The meta-level approach allows the programmer
to define different semantics for specific streams in a single code base.
We argue that a single application does not always have the intended
semantics and that themeta-level is the best place tomodify the semantics.

Additionally, two workshop papers were published that mark the beginning of
our work presented in this dissertation [93, 92].

• First-class reactive programs for CPS Christophe De Troyer, Jens Nico-
lay, Wolfgang De Meuter Proceedings of the 4th ACM SIGPLAN Internal
Workshop on Reactive and Event-Based Languages and Systems, 2017.

This paper introduces the concept of stream-based programming for CPSs,
and built on the hypothesis that CPSs are inherently event-driven systems
that can be expressed as streams of data and software.

• Abstractions for Distributed Event-Driven Applications

1http://github.com/softwarelanguageslab/creek

http://github.com/softwarelanguageslab/creek

Introduction 27

Christophe De Troyer, Jens Nicolay, Wolfgang De Meuter, and Christophe
Scholliers 2018 Companion to the first International Conference on the
Art, Science and Engineering of Programming, 2017.

This paper proposes to equip every device in a CPS with a minimal virtual
machine to execute application code that is deployed at runtime. The
hypothesis being that moving code towards data improves resilience, and
reduces network traffic.

Finally, this dissertation has lead to five successfully defended master theses.

1.7 Outline of the Dissertation

The dissertation is structured in the following chapters.

• Chapter 2: Creek: A Prototypical Stream DSL

This chapter introduces our new stream language, called Creek. We use
Creek as a technological vehicle to define what stream languages are, and
as a yardstick to taxonomize related work.

• Chapter 3: µCreek: A Meta-Programming Approach for Stream Lan-
guages

This chapter discusses our reflective architecture for stream-based lan-
guages, called µCreek. It introduces compile-time reflection, run-time
reflection, and a performance evaluation of our reflective architecture
compared to the language without reflective features. µCreek allows us to
define the differences between devices in a CPS separately from the base-
level application. This results in an application where non-functional
and functional concerns are cleanly separated.

• Chapter 4: Potato: A Streaming Platform for CPS

In this chapter, we discuss the design and features of Potato in detail.
The chapter covers the reactive streams language and its core concepts,
the representation of the network and entities as reactive streams, and
first-class reactive programs.

• Chapter 5: Implementation

In this chapter, we present a broad overview of our prototype implemen-
tation, Potato. We discuss the design and architecture of Potato, why we
chose Elixir as a foundation for our prototype, and which of its features
have benefited us. We explain the architecture of Potato, the mechanisms
behind the representation of the network and devices, and the evaluation

28 Outline of the Dissertation

of the first-class reactive programs. We conclude with an overview of the
meta-level architecture of the stream language.

• Chapter 6: Conclusion

We conclude our dissertation by summarizing the contributions and the
limitations of our work and discussing avenues for further research or
improvement in the state of the art of CPS and reflective architectures for
stream languages.

Chapter 2
Creek: A Prototypical Stream
DSL

A Cyber-Physical System (CPS) is a system that consists of physical devices
and their digital counterpart. The digital devices continuously generate events
coming from their environment and react to events coming from other devices.
The devices work together to create a user experience that is more useful than
the sum of its parts. CPSs are data-driven systems, thus stream programming
is well-suited to express them without the drawbacks associated with other
event-driven paradigms.

Chapter 1 introduced software design challenges in the context of CPSs, and
section 1.4 proposed stream programming as a suitable paradigm to tackle these
challenges. Most contemporary general-purpose programming languages have
a library or Domain Specific Language (DSL) that adds stream programming
abstractions. The abstractions are highly similar across languages in terms
of syntax but have – sometimes subtle – differences in their semantics. We
taxonomize the state of the art, and based on that, we build a prototype stream
DSL, called Creek. We use it as a basis to formulate a stream-based meta-
level architecture in the next chapter (chapter 3). Finally, chapter 4 introduces
Potato, a stream-based framework using Creek to program CPSs.

2.1 Stream DSL Properties

Many stream Domain Specific Languages (DSLs) have their own specific ter-
minology for similar concepts, making it harder to compare features across
DSLs. In this section, we use the terminology from Akka Streams and use it to

29

30 Stream DSL Properties

identify equivalent concepts in other DSLs. We compare these concepts across
the state of the art in stream DSLs. We selected DSLs for reactive streams in
the most popular general purpose languages. However, all implementations
of Reactive Extensions (i.e., RxJava, RxJS, RxRust, RxPython, …) are modeled
after the prototypical implementation, called RxJava, so we consider them the
same and omit them. Akka Streams is the only DSL that is two-phase, where
the definition of a stream and its execution (i.e., deployment) are distinct steps
in the application. PLINQ and Java Streams are two DSLs that are part of their
host language, C# and Java respectively. We included both in our comparison
because PLINQ supports concurrency out of the box, while Java Streams does
not. Finally, Flow, a DSL part of the Elixir language, is included because it is, to
the best of our knowledge, the only push-based stream DSL. The summary of
our literature study is shown in table 2.1.

Name Execution Phases Semantics Backpressure

RxJava Concurrent Single Pull Yes
Akka Streams Concurrent Double Pull Yes
Java Streams Sequential* Single Pull -
PLINQ Concurrent* Single Pull -
Flow Concurrent Single Pull Yes
Streamz Sequential* Single Pull -
Creek Concurrent Double Push No

Legend –: Not Applicable, *: With option to modify.

Table 2.1: List of state of the art in streaming DSLs.

Common Concepts At a high level, all stream DSLs revolve around four con-
cepts. A stream is composed out of individual operators, atomic transformations
that propagate through the stream at runtime. The operators that inject data
into a stream are called sources, and the operators that consume data from
a stream are called sinks. Operators are connected by their in- and outputs,
forming a DAG. A Directed Acyclic Graph (DAG) is a blueprint for a stream.
When a DAG is deployed data starts propagating through it. A deployed DAG is
called a stream.

Single and Double Phase DSLs Exploring the state of the art in stream DSLs
we find two main categories of DSLs: single phase and double phase DSLs. In the
former, a stream is defined as an expression that is immediately evaluated. In
double phase DSLs the definition of the DAG and its deployment are separate
steps. In other words, a stream definition is a first-class value in double phase

Creek: A Prototypical Stream DSL 31

languages, typically called a DAG. DAGs can be assigned to variables, returned
from, and passed to functions.

Double phase DSLs have two advantages over single phase DSLs. First of all, in
double phase DSLs, streams can be composed out of separately defined DAGs.
Single phase DSLs require the stream to be defined in a single expression. This
limitation prohibits single phase DSLs to create partial streams, and hinders
modularity.

The second advantage of double phase DSLs is that the stream, i.e., application
logic, can be defined separately from its data sources and sinks. In a single
phase DSL the data sources and sinks are part of the stream definition.

A double phase language makes it easier to write reusable and composable
stream definitions. In the state of the art we surveyed, Akka Streams and Creek
are both double phase DSLs, while RxJava, Java Streams, Flow, LINQ, and
Streamz are single-phase DSLs.

1 object Factorial extends App {
2 implicit val system: ActorSystem = ActorSystem("Factorial")
3 val source = Source(1 to 5)
4 val sink = Sink.head[Int]
5 val factorial = Flow[Int].reduce((acc, e) => acc * e)
6 val stream: Future[Int] = source.via(factorial).runWith(sink)
7 val res: Int = Await.result(stream, Duration(5, TimeUnit.SECONDS))
8 print(res)
9 }

Listing 1: Composing source, sink, and transformations in Akka Stream.

1 public class Factorial {
2 public static void main(String[] args) {
3 Flowable<Integer> source = Flowable.range(1, 5);
4 Flowable<Integer> operation = source.scan((acc, e) -> acc * e);
5 Disposable result = operation
6 .takeLast(1)
7 .subscribe(System.out::println);
8 }
9 }

Listing 2: RxJava requires source and operations to be defined in a single expression.

Consider the code listings in listings 1 and 2. The listings show how to calculate
the factorial of 5 in RxJava (listing 2) and Akka Stream (listing 1). RxJava is
a single phase DSL, and Akka Stream is a double phase DSL. This becomes
apparent when defining the source, sink, and transformations of the stream.

32 Stream DSL Properties

In listing 1, the source (line 3), sink (line 4), and transformation (line 5) are
defined separately and require no reference to each other. Composition is only
required before the stream is deployed (i.e., executed). This is possible because
the DAGs source, sink, and factorial, are first-class values. In listing 2,
the source (line 3) is the only operator that can be defined separately from the
stream. The transformations (line 4) and the sink (line 5) have to be defined
in terms of their predecessors in the stream. Additionally, the sink definition
(lines 5–7) doubles as the deployment step.

Execution A stream is – by construction – a pipeline with distinct stages or op-
erators. Each operator is an atomic functional unit that applies a transformation
to each datum propagating through the stream. Each operator takes as input
the result of one or more preceding operators (upstream operators). Once an
operator has processed a datum, it emits the resulting datum to its proceeding
operators (downstream operators). Due to the atomic nature of operators, the
operators can execute in pipeline parallelism [75]. Pipeline parallelism allows
every operator to process a datum concurrently with the other operators. Look-
ing at the state of the art, we see that some DSLs (e.g., Java Streams, RxJava, and
PLINQ) execute streams sequentially by default but offer the programmer a way
to introduce parallelism by explicitly annotating parts of the stream. Listing 3
shows an example of an RxJava stream where the map operator is parallelized.
The highlighted lines indicate changes in the stream definition to enable par-
allelism. The parallelization is obtained by manually placing different parts
of a stream onto separate (virtual) processes. Akka Streams, Flow, and Creek,
execute streams using pipeline parallelism by default.

1 source
2 .subscribeOn(Schedulers.computation())
3 .flatMap(val ->
4 just(val)
5 .subscribeOn(Schedulers.computation())
6 .map(i -> longLastingComputation(i))
7 .subscribeOn(Schedulers.single()))
8 .subscribe();

Listing 3: Parallelizing a stream in RxJava.

Propagation Semantics If one operator of a stream is executing in a separate
process, concurrency exists between operators. For example, a stream that
depends on an third-party stream of data (e.g., a Twitter stream) is concurrent
with its source. Concurrency can cause rate mismatch between a pair of op-
erators. When the producer of a stream produces data at a faster rate than a

Creek: A Prototypical Stream DSL 33

consumer (e.g., a database), some operators in the stream will become congested.
A congested operator cannot process data as fast as the upstream is providing
it. The data generated by the producer must be buffered somewhere until the
consumer can process it. An unresolved rate mismatch eventually leads to data
loss. A solution to rate mismatch is changing the way data propagates through
a stream, called the propagation semantics. The propagation semantics of a
stream is the protocol operators use to communicate to propagate data through
the stream. The simplest form of propagation semantics is called push-based
semantics, where each operator receives data and emits it as fast as it can process
them. It requires no additional communication between operators besides the
data itself, but is susceptible to rate mismatch.

Figure 2.1 graphically depicts the push-based semantics of a stream between
three operators. Operator A emits its values to B, which processes the values
and propagates them to C. In this diagram, C is the slowest operator in the link,
creating a rate mismatch between C and its upstream. If this is not resolved,
messages emitted by B will be lost.

5 4

A B C

3 2 1

Figure 2.1: Diagram depicting the communication for push-based semantics.

The most common semantics in the state of the art is backpressure propagation,
or a variation of backpressure propagation. Figure 2.2 graphically depicts a
diagram depicting the simplest form of backpressure. When an operator notices,
e.g., by looking at its message queue, that it can no longer process enough values
to keep up with the upstream, it will signal its upstream to back off. When the
operator has processed its queue, it can signal the upstream to send more data.
Most stream DSLs (i.e., RxJava and Akka Streams) implement a variation of
backpressure. In the state of the art, backpressure is typically only present in
DSLs that execute streams concurrently. In a sequential stream DSL, only one
stage is computing at any given time, ruling out rate mismatch entirely. PLINQ,
Streamz, and Java Streams are examples where backpressure is absent. Akka
Streams and Flow offer some form of backpressure because they have parallel
execution.

Figure 2.2 graphically depicts backpressure between three operators. C is the
slowest operator in the stream, and values are building up in its message queue.
When the queue reaches some predefined threshold, the operator sends an
internal message to its upstream operators to stop producing data . B, all
other operators propagate the request upstream until it reaches a source,

34 Creek: A Novel Stream Programming DSL

which stops producing data.

1 1

A B C

1 1 1

Back offBack off 12

Figure 2.2: Diagram of backpressure in a stream.

2.2 Creek: A Novel Stream Programming DSL

Creek is a prototype implementation of a generic stream Domain Specific Lan-
guage (DSL) that will serve as an experimentation vehicle for our approach in
chapter 3. In this section we show a example application application, introduce
Creek and its syntax, define the components of a Creek program, and define
the semantics of the language.

Creek is a DSL in Elixir; a functional actor language that runs on the Erlang
Virtual Machine (BEAM). Creek has been designed as a concurrent double-
phase DSL with push-based semantics, and no backpressure. A double-phase
DSL is the evident choice because – as opposed to single-phase – it allows
modularity and composition of “partial streams”. Because Creek has been im-
plemented on an actor-based language, concurrency was nearly free. We chose
to avoid complexity in the base level of Creek by implementing push-semantics.
Push-semantics do not have the communication overhead introduced by pull-
semantics or backpressure.

2.2.1 Hello, Creek!

Before diving into the details of the semantics of Creek, consider an example
Creek application. Listing 4 offers a first taste of the Creek stream DSL. The
program defines a stream that produces a list of the squares of the first 100
even numbers.

DAGs For an overview of the syntax of Elixir we refer the reader to appendix A.
Every Creek program is defined in an Elixir module. An Elixir module is de-
fined with the defmodule syntax (line 1). Creek has a primitive to define
Directed Acyclic Graphs (DAGs), defdag. The Evens module in listing 4 de-
fines three DAGs: evens (line 2), squares (line 5), and square_of_evens (line
7). The evens DAG consumes integers from its upstream and filters out all odd

Creek: A Prototypical Stream DSL 35

1 defmodule Evens do
2 defdag evens as filter(&even?/1)
3 ~> take(100)
4

5 defdag squares as map(&(&1 * &1))
6

7 defdag square_of_evens(input, output) do
8 input
9 ~> evens

10 ~> squares
11 ~> output
12 end
13

14 def program() do
15 src = Source.range(1, :infinity)
16 snk = Sink.to_list(self())
17

18 deploy(square_of_evens, [input: src, output: snk])
19

20 receive do
21 result -> IO.puts "Squares: #{result}"
22 end
23 end
24 end

Listing 4: A first look at Creek: Generating a list of the first 100 squares of even numbers.

36 Creek: A Novel Stream Programming DSL

integers. The first 100 even integers are taken from the stream using the take
operator. The squares DAG computes the square of each of its inputs. The
square_of_evens composes them to create a DAG to compute the squares of
the first 100 even numbers. The square_of_evensDAG uses the extended syn-
tax to define a DAG, which allows named parameters to represent the unknown
sources and sinks in a DAG definition.

Deploying Streams A DAG is a declarative definition of transformations on
an undefined stream of data. A DAG that is paired with a source and a sink,
and is processing data, is called a stream. Pairing a DAG with sources and
sinks is called deploying the DAG. A source provides data to the stream, and a
sink consumes data from the stream. A stream can have one or more streams
and sinks. The sources and sinks of a stream are the connection between the
host language and the stream DSL. In context of Creek, an Elixir-hosted DSL,
sources and sinks are represented by Elixir actors. In context of RxJava sources
and sinks are represented by objects.

In listing 4, a range source is created (line 15); a source that emits all values
in a given interval. A to_list sink (line 16) consumes all the values from the
stream and sends them as a message to a regular Elixir actor. An instance of the
square_of_evens dag is deployed with the source and sink on line 18. Finally,
the program awaits the message containing the list of numbers that percolated
through the entire stream (lines 20–22) using idiomatic Elixir syntax.

2.2.2 Operators

The fundamental building block of a stream is an operator. It is a modular
functional unit that is the smallest building block of a stream. Examples of
operators are map, filter and zip. All stream DSLs implement a core set of
operators, such as map and filter. Table 2.3 lists all the operators that are
implemented in Creek.

An operator in a stream is always positioned upstream and downstream of other
operators. An operator consumes data from its upstream and emits its results
to its downstream. For example, in listing 4 the take operator on line 3 is the
downstream of the filter operator on line 2. Conversely, the filter operator
is upstream of the take operator. The take operator has no downstreams, and
the filter operator has no upstreams.

Operators are instantiated with 0 or more arguments that specify their behavior.
Arguments are values from the host language (i.e., Elixir for Creek). In most
cases, the arguments are anonymous functions that contain logic that is applied
to each datum. E.g., map is instantiated with an anonymous function that the

Creek: A Prototypical Stream DSL 37

program : [<closedDag>, <openDag>]+, [<deploy>]+

openDag : defdag <name> as <dagExpression>

closedDag :
defdag <name>(<name>*) do
<dagExpression>
end

name : <symbol>

dagExpression : <operator>
| <dagExpression> ~> <dagExpression>
| (<dagExpression> ||| <dagExpression>)
| <name>

deploy : deploy(dagExpression, (<symbol: <Pid>)+)

Table 2.2: Creek syntax.

operator applies to each datum from its upstream. The from_list operator is
instantiated with a list, of which each value will be emitted downstream by the
operator.

zip

Figure 2.3: The zip operator has two input ports and one output port.

Every operator has an arity that defines exactly how many upstream and down-
stream operators must be connected to it. An operator has an input port for
each upstream connection, and an output port for each downstream connection.
The arity defines exactly how many of each there are. The arity is a property of
an operator, and is statically defined. The arity of an operator is expressed as
two numbers: u:d, where the first number is the amount of upstream ports, and
the second number is the amount of downstream ports. Consider the diagram
of the zip operator in fig. 2.3. The zip operator its arity is 2:1; it requires

38 Creek: A Novel Stream Programming DSL

Name Arity Args Description

map 1:1 Fun Applies a function to each upstream datum and emits the result downstream.

filter 1:1 Fun Applies a predicate to each upstream datum and emits the datum if the predicate returned
true.

zip 2:1 / Merges values from both upstreams into a tuple. Only emits a tuple if both upstreams
produced a value. If there is a rate mismatch between upstreams values are buffered. Can
cause memory overflow.

fold 1:1 Fun, Term Folds over the upstream values by applying the given function to each datum and the
accumulator. Emits the accumulator if the upstream is finished.

dup 1:* Int Duplicates values from upstream to all connected downstreams.

merge *:1 Int Merges multiple upstreams into a single downstream. Values are emitted in the order they
arrive.

to_list 1:0 Pid Accumulates all values from the upstream into a list and sends the list to the given process
id (idiomatic Elixir).

first 1:0 Pid Waits for a single value from the upstream and sends it to the given process id (idiomatic
Elixir).

last 1:0 Pid Waits for the upstream to complete and sends the last value of the upstream to the given
process id (idiomatic Elixir).

single 0:1 Term Emits the given value and completes.

take 1:1 Int Takes the first n values from its upstream and terminates.

range 0:1 Int, Int Produces integers from the given start value to the given end value.

Legend Fun: An anonymous function, /: No Arguments, Term: Any value, Int: Integer,
Pid: An Elixir Process ID

Table 2.3: List of all operators in Creek.

exactly two upstreams, and exactly one downstream. Some operators, such
as the duplicate operator, do not have a static number of ports and can be
connected to 1 or more times. A variadic arity is denoted with an asterisk: *.
Operators with an input arity of 0 are called source operators, and operators
with an output arity of 0 are called sink operators.

Stream DSLs have to interact with the host language. This is done in the
paradigm of the host language. Because Creek is a DSL in Elixir, the language
makes use of idiomatic Elixir patterns where it interfaces with the host language.
Elixir is an actor language, and the means of communication is message-passing
between actors. Therefore, source and sink operators need to send messages to
communicate with the host application, and to do this they require a process id
(Pid). For more information on message sending in Elixir, see appendix A.

Creek implements a small set of operators which have been chosen based on
necessity in developing the evaluation presented in section 4.7. The DSLs
based on Reactive Extensions have over 400 operators. However, many of these
operators are variations on others, and can be replaced by a combination of
two simpler operators. Another large subset of operators are the higher-order
operators. In Reactive Extensions streams are higher-order values, and the

Creek: A Prototypical Stream DSL 39

topology of a stream can be changed at runtime. For example, in RxJava the
flatMap operator transforms a stream of higher-order streams into a single
stream bymerging the higher-order streams. This process modifies the topology
of the stream’s DAG at runtime because each higher-order stream is a new source
for the downstream. In Creek this is not possible, and therefore Creek has no
notion of higher-order operators.

2.2.3 DAGs

The composition of operators into a DAG forms the blueprint of a stream. The
order of the composition determines the order of the transformations that will
happen to each datum “flowing” through the DAG. An operator itself is the
smallest DAG possible, consisting of only the operator itself. DAGs are created
by composing DAGs using the composition functions ~> and |||.

The vertical composition function (~>) connects two DAGs by connecting the
output ports of the left DAG to the input ports of the right DAG. When ~> is
applied to left operand a with ai input ports and ao output ports and right
operand b with bi input ports and bo output ports where ao = bi , the result
is a DAG with ai input ports and bo output ports. For example, the vertical
composition of two DAGs with one input and one output port each results in
a DAG that has one input port and one output port. Figure 2.4a shows the
vertical composition of filter and map operator. The result is a DAG with one
input port, and one output port.

The horizontal composition function (|||) composes two DAGs in parallel. In
a horizontally composed DAG, no new connections are made between input-
and output ports. When ||| is applied to DAGs a and b with input and output
ports as denoted above, the result is a DAG with ai + bi input ports and ao + bo
output ports. Figure 2.4b shows the horizontal composition of two DAGs with
1 input and 1 output port each, resulting in a DAG with 2 input ports and 2
output ports.

filter ~> =
filter

map
map

(a) Vertical Composition.

filter mapfilter ||| =map

(b) Horizontal Composition.

Figure 2.4: Graphical depiction of the semantics of vertical composition (left), and horizontal
composition (right).

In Creek, there are two types of DAGs. Open DAGs and closed DAGs. Composing

40 Creek: A Novel Stream Programming DSL

DAGs results in DAGs that have unconnected input ports or output ports. In
Creek, a DAG that has unconnected ports is called an open DAG. A DAG is
closed when all its input ports and output ports are connected to another
operator.

Open DAGs

An open DAG is a DAG that has input- or output ports that are unconnected.
An in- or output port is unconnected if it has no up- or downstream operator
connected to it, respectively. The smallest open DAG that can be created is
a single operator. For instance, the expression map(f) creates an open DAG
with a single operator. An open DAG is created using the syntax shown in
table 2.2.

Listing 5 shows an example of an open DAG in Creek. The DAG consists of two
operators: a filter operator followed by a map operator. The only output port
of the filter operator is connected to the only input port of the map operator.
The input port of the filter operator and the output port of the map operator
remain unconnected. The DAG is intended to process error events. First, all
events except error events are dropped, and then the events are printed to the
console, and passed downstream. Because the upstream and downstream of this
DAG are undefined, it can be used in the composition of a larger DAG.

1 defdag error_logger as
2 filter(fn event -> event.type == :error end)
3 ~> map(fn event -> IO.puts "Error: #{event.message}" ; event end)
4 end

Listing 5: An example of an open DAG. The DAG expects log messages and only prints out
the error messages.

Closed DAGs

A closed DAG is a DAG in which all in- and output ports are connected. The
smallest closed DAG that can be created in Creek is a source directly connected
to a sink. Listing 6 shows a closed DAG to calculate the product of a stream. The
transform operator has an arity of 1:1, and it is connected to both the source
and sink. There are no unconnected in- or output ports left in the DAG.

The syntax to create a closed DAG allows introducing variable names between
parentheses after the DAG name.

These variables are called actor sockets and can be used as sources or sinks in
the scope of the DAG definition. Actor sockets are placeholders for sources and

Creek: A Prototypical Stream DSL 41

1 defdag product(src, snk) do
2 src
3 ~> transform(1, fn v, acc -> {acc * v, acc * v} end)
4 ~> snk
5 end

Listing 6: A DAG to compute the product of a stream.

sinks, and are replaced by Elixir actors when the DAG is deployed. An actor
socket can be used in a position that requires an in- or output arity of 1 and
an out- and input arity of 0, respectively. Consider the example in listing 7.
The log_print DAG introduces two actor sockets: log_src and log_snk. The
log_src actor socket is placed in source position and serves as a placeholder for
a source actor. The log_snk actor socket is placed in sink position and serves as
a placeholder for the sink actor. In the example the source is connected to the
error_logDAG (listing 5), and the output of the error_logDAG is connected
to the sink. The error_logger DAG has an arity of 1:1, meaning log_src is
indeed in a 0:1 position and log_snk in a 0:1 position.

1 defdag log_print(log_src, log_snk) do
2 log_src
3 ~> error_logger
4 ~> log_snk
5 end

Listing 7: An example of a closed DAG. The actor sockets log_src and log_snk will be
replaced with actors once the DAG is deployed.

ValidDAGs In Creek, any closed DAG that is deployedmust adhere to a set of
well-formedness constraints. If all these constraints are met the DAG is called
a valid dag, and can be deployed.

1. Each output port is connected to an operator’s or sink’s input port and
each input port is connected to an operator’s or source’s output port.

2. Operators have precisely as many connections as ports.

3. Actor sockets have exactly one in- or output port connected.

4. No cycles are created in the DAG.

2.2.4 Streams

A DAG is a description of a stream but does not process any data, which is why,
in Creek, it is informally called “a blueprint for a stream”. A closed and valid

42 Creek: A Novel Stream Programming DSL

DAG in a Creek program can be turned into a stream by deploying it.

To deploy a DAG, plain Elixir actors need to be provided to replace the actor
sockets in the DAG definition (log_src and log_snk in listing 7). Creek is a
DSL in Elixir, and therefore the sources and sinks are actors. To deploy the
log_print DAG, a source actor and sink actor need to be provided. The source
actor provides the data, and the sink actor consumes the transformed data.
Listing 8 shows how the DAG defined in listing 7 can be deployed. Any Elixir
actor can act as a source and a sink provided that they implement the protocol
for communicating with a stream. In Elixir, this means that the actors must
understand a specific sequence of messages. We go into detail of this protocol
in the next section.

When a Creek DAG is deployed, each operator in the DAG is turned into a
concurrent entity. An operator in a stream is either an operator (e.g., map), a
source, or a sink. Once a DAG has been deployed, it runs asynchronously from
the actor that started it. The result of a deployment is an immutable reference
to a stream, that can be used to determine if a stream is still alive or not.

1 source_actor = ...
2 sink_actor = ...
3 stream = deploy(log_print, log_src: source_actor, log_snk: sink_actor)

Listing 8: Example of deploying a DAG in Creek.

2.2.5 The Canonical Stream Protocol

To propagate a datum through stream, internal messages are sent between
the operators of that stream. In Creek, the protocol that defines the events
an operator must understand and is allowed to emit is called the Canonical
Stream Protocol (CSP). The CSP defines the structure and order of the mes-
sages an operator can send to its up- and downstreams, or receive from its up-
and downstream. The CSP defines the interactions for each type of operator:
sources, sinks, and operators. The operator implements different parts of the
protocol, depending on its type (i.e., source, sink, or operator). In this section
we introduce the protocol and define its limitations and guarantees.

Operator Canonical Stream Protocol

Figure 2.5 shows the CSP for a single operator (i.e., not a source or sink) in a
stream (e.g., map or filter). An operator can receive events from its upstream
and downstream, denoted as rcv e in the case of an incoming event e. If an
operator emits a message, it is denoted as snd e where e is the event. The

Creek: A Prototypical Stream DSL 43

next()

error()

complete()

ε |
snd

{nex
t, v

}

snd {error, v}

snd {complete}

snd {error, v}

snd {complete}

snd
 {e

rro
r,

v}

snd
 {c

omp
let

e}

snd {exit}

rcv {exit}

rcv {complete}

rcv {error, v}

rcv
{nex

t, v
}

ε

ε

ε

Figure 2.5: Canonical Stream Protocol for operators. The events are denoted between curly
braces and prefixed with whether they are sent (snt) or received (rcv).

diagram represents a communication protocol, and each vertex represents a
state from which a set of valid messages can be either received or sent. The
black vertex is the initial state after a stream has been deployed. The black
vertex with a circle is the final state. When an operator arrives in the final state,
it can no longer send or receive messages. The operator is said to be terminated.
When no messages are sent, the ε transition is denoted.

The CSP for an operator defines four messages that an operator must under-
stand.

• {next, v} is an event sent by an operator connected to an input port of
the receiving operator. The next event carries an application-level datum
v.

• {error, v} is an event sent by an operator connected to an input port of
the receiving operator. It signals an error occurred in the upstream. The
error is contained in the value v.

• {complete} is an event sent by an operator connected to an input port
of the receiving operator. It signals that the upstream has completed and
will no longer emit new data.

• {exit} is an event sent by an operator connected to an output port of the
receiving operator. It signals that the downstream operator has completed
and no longer accepts events.

44 Creek: A Novel Stream Programming DSL

The CSP for an operator defines four types of messages that an operator is
allowed to send.

• {next, v} is an event that an operator can send to the operators con-
nected to its output ports. The message contains a new application-level
datum v.

• {error, v} is an event that an operator can send to the operators con-
nected to its output ports. Themessage contains an error value v, signaling
an error occurred somewhere in the stream. An error can also be sent in
response to a nextmessage, if the error occurs when processing a next
event.

• {complete} is an event that an operator can send to the operators con-
nected to its output ports. It signals that the operator has completed and
will no longer emit new data.

• {exit} is an event that the runtime can send to the operators connected
to its input ports. It signals that the operator has completed and no
longer accepts events. The {exit}message is automatically sent when
an operator propagates an error or a completion downstream.

The logic that handles events is called a behavior, similar to a method in object-
oriented programming. The result of executing a behavior is an instruction
to the runtime. Based on this instruction, the runtime sends the appropriate
messages to the down- and upstream operators. All the incoming events, except
the exit event, must be handled by the operator.

Listing 9 shows an example implementation of the operator protocol. The
behavior defines the filter operator. Defining an operator consists of creating
three functions that handle the three different incoming messages. There are
three behaviors defined, i.e., next, error, and complete. These three functions
constitute the behavior of the operator. When a next event arrives, the filter
predicate is applied, and if it returns true the instruction to emit a next event
is returned with the incoming datum as payload. If the predicate returns false
the value is skipped by returning the skip instruction (skip is represented as
ε in fig. 2.5), telling the runtime to not send any messages downstream. When
the operator receives a complete event, indicating the upstream will no longer
produce events, the event is passed downstream.

Source Canonical Stream Protocol

Contrary to operators, sources generate values without ever receiving a value.
The tick event is a cue to the source operator that it should produce a single
value, generated by the Creek runtime. Consequently, the only behavior that

Creek: A Prototypical Stream DSL 45

1 defmodule Operator.Filter do
2 def next(this, state, value) do
3 if this.arg.(value) do
4 {state, :next, value}
5 else
6 {state, :skip}
7 end
8 end
9

10 def error(this, err) do
11 {state, :error, err}
12 end
13

14 def complete(this, state) do
15 {state, :complete}
16 end
17 end

Listing 9: Implementation of the filter operator in Creek.

init()

next()
snd {next, v}

snd {error, v}

snd {complete}

rcv {exit}

rcv
 {t

ick
}

Figure 2.6: Canonical Stream Protocol for source operators. The events are denoted between
curly braces and prefixed with whether they are sent or received.

46 Creek: A Novel Stream Programming DSL

needs to be implemented in a source is the tick behavior. The CSP for sources
defines two types of incoming messages an actor must understand.

In Creek, a source operator is a plain Elixir actor that implements the CSP. It
must understand the following messages.

• {exit} is an event that an operator can send to the operators connected
to its input ports. It signals that the operator has completed and no longer
accepts events.

• {tick} is an event that the runtime sends to all the sources in a stream.
It signals that the source must produce a new datum.

• {init} is an event that the runtime sends to all the sources in a stream
when the stream is deployed. It allows the source to execute initialization
logic (e.g., database connections).

As an example implementation of a source behavior, listing 10 contains the
implementation of the range operator. The range operator is instantiated
with three arguments: the start and end value of the interval and its stepsize.
For each tick event, the source returns the start value of the interval, and
updates its interval. If all values in the interval have been emitted, the source
completes.

1 defmodule Source.Range do
2 def tick(this, state) do
3 {a, b, s} = state
4

5 if b == :infinity or a <= b do
6 {{a + s, b, s}, :next, a}
7 else
8 {state, :complete}
9 end

10 end
11 end

Listing 10: The implementation of the range operator in Creek. Every time the tick
event is received from the runtime, the range operator generates the next value in the interval.
When all values have been emitted, the range operator completes.

Sink Canonical Stream Protocol

In Creek, a sink operator is a plain Elixir actor that respects the CSP for sink
actors. The CSP for a sink has overlap with the CSP for operators, and here we
only highlight the differences. Figure 2.7 shows the CSP for a sink operator. No-
tice that the sink cannot receive an {exit}message from an operator connected

Creek: A Prototypical Stream DSL 47

init()

next()

error()

complete()

ε | snd {next, v}

ε

ε

ε

snd {exit}

rcv {exit}

rcv {complete}

rcv {error, v}

rcv
 {n

ext
, v

}

Figure 2.7: Canonical Stream Protocol for sink actors. The events are denoted between curly
braces and prefixed with whether they are sent or received.

to its output ports, because a sink does not have any output ports.

The CSP for sinks defines the only message a sink operator can send, the {exit}
message. Given that a sink has no downstream, it can only communicate
with its upstream, and the only message that is sent upstream is the {exit}
message.

A sink operator does not send messages to downstream operators. Therefore
all transitions are labeled as ε.

As an example of a sink operator implementation, consider listing 11. It shows
the source code for the to_list operator in Creek. The to_list operator
accumulates all the values it receives, and when it has completed – either
normally or by due to an error – it will send the list of values to the given
Elixir actor. The arguments to create a to_list sink are a process identifier
of another actor that should receive the list of values. For every next event,
the sink accumulates it in a list and waits for the next event. If an error is
encountered in the upstream, the values aggregated up to that point and the
error value are sent to the argument actor. In case the upstream terminates
with a completemessage, the whole list is sent to the actor.

2.3 Stream Termination Protocol

In the previous sections, we introduced the protocol used to propagate data
through a stream. The application-level data is propagated by means of {next,
v}messages. The error and completemessages signal to the rest of the stream
that an operator terminated. The exitmessage is emitted upstream, and signals

48 Stream Termination Protocol

1 defmodule Sink.ToList do
2 def next(this, state, value) do
3 {receiver, xs} = state
4 xs = [value | xs]
5 {{receiver, xs}, :ok}
6 end
7

8 def error(_this, state, err) do
9 {receiver, xs} = state

10 send(receiver, {:error, err, xs})
11 {state, :error}
12 end
13

14 def complete(_this, state) do
15 {receiver, xs} = state
16 send(receiver, {:ok, xs})
17 {state, :complete}
18 end
19 end

Listing 11: Implementation of the to_list operator in Creek.

that a downstream operator has terminated. This can lead to situations where
a source is producing data, but the downstream is only partially available. In
such a stream it is impossible for data to propagate. We call such a stream a
useless stream. The stream termination protocol is designed to terminate all
operators in a stream when it becomes useless.

Consider the following scenarios that sketch a proof that the CSP avoids useless
streams.

A stream consists of two operators A and B with arity 1:1 where A is the
upstream of B. If we assume that A terminates, there can be two causes. Or, 1)
A received an exit message from B, or 2) it emitted {complete} or {error,
v} to B. In the first case, it came from B, and the CSP tells us that B is therefore
terminating. In the second case the CSP dictates that B will terminate as well,
and A will emit an exit event to its upstream to propagate the termination in
both directions. In this scenario, the termination will propagate both upstream
and downstream, terminating the entire stream.

In case an operator has an upstream arity larger than 1, its behavior must decide
what to do in case only one of its upstream completes. This behavior depends
on the operator. An operator can signal it wants to continue operating until it
has no upstreams left, or terminate as soon as one of its operators terminates.
For example, a zip operator can not function without both of its upstreams,
while a merge operator can function with only one of its upstreams.

Creek: A Prototypical Stream DSL 49

We conclude that the CSP ensures that a stream will terminate as soon as it has
become impossible for data the propagate through the stream. However, the
CSP will not terminate an entire stream if there are still paths of the stream
through which data can propagate.

2.4 Summary of Chapter

This chapter introduced the concepts involving stream Domain Specific Lan-
guages (DSLs). We explained streams, Directed Acyclic Graphs (DAGs), opera-
tors, and stream deployment.

We surveyed the state of the art and taxonomized the DSLs along four design
principles: execution semantics, phases, propagation semantics, and backpres-
sure. We concluded that all DSLs except Akka Streams are single-phase DSLs
and that all DSLs implement pull-based semantics.

Based on the design principles, we designed a DSL called Creek with push-
based semantics, two phases, no backpressure, and concurrent execution se-
mantics.

We described the canonical stream protocol, which defines the messages be-
tween operators in a stream in Creek. We conclude by defining the stream
termination protocol, which ensures that failures in a stream do not leave the
software in an inconsistent state.

In the next chapter, we use Creek as a basis to formulate a stream-based meta-
level architecture called µCreek.

50 Summary of Chapter

Chapter 3
µCreek: A Meta-Programming
Approach for Stream Languages

In the previous sectionwe introducedCreek, a new prototypical streamDomain
Specific Language (DSL) that is embedded in Elixir. In chapter 4 Creek will
be used as the stream language in a Cyber-Physical System (CPS) framework.
Chapter 1 discussed the challenges in designing CPSs. One of the challenges
was dealing with the heterogeneous nature of the devices. This heterogeneity
introduces differences in communication patterns, data encoding, performance
requirements, and reliability. We call these concerns non-functional concerns of a
stream-based program. In this sectionwe add ameta-level architecture to Creek
to separate these non-functional concerns from the application logic. First we
introduce our motivation to do so, then we explain the approach technically,
and conclude with a performance evaluation.

3.1 Motivation

Stream programming is useful for expressing computations that are naturally
specified as a pipeline of transformations, such as data flux between devices.
However, the state of the art in stream Domain Specific Languages (DSLs)
is not always able to express the non-functional aspects of an application in
a satisfactory way. In a Cyber-Physical System (CPS), these non-functional
concerns are introduced by the heterogeneous devices, and non-functional
requirements of the application. Hence the motivation to add new features
to stream-based languages to cater to these non-functional concerns. The
“Separation of Concerns” (SOC) principle dictates that functional and non-

51

52 Problem Statement

functional concerns should be separated.

Contemporary and widely used stream DSLs such as Akka Streams [66], Rx-
Java [82], and Flow [3] offer a high-level declarative API to construct and ma-
nipulate streams of data by using functional-inspired building blocks called
“operators”, such as map and filter. These basic building blocks can be classi-
fied into two categories, which are central to our problem statement:

• Functional operators such as map, filter, and scan, that manipulate the
data flowing through streams.

• Non-functional operators that manipulate how the data streams through
the stream such as buffer and async.

The API for expressing the functional requirements of a stream program are
homogeneous between the different DSLs. This is not the case, however, when
it comes to expressing the non-functional requirements of stream programs.
Surveying six existing stream DSLs embedded in popular general-purpose
languages [4](PLINQ in C#, Streamz in Python, Akka Streams in Scala, Java
Streams and RxJava in Java, and Flow in Elixir), we identified three problems
with respect to expressing non-functional requirements in these DSLs. These
types of issues have been addressed in the past in the context of aspect-oriented
programming [59, 60] and meta-programming [20, 15, 42] and we wish to
address a subset of them in our work.

1. StreamDSLs provide non-functional extensions in a non-canonical and ad-
hoc fashion, hindering transplantability of programs between languages.

2. Entanglement of functional stream logic and non-functional stream execu-
tion logic, leading to reduced readability and maintainability of stream
programs.

3. Limited or no means for extending and adapting the stream execution seman-
tics from within the DSL beyond what is built into language.

3.2 Problem Statement

In section 3.1, we have presented three problems in the state of the art of stream
DSLs in contemporary programming languages. In this section we substantiate
these three claims. More specifically, we show by example that contemporary
stream DSLs provide non-functional extensions in a non-canonical and ad-hoc
fashion (section 3.2.1), that they entangle functional and non-functional stream
logic (section 3.2.2), and –most importantly – that there are limited or nomeans
for extending and adapting the stream execution semantics from within the
DSL beyond what is offered by the language (section 3.2.3).

µCreek: A Meta-Programming Approach for Stream Languages 53

Although we will discuss each problem in the context of only one or two of the
prominent streaming libraries we surveyed for this purpose, we observed all
languages suffer from at least one or more of the posited problems.

3.2.1 Problem #1: Lack of Canonical Non-FunctionalOperators

Stream execution semantics is concerned with how the definition of a stream is
executed at run-time to reduce the stream to a result. Given the wide range of
applications in which stream DSLs are applicable, there are situations where
the default stream execution semantics offered by a stream DSL does not (or no
longer) match with the intended semantics. Stream DSLs cater to this problem
by offering non-functional operators to manipulate how a stream is executed
with respect to propagation semantics (push, pull, backpressure, …), concur-
rency and parallelism, buffering, error handling, etc. These operators are used
to improve on one or more non-functional requirements such as scalability,
performance, monitoring, maintainability, or recoverability. However, while
the typical building blocks for expressing the functionality of stream programs
are highly similar across different stream DSLs, this is not the case for the
non-functional operators. Moreover, different DSLs offer different sets of non-
functional operators to support different non-functional requirements. In brief,
there is no canonical set of non-functional operators.

Example: Error Handling in Akka Streams and RxJava

1 val decider: Supervision.Decider = {
2 case _: IllegalArgumentException => Supervision.Restart
3 case _ => Supervision.Stop
4 }
5 val flow = Flow[Int]
6 .scan(0) { (acc, elem) =>
7 if (elem < 0) throw new
8 IllegalArgumentException("negative not allowed")
9 else acc + elem

10 }
11 .withAttributes(ActorAttributes.supervisionStrategy(decider))
12 val source = Source(List(1, 3, -1, 5, 7)).via(flow)
13 val result = source.runWith(Sink.seq)

Listing 12: Error handling in Akka Streams using Decider. All Illegal c
ArgumentExceptions cause a restart, and other exceptions stop the stream execution.

Stream DSLs offer facilities for the programmer to deal with exceptions during
stream execution. For instance, Akka Streams modularizes exception handling
of a stream by extracting the exceptional behavior into a separate object called

54 Problem Statement

a Decider. The programmer defines what should happen in case of a specific
exception class. The example in listing 12 defines a Decider object that, when
an IllegalArgumentException occurs, restarts the stream entirely. If the
stream produces any other type of error the entire stream is aborted and is
reduced to an error value. If the source of the stream produces the erroneous
value again the stream will restart, possibly creating an infinite loop if no limit
is placed on the restarting.

Decider behavior can be added in a modular fashion, separated from the actual
stream logic. For instance, the stream program in listing 12 instructs the scan
operator to employ the decider object. However, not all stream DSLs offer this
kind of (modular) error handling. In RxJava, for example, one cannot express
behavior equivalent to the Decider object. The only way for the programmer to
handle errors is by changing the definition of the stream by inserting additional
non-functional operators such as retry and retryWithValue. We do note
that any approach discussed here re-executes the entire stream. Ignoring an
erroneous value is impossible.

Example: Ad-hoc Parallelization in RxJava and Akka Streams

Suppose that a stream program has to map some long-lasting computation
(represented by the function longLastingComputation) over a stream of
values, and that applying this operator in parallel would increase through-
put. Listing 13 shows a small RxJava program containing the longLasting c
Computation. The left-hand side is the sequential version, and the right-hand
side is a parallelized version. Due to the poor integration of parallelism in
RxJava, the stream programmer is forced to modify the layout of the stream
substantially to facilitate for the parallelism (lines 3–7), making its functionality
less readable. Listing 14 contains the same sequential example program on the
left, and the parallelized version on the right, but written in Akka Stream. As
in RxJava, parallelizing a single operator introduces a significant amount of
non-essential complexity, significantly increasing the number of LoC. From the
code in listings 13 and 14 we make the following observations:

• Although both RxJava and Akka Streams allow the parallelization of
operators, the mechanism to do so is very different. RxJava requires the
programmer to manually place computations on different threads of
computation, while Akka Stream requires the programmer to manually
create parallel pipelines of computation.

• Although parallelization is a non-functional concern, programmers in
RxJava and Akka Streams have to modify the original stream to express this
requirement.

µCreek: A Meta-Programming Approach for Stream Languages 55

1 source
2 .map(i ->
3 longLastingComputation(i))
4 .subscribe()

1 source
2 .subscribeOn(Schedulers.computation())
3 .flatMap(val ->
4 just(val)
5 .subscribeOn(Schedulers.computation())
6 .map(i -> longLastingComputation(i))
7 .subscribeOn(Schedulers.single()))
8 .subscribe();

Listing 13: An RxJava Stream program that applies longLastingComputation over each
datum in the stream. The sequential program is shown on the left, and a parallelized version
on the right. The parallelization factor is hidden in the Schedulers definition.

1 source
2 .map((i) =>
3 longLastingComputation(i))
4 .runForEach(println)

1 val processor: Flow[Int, Int, NotUsed] =
2 Flow.fromGraph(GraphDSL.create() { implicit b =>
3 val balance = b.add(Balance[Int](2))
4 val merge = b.add(Merge[Int](2))
5 val f = Flow[Int].map(longLastingComputation)
6
7 balance.out(0) ~> f.async ~> merge.in(0)
8 balance.out(1) ~> f.async ~> merge.in(1)
9 FlowShape(balance.in, merge.out)

10 })
11 source.via(processor).runForeach(println)

Listing 14: An Akka Stream program that applies longLastingComputation over each
datum in the stream. The sequential program is shown on the left, and a parallelized version
that uses a parallelization factor of 2 is shown on the right.

56 Problem Statement

Conclusion #1

Stream DSLs feature non-functional operators that address non-functional con-
cerns. However, opposed to the work in Object-Oriented Programming [59, 60],
there is no canonical approach to deal with non-functional concerns. Stream
DSLs approach non-functional concerns in an ad-hoc fashion, resulting in
completely different approaches for the same problem in different DSLs.

3.2.2 Problem #2: Entanglement of Functional and Non-functional
Operators

In stream programming, the domain logic of the stream (i.e., what the stream
computes) is a separate concern from the execution semantics of the stream
(i.e., how the stream executes). In section 3.2.1 we argued that there is no
uniformity or idiom present in the existing non-functional operators. In this
section, we argue that there is a need to separate non-functional operators from
the functional operators.

The software engineering principle of “Separation of Concerns” (SoC) [36]
dictates that the different concerns of an application should be defined in dif-
ferent parts of the application, separated by a clean interface. SoC implies that
functional and non-functional operators should not be mixed in the definition
of a stream. Additionally, using non-functional operators in stream DSLs often
forces the definition of the stream to be modified to suit the inclusion of those
operators. In section 3.2.1 we have already encountered examples where this
was the case; in the larger example that follows, we revisit parallelization in
Akka Streams.

Consider the example programs in listings 15 and 16, that analyze a stream of
tweets containing the keywords “covid19” and “sars-covid” for its sentiment:
positive, neutral, or negative. Every 100 tweets, the programs print the ratio of
positive, negative, and neutral sentiments to the console. An example output is
(5, 25, 70), indicating that in the last 100 tweets, 5%, 25%, and 70% of all
tweets were positive, neutral, and negative respectively.

The program in listing 15 defines the domain logic to achieve this in Akka
Streams. Each tweet emitted by the actor is transformed into a tuple of sen-
timents (lines 3–7). Finally, the amount of positive, neutral, and negative
sentiments is printed to the console.

Given that sentiment analysis is a computationally expensive computation,
it might be opportune to parallelize that part in the stream to improve the
throughput of the entire stream. Parallelizing the application from listing 15
requires twomajor changes to the streamdefinition. First, the sentiment analysis

µCreek: A Meta-Programming Approach for Stream Languages 57

1 val source = TwitterActor.mkActor()
2 val actorRef = source
3 .flatMapConcat((tweet: Status) => {
4 var result: = Sentiment.computeSentiment(tweet.getText())
5 Source(result)
6 })
7 .map(tuple => tuple._2)
8 .sliding(100)
9 .map((win: Seq[Sentiment]) => {

10 (win.count(s => s == Sentiment.POSITIVE),
11 win.count(s => s == Sentiment.NEUTRAL),
12 win.count(s => s == Sentiment.NEGATIVE))
13 })
14 .toMat(Sink.foreach(println))(Keep.left).run()
15

16 TwitterActor.pipeInto(Array("covid19", "sars-covid"), actorRef)

Listing 15: Computing the average sentiment of tweets related to COVID-19 sequentially
in Akka Streams.

1 val analyze = Flow[Status].flatMapConcat((tweet: Status) => {
2 var result = Sentiment.computeSentiment(tweet.getText())
3 Source(result)
4 })
5 val analyzer = Flow.fromGraph(GraphDSL.create() { implicit builder =>
6 val dispatchTweets = builder.add(Balance[Status](2))
7 val mergeSentiments = builder.add(Merge[(String, Sentiment)](2))
8 dispatchTweets.out(0) ~> analyze.async ~> mergeSentiments.in(0)
9 dispatchTweets.out(1) ~> analyze.async ~> mergeSentiments.in(1)

10 FlowShape(dispatchTweets.in, mergeSentiments.out)
11 })
12 val source = TwitterActor.mkActor()
13 val actorRef = source
14 .via(analyzer)
15 .map(tuple => tuple._2)
16 .sliding(100)
17 .map((win: Seq[Sentiment]) => {
18 (win.count(s => s == Sentiment.POSITIVE),
19 win.count(s => s == Sentiment.NEUTRAL),
20 win.count(s => s == Sentiment.NEGATIVE))
21 })
22 .async
23 .toMat(Sink.foreach(println))(Keep.left).deploy()
24 TwitterActor.pipeInto(Array("covid19", "sars-covid"), actorRef)

Listing 16: Computing the average sentiment of tweets related to COVID-19 in parallel in
Akka Streams.

58 Problem Statement

step must be factored out into a separate reusable flow (lines 1–3 in listing 16)
so that it can be used twice in a parallel pipeline. Second, a parallel pipeline
needs to be created that balances the tweets over two sentiment analyzers
(lines 5–10 in listing 16) to avoid processing the same tweet twice. Listing 16
requires four operators to facilitate the parallelism: a Balance operator to
spread the tweets over two sentiment analysis steps (line 6), two sentiment
analysis operators (lines 8, 9), and a Merge operator (line 7) to merge the results
from both sentiment analysis back together. In brief, to parallelize one operator,
three additional operators are required in the stream definition.

Conclusion #2

The example of parallelizing tweet sentiment analysis using Akka Stream shows
a problem that is present in many stream DSLs. For a stream definition to
exhibit specific non-functional properties – parallelism in this case – the
domain logic needs to be adapted causing it to become less readable, more
complex, and less adaptable to changing non-functional concerns.

3.2.3 Problem #3: Hard-coded Execution Semantics

Every Stream DSL offers an ad-hoc set of non-functional operators for express-
ing different non-functional requirements. Because stream DSLs are applicable
in many different situations, the intended semantics of the language does not
always match the language‘s semantics. None of the stream DSLs we surveyed,
however, provide a structured means for extending and adapting the stream
execution semantics from within the DSL itself. All the stream DSLs we inves-
tigated implement either push-based or pull-based propagation by default, or a
variation thereof [32].

• Producer-Driven Applications Push-based semantics is a good fit for
producer-driven applications in which, every time the producer produces a
newdatum, the stream computes its result. In this semantics, the producer
dictates the rate at which the stream computes.

• Consumer-DrivenApplications Some applications are inherently consumer-
driven: the consumer demands data when it is needed downstream. For
consumer-driven applications pull-based propagation is a better fit than
push-based propagation: the consumer will “pull” data as is needed,
meaning that the consumer dictates the rate of the stream.

We illustrate this problem in Akka Streams. Akka Streams uses a complex
backpressure algorithm [32] that ensures that production and consumption rate
in the stream converge to equilibrium. However, in producer-driven scenarios,
the programmer wants pure push-based semantics. Consider the example of

µCreek: A Meta-Programming Approach for Stream Languages 59

thermometers monitoring a thermal processing pipeline. For safety reasons,
it may be necessary that the thermometers measure as frequently as possible,
meaning that it is a producer-driven stream. Consider the code in listing 17 that
contains an example program that processes a remote stream of measurements
from a thermometer.

1 remoteThermometer
2 .buffer(100, OverflowStrategy.dropHead)
3 .map(f => logToDB(f))
4 .map(f => celsiusToFahrenheit(f))
5 .runWith(foreach(f => {
6 printf("Current temp: %fF\n", f))})

Listing 17: Processing temperature measurements with a buffer operator to simulate
pull-based semantics in Akka Streams.

The programmer intended to write a producer-driven stream to ensure that the
sensor measures as frequently as possible. But, due to the default semantics of
the stream library (i.e., backpressured pull-based) this is not possible, and the
sensor will only measure at a frequency determined by the speed at which the
stream can process a value. The stream will run at an equilibrium between the
highest rate the thermometer can measure and the rate the system can process
the measurements if the buffer operator (highlighted in listing 17) is omitted.
By using backpressure the thermometer measures less frequently, but no data
is lost. The intended semantics could have been to measure as frequently as
possible, at the cost of losing some data.

To emulate the intended semantics, a non-functional operator such as buffer
can be used. The buffer operator accepts data at the rate the upstream pro-
duces, and buffers it for the slower downstream to consume, consuming values
at unbounded speed. This introduces a potential memory leak, so the buffer
operator in the case of Akka Stream, is instantiated with an upper limit on the
buffer size, and an action to take if the buffer overflows. In listing 17 the buffer
will hold 100 values, and drop the oldest value in the buffer to make room for
new values.

In summary, the buffer operator ensures that the rate between the source and
the buffer operator will be the maximum rate of the source. The rate between
the buffer and rest of the stream is dictated by the slowest link. If the source
continuously produces at a faster rate, however, data loss is unavoidable.

60 Meta-Programming: Terminology

Conclusion #3

Propagation semantics are hard-coded into the stream DSL implementations.
The programmer can only manipulate the streams in a limited fashion by using
non-functional operators such as buffer. The downsides are that the domain
logic becomes polluted with non-functional operators. Second, the intricacies
of the underlying implementation of the propagation semantics needs to be well
understood to use these operators and place them in the right position in the
stream, making the solution very application-specific. With the current state of
affairs, there is no structured canonical approach to modify the propagation
semantics.

3.3 Meta-Programming: Terminology

Before we discuss our approach, we introduce common terminology in the
context of meta-programming. Meta-programming has evolved over the past
40 years, starting with Friedman and Wand[42] and Smith[88]. We do not wish
to give a historical account of meta-programming, however, we do present an
overview of the work that is relevant to this dissertation.

Any computational system (i.e., a program) is designed to reason about a specific
domain. A computational system represents its domain with internal data
structures. A system that can reason about itself, and possibly modify itself, is
called a reflective system [68]. When a reflective system reasons about itself, the
process is called introspection [20]. When the system modifies itself by means of
reflection, the process is called self-modification [20]. When the system modifies
not the system itself, but the semantics of the evaluator of the system (i.e., the
semantics of the programming language), the process is called intercession [20].
When a reflective system modifies the structure of the program, the process is
called structural reflection [20]. When a reflective system modifies the behavior
of a program, the process is called behavioral reflection. Macros are a well-
known example of structural reflection, aspects are an example of behavioral
reflection.

A language is said to have a reflective architecture [68] if reflection is a funda-
mental part of its design. The reflective architecture is the set of abstractions
and mechanisms that facilitate reflection. Reflective systems are programmed
against the reflective architecture (i.e., API). The reflective systems’ compu-
tations are executed at the meta-level. The internal data structures from the
system that are represented at the meta-level are said to be reified [42] represen-
tations. The system that is reflected upon is called the base-level. Two systems
are causally connected when changes in one system affect the other system, and
vice versa. For example, the digital representation of an airconditioning unit

µCreek: A Meta-Programming Approach for Stream Languages 61

represents the physical device using internal data structures and functions.
When changes to these data structures affect the physical device, and vice versa,
they are causally connected.

In the past years many approaches have been proposed to create reflective sys-
tems. Architectures have been proposed for procedural [88], logic-based [19],
rule-based [41], and object-oriented languages [20, 34, 59]. The design of a
reflective architecture should reify just enough of the internal data structures
to allow the expression of meta-level programs. On the other hand, the reflec-
tive architecture should not reify too much internal data structures to avoid
introducing unnecessary complexity in the meta-level programs.

In what follows we explain our reflective architecture for stream Domain Spe-
cific Languages (DSLs), called µCreek.

3.4 Separating Domain Logic in Streams

We introduced Creek in chapter 2, a stream Domain Specific Language (DSL)
built on top the Canonical Stream Protocol (CSP) introduced in section 2.2.5.
The protocol defines the messages operators in a stream send to each other to
propagate data. In section 3.1 we introduced three problems with contempo-
rary stream DSLs: lack of canonical non-functional operators, entanglement
of functional and non-functional operators, and hard-coded execution seman-
tics.

In this section we introduce our approach to tackle these issues in stream
DSLs. We introduce µCreek, a meta-level architecture built on top of Creek.
µCreek is a two-pronged approach. First of all, µCreekR is a run-time meta-
level (i.e., behavioral reflection) for streams that allows streams’ behavior to
be changed at run-time. Second, µCreekC is a compile-time meta-level (i.e.,
structural reflection) that can change the structure of Directed Acyclic Graphs
(DAGs) before they are deployed as streams. We conclude with examples of
solutions to the problems we addressed in section 3.1.

3.4.1 µCreekC : Compile-Time Meta

As part of our two-pronged approach in µCreek, we propose structural reflection
to solve the mixing of functional and non-functional operators and the fact
that non-functional operators are not canonicalized across stream DSLs. Our
approach is implemented on top of Creek, and called µCreekC .

In µCreek, each DAG is compiled into an internal representation, as shown in
fig. 3.1. Structural reflection offers hooks into this process tomodify its semantics.
We propose structural reflection because (i) it is defined separately from the

62 Separating Domain Logic in Streams

domain logic and it decouples from any specific domain logic by construction,
(ii) if the intercession language is expressive enough it can subsume a set of
individual (non-)functional operators, and (iii) the concept of intercession is
not bound to a specific stream DSL, but rather the API it exposes.

In the remainder of this section we introduce our approach to structural reflec-
tion in our stream DSL, µCreekC , which allows the meta-level to manipulate
the structure of the DAG at compile-time in a stream paradigm. We then
introduce the intercession language of µCreekC , and we conclude with an ex-
ample of applying structural reflection for fusing consecutive map operators in
a stream (i.e., operation fusion). Finally, we discuss Creek’s design principles
(section 3.4.1).

Compiler
Meta
DAG

Compiler

Inst
Seq

Internal

DAG

{}

1 2 3 4 5 60

Figure 3.1: A graphical depiction of the compilation pipeline in µCreek.

Instruction Stream

To enable structural reflection, the user program has to be reified; it needs to
be represented in such a way that it is easy to transform at the meta-level. The
reified representation is a more abstract representation of the internal data
structures of the compiler. The reification of the program defines the interface
the meta-program uses to express transformations. In µCreekC , each DAG
defined in the user program is reified as an instruction stream (step 2 in fig. 3.1).
An instruction stream is a stream of DAG instructions that – when all executed
– create the DAG as it was defined by the programmer. Figures 3.2 and 3.3
show an example of a DAG and its reified representation. Figure 3.2 defines

1 defdag even_square as
2 filter(&even?/1)
3 ~> map(&Math.square/1)

Figure 3.2: Definition of a simple open
DAG that filters out all odd numbers and
squares the even numbers.

1 {:operator, :filter, &even?/1}
2 {:name_it, "x"}
3 {:operator, :map, &Math.square/1}
4 {:name_it, "y"}
5 {:edge, "x", 0, "y", 0}

Figure 3.3: Instruction stream after com-
piling fig. 3.2.

µCreek: A Meta-Programming Approach for Stream Languages 63

the even_square DAG by vertically composing a filter and map operator.
Figure 3.3 defines the reified representation of even_square. The first two
instructions define an operator of type filter with a function as its argument,
and label it with the name "x". The next two instructions define a map operator
with a function as its argument and label it "y". The last instruction connects
the first output port of the filter operator to the first input port of the map
operator.

A µCreekC program takes as input an instruction stream and produces an
instruction stream, hence, it is a stream operator. There are three different
types of instructions that can be processed by the meta-program.

• Operator Instruction Each operator in the DAG is reified as an operator
instruction. The meta-level has access to the type of operator, e.g., map,
and its arguments, e.g., the function in a map operator. The meta-level
can change the type of an operator, as well as its arguments. For example,
the instruction {:operator, :map, &Math.square/1} defines a map
operator with the &Math.square/1 as its argument.

• Edge Instruction Each connection between two operators is reified as an
edge instruction. The meta-level has access to the operators and their
port indices. The meta-level can change the operators between which
the edge is drawn, the in- and output ports of these operators, operating
remove an edge. For example, the instruction {:edge, "x", 0, "y",
1} in fig. 3.3 draws an edge from the first output port of "x" to the second
input port of "y".

• Naming Instruction Each operator is reified as an operator instruction.
These instructions do not refer to an operator in the DAG, and therefore
have no referential identity. To give the meta-level a mechanism to refer-
ence operators in the DAG, each operator is aliased with a variable name.
Each operator instruction is followed by a naming instruction that defines
the operator its alias. For example, the instruction {:name_it, "y"} in
fig. 3.3 aliases the map operator with the label "y".

Given the instruction stream in fig. 3.3, The DAG defined in fig. 3.2 can be
recreated by folding the instructions fromfig. 3.3 on an emptyDAG.Consider the
pseudo-code in listing 18. The code defines the process the compiler generates
to build the modified DAG, given an instruction stream.

Compile-Time Meta-DAG

The instruction stream is the reified representation of a DAG defined at the
base-level. The meta-level processes this stream of instructions to modify the

64 Separating Domain Logic in Streams

1 DAG = <new DAG>
2 IS = <instruction list>
3

4 for each instruction I in IS
5 case type(I)
6 alias ->
7 ignore
8 operator ->
9 DAG.add_vertex(I.type, I.argument)

10 edge ->
11 FROM = DAG.getVertexByName(I.from)
12 TO = DAG.getVertexByName(I.to)
13 DAG.add_edge(FROM, TO, I.from_port, I.to_port)
14

15 return DAG

Listing 18: Psuedo-code to fold the instruction stream into a DAG.

topology of the base-level DAG at compile-time. The user-defined meta-level
application that defines the transformation is called the compile-time meta-DAG,
or meta-DAG (step 3 in fig. 3.1).

The meta-DAG is defined using regular Creek. The Creek compiler deploys
the meta-DAG at compile-time and emits each instruction (i.e., i0, ..in) as a
meta event through the deployed meta-DAG in the order they appear in the
instruction stream. The reflective architecture of µCreekC reifies two data
structures in each emitted meta event. Firstly, each meta event contains an
instruction (e.g., d0). These instructions can be transformed to change the
type and arguments of the operator they define. Second, each event contains a
reified representation of the DAG that is currently being built (e.g., di), called
the working DAG. The result of propagating an event through the meta-DAG is
a working DAG (e.g., d1). The updated working DAG is paired with the next
instruction for the next event. This process is repeated until all instructions
have been processed. The final working DAG produced by the compiler is the
result.

Figure 3.4 depicts this process. The first instruction from the instruction stream,
i0 is paired with the empty DAG, d0. This creates the tuple (i0,d0), which is
“streamed through” the user-defined meta-DAG. The meta-DAG emits a new
working DAG, d1, which is then paired with the next instruction i1, and the
process repeats. When all instructions have been emitted, the result is the final
dag dn.

The only constraint on the topology of the meta-DAG is that it should be a
closed DAG with a single source and sink. The meta-DAG should understand

µCreek: A Meta-Programming Approach for Stream Languages 65

I0

Instruction
Stream

DAG Stream

zip

D0

D1

D1I1In Dn

D2Dn

Meta-DAG

I1, D1

In, Dn

I0, D0

Figure 3.4: Stream diagram of the evaluation of the meta-stream.

66 Separating Domain Logic in Streams

the full µCreekC protocol. This entails that the meta-DAG must understand
tuples with a DAG and three types of instructions. Additionally, the meta-DAG
must also always return a DAG.

µCreekC Meta Language

The previous two sections introduced the instruction stream and the meta-DAG
structure. In this sectionwe introduce the µCreekC meta language; the language
consists of additional language constructs that are available only in µCreekR
DAGs.

The design of a meta-protocol has as its primary goal to be expressive. In
µCreekC , a meta-DAG must be able to modify the operators as well as their
position in the DAG. Solely transforming instructions does not yield a very
expressive meta-DAG. Based on instructions alone, the meta-DAG can only
change individual operators and their connections. The working DAG and
the alias instructions add another layer of expressivity. Through the working
DAG and the aliases, the meta-DAG can fetch previously defined operators and
modify those as well. This opens up the possibility make changes to instructions
based on previously defined operators, e.g., operator fusion. The following
primitives help in modifying previously defined operators.

• fetch!(name) fetches the operator instance bound to the name var in
the working DAG.

• fuse!(op1, op2) fuses exactly two existing operator instances together
into a newoperator instance. For example, if two map operators o = map(f)
and p = map(g) exist in the working DAG, fuse!(o,p) creates a new
operator equivalent to map(fn v -> g(f(v))}. Multiple operators can
be fused by composing fuse calls to pairs of operators.

• swap!(op1, op2) swaps two operators in the working DAG while pre-
serving the connections.

• inputs(op) and output(o[)]) return a list of operators that are directly
connected to an input or output port of op.

Because the operator instructions alone do not offer enough expressivity, each
instruction is paired with the working DAG. The following primitives allow the
meta-DAG to modify this DAG using a traditional DAG interface: adding and
removing vertices, and placing edges between vertices.

• add!(op) and delete!(op) add and delete operators, respectively.

• connect!(op_from, fidx, op_to, tidx) adds an edge between two
existing operators.

µCreek: A Meta-Programming Approach for Stream Languages 67

• disconnect!(op_from, fidx, op_to, tidx)deletes an edge between
existing operators.

The primitives described above resemble a regular graph manipulation library.
In essence, structural reflection of streams boils down to just that. However,
under the hood, connections between ports and identities need to be managed,
and structural invariants (e.g., well-formedness) must be preserved. The primi-
tives described above disallow manipulating the internal data structures. The
only way to manage the working DAG is by means of the predefined functions.
The abstractions defined above are designed with expressivity in mind, while
hiding the details of the DAG construction.

The user-defined meta-DAG processes tuples consisting of an instruction and
a working DAG, and must emit a working DAG. This entails evaluating the
instruction and making the necessary changes to the working DAG, using
the functions defined above. To avoid requiring the simplest of meta-level
applications to evaluate instructions, µCreekC offers a built-in open DAG,
proceed. The proceed DAG takes as input a tuple of instructions, and a
working DAG, and emits an updated working DAG. In a sense, the proceed
DAG is the default meta-level behavior. Figure 3.5 shows the diagram of the
proceed operator. For each tuple that comes in, a modified working DAG is
emitted.

proceed

D1D2DnI1, D1In, Dn I0, D0

Figure 3.5: Diagram for the built-in proceed DAG.

Compile-Time Guarantees µCreekC allows the programmer to transform the
compilation instructions at compile-time. Because the language does not pro-
hibit the programmer from violating the constraints mentioned in section 2.2.3,
an additional step is transparently executed at compile-time to ensure that the
µCreekC program did not generate an invalid DAG. If the µCreekC program
produces an invalid DAG the program will be rejected by the compiler.

Example Listing 19 shows a complete example of a meta-DAG, VerboseMap.
The programmodifies every map operator in the base-level DAG by replacing its
argument function with a wrapped function that prints out its input and output
to the console. The meta-DAG duplicates its input data over two open DAGs:
operator and others, defined in lines 4–20. The operator DAG filters out

68 Separating Domain Logic in Streams

all instructions that are not operator instructions and transforms them using a
map operator. If the operator is of type :map, its argument is wrapped into a
new anonymous function that prints a message to the console (lines 7–15). Any
other operator in the DAG is left as is. The others DAG filters out all operator
instructions. Streaming any instruction stream through metadag results in a
DAG that is structurally different in the sense that each operator in the DAG
that is of the type :map has its argument replaced with a wrapped function. In
section 3.4.1 we show more complex examples of meta-DAGs such as operator
fusion.

1 defmodule VerboseMap do
2 use Creek
3

4 defdag operator as filter(&(match?({{:operator, _, _}, _, _}, &1)))
5 ~> map(fn {{:operator, type, arg}, dag, it} ->
6 arg =
7 case type do
8 :map ->
9 fn x ->

10 IO.puts "f(#{x})"
11 res = arg.(x)
12 IO.puts "=> #{res}"
13 res
14 end
15 _ ->
16 arg
17 end
18

19 {{:operator, type, arg}, dag, it}
20 end)
21

22 defdag others as filter(&(not match?({{:operator, _, _}, _, _}, &1)))
23

24 defdag metadag(src, snk) do
25 src
26 ~> dup
27 ~> (operator ||| others)
28 ~> merge
29 ~> proceed
30 ~> snk
31 end
32 end

Listing 19: Meta-program that logs the input and output of each map operator in a base-level
DAG.

A base-level application can declare a meta-DAG with the structure pragma.
The structure pragma takes the name of a module as a parameter. Every DAG

µCreek: A Meta-Programming Approach for Stream Languages 69

defined in the module is compiled with the meta-DAG defined in the given
module. An example of a program that uses the VerboseMap is shown in
listing 20.

1 defmodule ExtractJson do
2 use Creek
3 structure VerboseMap
4

5 defdag extract_ip(src, snk) do
6 src
7 ~> map(fn bin -> JSON.parse(bin) end)
8 ~> map(fn dict -> Map.value(dict, :ip_address) end)
9 ~> snk

10 end
11

12 # ...
13 end

Listing 20: A DAG that extracts IP addresses from binary data. The DAG is compiled with
verbose logging (line 3).

Multiple µCreekC DAGs can be composed. For example, replacing structure
VerboseMap with structure VerboseMap, OperatorFusion in listing 20
first adds logging statements, and then fuses operators together. Conceptually
speaking, a µCreekC programs takes in a DAG, and produces a DAG. The re-
sulting DAG can again be processed by another µCreekC DAG. When multiple
µCreekC DAGs are defined, the meta DAGs are applied from left to right.

In conclusion, a meta-DAG can modify the structure and operators of a base-
level DAG at compile-time. The goal of the DSL is to build DAG transformations
in the form of DAGs that can be composed into specific compile-time behaviors.
This is achieved by reifying the base-level DAG as an instruction stream and a
DAG that can be manipulated using the µCreekC language.

Validation

To validate our approach, we implement operator fusion as an example of a
compile-time transformation. Operator fusion optimizes a DAG by replacing
multiple operators with a single one. Semantically the result is equivalent,
but the amount of operators, thus increasing performance and reducing the
DAG’s size. We consider operator fusion a validation because it uses all the
features present in µCreekC : 1) removing and swapping operators in the DAG
at compile-time, 2) inserting operators at compile-time, and 3) changing the
connections between operators in the DAG based on stream events, and 4)
is was identified as a shortcoming by related work [17, 30]. Operator fusion

70 Separating Domain Logic in Streams

subsumes problems such as logging, timestamping, and parallelizing a stream.
At the end of this section, we briefly discuss the approach to implement these
compile-time transformations in µCreekC . Their implementation can be found
in appendix B, and appendix D.

Listing 21 shows the relevant code required to implement the fusion of consecu-
tive map operators in µCreekC . Operator fusion is implemented by transforming
the DAG based on the edge instructions. The alias and operator instructions
are not transformed and therefore the code is not shown here. The full code
can be found in appendix C.

Fusing two operators together at compile-time in µCreekC is possible be-
cause each operator is reified as an instruction that contains the operator type
(e.g., map, filter,…), and as its arguments (i.e., the function of a map operator).
Fusing two map operators involves wrapping the arguments of the individual
operators into a single function, which is the argument of a new map opera-
tor.

Given an edge between two map operators a and b, it is possible to fuse a and
b into c, and connect the input of a to c. All the subsequent edge instructions
that define an edge going from b to another operator must be replaced by an
edge going from c to the other operator.

The edge DAG defined in listing 21 filters out all instructions, except the edge
instructions. First, the operators of the edge are fetched. If those two operators
are not map operators, the instruction is left unmodified (lines 17–18); otherwise
it is modified as follows.

1. A new operator c is created with a function that applies b after a (line 12).

2. Operators a and b are deleted from the working DAG (lines 13 and 14).

3. Operator c is inserted into the working DAG (line 15).

4. The original instruction is transformed to create an edge between the
output port of the source of a and the input port of c (line 16).

All other events (i.e., operators and name events) are propagated through the
meta-DAG without modification. Combining the proceed DAGs with the edge
DAG results in a closed DAG that can be plugged into the compiler to achieve
the desired behavior. We refer to appendix C for the full implementation.

Timestamping Timestamping the values of a stream means that each datum
is timestamped at the time it passes through an operator in a DAG. This can be
achieved in contemporary stream DSLs by adding a map operator that adds a
timestamp to each value. However, inserting map operators that wrap values

µCreek: A Meta-Programming Approach for Stream Languages 71

1 defdag edge as
2 filter(fn event ->
3 match?({{:edge, _, _, _, _}, _, _}, event)
4 end)
5 ~> map(fn {{:edge, from, fidx, to, toidx}, dag, it} ->
6 a = fetch!(dag, from)
7 b = fetch!(dag, to)
8

9 case {a.name, b.name} do
10 {"map", "map"} ->
11 [x] = inputs(dag, a)
12 c = fuse(a, b)
13 dag = delete(dag, a)
14 dag = delete(dag, b)
15 dag = add!(dag, c)
16 {{:edge, x.ref, 0, c.ref, 0}, dag, it}
17

18 _ ->
19 {{:edge, from, fidx, to, toidx}, dag, it}
20 end
21 end)

Listing 21: Example of a meta stream fusing consecutive map operators together.

with timestamps impacts every other domain logic operator. The original
operators must now be adapted to work with timestamped values, introducing
additional boxing and unboxing logic.

Using µCreekC , timestamping can be implemented by making two changes to
the DAG at compile-time. First of all, a timestamp operator is placed placed in
front of every base-level operator. Second, every operator that has a function
argument its argument is wrapped by a function that boxes and unboxes each
datum. The result is that a stream is timestamped, but the operators to do so are
extracted from the domain logic. Figure 3.6 shows two diagrams that represent
this transformation.

Parallelization Parallelizing a DAG or operator means that single operators
are executed in parallel. Instead of processing one value at a time, they can
now process multiple values. Figure 3.8 and fig. 3.7 show how this is achieved
in Akka Streams by duplicating operators in the DAG.

Similar to the approach for operator fusion, a map operator can be replaced
with a set of other operators: a balance operator that spreads its data over n
instances of the original map operator, and a merge operator whichmerges those
parallel streams. This approach leads to the same topology as in fig. 3.8, but is
generated by the compiler, instead of by hand. Just like the Akka Stream and

72 Separating Domain Logic in Streams

map(f)
f(x)x

map(f')timestamp timestamp

y

{<time>, x}

{<time>, y}

{<time>, f(x)}

{<time>, f(y)}

f(y)

Figure 3.6: Diagrams of a regular map operator, and a timestamped map operator.

1 source
2 .map(compute)
3 .deploy()

Figure 3.7: Akka Stream
DAG to apply compute on
each datum.

1 val processor =
2 Flow.fromGraph(GraphDSL.create() { implicit b =>
3 val balance = b.add(Balance[Int](2))
4 val merge = b.add(Merge[Int](2))
5 val f = Flow[Int].map(compute)
6
7 balance.out(0) ~> f.async ~> merge.in(0)
8 balance.out(1) ~> f.async ~> merge.in(1)
9 FlowShape(balance.in, merge.out)

10 })
11 source.via(processor).runForeach(println)

Figure 3.8: The application from fig. 3.2 parallelized wih
a factor of 2.

µCreek: A Meta-Programming Approach for Stream Languages 73

RxJava implementation in listing 14, our approach loses the original ordering
of the data due to race conditions.

3.4.2 µCreekR: Run-Time Meta

The compile-time approach proposed in section 3.4.1 makes it possible to
express structural changes to the DAG. This helps to express non-functional
concerns such as logging, parallelism, etc. However, some of the problems
introduced in section 3.1 can not be addressed with topology changes alone
using µCreekC . Some problems require intercession at run-time. Examples of
these problems are the propagation semantics of a stream, encryption, and load
balancing.

We introduce – complementary to µCreekC – a behavioral reflection architecture.
Behavioral reflection allows a program to modify the run-time semantics of
the underlying language itself. In the context of stream DSLs this means that
streams can manipulate how they are executed at run-time. For example,
behavioral reflection can introduce different propagation semantics, encrypt
an entire stream, or catch errors to avoid retrying a stream by intercepting the
execution of event-handlers.

In the remainder of this section we introduce the architecture of behavioral re-
flection for a stream DSL by adding it to our own stream DSL Creek (section 2.2)
and discuss the intercession language of µCreekR (section 3.4.2).

µCreekR Architecture

When a stream is deployed, its individual operators are exchanging internal
messages under the hood (section 2.2.5) to propagate the data. This protocol
is called the Canonical Stream Protocol (CSP). Behavioral reflection gives the
programmer control over this process by means of a reflective architecture. The
messages from the CSP are called base messages, e.g., {:next, 7} which means
that in a stream of integers, 7 was emitted by an upstream operator. In the case
of a stream of integers, 7 is a domain value.

User-defined DAGs do not deal with base-level messages directly; base-level
messages are internal communication of the runtime. The runtime handles
base-level messages by calling the appropriate event-handler in each operator,
and depending on its result, sending the appropriate messages to the up- and
downstream operators, i.e., the CSP. For example, when a map operator receives
the base-level event {:next, 5}, the runtime executes the following steps.
First, the next event-handler is called from the operator. Second, depending on
the result of the event-handler, the value is propagated to all the downstreams,

74 Separating Domain Logic in Streams

or an error or complete event are sent downstream. Figure 3.9 graphically
depicts how base-level messages are processed at the meta-level.

The meta-level applications, called meta-DAGs, are user-defined DAGs that
consume meta messages. Because meta-DAGs hook into the runtime, they must
fulfill the tasks of the runtime. For each meta event the meta-DAG must call
the appropriate event handler of the operator, and ensure that the right internal
messages are sent to the up- and downstream operators. Calling the correct
event handler is called the base stage, and sending the appropriate internal
messages is called the effects stage. In the meta-DAG there is no clear distinction
between these two stages. The meta-DAG simply has control over these two
mechanisms. However, the effects stage includes message sending. Once these
side effects have been done, they cannot be undone.

Base Message

Meta Event

Base MessageOperator

Meta
Source

Meta Response

Meta
SinkBase Effects

Meta

Base

1

2

4 5 63

7

Meta DAG

Figure 3.9: Architecture of a meta-level stream: each base message is reified into the meta-
level, and each meta response is deified to the base-level.

Figure 3.9 depicts a flow diagram of how a base event is processed. The process
starts when a base event arrives at the base-level . The runtime reifies the
base message to a meta-level representation – a meta event – and emits it
through its meta source . The meta-DAG has two distinct stages: base-level
and effects. First, the stream calls the relevant base-level function for handling
the meta-level event . Second, the stream emits the necessary side effects
in response to the reply of the event-handler . For example, in response to
{next, v}, a value must be propagated to all operators connected to the output
ports. The meta response of the stream, representing the new operator state,
is captured by the sink actor . And finally, the result of the meta stream
is installed as the new operator state , and the operator can receive a new
base-level message.

µCreekR reifies base-level messages into the meta-level as meta messages. These
messages are emitted by a meta source. The internal messages have been dis-
cussed at length in section 2.2.5. We will not discuss each specific meta event
here because they are highly similar to the CSP. Instead, we explain the reifica-

µCreek: A Meta-Programming Approach for Stream Languages 75

tion process, and highlight the differences. An internal message contains the
event type (e.g., error and next) and the input port on which it arrived. The
reification of a message adds the following data.

1. Operator State The operator state contains the state of the operator that
is available in the behavior of the operator. For example, the from_list
source operator keeps the values it must emit in its state.

2. Meta State The meta-state can be used to store data across multiple meta
messages. For example, the pull-semantics implementation makes each
operator keep track of which operators it has asked data of, and which
operators have sent data in response to avoid sending demand twice.

3. Operator The reification of the operator is a representation of the operator
containing its type (e.g., map), arguments, and unique label.

4. Up- And Downstream A list of reified representations of all up- and
downstream operators. These lists can be used to selectively send mes-
sages downstream or upstream. For example, the balance operator only
forwards a message to a single downstream operator. Most operators, e.g.,
the dup operator, forward values to all downstream operators.

Every meta event must be turned into a meta response by the meta-DAG. A meta
response contains the updated operator state and meta state, and the up- and
downstream operators. All the other information is irrelevant to process the
next meta event. µCreekR provides a meta sink for the meta responses. Each
meta response is handled by installing the new operator and meta state and
updating the down- and upstream operators.

µCreekR Language

The previous section introduced the architecture of µCreekR. The architecture
exposes the internal messages of the stream to the meta-level as meta events.
These meta events can be processed by a user-defined meta-DAG to change
the default semantics of the stream. A meta-DAG must handle two concerns.
For each meta event, the meta-DAG must call the base-level event-handlers
(i.e., base stage), and send internal messages to connected operators (i.e., effects
stage).

Once an internal message has been reified to the meta level, both stages are be
handled at the meta level. Depending on the non-functional requirements, not
every meta-DAG modifies the default semantics in both stages. To avoid rewrit-
ing the default semantics in the meta-DAG, two built-in DAGs are provided
by µCreekR: proceed and effects. The proceed DAG defines the default
semantics for the base stage, and the effects DAG defines the default seman-

76 Separating Domain Logic in Streams

Function Description
propagate_up(e) Emit e to all the operators connected to an input port.
propagate_down(e) Emit e to all the operators connected to an output port.
propagate_self(e) Emit event e to itself.
call_base(name, arg*) Calls the event-handler name with optional argument arg.

name can be next, error, complete,tick or initialize
state(op) Returns the current state of the operator.
set_state(op) Updates the state of the operator, and returns a new operator.
meta_state(op) Returns the meta state of the operator.
set_meta_state(op) Updates the meta state of the operator, and returns a new operator.

Table 3.1: Functions available in µCreekR

tics for the effects stage. This allows a meta-DAG to only define changes in
one of both stages, while keeping the default semantics for the other stage.
Using these built-in meta-DAGs is optional because a meta-DAG can rede-
fine both stages. The default meta-level semantics are captured in the DAG
proceed ~> effects.

The user-definedmeta-DAGs can be constructedwith all the base-level operators
found in Creek. The only constraints put on meta-DAGs is that they understand
all meta messages and emit meta responses, and that the DAG is a closed DAG
with an actor socket for 1 source and 1 sink. These actors sockets are replaced
by the meta source and meta sink at runtime.

A user-defined meta-DAG can manipulate the way the base-level is called,
and what side effects happen. µCreekR offers abstractions to manipulate this
behavior. While the abstractions expose a simple message send at the meta
level, the internals require some additional bookkeeping (e.g., adding process
identifiers and output ports). Table 3.1 summarizes the functions available
to the operators of a meta-DAG. Three functions are available to handle side
effects (i.e., propagate_*), a getter function for the operator state (i.e., state),
and a function that calls the base level event-handlers (i.e., call_base).

Example As an example of how all these concepts are tied together, we show
a logging meta-DAG as an example of a µCreekR application (listing 22), a
base-level application that loads it (listing 23), and a sample output of running
the application (listing 24).

The code shown in listing 22 logs all the values that are received by and emitted
by an operator. An open DAG log_next is created to handle all the nextmeta
events. For each next event a message is logged to the console, printing out
the value that arrived (lines 13–16). Next, the meta event is handled by the
base DAG, because the meta application does not intend to modify the default
semantics. The base DAG returns the instruction from the operator behavior.

µCreek: A Meta-Programming Approach for Stream Languages 77

Depending on that result the appropriate message is logged to the console (lines
18–31). Finally, the base response is emitted to the effects DAG to send the
appropriate messages.

The application shown in listing 23 shows how to calculate the stream of fac-
torial numbers. The application can enable logging for the defined DAGs by
using the behavior Logging statement on line 3. An example of the output
of the logging DAG is shown in listing 24.

Validation

To validate µCreekR, a form of pull-based propagation semantics is imple-
mented in Creek, which is push-based by default (see section 2.2). We consider
an alternate form of propagation semantics a validation because 1) related
work [17, 30] posits it as one of the key shortcomings of contemporary stream
DSLs, and 2) it requires changes in the default semantics across the entire
stream (i.e., sources, sinks, and operators).

Creek implements push-based semantics by default. Any source operator emits
a new value in response to a tick event. These tick events are sent on two
occasions. The first tick is sent when the stream is deployed, to start the stream.
Subsequent tick events are sent whenever a source has emitted a value, to
signal producing the next. This loop of tick events constitutes push-semantics,
because the source does not take the downstream into account. Figure 3.10
graphically depicts the process. The A operator is a source that continuously
receives tick events.

A

4

B C

Tick

1113

Figure 3.10: Diagram depicting the “tick loop” in push-based semantics.

A stream with pull-semantics does not allow a source to dictate the rate of
emission. The source operators no longer sends tickmessages to themselves,
and the tick message is no longer sent when the stream is deployed. The
essence of pull-based semantics is the addition of the demand meta message.
The sinks of the stream send the initial demand message upstream when the
stream is deployed, signaling they require data. In what follows, we describe

78 Separating Domain Logic in Streams

1 defmodule Logging do
2 use Creek
3 use Meta
4

5 defdag default as
6 base ~> effects
7

8 defdag passthrough as
9 filter(&(not match?({_, :next, _, _}, &1)))

10 ~> default
11

12 defdag log_next as filter(&match?({_, :next, _, _}, &1))
13 ~> map(fn {op, :next, v, frm} ->
14 IO.puts("#{op.name} incoming: #{v} from #{frm}")
15 {op, :next, v, f}
16 end)
17 ~> base
18 ~> map(fn result ->
19 case result do
20 {op, state, :next, result} ->
21 IO.puts("#{op.name} outgoing: #{result}")
22

23 {op, state, :error, err} ->
24 IO.puts("#{op.name} error: #{err}")
25

26 {op, state, :complete} ->
27 IO.puts("#{op.name} completed")
28 end
29

30 result
31 end)
32 ~> effects
33

34 defdag meta(src, snk) do
35 src
36 ~> dup()
37 ~> (log_next ||| passthrough)
38 ~> merge()
39 ~> snk
40 end
41 end

Listing 22: Meta-DAG to log all the incoming values and outgoing values of each operator
in a stream.

µCreek: A Meta-Programming Approach for Stream Languages 79

1 defmodule LoggingExample do
2 use Creek
3 behavior Logging
4

5 defdag factorial(src, snk) do
6 src
7 ~> transform(1, fn v, acc -> {acc * v, acc * v} end)
8 ~> snk
9 end

10

11 def main() do
12 source = Source.range(1, 10)
13 sink = Sink.all(self())
14 deploy(factorial, [src: source, snk: sink])
15

16 receive do
17 result ->
18 # Handle result..
19 end
20 end

Listing 23: Example application that loads the Logging meta-DAG.

1 ...
2 Source outgoing: 10
3 transform incoming: 4 from #<InputGate>
4 transform outgoing: 24
5 transform incoming: 5 from #<InputGate>
6 Source signaled to produce!
7 transform outgoing: 120
8 Source outgoing: 11
9 Source signaled to produce!

10 ...

Listing 24: Example output of the Logging meta-DAG.

80 Separating Domain Logic in Streams

the meta-level behavior for sources, sinks, and operators.

Source Listing 26 shows part of the implementation of pull-based propagation
semantics in Creek, namely the meta-DAG for a source operator. The full
implementation can be found in appendix E. The changes required for a source
operator are three-fold. First, when the initmessage is sent when the stream
is deployed, no effects are executed. These effects send the initial tickmessage,
and this is not needed in pull-semantics. Listing 25 shows the open DAG that
handles all the initmessages for a source. The base DAG is used to call the
appropriate behavior, but the effects are removed to avoid sending the tick
message.

1 defdag init_src as
2 filter(&match?({_, :init}, &1))
3 ~> base()
4 ~> map(fn {p, state, :initialized} ->
5 # Here we would normally send tick to ourselves, but we dont.
6 {p, :ok}
7 end)

Listing 25: Handling init messages for source operators in pull-based streams.

Second, when a source receives a tick event, it produces a value and sends a
tickmessage to itself. Again, this is done by overriding the effects of the tick
message. Listing 26 shows the open DAG that handles all tickmessages sent to
a source operator. The base DAG is used to call the appropriate behavior, but
the effects are modified. Depending on the result of the base level, the necessary
effects are executed. When the base level returns a tick instruction, the source
propagates its data downstream, but does not send the tickmessage.

Finally, the source operator must understand the demandmessage. The operator
sends itself a tickmessage in response to each demandmessage. The demand
message is not part of the CSP, and therefore there is no event handler defined
in the behaviors.

Operator If an operator receives the demandmessage, it has to propagate it
upstream such that it eventually reaches a source. Some operators, such as the
filter operator, do not always emit a value in response to incoming value.
For example, a filter for even numbers will not emit a value if it received an
odd number in response to the demandmessage. To solve this problem, every
operator must keep track of the demand messages it sends. If the operator
does not emit a value downstream in response to an upstream value, it must
send demand again, to satisfy the demand of its downstream. This is further

µCreek: A Meta-Programming Approach for Stream Languages 81

1 defdag tick_src as
2 filter(&match?({p, :tick}, &1))
3 ~> base()
4 ~> map(fn base_result ->
5 case base_result do
6 {p, {state, :complete}} ->
7 effects_complete(nil, p.ds, p.us, p.pid)
8 {%{p | state: state}, :ok}
9

10 {p, {state, :next, value}} ->
11 # Here we would normally send tick to ourselves, but we dont.
12 propagate_downstream({:next, value}, p.ds, p.pid)
13 {%{p | state: state}, :ok}
14 end
15 end)

Listing 26: Handling tick messages for source operators in pull-based streams.

1 defdag demand_src as
2 filter(&match?({p, :demand, _}, &1))
3 ~> map(fn {p, :meta, :demand, _} ->
4 send_self({:tick}, p.pid)
5 {p, :ok}
6 end)

Listing 27: Handling demand messages for source operators in pull-based streams.

complicated in case of operators with multiple upstreams. Operators that rely
on multiple upstreams (e.g., zip) maintain state to keep track of which sources
have been sent demand and which sources replied. This avoids sending demand
twice to an operator.

Listing 28 shows the openDAG that defines how a demandmessage is handled by
an operator. Themeta state contains a dictionary that contains which upstreams
received a demandmessage already. If the operator receives a demandmessage,
it is forwarded to all upstream operators that have not been sent a demand
message only.

Sink When a sink is deployed with the default semantics, it does not execute
any effects in response to the initmessage. In case of pull-semantics the sinks
are the operators that have to send the initial demand message. Additionally,
when a sink receives a value from its upstream is should send a new demand
message upstream The full implementation for pull-based semantics can be
found in appendix E.

82 Discussion

1 defdag forward_demand as
2 filter(&match?({_, :demand, from}, &1))
3 ~> map(fn {opr :demand, from} ->
4 demanded = opr.meta_state
5 to_demand =
6 opr.upstreams
7 |> Enum.filter(&(not MapSet.member?(demanded, &1)))
8 propagate_upstream(:demand, to_demand, opr.pid)
9 meta_state = MapSet.new(opr.upstreams)

10 {%{p | meta_state: meta_state}, :ok}
11 end)

Listing 28: Handling demand messages for source operators in pull-based streams.

3.5 Discussion

The design of a meta-level architecture should respect certain design principles
set forth by earlier work inmeta-level programming. One of themost prominent
work in this field is the work by Bracha and Ungar [20] and Kiczales et al. [59].
We discuss the principles put forward in this work, and discuss why µCreek
was designed according to these principles, and if µCreek upholds them.

Encapsulation dictates that a meta-level architecture should encapsulate its
implementation details. The meta-level programs should be written against
an API that decouples the underlying implementation from the meta-level
programs, ensuring reusability. For µCreekC we have chosen to write meta-
programs against the instruction stream that exposes three data structures
(Directed Acyclic Graphs (DAGs), edges, and operators), offering an API that
is completely decoupled from the actual implementation. The result is that
µCreekC programs can be reused for implementations in other languages, as
long as the meta-level architecture offers the same API.

For µCreekR, a meta-DAG can intercept at the level of the communication
protocol defined in section 2.2.5. Each message is reified in such a way that it
hides details regarding communication protocols, concurrency, etc. From the
meta-level perspective, an operator is a black box that offers a few behaviors,
and that has state. This approach almost completely decouples the µCreekR
program from the base-level, as no references can be made to the base-level
details, but only reified representations thereof. The only requirement for any
language to support µCreekR is to reify the inter-operator communication as the
canonical stream protocol and to reify the representation of base-level operators
their behaviors.

µCreek: A Meta-Programming Approach for Stream Languages 83

Stratification dictates that meta-level entities should be cleanly separated
from base-level entities. This ensures that there is as little coupling as possible
between the base- and meta-level and that the meta-level behavior can be
removed without breaking the base-level program. A meta-level program
should not reference values or entities from the base-level (e.g., a base-level
DAG with variable name proceed can not have impact on the proceed DAG
at the meta-level), or vice versa. Additionally, a base-level operator should be
prohibited from creating explicit references to its meta-level representation.
These references would make it impossible for the compiler to completely
remove the meta-behavior because the base level is coupled to the meta-level.
If stratification is respected, the meta-level architecture can be completely
removed from an application if it is never used, without changing the semantics
of the application.

In µCreekC stratification is ensured in three ways. First, the meta architecture
is only loaded on-demand by using the structure pragma. If no µCreekC
program is installed in the base level program the compiler will not activate
the meta-DAG compiler. Second, the meta-level does not have access to base-
level concepts but only the instruction stream, and thus no references can be
made to base-level entities. Third, the Domain Specific Language (DSL) for the
meta-DAGs is namespaced, ensuring that the proceed and base DAGs cannot
be confused with base-level DAGs.

Similarly, in µCreekR, the meta-program is only loaded if it has been explicitly
imported using the “behavior” pragma. If there is no pragma defined the
compiler will not install any meta-level behavior in the operators to modify
the runtime behavior. Additionally, the µCreekR DAG does not have access to
base-level concepts, except values from the host language.

Structural Correspondence dictates that each language construct has a rei-
fied representation at the meta-level. µCreekC represents the compile-time
components of a stream language at the meta-level: DAGs, edges, and operators.
While strictly speaking the function arguments of operators should also be
reified, we have chosen not to do so, as this requires a meta-level representation
of concepts from the host language (i.e., Elixir), coupling µCreekC to a specific
implementation. We have reified only the concepts that µCreek introduced
and the host-level language. Similar to µCreekC , we have chosen to only repre-
sent the run-time concepts introduced by the µCreek DSL at the meta-level,
i.e., operators and events in the Canonical Stream Protocol (CSP). A µCreekR
application is a transformation of incoming and outgoing meta events. The
meta-level applications do not have a notion of the stream as a whole, only
the operator on which it is deployed. Therefore streams are not reified at the

84 Discussion

meta-level.

Unified Programming Model A unified programming model entails that the
paradigm for the meta-level and the base-level are the same (e.g., streams).
Matching these paradigms has a number of advantages. On the one hand, it
simplifies reasoning over the code as the same programming concepts are used
in both meta and base level code. On the other hand, reification simplifies the
interaction between both levels, because the stream-paradigm does not have to
be translated to another paradigm.

For this reason, µCreekC represents the construction of the DAG as a stream
of instructions. This also means that µCreekC programs are streams that are
built using the full expressivity of the Creek language. µCreekR represents the
base-level events as meta-events that are streamed from the meta-source. The
µCreekR programs manipulate these meta-events, and in doing so, have full
control of the semantics of the semantics of the stream. We conclude that the
paradigm of the base-level (i.e., Creek) , compile-time meta-programming
(i.e., µCreekC), and run-time meta-programming (i.e., µCreekR) are the
same.

Portability To enable the implementation of the ideas of µCreek in other
languages, the meta-level architecture cannot rely on the intricacies of the host
language. The design principles outlined by Bracha and Ungar (i.e., encapsula-
tion, stratification, and structural correspondence) set guidelines to prevent a
meta-level architecture from becoming too entwined with its base-level. How-
ever, Creek is built atop a concurrent, multithreaded runtime, namely Elixir. If
the runtime relies too much on these properties it can become tightly coupled to
the execution semantics of the host language (e.g., relying on concurrency). In
µCreekR, the meta-level programs only process events emitted by the runtime
(i.e., reified base-level events). While not every language implements the com-
munication protocol of Creek, we argue that the message protocol presented in
section 2.2.5 is sufficiently high-level to express the internal messages of most
languages. To port the architecture of µCreek to another language, the runtime
must generate and emit the events from the µCreek protocol and understand
the messages it can generate (table 3.1). Additionally, the protocol defined in
Reactive Extensions[82] was used as inspiration to the µCreek protocol and is
the foundation of most JVM-based stream languages [83, 66] and other reactive
extensions implementations, meaning that the internal protocol is similar to
Creek’s.

µCreek: A Meta-Programming Approach for Stream Languages 85

3.5.1 Design Philosophy

µCreek is designed with the principles of [20] at its core. These design princi-
ples ensure that the meta-level architecture is portable, modular, and extensi-
ble.

Encapsulation ensures that a meta-level application does not depend on the
internals of the base language it is about. In context of µCreek, µCreekR
its domain is meta-events and meta-responses, and is not about Elixir actor
messages, processes, or modules. If encapsulation should be violated, the
design of µCreek would not be applicable to non-actor languages or languages
other than Elixir, without major modifications. Encapsulation ensures that the
meta-level application is portable across implementations.

Stratification ensures that the meta-level architecture does not impose any
performance overhead when not used because the runtime can completely
separate application and meta code. In context of µCreek, µCreekC does
not impose any overhead when it is not used by completely disabling it at
the virtual machine level. The instruction stream is only generated when a
µCreekC directive is present in the program. Additionally, µCreekR does not
impose any overhead when no directive is present in the program, because
a Creek program is completely unaware of its meta-level stream, and vice
versa. This stratification makes it possible for the virtual machine to completely
disable the meta-stream. The runtime does not load any meta-level streams and
does not generate meta-events if no meta-DAG is present. Stratification ensures
that the absence of meta-behavior does not negatively impact the performance of
Creek.

Structural Correspondence ensures that the base-level concepts of a program
have a meta-level representation. In context of µCreekC , the meta-application
reasons about the structure of DAGs, and the dependencies between the op-
erators in those DAGs. The concepts of a DAG, operator, and dependency are
reified at the meta-level. However, values and concepts from the language
in which µCreekC is embedded (i.e., Elixir) are not reified. True structural
correspondence would reify these values as well, but the host language (i.e.,
Elixir) does not support this, thus imposing a significant engineering effort. In
µCreekR the concepts that are added by Creek (i.e., operators, streams, and
events) are reified, but similar to µCreekC , values from the host language are
not reified. Structural correspondence ensures that the meta-level can reason about
the same concepts as the base-level.

Unified Programming Model requires that the paradigm at the base-level and
meta-level are the same. A unified programming paradigm offers the following
advantages.

86 Evaluation

First, when the base and meta paradigms match, the programmer can reason
about base-level and meta-level in terms of similar concepts. Because of this
property, the meta-level in both µCreekC and µCreekR are stream-based. Sec-
ond, in the context of embedded DSLs such as Creek, the host language has its
own paradigm (e.g., functional), next to the paradigm of the embedded DSL
(e.g., stream). A meta-level architecture does not have to employ the paradigm
of its host language, or the DSL. A unified paradigm avoids the need for a third
paradigm, which would introduce additional cognitive overhead. Third, when
meta-programs are written in the same language as the base-level, reflective tow-
ers become possible. Reflective towers allow the meta-level programs to have a
meta-level, which can in turn have their own meta-level, and so on. In µCreek,
reflective towers can be used to modify the behavior of µCreekR and µCreekC
programs. As example, consider the implementation of operator fusion (ap-
pendix C). Instead of optimizing the DAG to have as few operators as possible,
operator fusion can be used to fuse operators to increase performance.

When the base- and meta-level paradigm do not match, language symbiosis
between the base- and meta-level is necessary [97]. Symbiosis introduces ad-
ditional complexity into the meta-level design that has to be addressed [51],
depending on the combination of languages. Data structures from the base-
level andmeta-level must have a representation in both paradigms, andmust be
translated between them. To explain this, assume that themeta-level of µCreekR
is expressed in the object-oriented paradigm. Every operator emits a contin-
uous stream of meta-events, and expressing logic that reacts to these events
requires solutions such as the Observer pattern. Stream-based programming
is designed to express event-driven systems, and µCreekR is an event-driven
architecture, so it is evident that stream-based programming is the paradigm
at the meta-level. The story is different in context of µCreekC , however. A
µCreekC program is a DAG transformation at its core, and could more easily
expressed in an imperative or functional paradigm. However, the advantage of
expressing µCreekC programs in the stream paradigm outweigh the advantages
of adding another paradigm. The unified programming paradigm keeps the cogni-
tive overhead to a minimum and avoids the need for language symbiosis between the
meta-level and base-level.

3.6 Evaluation

We addressed how µCreek can address the problems postulated in section 3.2.
In this section we quantitatively measure the performance overhead of µCreekR
by benchmarking µCreek against a version without meta-level architecture.
We also showcase Anabranch, a debugger for streams, written completely at the
meta-level, with the purpose of showing the expressiveness and limitations of

µCreek: A Meta-Programming Approach for Stream Languages 87

the meta-level architecture.

3.6.1 Creek Debugger

Meta-level architectures open the language in a structured way. The reifica-
tion of the internal messages in the language exposes information typically
inaccessible to the programmer. A debugger is a well-known tool that can use
this information to give additional insights into the execution of a program, or
manipulate it. In this section, we discuss Anabranch, a reflective debugger for
Creek in the form of a meta-Directed Acyclic Graph (DAG). Anabranch is used
to show the expressiveness of our meta-level architecture.

A debugger is a program that allows the controlled execution of a target program.
A minimal requirement for debuggers is to give additional insight into the
target program’s execution. Typically, a debugger allows tracking a variable’s
value, modifying the target program while running, pausing the execution of a
program, stepping the execution of the program, and evaluating expressions in
the current environment. There are two major types of debuggers: online and
offline debuggers, also called post-mortem debuggers. Online debuggers execute
while the program is running, and offline debuggers work based on logs, traces,
or dumps of the program or checkpoints in the program. Online debuggers
are debuggers that execute while the program is executing. Typically these
debuggers are used by placing breakpoints in the code, where the debugger
should halt the program for further inspection. A debugger consists of two
parts. The front-end is the interface that programmers use to interact with the
program. The back-end is the software that controls and manages the program
execution. In online debugging, the front-end can run remotely, or in the same
process as the application, called in-place debugging.

Figure 3.11 shows a screenshot of the Anabranch debugger. The top row shows
all the currently deployed streams. Clicking on a stream loads its details into the
panes below. The left-most pane shows the stream’s DAG, and the dependencies
between them. A green vertex means the operator completed, and a blue vertex
means the operator is running. Each vertex is labeled with its type (e.g., map),
and the edges are dynamically updatedwith the last emitted domain values. The
middle pane shows information about the selected vertex. The right-most pane
shows a log of the received domain values and the emitted domain values that
are computed based on the received value. Finally, the bottom pane shows the
current state of the operator, which can be modified. The state of the transform
operator shown in the screenshot contains the current value (“accumulator”),
and the combiner function. The function is shown as #Function<...>, because
Elixir cannot show an anonymous function its original code. A new state can
be defined, e.g., a new function and accumulator, and deployed on the operator

88 Evaluation

by pressing “Update”. The text area at the bottom contains the arguments with
which the operator was instantiated.

The meta-DAG in Creek has access to three pieces of information that are of
interest for a debugger. First, the meta-DAG in Creek handles the events that
arrive at an operator. These events represent the domain values, errors, and
complete events. The meta-DAG can inform the debugger in real-time what
internal messages are propagating through the stream. Second, the meta-DAG
can intercept the base-level evaluation of these events and the result. This
allows the debugger to show which datum is processed, and which datum is
emitted as a result. Third, each meta-event contains information about the
operator, including its state, arguments, and meta state. This can allow the
debugger to inspect the current state of the operator, its type, and its initial
arguments. Finally, the meta-DAG can modify the operator its state at runtime.
This allows the debugger to send meta-level messages to a stream to modify its
behavior at runtime.

Most meta-DAGs are closed DAGs with 1 source and 1 sink. The source and sink
are provided by the runtime. The source emits the meta-events, and the sink
consumes themeta-responses. The debugger is an external process that needs to
communicate with a meta-stream, which is impossible. Ad-hoc communication
is possible by sending messages to other actors, but this would be poor stream
design; side effects have to be migrated to sources and sinks as much as possible.
To solve this problem we adapted the meta-streams to allow an optional user-
defined sink and source parameter. These user-defined source and sink can
be used to emit or consume meta-events and meta-responses outside of the
runtime. The debugger uses this mechanism to inject meta-events from the
front-end into the meta-DAG, and to extract meta-responses to the debugger
front-end. Figure 3.12 shows the graphical depiction of such aDAG. The external
source is a source actor that can inject events directly into the meta-DAG. The
external sink is a sink that can be used to extract data from the meta-DAG. In
the graph shown in fig. 3.12 the source and sink are at the start and end of
the stream, but they can be placed anywhere in the stream, depending on the
application.

Anabranch shows that the meta-level can express complex meta-level appli-
cations, such as debuggers. However, the meta-level has a few shortcomings
that limit the debugger its capabilities. First, the meta-level architecture lacks
control over the stream as a whole. Intercepting a message and blocking the exe-
cution of the meta-stream is possible, but limited to a single operator. Blocking
the stream as a whole requires control over multiple concurrent Elixir processes.
The meta-level is a stream that is deployed on each operator separately, and
can only communicate with the meta-DAG of its direct up- and downstream

µCreek: A Meta-Programming Approach for Stream Languages 89

Figure 3.11: The Anabranch Debugger

90 Evaluation

Meta

Source

Meta

Sink

Meta

DAG

Outside
Source

Outside

Sink

Meta
Response

Meta
Event

Figure 3.12: The external source and sink for the meta-DAG. The dotted lines indicate that
they are optional.

operators. Second, the DAG that is deployed can be structurally changed with
compile-time DAGs. This original representation is lost at runtime, and the
debugger will therefore show the optimized version, which might hinder com-
prehensibility for the programmer. Finally, the debugger is a meta-level DAG,
and the meta-level of Creek does not compose with other meta-level DAGs.
This means that a DAG can only be debugged without any other meta-level
DAGs.

Implementation Most of the complexity of the debugger is contained in
the front-end JavaScript application. The meta-DAG essentially communicates
bidirectionally with the front-end. The meta-DAG for source operators is shown
in listing 29. The dag definition has an additional parameter, sock, which is
the external sink. Every tick event is handled by calling the base-level. The
result of the base-level is sent via the sock sink to the debugger. The debugger
then displays that the source has emitted a datum. Additionally, the effects
are executed, and the meta-response is sent to the meta sink snk (i.e., default
behavior). The optional source is not defined in the DAG by the user, because
it must be intercepted by the meta-source to wrap it with the meta data of a
meta-event (i.e., operator, downstreams, and upstreams). A meta-event always

µCreek: A Meta-Programming Approach for Stream Languages 91

contains meta-data of the operator it is about. Any external event is sent to the
meta-source, allowing it to add the meta-data of the operator. The modified
meta-message is emitted by the meta-source. The full meta-DAG definition for
the debugger can be found in appendix G.

1 defdag source(src, snk, sock) do
2 let tick? as filter(&match?({_, :tick}, &1))
3 let rest? as filter(&(not match?({_, :tick}, &1)))
4

5 let rests(as rest? ~> default ~> snk)
6

7 let export as map(fn e ->
8 case e do
9 {p, {state, :tick, value}} ->

10 {:outgoing, p.pid, state, value}
11

12 {p, {_, :complete}} ->
13 {:complete, p.pid}
14

15 _ ->
16 :skip
17 end
18 end)
19 ~> sock
20

21 let ticks as tick?
22 ~> base
23 ~> dup
24 ~> (export ||| effects ~> snk)
25

26 src
27 ~> dup
28 ~> (ticks ||| rests)
29 end

Listing 29: The debugger meta-DAG for source operators.

3.6.2 Performance Benchmarks

To evaluate the performance of the meta-level architecture we benchmarked an
“identity meta” (listing 30) and compared it to a version of µCreek in which all
meta-level machinery was removed, called Creek--

The IdentityMeta DAG (listing 30) is a meta-level program that does not
modify the semantics of the base-level behavior. It does so by calling the
base level (lines 6, 13, and 20) and executing the effects (lines 7, 14, and 21).
This ensures that any overhead measured is introduced solely by µCreekR.

92 Evaluation

For performance reasons the identity meta is optimized by applying operator
fusion.

1 defmodule IdentityMeta do
2 structure Merge
3

4 defdag operator(src, snk) do
5 src
6 ~> base
7 ~> effects
8 ~> snk
9 end

10

11 defdag source(src, snk) do
12 src
13 ~> base
14 ~> effects
15 ~> snk
16 end
17

18 defdag sink(src, snk) do
19 src
20 ~> base
21 ~> effects
22 ~> snk
23 end
24 end

Listing 30: Identity Meta behavior

To measure the performance overhead we ran two benchmarks for µCreek as
well as Creek--. The findings are reported below.

Fixed Amount of Values, Varying DAG Size Figure 3.13 shows the chart for
the first benchmark. In this benchmark the amount of values propagated is
fixed, and the amount of operators in the DAG varies from 0 (only sink and
source) to 2000.

We observe that the execution time for µCreek (blue) and Creek-- (orange) are
both polynomial, but that the performance of µCreek is slower by a factor of
3.3. In other words, the performance of the DAG decreases linearly with respect
to the size of the DAG.

Fixed DAG Size, Varying Amount of Values Figure 3.14 shows the chart for
the second benchmark. In this benchmark the number of values propagated
varies from 0 to 10000, and the amount of operators in the DAG is fixed at
250.

µCreek: A Meta-Programming Approach for Stream Languages 93

y = 0,0153x2 - 3,9098x + 345,81

y = 0,0511x2 - 25,509x + 4227,5

0,00

20000,00

40000,00

60000,00

80000,00

100000,00

120000,00

140000,00

160000,00

180000,00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Nodes in DAG

Creek-- Execution Time (ms) Creek Execution Time (ms) Poly. (Creek-- Execution Time (ms))

Figure 3.13: Execution time in miliseconds with varying DAG size and fixed load.

We observe that the execution time for µCreek (orange) and Creek-- (blue) are
both linear with respect to the size of the input, but that the performance of
µCreek is slower by a factor of 77.

y = 0,0153x + 108,83

y = 1,1893x + 417,5

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Values propagated through DAG of fixed size (250 nodes)

Creek-- Execution Time (ms) Creek Execution Time (ms)

Linear (Creek-- Execution Time (ms)) Linear (Creek Execution Time (ms))

Figure 3.14: Execution time in miliseconds with varying load and fixed DAG size.

3.7 A Note on Related Work

In this section we discuss meta-level architectures in communication-based
paradigms. µCreek is a meta-level architecture designed specifically for stream-

94 A Note on Related Work

based languages. To the best of our knowledge it is the first of its kind. We
therefore broaden the scope of related work to include object-oriented, channel-
based, and actor-based paradigms.

Reflection in Distributed Systems Garf [48] is an object-oriented distributed
system that separates the behavioral aspects of an application from the func-
tional aspects. The meta-behavior of the applications are contained within
encapsulator and mailer objects. The encapsulator objects wrap base-level ob-
jects and can override the send and receive semantics of an object. CodA [70] is
a meta-level architecture that was designed to express object-oriented semantics
bottom up. Instead of reifying the behavior of an object-oriented language into
a meta-level (i.e., top down), CodA provides seven meta-objects that can be
composed to create many different base-level behaviors.

Both the above approaches provide the necessary mechanisms to express non-
functional concerns such as asynchronous messages, distributed messages, and
replication. By allowing the meta-level to intercept communication between
objects it becomes possible to change the semantics of how messages are pro-
cessed. However, both meta-levels are designed for object-oriented paradigms,
while µCreek is a meta-level architecture specifically designed for stream-based
languages. The architecture of CodA decomposes the meta-behavior into an
extensible set of seven distinct objects that can each define their own semantics.
In µCreekR, the meta-level logic is divided into two conceptual phases that
have no clear separation (i.e., base and effects), hindering the composition of
meta-level behaviors.

In [14], the authors propose channel reification, where the communication be-
tween two objects is reified as a channel. Similar to CodA and Garf, a channel
traps the communication between two objects at runtime and allows the meta-
level to change its semantics. In the channel reification model, channels can be
reused between objects if they have the same semantics, sender, and receiver.
Conversely, in µCreek, every operator has its own instance of a meta-stream,
which introduces significant overhead. As an extension to the channel reifi-
cation model, [25] adds support for multi-channels, communication between
multiple parties.

The channel reification model makes it possible for a meta-level approach to
intercept messages while having access to the communication as a whole. A
reified message in a channel contains the sender, receiver, and message. This
approach results in a global view, and allows the meta-level to incorporate
properties of the sender and receiver in its logic. However, in the context of a
stream DSL, any operator should never be aware of the identity or properties of
its up- and downstream operators and avoids coupling between operators. This

µCreek: A Meta-Programming Approach for Stream Languages 95

invariant ensures that any operator can be composed with any other operator.
The only identity an operator has of its up- and downstream is the gate to
which it is connected. This is necessary to differentiate between streams in the
base-level logic. For example, the zip operator needs this information to know
when to emit a new tuple.

Reflection in Actor Langauges Akin to object-oriented languages offering
meta-objects, some actor languages offer a meta-actor [90]. The meta-actor is
responsible for intercepting incoming and outgoing messages of the lower-level
actor it is tied to. A meta-actor captures the messages intended for the lower-
level actor, as well as the messages the lower-level actor emits. Like invoke in
object-oriented programming, and the canonical stream protocol in µCreek, the
most basic meta-level operators in the meta-actor are send and receive.

AmbientTalk [34] is an actor language that implements a mirror-based architec-
ture based on the work by Bracha [20]. This meta-level architecture has many
applications, such as adding proxy objects to the base language, persistence,
and so on. In AmbientTalk intercession is used to build a “language laboratory”,
a programming language that can be easily extended.

The biggest difference between µCreek and the work discussed above is that
µCreek is a meta-level paradigm that reifies the canonical stream protocol.
In the work discussed above the meta-level works at the level of invoke, the
most basic meta-level operation in an object-oriented language that executes an
object its method. In context of stream programming, the most basic meta-level
operation is the canonical stream protocol, i.e., next, error, and complete. In
this regard, µCreek is a more specific meta-level architecture than the generic
ones discussed above. It is well-established that the goal of a meta-level should
not reify too much [68], and in that regard, µCreek can be considered a DSL
for meta-programming streams, rather than a general-purpose meta-level ar-
chitecture.

3.8 Summary of Chapter

µCreek is a design for a metal-level architecture for stream-based languages. It
consists of a compile-time part to transform the structure of a stream, and run-
time part to modify the behavior of the stream execution semantics. We show
that the design is expressive enough to separate the non-functional concerns
from a stream in a structured way. Meta programming is popular technique to
increase the extensibility and applicability of programming languages. How-
ever, to the best of our knowledge µCreek is the first meta-level architecture for
stream-based languages. µCreek has been shown to be expressive, but the meta-

96 Summary of Chapter

level incurs a significant performance impact (77x slower). Further research
is required to determine how to compose different runtime Directed Acyclic
Graphs (DAGs) into a single meta-level behavior. Additionally, further research
should investigate how to facilitate dynamic changes to a stream topology (i.e.,
higher-order streams).

Chapter 4
Potato: A Streaming Platform for
CPS

A Cyber-Physical System (CPS) integrates ordinary physical devices (e.g., lock-
ers on a university campus) into a unified digital system by equipping them
with small computers. A network connection between devices and real-time
data exchange can make ordinary physical systems more efficient. CPSs have
found their way into a wide array of domains such as smart grids [5], smart
buildings [50], medical systems [35], oil pipeline monitoring [13], and traffic
control systems [53]. Despite technological advances in both hard- and software,
CPSs are still challenging to develop, monitor, and maintain.

Chapter 2 introduced Creek, a stream Domain Specific Language (DSL) with
a meta-level architecture that can be used to express non-functional concerns
in streams. In this chapter, we use that as the foundation for a novel stream-
based CPS architecture called Potato. In section 4.1 we detail an example of
a CPS application. In section 4.2 we introduce the design challenges in terms
of software engineering for CPSs raised by the literature, and in section 4.3
we define our approach to tackle these challenges. Section 4.4 shows how the
basic building blocks of our design can be composed to build applications.
Section 4.5 explains how Creek and µCreek (see chapter 2) can be used to
cater to the non-function concerns of those applications. We conclude with
a discussion of related work in section 4.6 and qualitative evaluation of our
design in section 4.7.

97

98

data

update

world

data

update

world

HVAC

Thermo
data

update

world

31.2 °C

31.8 °C

32.1 °C

Figure 4.1: An example of a network in Potato. A thermometer and HVAC system are
programmed by a smartphone. The thermometer streams its measurements to the HVAC
system directly, which turns itself on or off, depending on the temperature.

Potato: A Streaming Platform for CPS 99

4.1 Motivating Scenario: VUB 4.0 Campus

Before discussing the problem statement and our approach, we introduce a
scenario that will serve as the basis of our validation in section 4.7.

The rector of the Vrije Universiteit Brussel (VUB) has a vision for a new campus:
“VUB 4.0”. The campus will be a testbed for new technology and will be
equipped with state-of-the-art hardware. The campus has 50 lecture halls, with
an average capacity of 120 students each, totaling 6000 students at full capacity.
Each lecture hall is equipped with the following sensors and actuators.

• Thermometers, hygrometers, and carbon monoxide sensors to measure
the air quality.

• Climate control to regulate the temperature in the lecture hall.

• A ventilation system to refresh the air.

• Dimmable lights.

• Motion sensors.

• Automatic windows that can be remotely controlled.

• Smart plugs at every seat.

• Access control panels at each door.

• Fire detection system.

• Alarm system speakers.

• A Wi-Fi access point that tracks the connected devices.

• Lockers for students.

The students and VUB personnel interact with the system using the VUB App
on their smartphone. Students can use the app to access public lockers, to
consult class schedules, and to receive notifications of absent professors. The
VUB personnel can unlock doors, set ambient settings (i.e., temperature, draft,
and lighting) in auditoriums, and infrastructure configuration (i.e., beamer
input source and room computer preferences). Finally, the campus houses a
handful of servers for telemetry, data processing, analytics, web hosting, and
authentication.

The “VUB 4.0” system comprises thousands of devices. When the campus runs
at full capacity, over 6000 phones are connected, totaling more than 10000
devices. In what follows, we discuss three scenarios that make use of the devices
present on the VUB campus.

100 Motivating Scenario: VUB 4.0 Campus

4.1.1 Scenarios

Scenario #1 Adaptive Lecture Hall Professor Remus is a computer science
lecturer at the VUB. Every Tuesday, he teaches “Algorithms andData Structures”
to the first bachelor students in the Lambda auditorium from 10 to 12. The
locks use the teaching schedule to determine who can unlock the auditorium.
When Professor Remus nears the door at the beginning of his lectures, the
door unlocks automatically. When Professor Remus enters the auditorium, the
temperature is set to 20 degrees, and the ventilation is set to 20%. Because
Professor Remus brings his own computer, the room computer is turned off,
and the beamer automatically switches from HDMI to USB-C input. The lights
in the front row are dimmed to increase the visibility of the slideshow. The rest
of the lights are turned on to full brightness. Remus wants his students to pay
attention, so the smart plugs for all students are turned off, and theWi-Fi access
point only allows Professor Remus’ laptop to connect to the internet.

Scenario #2 Noisy Campus Some parts of the campus are still under con-
struction. Trucks are entering and leaving, and construction workers operate
loud and heavy machinery during lecture hours. The math professor, Professor
Boole, cannot bear having her lectures disrupted by construction work noises,
so she writes a stern note to the VUB infrastructure office. To avoid another
argument with the professor, the VUB allows lecturers to override the settings
of the automatic windows. The IT department reuses old sound level meters
and hangs them around the campus. The VUB app of the lecturers is updated
over the air with new functionality: windows are closed automatically if the
noise outside exceeds a certain threshold. Professor Boole immediately toggles
this functionality so that each auditorium she teaches in closes its windows
automatically if the measured noise outside exceeds 50 dB.

Scenario #3 Student Tracking Profesor Theodore, another computer science
teacher at the VUB, teaches Programming LanguageDesign. Professor Theodore
is passionate about his course and hopes his students take away as much as
possible from his lectures. However, some of his students have classes on the
other side of campus and might be a little late for class. Professor Theodore
decides to poll all his students through the VUB application, asking if they are
on their way. Students who are not present in the auditorium but who are on
campus receive an instant poll from the VUB app. A student can either ignore
the professor or tell him they’re on their way. Professor Theodore waits a few
minutes for responses and then begins his lecture.

Potato: A Streaming Platform for CPS 101

4.1.2 Conclusion

The “VUB 4.0” campus is a contemporary example of a CPS in terms of soft-
ware engineering as described in the literature. It features heterogeneous de-
vices [81, 72, 10, 91], limited capability devices [81, 72, 10], mobility [18, 72, 10],
distributed data processing [81, 72, 10], implicit interactions [18, 81], dynamic
code updates [55, 21, 81], unreliable networks [18, 72, 81, 10, 91], and is large
scale [81, 72, 91]. Additionally, smart buildings are a use case for validation in
many related works [73, 87, 26, 12].

The three scenarios that we distilled from the “VUB 4.0” application will be
used in this chapter to show how our approach can be used to express the data
streams in a CPS. Additionally, at the end of this chapter we implement the three
scenarios in Potato and how our approach addresses the challenges.

4.2 Design Challenges in Cyber-Physical Systems

Designing, deploying, and maintaining Cyber Physical Systems (CPSs) is an
undertaking that requires expertise in hardware as well as software. This
dissertation focuses on the software development aspect of CPSs, in particular
the programming language aspects of designing CPSs. In this section, we look
at the inherent properties of CPS and the existing approaches to deal with these
traits.

Large Scale CPSs come in different scales [85, 5]. Smaller CPSs, such as smart
home systems, consist of a few dozen devices [12], while systems like pipeline
monitoring [13] and smart grids [5] consist of thousands of devices. The scale of
these systems affects the design of software for these systems. Without the right
abstractions, developers are burdened with defining and maintaining pairwise
connections between a large number of devices.

The “VUB 4.0” campus contains thousands of devices. When all students are
present, there are 6000 smartphones connected. Depending on a device its
role in the application, it may require different data streams. It is impossible to
predefine all connections in the application, so they have to be defined dynamically.
Suitable abstractions are necessary to make this possible for applications of any
size.

Open System CPSs are open systems [53, 10, 18]. An open network allows
devices to join and leave the application when they want. This behavior is
due to mobile devices, such as smartphones, but also because devices being
replaced while the system is operational. As a consequence, the CPS has to

102 Design Challenges in Cyber-Physical Systems

be able to integrate devices at runtime, without knowing them beforehand.
Manually provisioning devices before connecting them is impractical because
cyber-physical systems are not typically taken offline to apply updates. The
CPS applications need to be able to automatically provision and adapt to new
devices in the network.

The “VUB 4.0” campus contains a variety of sensors and smart devices scattered
across the campus. Devices such as motion sensors and thermometers are
cheaper to replace than they are to repair. When a sensor is replaced, the part
of the application that relied on its data streammust adapt to the new sensor.
To achieve this behavior, a form of service discovery and dynamic update is
required. Service discovery is helpful to detect new devices on the network, and
dynamic updates are helpful to update new devices with the application logic to
integrate them at runtime.

Unreliable Network and Devices Devices in a CPS are inherently unreli-
able [18, 72, 81, 10, 91]. Devices in the system can be battery-powered or
connected over unreliable connections. The high probability of failure entails
that no guarantees can be offered about a device’s availability or the services it
offers. These frequent disconnects impact the reliability of data exchange and
make the use connection-oriented approaches such as sockets, RPC, and mes-
sage passing that rely on physical addresses difficult. Using connection-oriented
approaches would pollute the application code with exception handling and
logic to replace the lost device’s service. Because failure is not an exceptional
state in CPS, connection-oriented paradigms are unfit.

The VUB smart campus has deployed multiple battery-powered thermometers
in every lecture hall to control the HVAC system. When one of these sensors
fails, the HVAC system has to communicate with a backup sensor, and the faulty
sensor must be replaced. Devices should be addressed based on their properties
(e.g., location) and capabilities (e.g., thermometers), called intentional addressing,
rather than their physical address, called extensional addressing

Heterogeneous Devices The devices in a CPS exhibit heterogeneous traits [81,
72, 10, 91] in terms of their computational power, data encoding, and communi-
cation protocols. These differences stem from multivendor products, different
non-functional concerns (e.g., Kelvin and Celcius thermometers), and the het-
erogeneous physical devices they represent. These differences are the most
problematic when integrating devices that are functionally equivalent (e.g.,
thermometers), but differ in how they provide this data. These differences can
be classified as non-functional differences. When integrating heterogeneous
devices, the applications must deal with the non-functional differences using

Potato: A Streaming Platform for CPS 103

device-specific integration logic. Entangling these concerns is a bad software
engineering practice and should be avoided.

In the “VUB 4.0” campus, the sound level meters are gathered from all over the
campus, and the devices are from a variety of manufacturers. Some devices are
plugged into a power outlet and continuously stream their measurements over
the network. Other types are battery-powered and only measure the current
level on-demand. Another type of meter emits data encoded in JSON format,
while most meters emit data in plain text format. Integrating just different
types of sensors leads to an increase in complexity in the application logic. The
heterogeneity of the devices should be addressed separately from the application logic
to avoid polluting the application logic with glue code.

Data-Driven A CPS is a perpetual feedback loop of data and instructions
between the devices in the system [81, 72, 10]. Each device relies on another
device to function and is relied upon by other devices in turn. A single event
can start a chain reaction of events throughout the system. Expressing event-
driven systems is difficult in traditional sequential paradigms [16]. Callbacks
– parts of the application logic – are executed when a specific event occurs.
Callbacks make a program structurally difficult to understand, and are difficult
to coordinate [16].

It should be evident from the three scenarios in section 4.1 that the entire VUB
campus is an data-driven system. Scenario 1 shows that moving around on
campus creates data streams between devices. Scenario 2 is centered around
data streams coming from the sound meters. Scenario 3 shows that temporary
streams can be set up to gather data from the real world. CPSs need programming
abstractions that help in defining data streams between devices, regardless of the
scale of the network.

Limited Computational Power Some devices in a CPS may be limited in their
computational power relative to the computations done in the system [81, 72,
10]. The limited computational power impacts the types of services a device
can offer. Devices may have to involve other devices to provide a computa-
tionally intense service. A well-known approach to this problem consists of
offloading computations to other devices in the network [31, 39, 99]. However,
these approaches are often not integrated into the paradigm of the rest of the
application and require manual code management of the developers.

Most of the “VUB 4.0” campus consists of devices with limited computational
power, e.g., thermostats, hygrometers, motion sensors, and smart plugs. These
devices may involve other devices to provide their services. For example, a
thermostat deploys its application logic to control the HVAC system on the

104 Potato: A Stream-Based CPS Framework

Potato

Applications

Creek

μCreek

Potato

Elixir

Operating System

Hardware

Figure 4.2: The technology stack used to implement Creek and Potato in Elixir.

HVAC system itself because it has more computational power. The limited
capabilities of some devices impact the application logic they can execute. The ability
to involve other devices in a computation can mitigate these limitations.

4.3 Potato: A Stream-Based CPS Framework

In the previous sections we introduced the design challenges in Cyber-Physical
System (CPS) design. In this section we present and discuss our approach,
called Potato, and discuss its basic building blocks, and how they relate to the
design challenges from section 4.2.

Central to Potato is the stream programming paradigm. The most impor-
tant concepts from a CPS are the network, the devices in the network, the
data streams between devices, the application level programs, and the non-
functional concerns. These core concepts of a CPS can be represented by a
stream, allowing the entire system to be expressed in a single unified paradigm.
Representing these concepts as a stream of data guides the programmer to
define the application logic as a declarative, functional, stateless transformation
of these streams. Making streams a first-class citizen allows the application to
pass them around to setup distributed services.

In what follows, we present and discuss the basic building blocks of a Potato
application, and how they relate to the design challenges. Potato represents
the most central concepts of a CPS in a unified paradigm, stream programming.

Potato: A Streaming Platform for CPS 105

Before explaining them in detail, we give a brief overview. Each device in a
Potato application offers the following concepts.

data

update

world

31.2 °C 31.8 °C

join

leave

Figure 4.3: A graphical depiction of a Potato node representing a thermometer. The world-
data- and update stream are shown on the left. The world stream provides data to the
locally deployed streams, which in turn multicast data on the data stream.

• Node Descriptor Each device in a Potato network is described by a node
descriptor, a data structure containing meta information about the device
such as its name, type, and manufacturer. When the device connects to
the network it broadcasts its node descriptor to other devices to announce
its presence. The node descriptor forms the basis for service discovery.

• World Stream The built-in world stream emits network changes to the
application, e.g., device joins and leaves. The world stream emits an
event when a device leaves or joins the network along with its node de-
scriptor.

• First-Class Reactive Programs First-class reactive programs are programs
that can be transmitted across the network to execute elsewhere, andmake
it possible to create distributed streams of data.

• DataStreamAdevice in a Potato application has a dedicated data stream
that can be used to multicast data onto the network. Other devices in the
application can observe this data stream if they are interested in the
data of a particular device.

• Update Stream The Potato framework observes a stream of first-class
reactive programs, called the update stream. Any device in a Potato
application can stream applications to another device, which will de-

106 Potato: A Stream-Based CPS Framework

ploy them locally. First-class reactive programs and the update stream
combined make it possible to create distributed applications.

Figure 4.3 graphically shows how these streams are used. The diagram repre-
sents a thermometer device. The world stream emits join and leave events to
locally deployed streams. The locally deployed streams in turn stream data to
the network via their data stream. The update stream consumes incoming
first-class reactive programs, and deploys them locally.

Hello, Potato! As a first example of a Potato application, consider the listing
in listing 31. The application is deployed on Professor Remus his laptop, and
turns off all the heating systems in the same room as his laptop. Of course the
semantics of the snippet will not be entirely clear until the end of this section,
and the application only serves as a first introduction to Potato.

The application defines a description of the local device, i.e., the node descriptor
(line 3). announces itself on the network (line 4), and then deploys an instance of
the heating stream locally with the world_stream as its source. The heating
stream filters out all join events of heating devices. For each of these devices,
a first-class program p is created (lines 16–19), and deployed on the heating
device (line 19).

In what follows we discuss these concepts individually and explain how they
can address the challenges from section 4.2.

4.3.1 Node Descriptor: Device Identification

Every device in a Potato application is represented by a node descriptor. A node
descriptor contains dynamic and static properties of a Potato device. Every
node descriptor uniquely describes a single device in an application. Listing 32
shows a node descriptor for an Android device, called “Boole‘s Phone”.

A minimal node descriptor should at least contain a unique identifier id. Other
values are application dependent. By convention, the identifier, hardware, and
alias of a device are static. Other fields in the node descriptor can be changed
at runtime by the node, such as location.

A node descriptor is local if it represents the underlying Potato system, and is
remote if it represents another Potato instance. A device can modify its local
node descriptor to reflect changes in the device’s physical properties. When a
device changes its node descriptor it is broadcast again. Any device observing
the network will receive the node descriptor with the updated values.

The node descriptor must be installed together with the Potato runtime on the
device before it is deployed and connected to to the network. When the device

Potato: A Streaming Platform for CPS 107

Laptop1 defmodule Laptop do
2 def main(room) do
3 nd = %{hardware: :laptop, name: "Remus's MacBook"}
4 Potato.Network.Meta.set_local_nd(nd)
5 deploy(heating, world_stream: Potato.world_stream,
6 snk: Creek.ignore(),
7 room: "Mandela Auditorium")
8 end
9

10 defdag heating(world_stream, snk, room) do
11 world_stream
12 ~> filter(fn {event, device} ->
13 event == :join and device.hardware == :heating and device.room != room
14 end)
15 ~> map(fn {_, device} ->
16 p = program do
17 Heating.turn_off()
18 end
19 Subject.next(device.update_stream, p)
20 end)
21 ~> snk
22 end
23 end

Listing 31: A Potato application that turns of all the heating systems in the same room as
the laptop.

powered on, and connects, or reconnects, to the network, it announces itself by
broadcasting its node descriptor. Every device on the network will receive an
event on their world stream.

4.3.2 World Stream: Service Discovery

A CPS is inherently an open system. This entails that new devices can join the
application over the course of its lifespan. Additionally, devices connect and
disconnect at undefined moments due to their volatile connections. To deal
with these challenges, Potato offers the world stream, a built-in stream that
emits network events whenever changes on the network occur. The streams are
a declarative approach to address devices in a scalable way.

A network event is structured as a tuple that consists of the type of event (i.e.,
join, or leave), the node descriptor of the device in question, and a reference to
their update stream and data stream. Listing 33 shows an example network
event emitted by a world stream. The event contains the description of the
device that joined (i.e., the professor’s smartphone), a join tag to indicate the
phone just connected to the network, and references to the device’s data and

108 Potato: A Stream-Based CPS Framework

1 %{
2 hardware: :android,
3 type: :phone,
4 alias: "Boole's Phone",
5 id: "75615454-9968-4e15-832c-120a726d5875"
6 location: nil
7 }

Listing 32: Node descriptor for Professor Boole’s smartphone.

1 {:join,
2 %{
3 hardware: :android,
4 type: :phone,
5 alias: "Boole's Phone",
6 id: "75615454-9968-4e15-832c-120a726d5875"
7 location: nil
8 data_stream: #<Stream 0.451>,
9 update_stream: #<Stream 0.394>

10 }}

Listing 33: Example of a datum emitted by the world stream.

update stream.

The Potato runtime continuously monitors the network and emits the event as
soon as a change occurs. This ensures that every Potato device has an up-to-
date snapshot of the current state of the network at all times. When a Potato
device connects to the network, the network is scanned for currently connected
devices. For each device the world stream emits a join event, to reflect the
current state of the network.

1 defdag heating(world_stream, snk, room) do
2 world_stream
3 ~> filter(fn {event, device} ->
4 event == :join and device.hardware == :heating and device.room != room
5 end)
6 #...
7 end

Listing 34: Example of designation using the world stream in Potato.

Listing 34 shows the designation part of the Directed Acyclic Graph (DAG)
from listing 31. The heating DAG uses the world stream as its source, and
filters out all devices that are not of type :heating, and in a different room.
The world stream can be transformed using all Creek operators,

Potato: A Streaming Platform for CPS 109

The world stream is a so-called cold observable, in Reactive Extensions termi-
nology. When a DAG is deployed that uses it as a source, the world streamwill
emit all previously emitted values to the new stream. When a DAG is deployed
that uses the world stream as its source, the world stream will first emit the
current state of the network as series of join events. Join events followed by
a leave event cancel each other out, and are removed. After these events have
been emitted, the real-time changes are emitted.

To show the world stream its behavior, consider fig. 4.4. The x-axis presents
time, and each white square represents a stream. The horizontal lines starting at
a stream are the values emitted over time by that stream. In the example, stream
A and B use the world stream as their source. An upward arrow indicates
the point in time where stream A and B are deployed. At t1, stream A is
deployed. Next, device A and B join, and the respective events are emitted on
the world stream. Because stream A uses the world stream as its upstream,
it also receives these events. At time t2, a new stream B is deployed. The cold
observable behavior of the world stream causes the world stream to first
emit a join event for device A and B to stream B.

world
stream

A join B join A leave

Stream A

A join

B join A leave

B join

Stream B

A leave

A join

Timet1 t2

Figure 4.4: The world stream is a hot observable. All previous values are emitted to each
new stream that uses it as a source.

A streamof network events results in adeclarative approach to creating subsets
of the network (designation). Consider the case where one wants to create a
stream of all devices of type android. Using the reactive streams operators, it
becomes as trivial as applying a filter operator on the world stream to ignore
all the events where the node descriptor does not contain an android value for
the hardware field.

110 Potato: A Stream-Based CPS Framework

The stream paradigm combined with the world stream and node descriptor,
forces applications to dealwith a changing network by design. The world stream
must be used as a stream source to obtain information about devices and the
network. In doing so, the changing nature of the network is apparent, and
cannot be avoided.

4.3.3 First-Class Reactive Programs: Dynamic Updates

Potato offers a form of code mobility to exchange instructions between Potato
instances, and to offload computation to another instance. Code mobility allows
computations or programs to be moved from one device to another to execute
them remotely. To facilitate code mobility, reactive programs and streams are
first-class citizens in Potato. Streams and programs can be assigned to variables,
passed to functions, and sent over streams. A first-class reactive program is
created using the program..end special form. A program expression creates a
first-class value that represent a delayed computation.

Listing 35 shows part of an application that runs on a thermometer. The
thermometer uses a first-class program to control an air conditioning system.
On the thermometer a source that emits the current measurement is created
(line 1). The first-class program (lines 3–14) defines (lines 4–12) and deploys
(line 13) a DAG that consumes the stream of temperatures.

Thermometer1 local_temps = Source.function(fn -> current_temp() end)
2

3 p = program do
4 d = dag react_to_temp(temperatures) do
5 temperatures
6 ~> each(fn t ->
7 if t > 23.0 do
8 HVAC.on()
9 else

10 HVAC.off()
11 end
12 end)
13 deploy(react_to_temp, [tempeartures: local_temps])
14 end

Listing 35: A first-class program that sets the target temperature of the HVAC system to 24
degrees.

Strictly speaking, a first-class Potato program can contain any valid Elixir
code, including unbounded recursion. Allowing arbitrary code and unbounded
recursion allows for programs to never terminate. In Potato, a well-behaved
program can deploy streams and create sources and sinks, but should never block

Potato: A Streaming Platform for CPS 111

and only use bounded recursion. Awell-behaved programdeploys the necessary
streams on the device and then terminates, leaving the streams deployed. Recall
that distributed streams terminate if remote parts are disconnected (section 2.3),
ensuring the stream is well-behaved in the face of network failures.

When a program is defined, it captures its lexical scope by copy. References to
sources and sinks are also passed by copy, making it possible to set up trans-
parently distributed streams. The combination of code mobility and remote
references allows applications to create distributed streams of data. The previ-
ous example in listing 35 captures the source variable in its lexical scope. If
that program is deployed on another device, a distributed stream is created.
The source stream is located on the originating device, while the rest of the
stream is running on the destination device.

Potato applications cannot explicitly evaluate a first-class program. Their
purpose is to be transmitted over streams to other devices. Delaying computa-
tions should be done in the host language if possible. In Elixir, for example, a
computation can be delayed using lambda abstractions.

In section 4.3.5, we explain the details of code mobility in a Potato application,
and detail the evaluation mechanics of first-class programs.

4.3.4 Data Stream: Data Dissemination

CPSs require abstractions that remain expressive, regardless of the scale of the
network. Defining pairwise dependencies between devices does not scale well
beyond a few dozen devices. In this section, we introduce the data stream, a
unique stream for each device that allows it to emit data to all its downstreams.
Devices can use another device’s data stream as the source for a stream.

Listing 36 serves as a minimal example on how to disseminate data on the net-
work. The emit_temperature DAG emits a temperature measurement every
second when it is deployed. The local data stream, myself.data_stream, is
used as the sink. Every value is thus emitted to each device that is using the
device’s data stream as a source at that point.

A device obtains a reference to another device’s data stream through a node
descriptor in the world stream. The device can use the reference to the
data stream as a source for other DAGs. It is the principal means of obtaining
data from another device in Potato.

The data stream has a dual purpose in a Potato application. The device
where the data stream originates, can use it as a sink. The other devices in
the network can only use the data stream as a source. When a device emits

112 Potato: A Stream-Based CPS Framework

Thermometer1 source = Source.range(0, :inifinity, 1000)
2 sink = myself.data_stream
3

4 defdag emit_temperature(src, snk) do
5 map(fn _ ->
6 {:temp, Sensor.read()}
7 end)
8 ~> snk
9 end

10

11 deploy(emit_temperature, src: source, snk: sink)

Listing 36: Reactive DAG to continuously read out a sensor and emit onto the net-
work through the data stream. The local data_stream is used as a sink in the
emit_temperature DAG.

a value onto its data stream, it is multicast to all devices that have a stream
deployed that uses it as a source.

When a device emits a value, it is sent to all the devices that are using the
device its data stream as a source. Emitting each value to all these devices
can induce unnecessary communication overhead, especially if the device is
the source of many different data streams. Dedicated streams avoids sending
unnecessary data over the network. Deploying first-class reactive programs
on remote devices, and sending first-class streams as data to remote devices,
allows applications to create dedicated streams. This avoids the communica-
tion overhead of emitting values over the data stream but adds accidental
complexity to setting up the stream. In section 4.4.4 we show this approach in
more detail.

4.3.5 Update Stream: Real-Time Updates

The open nature of CPSs requires devices to be provisioned at runtime. Ad-
ditionally, due to heterogeneous devices and limited resources, devices need
to involve other devices in distributed computations for performance reasons,
which can also be done by updating the software at runtime.

Our approach for tackling these challenges is to allow devices to deploy short-
lived programs, or ephemeral updates, onto other devices using first-class pro-
grams. This allows a Potato system to reconfigure itself and adapt to changing
circumstances caused by the open network and volatile connections.

Listing 37 shows a minimal example of code deployment. The code is exe-
cuting on device A. The code assumes device_b hold a node descriptor for

Potato: A Streaming Platform for CPS 113

device B. Device A defines a program p that, when executed, turns on an
alarm. Program p is emitted onto device B its update stream, transmitting
the program across the network and executing on device B. The result is that
"Turning on alarm!" will be printed on the console of device B and that its
alarm will be sounding.

Device A1 device_b = ...
2

3 p = program do
4 IO.puts "Turning on alarm!"
5 turn_on_alarm()
6 end
7

8 Subject.next(device_b.update_stream, p)

Listing 37: Device A deploying an update on a remote device, B.

Similar to the data stream, all Potato devices have an update stream, which
is a sink that can be used by other devices. Devices can obtain a reference to
this stream through the node descriptor. Emitting a first-class program onto
an update stream deploys the program on the owner of the update stream.
This approach serves two purposes. First, a device can update another device to
create ad-hoc services. Devices do not need to have the domain logic installed
beforehand because it can be contained in an update. An example of ad-hoc
service is updating a thermometer to make it broadcast measurements. Second,
a device use updates to involve another device to offload a part of a stream.

A device has no control over its update stream from within the application
logic. The application can only use the update stream of a device to send pro-
grams to other devices. Potato does not expose a primitive to manually deploy
or evaluate programs, so the application cannot simulate the update stream
behavior either. This limitation is by design. When an update is deployed onto
a remote device, it is registered locally. This allows the Potato runtime to pause,
store, or remove updates.

Well-behaved first-class programs deploy streams on the device they are ex-
ecuted on. In case of a network partition, the streams they deployed will be
terminated by the stream termination protocol. If a program only deploys
streams, it ensures that there program has no lasting effects on remote device
in case of a network partition. Hence, a program is ephemeral. There is an
exception, however. An ephemeral program that deploys a source, sink, and
stream on the same device, cannot be affected by a network partition. The
only way such a stream terminates is when the stream is finite, e.g., it contains
take(n) or first() operators, or the source is finite.

114 Building Applications with Potato

Every program deployed on a device through the update stream must be
executed concurrently with other deployed programs, allowing a device to
compute multiple streams at once. Additionally, programs should be scheduled
fairly, to avoid deadlocks. Consider the scenario where a source and a sink are
on the same device. Unfair scheduling can lead to deadlocks in the stream.
Programs cannot directly communicate with one another and are not aware of
each other.

4.4 Building Applications with Potato

The previous section introduced the basic building blocks of a Potato applica-
tion: node descriptors, first-class programs, the world stream, the data stream,
and the update stream. This section shows patterns to use these building
blocks to build applications that handle the scale, volatility, open nature, hetero-
geneity, and distributed computations of Cyber Physical Systems (CPSs).

4.4.1 Stream-Based Service Discovery

As we explained in chapter 1CPSs are built on top of dynamic networks with
volatile connections. Devices in such a network cannot rely on static network
infrastructure to discover services. In Potato, devices announce themselves
on the network by broadcasting their node descriptor. The node descriptor
contains the necessary information for other devices to determine whether it is
relevant. Applications can discover devices by using the world stream as a
source and transforming it with stream operators. A stream of available services
can be created by transforming the world stream using declarative operators
(e.g., filter).

The process of selecting one of the devices of interest is called “addressing”
or “designation”. Potato uses logical addressing [74], allowing devices to be
designated based on logical properties (e.g., type or location). Other types of
addressing, such as physical addressing, require a device to communicate with
another device using physical addresses such as IP addresses or another unique
identifier. Physical addressing does not scale beyond a few dozen devices and
does not work in an open network.

Listing 38 is an example of the idiomatic approach in Potato to designating
devices. The application prints out the id of each thermometer on the network.
The first Directed Acyclic Graph (DAG), thermometer_stream filters out all
events that are not join events (line 3) from its source. Next, each thermometer
is filtered out (line 4). Finally, the event tag is stripped, and only the node
descriptor is passed along (line 5). Any downstream of an instance of the
thermometer_stream stream can assume that the values are thermometer node

Potato: A Streaming Platform for CPS 115

1 defmodule PrintThermometers do
2 defdag thermometer_stream as
3 filter(fn {event, nd} -> event == :join end)
4 ~> filter(fn {:join, nd} -> nd.type == :thermometer end)
5 ~> map(fn {:join, nd} -> nd end)
6

7 defdag print_thermometers(world) do
8 world
9 ~> therometer_stream

10 ~> each(fn thermometer ->
11 IO.puts "Thermometer discovered: #{thermometer.id}"
12 end)
13 end
14 end

Listing 38: Printing out the identifier of all the thermometers in the network.

descriptors of devices that just joined the network. The print_thermometers
DAGdefined in lines 7–13 transforms the world streamusing thermometer_stream,
and prints out a message on the console each time a thermometer is discovered
on the network.

The declarative stream-based approach to designation allows devices to monitor
the network for changes and to discover devices reactively. As soon as a device
connects to the network, the runtime emits an event on the world stream,
triggering the recomputation of all the streams that depend on it.

4.4.2 Code Deployment & Offloading

Potato allows new devices to connect to a running distributed application.
When a device connects for the first time, it will not have any application code
deployed. Potato can be considered an “empty virtual machine.” A device only
has the required node descriptor, and code to talk to its physical device, i.e.,
utility code. In Potato, a device without application code is called a blank device.
When a device A is discovered via a join event by another device B, B assumes
that it has not yet deployed any code onA. This assumption can bemade for two
reasons. First of all, the idiomatic approach in Potato is to provision devices
with utility code and to deploy application logic at runtime. Secondly, as soon
as a distributed computation is interrupted, the stream termination protocol
(see section 2.3) ensures that the streams are stopped and removed from the
device.

Listing 39 shows the idiomatic Potato approach to obtain a single reading from
all the thermometers in a network via a smartphone. The smartphone deploys
a program on each thermometer that makes the thermometers emit a single

116 Building Applications with Potato

Smartphone1 defmodule AverageTemperature do
2 defdag update(world, snk) do # Stream 1
3 world
4 ~> timeout(60)
5 ~> thermometer_stream
6 ~> each(fn thermometer ->
7 p =
8 program do
9 d = dag emitter(src, snk) do

10 src
11 ~> take(1)
12 ~> snk
13 end
14 src = Source.function(fn -> read_thermometer() end)
15 deploy(d, src: src, snk: snk) # Stream 3
16 end
17

18 emit(thermometer.update_stream, p)
19 end)
20 end
21

22 defdag gather_results(src, snk) do
23 snk
24 ~> window(60)
25 ~> snk
26 end
27

28 def get_average_temp() do
29 snk = Creek.subject()
30 vls = Creek.Sink.first(self())
31

32 deploy(gather_results, src: snk, snk: vls) # Stream 2
33 deploy(update, snk: snk, thermometers: world) # Stream 1
34

35 receive do
36 {:first, xs} ->
37 IO.puts "Average temperature: #{sum(xs) / len(xs)}"
38 end
39 end
40 end

Listing 39: Computing the average temperature per minute of all thermometers.

reading. The smartphone listens for these readings, and calculates the average
temperature. The application consists of two major DAGs, the update and
gather_results DAGs.

The update DAG monitors the world stream, and deploys a first-class pro-

Potato: A Streaming Platform for CPS 117

gram onto each thermometer it discovers (lines 2–18). The first-class program
deploys a stream on each thermometer that emits a single measurement into a
sink (line 15) defined on the smartphone. The sink is passed by reference via the
first-class program (line 15), creating a distributed stream between the smart-
phone and each thermometer. Passing a source or sink by reference means that
the process itself is not moved, but a reference to the process that allows other
streams to transparently communicate with it, as if it was running locally.

The gather_results DAG uses the smartphone sink as a source by observing
it for a minute (line 24) and emitting the gathered values in another sink (line
25). An instance of the gather_results and updateDAGs are deployed (lines
32-33).

The application in listing 39 shows how the deployment of ephemeral updates
on devices can create a distributed stream. The first sink running on the
smartphone will terminate as soon as it has received a list of measurements.
This will terminate the entire upstream of the sink, including all the remote
streams running on the thermometers. Streams can be distributed by capturing
references to sources and sinks in the scope of a first-class reactive program.
Together with the stream termination protocol the runtime can guarantee that
the updates are ephemeral.

4.4.3 Handling Failures

The volatile nature of a CPSs requires applications to deal with failures in the
network. The failure of a device in the network should not cause perturbations
throughout the entire application. In Potato, we have chosen to adopt the
Erlang mantra of “let it fail”. Potato applications are designed with failure
as a primary concern. Instead of trying to recover from each failure, the ap-
plication lets the device disconnect and tries to continue working with other
devices.

The operators of a stream can be distributed over multiple devices in the net-
work. The connections between these devices can be disturbed at any time. We
consider two types of network failures; short perturbations in the network that
interrupt connections for a few seconds, and longer-term disconnects.

• Short perturbations imply that the device promptly reconnects, while
longer-term disconnects imply the device will not reconnect. Short per-
turbations are allowed in a configurable grace period by Potato to avoid
handling disconnects that are rapidly followed by reconnects.

• Long-term disconnects are presumed to be permanent, and streams that
rely on that device are terminated (see section 2.3). This implies that

118 Building Applications with Potato

the disconnected device can make the same assumption; as soon as it
cannot connect to the application, it can terminate all running streams.
This ensures that when a network partition is resolved, devices from both
partitions treat each other as new devices.

The advantage of the “let it fail” approach is that devices are allowed to dis-
connect at any time and do not have to keep track of state regarding previous
connections. Dealing with disconnects requires devices to rebind to other de-
vices for an equivalent service. Because applications are written as a declarative
transformation of the world stream, an equivalent device will be emitted once
it connects to the network. The downside of this approach is that the ephemeral
updates that constitute a service will be sent multiple times. If a given device
connects and reconnects frequently, this incurs overhead in network transmis-
sions. Additionally, the time between the disconnect and a rebind is time during
which data cannot be transmitted.

4.4.4 Dedicated Streams

Potato devices may deploy ephemeral updates on other devices to create ser-
vices on demand. Multiple services can run on a single device, and the conse-
quence of multiple services is that the data of each service will be multicast to
all other devices as well because the data stream is a shared stream. Consider
the scenario where multiple devices listen to the same device, each for differ-
ent data streams. The data stream always multicasts to observing devices,
causing both consumers to receive all data. In other words, consumers have to
explicitly filter out their data. The data stream is elegant to express simple
services, but induces unnecessary data transmission across the network when
scaling up to multiple devices.

Dedicated streams resolve these issues by only sending data to select devices.
The idiomatic approach to create dedicated streams in Potato is by leveraging
the pass-by-reference semantics of sources and sinks. When the program is
deployed on a remote device, a distributed stream is created. Only devices that
have a reference to the sink or source can access the data, or emit data on it. The
dedicated stream approach avoids the network overhead of multicasting.

Listing 39 is an example of a dedicated stream. The smartphone creates a
local sink (line 29) and references it in the first-class programs (line 10). Each
thermometer will emit its data into the sink, hereby creating a dedicated stream
between the smartphone and each thermometer. As soon as the smartphone
disconnects or the sink terminates, the streams on the thermometers will termi-
nate as well. If the smartphone reconnects to the network, the thermometers
will be updated again, and a new average will be computed.

Potato: A Streaming Platform for CPS 119

4.5 Separating Concerns in Potato with Creek

We have introduced the meta-level architecture of Creek in chapter 3. The
raison d’être for Creek and its meta-level architecture, µCreek, is to address
the non-functional concerns in CPSs. In chapter 3 we showed that stream
Domain Specific Languages (DSLs) suffer from hardcoded propagation seman-
tics, entanglement of functional and non-functional operators, and that the
non-functional operators are implemented ad-hoc in stream DSLs.

In chapter 1 we argued that one of the challenges of creating CPSs is that the
heterogeneity of devices introduces differing non-functional concerns. These
differences make it difficult to integrate the devices into a single Potato ap-
plication, because the application code has to be adapted to cater to these
differences. With “Separation of Concerns” (SOC) in mind, it is essential that
these non-functional concerns are addressed separately and do not affect the
application logic. In this section, we show that the meta-level architecture
of Creek can be used to express non-functional concerns in the context of a
CPS. Non-functional differences are extracted from the that are set up between
them in the Potato application. The most prominent non-functional concerns
in CPS are security [71], latency and cost [7], Quality of Service (QoS) [9], and
interoperability and protocols [81].

In what follows we show that the non-functional concerns of devices can be evac-
uated into a meta-stream using Creek. For example, security can be addressed
by encrypting the communication between two entities. Communication costs
can be addressed by batching or compressing the data sent between entities or
changing the propagation protocol to pull-based semantics. Interoperability
of different data types can be increased by implementing serializers at the
meta-level, facilitating communication between entities that use other proto-
cols.

Case Study: Multiple Encodings The following is an example of a CPS with
non-functional concerns. The VUB smart campus is equipped with thermome-
ters to control the central heating system. The HVAC systems require a stream
of average temperatures on campus to control the heating and cooling. There
are two types of thermometers, each with their own non-functional concerns.
Type A thermometers emit their measurements encoded in JSON, and type B
thermometers emit their measurements encoded in XML.

To obtain an average of these thermometers, the data must first be decoded
into a floating point value. The obvious solution is to insert a map operator
after the thermometers that encodes the data depending on the type of the
thermometer. However, this would mean adapting the application level code,

120 Separating Concerns in Potato with Creek

making the application less adaptable. If a new type of thermometer is added
it would require changes to the application. The application should be written
as a transformation of floating point numbers. An update could be deployed
on the thermometers that provides a stream of floating points, however, this
update is considered part of the application code, resulting in entangling of
concerns. The different encoding schemes can be addressed at the meta-level of
the stream between the thermometer and the device that computes the average.
Each value on the stream can be inspected for its encoding. Depending on
the encoding, the value is decoded at the meta-level, and the floating point
is propagated to the base-level. This allows the entire stream to assume the
values to be floating points, regardless of their original encoding. Figure 4.5
show the graphical representation of these two streams. Type A emits JSON
encoded values, and type B emits XML encoded values. The average operator
requires floating points, however. Listing 40 shows the partial DAG of the
meta-level that decodes the values. For each value that is sent from a source, it
will be decoded appropriately. If the value is not encoded, it is emitted without
decoding. The rest of the meta-level leaves the stream unmodified. The full
implementation can be found in appendix F.

average

{"value": 21.1, "type":
"celcius"}

25,65

Type A

Type B
<root>
 <value>30.2</value>
 <type>celcius</type>
</root>

Figure 4.5: Graphical depiction of the stream of two thermometers and their average.

In conclusion, the meta-level of the stream DSL can express the non-functional
concerns mentioned in the state of the art regarding communication between
devices. They separate the application level from the non-functional concerns
and ensure that an application is only concerned with the application logic.
Without the meta-level framework from Creek, the application for the ther-
mometers would have to be adapted to suit the integration of multiple types of
thermometers.

Potato: A Streaming Platform for CPS 121

1 dag next as filter(&match?({_, :next, _, _}, &1))
2 ~> map(fn {state, :next, encoded, from} ->
3 decoded =
4 cond do
5 is_xml?(encoded) -> xml_to_float(encoded)
6 is_json?(encoded) -> json_to_float(encoded)
7 true -> encoded
8 end
9

10 {state, :next, decoded, from}
11 end)
12 ~> base()
13 ~> effects()

Listing 40: Decoding the values coming from a source.

4.6 Related Work

Potato is a middleware to design Cyber-Physical System (CPS) applications
for large-scale distributed systems with heterogeneous devices. CPS is a broad
term that can mean different things, depending on who defines the term. In
what follows we situate Potato in the state of the art in CPS, and the related
fields of Internet of Things (IoT) and Wireless Sensor Network (WSN).

4.6.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are large-scale distributed systems with
the aim of gathering data as efficiently as possible from a physical environ-
ment. WSNs are considered to be a precursor the Internet of Things (IoT) and
Cyber-Physical System (CPS). The challenges WSNs address overlap with the
challenges present in CPS, such as code mobility, large scale, and network fail-
ures. We discuss the most prominent approaches to overlapping challenges
here.

Sensor nodes (“motes”) – small battery poweredmicrocontrollers equippedwith
a few kilobyte of memory, a sensor, and radio communications – are scattered
over an area and continuously sense their environment. A central base station
aggregates the node’s measurements for offline analysis. Sense-only systems [74]
are built to read their environment and send the data to the central base station.
The reference topology for a sense-only WSN consists of a handful to hundreds
of wirelessly connected homogenous sensor nodes. Examples of sense-only
WSN systems are avalanche prediction [38], animal tracking [44], and flood
detection [11]. The networks are mostly static in topology, but applications
exist that contain mobile nodes, e.g., trackers on animals. Wireless Sensor and

122 Related Work

Actuator Networks (WSANs) create a control loop where the base station gives
commands to the sensors to act on their environment [8]. WSANs blur the
line between WSNs, CPSs, and IoT. CPSs are systems that revolve around the
exchange of data and instructions.

All nodes in a WSN application must operate as long as possible with as lit-
tle resources as possible. To achieve this, the software on the nodes is opti-
mized to optimize the lifespan of the nodes (e.g., deep sleeping and energy
harvesting). The downside of this approach is that the application logic is often
implementation-driven, and requires expert programmers. One of the earliest
operating systems for nodes are TinyOS [65] and Contiki [37], and applications
are written in languages such as C, or NesC [45]. These applications operate
close to the metal, and have to deal with concerns such as radio locking for data
transmission and manual memory management. Potato is an application-driven
approach; the framework is designed to cater to the programmer, rather than
the hardware.

Several research efforts raise the level of abstraction to programWSNs. Regi-
ment [76] is a high-level programming that works on reactive signals. A signal
is a designation of sensors in the network that is created using geographic
constraints, e.g., “all nodes within a 1 km radius.” The value of the sensors
is sampled manually at the base station, creating a stream of data. The work
by Madden et al. [67] represents the whole network of sensors hollistically as a
database that can queried using SQL-like expressions. A compiler optimizes
the queries into the most efficient code to obtain the data from the sensors.
TeenyLime [28] is an event-driven middleware that introduces asynchronous
communication via tuple spaces. Applications consist of callbacks that execute
based on specific events. Sensors emit data on the network by placing tuples
in the distributed tuple spaces. The event-driven approaches in WSN are ei-
ther callback-based approaches, or precompiled approaches. The high-level
approaches offered here are often at a higher abstraction level than Potato, but
are also limited to read-only approaches. In Potato the data streams can start
at any device and end in any device in the network, even when these devices
are not known at compile-time.

Updating motes at runtime in a WSN is useful for two reasons. First, it allows
the application to adapt to changing requirements and allows nodes to localize
computations to reduce network traffic. All approaches achieve this with a form
of mobile code. Agilla [40] introduces mobile agents to move computations from
the base station to the nodes. Agents are pieces of application logic written in
assembly. An agent can be defined with weak mobility or strong mobility [43].
ActorNet [64] is a higher level actor framework that uses Scheme-like syntax
to define actors. In ActorNet data is not sent across the network. An agent

Potato: A Streaming Platform for CPS 123

designates the nodes it requires for its computation, and travels to all these
nodes to evaluate the computation locally. ActorNet actors feature a managed
runtime and application-level multitasking. The code mobility in Potato is a
means to setup distributed data streams between devices, rather than to contain
application logic. The mobile actors approach still scatters application code
into different mobile actors, that execute application logic on the device the
actor resides in. Using Potato, code mobility and distributed data streams
offers more expressivity in defining where computations are executed, as well
as which devices are involved.

Wireless Sensor networks are optimized to work with stringent resources, mas-
sive scale, and highly volatile networks. The hardware of the sensor nodes
(“motes”) is mostly designed in function of the application. WSNs are similar
to CPSs in that they are large-scale distributed systems. Both systems consist
of tens or hundreds of nodes. Applications on these networks are maintained
remotely, because physical access to the sensors is often impossible and time-
consuming. Both WSNs and CPSs are designed with failure as a given, however,
a WSN is not impacted as much by a failed sensor due to its large-scale and
homogenous nature, where a CPS must heal to provide the necessary services.
CPSs consist of heterogeneous devices that are designed to integrate into a wide
variety of applications. WSNs consist of homogenous devices that all deploy
the same software.

4.6.2 Internet of Things

The IoT is an umbrella term for frameworks that consist of various physical
devices that are connected to the internet to exchange data, and expose services
to their users. The first IoT applications were based on RFID tags 1. Since
then, IoT has evolved into various types of systems, ranging from smart home
applications to ultra-large-scale applications consisting of thousands of de-
vices [81]. The common denominator of IoT applications is a user who interacts
with devices, and devices that interact with each other or the internet. CPSs
can be considered a specific type of IoT applications that focusses on machine-
to-machine communication, are not always connected to the internet, and have
an integration into the physical world.

Most research in the IoT space focusses on systems research such as net-
working systems, hardware, and network protocols [18]. We limit ourselves
to approaches that focus on programming languages, or frameworks to design
applications. The main challenges in IoT applications are resource discovery, re-
source management, data management, code management, large scale, dynamic

1https://www.rfidjournal.com/that-internet-of-things-thing

https://www.rfidjournal.com/that-internet-of-things-thing

124 Related Work

networks, spontaneous interactions, and distributed computations [81]. In
summary, IoT applications are very similar to CPSs, but they differ in the types
of applications that are deployed on the network. CPS applications are more
autonomous and data-driven than IoT applications, which typically involve
human interaction.

To deal with the dynamic and open network topology, service discovery is a
crucial element in any approach. Approaches such as ElIoT [87] tag each device
with a label, e.g., printer. A device can multicast messages to a tag, without
knowing the devices. This primitive allows creating designation based on the
tags. Each device in an ElIoT application is tagged with a type, e.g., printer.
AmbientTalk [34] has the same approach, but avoids explicit discovery with
callbacks when a specific type of device is discovered on the network. Potato
draws inspiration from this approach but avoids the callback-based approach by
using stream-based programming. DDS [78] and Rx4DDS [58] offer automatic
service discovery, but rely on a seed list. When devices join the network, a
central server provides an initial list of devices to bootstrap service discovery.
Cuttlefish [77] uses a fully centralized approach. A manager device serves as
a relay for communication between all devices, and keeps a list of devices in
the network. Potato uses distributed service discovery, avoiding a single point
of failure and preexisting infrastructure, but burdens devices with network
discovery.

The distributed computations in an IoT system require devices to identify and
communicate with other devices in the network. A device needs to designate
the devices it needs to provide a given service. MundoCore [6], Calvin [80],
Mobile Gaia [27], and Srijan [79] take a hollistic approach. The whole network
is treated as an abstract machine, and the runtime is tasked with ensuring the
right services are deployed on the right hardware. A service defines which other
services it relies on, and the runtime ensures that the connections between
them are made when they are deployed. To allow the system to deploy the
right services on the right hardware, programmers have to provide information
regarding the devices, their capabilities, and the requirements for the services.
Achlys [62] decouples devices in space and time with a task CRDT. Devices
ask for data by inserting a task into a distributed CRDT. Devices who can fulfill
a task replace it with a result in the CRDT. AmbientTalk [34] implements
ambient references that allow a device to designate based on tags, and refine
that designation with runtime properties. The high-level approaches such as
MundoCore define dependencies between types of devices at compile-time, and
the runtime automatically sets up the data exchange between the devices.
This approach is rigid in the sense that all types of devices must be known at
development time. Achlys its CRDTs are highly resilient in their data exchange,
but are focussed on the exchange of computations, rather than the setup of

Potato: A Streaming Platform for CPS 125

data streams. Potato’s code mobility and stream-based programming is geared
towards distributed data streams.

The variety of applications, and the open nature of the network make it hard
for any device to provide all possible services from the start. Therefore, dy-
namic provisioning of devices is necessary to create an extensible network.
SOCRADES [49] has a Service Repository in the network that offers application
logic to devices. When a service is required but not available, the runtime will
instruct a device with the right capabilities to install a service from the service
repository. Calvin [80], GREEN [86], and ElIoT [87] allow the transmission
of compiled binaries across the network. Calvin transmits compiled jar files,
GREEN transmits Java class files, and ElIoT transmits compiled Erlang files.
This is a form of weak code mobility, because there is no execution context
or scope that is transmitted with the application. At the other end of the
spectrum there is full mobility, where running computations can be migrated
by the runtime. Most of these approaches fall under the mobile agents category.
MundoCore [6] allows a deployed service to migrate to another device, if it has
the correct capabilities. The runtime does this without any intervention of the
user or interrupting the computation.

In Potato the application is defined as first-class reactive programs that are
deployed at runtime. The programmer is tasked with explicitly transmitting
programs to other devices, which is less elegant than on-demand service de-
ployment.

The non-functional concerns in IoT applications are present in many layers,
and the approaches vary. GREEN [86] is a component-based middleware with a
reflective layer to manage the deployment of components at runtime. This layer
separates the deployment logic of components from the application logic. Am-
bientTalk [34] is a language for mobile ad-hoc networks, and has a sophisticated
meta-level architecture. In AmbientTalk the semantics of an object, actors, and
method calls can be intercepted and modified. This opens up nearly unlimited
possibilities to adapt the language to a specific need. While not specifically
geared towards the non-functional concerns in context of data streams such
as Creek, it can be used to express a wide variety of different semantics in the
programming language. Part of the differences in non-functional concerns in
these types of applications stems from the heterogeneous devices. Approaches
such as Srijan [79], MundoCore [6], and Calvin [80] abstract the devices such
that these differences are hidden behind a generic interface. This approach
facilitates integration of heterogeneous devices, but lacks extensibility in which
concerns it can abstract over.

We proposed reactive programming as the paradigm to express distributed
event-driven systems. In the state of the art, few approaches already employ

126 Related Work

reactive programming. Node-RED [84] is a visual programming language that
is reactive, or flow-based. An application can have one or more data sources, and
one or more data sinks. Each transformation to the incoming data is represented
as box, and edges between the boxes define the data flow. Figure 4.6 is a
screenshot of a Node-RED application. The streams in a Node-RED application
are limited to local execution. Distributing a stream must be done by explicitly
connecting to other devices via TCP or MQTT. Node-RED is highly popular in
the hobby community due to its low barrier to entry. NR-D [46] is a fork of Node-
RED that implements distributed streams. Edges can be drawn between boxes
that are deployed on different machines on the network. AmbientTalk/R [24]
is a fork of AmbientTalk that adds reactive signals to the language. When a
reactive signal changes value, it updates all the computations that depend on it.
Reactive signals can be exported across the network to create distributed reactive
programs. Rx4DDS [57] is a fork of DDS that adds Reactive Streams [2] to DDS
applications. Similar to Node-RED, the streams as limited to local execution,
and cannot cross the network boundary. Potato was designed around Reactive
Streams from the ground up and uses first-class transparently distributed
streams as the mechanism for data dissemination and dynamic updates.

Figure 4.6: Example Node-RED application.

4.6.3 Conclusion

Table 4.1 summarizes our literature study. Each row in the table represents
an approach, and each column maps onto one of the challenges of CPSs. We
summarize the columns below.

• Designation indicates what type of designation is used to address de-
vices in the network. We have found approaches that use intensional,
extensional, or physical addressing.

Potato: A Streaming Platform for CPS 127

Designation Service Discovery Reactive? Offloading UPM NFC

Potato Intensional Distributed 3 Semi-Strong Mob. Streams 3

AmbientTalk Intensional Distributed 7 Weak Mob. Event-Driven 3

AmbientTalk/R Intensional Distributed 3 Weak Mob. 7 3

DDS Extensional Seed List 7 7 7 7

Rx4DDS Intensional Seed List 3 7 Streams 7

ElIoT Extensional Distributed 7 7 7 7

Regiment Extensional Distributed 3 RPC 7 7

Node-RED 7 7 3 7 Visual 7

Calvin Extensional 7 7 Strong Mobility 7 7

Achlys Extensional 7 7 Weak Mob. 7 7

GREEN Intensional Distributed 7 Weak Mob. 7 3

Cuttlefish Intensional Centralized 7 7 7 7

MundoCore Intensional Centralized 7 Strong Mob. 7 7

Srijan Intensional Centralized 7 7 7 3

ActorNet Intensional Centralized 7 7 7 7

Mobile Gaia Intensional Centralized 7 7 7 7

NFC: Non-functional Concerns,UPM: Unified ProgrammingModel,RPC: Remote Procedure
Calls

Table 4.1: Summary of related work with respect to requirements for CPSs.

• Service Discovery indicates the type of service discovery that is used. An
approach can use distributed, centralized, seed list service discovery, or
lack service discovery entirely. Distributed service discovery requires each
device to monitor the network. Centralized discovery has a centralized
service that is the source of truth for devices in the network. Seed list
discovery deploys devices with a pre-defined list of centralized services
that can be used to bootstrap decentralized discovery.

• Reactive indicates whether the approach employs reactive abstractions
(e.g., streams) or not.

• Offloading indicates if the approach makes it possible for devices to
distribute computations across the network. This approach can be code
mobility, mobile agents, or remote procedure calls.

• UPM indicates if the approach offers a unified programming paradigm or
mixes paradigms to combine approaches to address individual challenges
of CPS design.

• NFC indicates if the approach takes non-functional concerns into account
or not.

Conclusion This section discussed the state of the art regarding designation,
service discovery, reactive frameworks, code mobility, unified programming
models, and non-functional concerns that apply to CPSs. We observed that
designation and service discovery are well-studied, and most approaches offer a
form of service discovery that abstracts over communication-oriented methods.

128 Evaluation

The approaches that lack service discovery typically prohibit dynamic networks,
too. The technical aspect of service discovery is not or should not be an issue
in modern software engineering. However, integration into the programming
language or framework is essential. Approaches such as AmbientTalk and
GREEN integrate the service discovery properly, while approaches such as ElIoT
require the application to manually query devices without any support from the
middleware. Reactive programming has become popular in the last decade. In
the context of CPSs, not much has been done yet, while reactive programming
is designed for event-driven systems. Code mobility is a concept that has been
well studied in the past, however, its applications for reconfigurable distributed
systems and real-time updates have mostly been studied in context of Mobile
Agents. A unified programmingmodelwas not found in anymiddleware, except
Rx4DDS, although limited to local applications only. Finally, the addressing of
non-functional concerns through meta-level programming has not been found
in any middleware or frameworks for CPSs. AmbientTalk is the only approach
that incorporates a meta-level architecture, and it is designed according to the
design principles set forth by Bracha and Ungar [20].

4.7 Evaluation

In this section we discuss our evaluation of Potato by implementing the “VUB
4.0” scenario introduced in section 4.1. The use case is amore elaborate adaption
of a recurring Smart Office example often found in literature[26, 87, 12]. In
order to provide more meaningful qualitative analysis, we implement the same
application in a language (Elixir) without the abstractions offered by Potato
and Creek. To measure the expressiveness of Potato over Elixir, we categorize
the resulting code into six categories. We conclude by discussing the patterns
that appear to address the challenges in Cyber-Physical System (CPS) in the
plain Elixir implementation, and how they compare to Potato.

4.7.1 Potato Compared To General Purpose Language

We compare our Potato implementation of the three scenarios from section 4.1
with an implementation in plain Elixir. We taxonomized the resulting code into
the following six categories by classifying each individual line of code. Each
line of code is given a unique color, as shown in fig. 4.7.

• Application Logic is code that implements the actual behavior of the
application. This code is specific to the application it’s functional require-
ments and typically cannot be reused in other applications.

• Data Routing is code that is concerned with setting up data between
different devices in the network. This includes the code to manage the

Potato: A Streaming Platform for CPS 129

recipients of data and the senders of data.

• Data Flows is code that is concerned with transformation and dissemina-
tion of data in the network. This includes the logic requires to continu-
ously measure data and the transformations on data.

• Addressing & Discovery is code that is concerned with the discovery and
designation of other devices in the network, and identification of devices.

• Non-Functional Code is code that is concerned with the non-functional
requirements of the data streams in the application.

Li
ne

s
of

 C
od

e

0

200

400

600

Elixir Potato

Non-Functional Code

Code Management

Addressing & Discovery

Data Flows

Data Routing

Application Logic

Figure 4.7: LoC per category in regular Elixir and in Potato.

Figure 4.7 depicts the categorization of each line of code from an implemen-
tation in plain Elixir and an implementation using Potato. Ideally, we would
expect the bar to only contain application logic, but that is not practically pos-
sible. The columns in fig. 4.7 show the total lines of code per category. The
highlighted code can be found in appendix appendix H.

Service Discovery The most noticeable difference is the code dedicated to
service discovery and designation. The Elixir application requires more than
double the code to discover and designate devices on the network. In Potato,
the service discovery happens in the background and is conceived as a stream
of events. In regular Elixir, this behavior has to be mimicked by exchanging
messages and takes up much additional code.

Data Flows The data flow code is concernedwith generating andmanipulating
data streams in the application. Without the use of Potato, each data source
has to be defined as an Elixir process that loops indefinitely to generate a stream

130 Evaluation

of data. Each process must manually send its data to its “subscribers”. To do
so, a process must keep track of its subscriptions, and must allow processes to
subscribe at runtime. Finally, each process must explicitly express its interest
in another data stream by sending it a message. These requirements make
the manual data streams a brittle construction requiring extra code. Moreover,
in Potato, distributed data streams are monitored and managed by the Stream
Termination Protocol (see section 2.3). These guarantees are absent from the
plain Elixir application. The behavior could be mimicked with monitors and
links (see appendix A) in Elixir, but that would be a reimplementation of Creek;
one that pollutes the application logic.

Data Routing Data routing is the only category that requires more code in the
Potato application. The data routing code concerns setting up and distributing
data sources and sinks across the network. In plain Elixir, it is easier to set up ad-
hoc distributed processes. In Potato, however, a stream must be deployed with
a source and a sink, even if the data is not processed any further by the sink. This
manifests itself through ignore sinks throughout the application. However,
the distributed data flow setup by Potato is properly terminated in the case of
a network partition. In contrast, in the case of the plain Elixir application, there
would be processes running on the devices that would never be terminated.
Code to address this issue is not present in the plain Elixir implementation,
and would make the implementation even more complex.

Non-Functional Concerns The non-functional code in the VUB application is
limited to scenario 2, where the sound level meters emit data encoded in both
JSON and XML. In the Elixir application, this code is part of the application,
so the effective lines of non-functional code are 0. In the Potato application,
however, there are 33 lines of code to handle the non-functional concerns.

Conclusion We conclude that Potato introduces a logical overhead when set-
ting up data routing sources and sinks, depending on the application. However,
the Potato data streams are managed by Creek to ensure that they are cleaned
up in case of network failures. Service discovery, code management, and data
flows are expressed in much less code than in plain Elixir.

4.7.2 Recurring Patterns

When comparing the codebase of both implementations presented in sec-
tion 4.7.1, there are a few recurring patterns that pop up when addressing
service discovery, code management, data flows, and data routing. We discuss
these patterns to show how exactly the abstractions offered by Potato have to

Potato: A Streaming Platform for CPS 131

be reconstructed in a general-purpose programming language that does not
have the necessary abstractions for CPS applications.

Service Discovery Service discovery is the logic that is concerned with mon-
itoring the network and executing application logic in case a specific device
is discovered. In section 4.3.2 we showed how the world stream in Potato
directly exposes the network events at the application level to cater to this
requirement. In the Elixir implementation, the programmer has to implement
three parts. First, a monitor process that monitors the network and connects via
TCP/IP to other Elixir nodes on the network. Second, a process to handle events
generated by the monitor service to filters out relevant events. And finally, an
action to execute when a relevant device connects to the network.

Listing 41 shows the skeleton code that is required for each discovery request
made in the application logic. For every designation, a process must be spawned
that explicitly subscribes to events from the discovery process. Next, a predicate
and action are defined to filter out required devices and the action that must
be taken once they are discovered. The discover_loop loop handles requests
the description (node descriptor in Potato) of the remote device. The predicate
determines if the device is of interest and then executes the given action, and
then the loop repeats. The equivalent code in Potato is shown in listing 42.
In Potato, the programmer uses a filter operator to filter out the necessary
devices, and a map operator to apply the necessary logic to the device.

132 Evaluation

Without Potato1 def discover_loop(pred, action) do
2 receive do
3 {:discovered, device} ->
4 get_remote_description(device)
5

6 receive do
7 {:description, description} ->
8 if pred.(description) do
9 action.(device)

10 end
11 end
12 end
13

14 discover_loop(pred, action)
15 end
16

17 spawn(fn ->
18 # Register for updates on discovered devices.
19 send(Process.whereis(Discovery), {:on_discover, self()})
20

21 # What should the device have as properties?
22 predicate = fn device_properties ->
23 # ...
24 end
25

26 action = fn remote ->
27 # ...
28 end
29

30 discover_loop(predicate, action)
31 end)

Listing 41: Skeleton code to discover devices on the network in Elixir.

Potato1 world_stream
2 ~> filter(fn ->
3 #..
4 end)
5 ~> map(fn device ->
6 #..
7 end)

Listing 42: Skeleton code to discover devices on the network in Potato.

The service discovery in plain Elixir offers the same functionality as the world stream
and Creek in Potato. However, the pattern in listing 41 is not extensible to
quantify the desired amount of devices to be discovered. For example, in the

Potato: A Streaming Platform for CPS 133

second scenario of the “VUB 4.0” application, the professor’s laptop only dis-
covers the beamer once to turn them off, to allow the professor to turn on the
beamer afterwards. The discovery is limited to a single instance of the device,
and then stops. Otherwise, the beamer would be turned off every time the
professor tries to turn it on.

Data Routing In Potato, the routing of data is done implicitly. When a Di-
rected Acyclic Graph (DAG) is deployed, its sources send data through the
stream and end up in one or more sinks. In Elixir, this data routing is explicit
by sending ad-hoc “subscribe” messages to other processes. Any process that
wishes to emit data has to broadcast data to these subscribers explicitly. List-
ing 43 shows the skeleton code of a process that can be subscribed to. The
equivalent code in Potato is shown in listing 44.

Compared to Creek, the logic in listing 43 lacks important bookkeeping logic
such as unsubscribing, process termination when no subscribers are left, and
failure handling. Adding all these features would result in a reimplementation
of Creek in Elixir at the application level.

Without Potato1 F.loop_async(
2 fn {state, clients} ->
3 receive do
4 {:subscribe, pid} ->
5 {state, Enum.uniq([pid | clients])}
6

7 {:value, value} ->
8 #...
9 for client <- clients do

10 send(client, message)
11 end
12 end
13 end,
14 {state, []})

Listing 43: Process that can be subscribed to in Elixir.

Potato1 Creek.Source.function(fn -> ... end)

Listing 44: Process that can be subscribed to in Potato.

Failure Handling In section 2.3 we explained that the stream termination
protocol ensures that distributed streams are cleaned up when a network par-
tition occurs. The stream termination protocol implementation relies on the

134 Evaluation

link and monitor mechanisms present in Elixir (see appendix A). In the plain
implementation of the VUB application these monitors have to be manually
created and monitored by each process.

Listing 45 shows the code needed to monitor another process. First a monitor
has to be created, and secondly, the process has to monitor its message inbox
for messages that signal the monitored process is offline. This logic is entangled
with the application logic. In Potato none of this logic is necessary, and the
stream termination protocol handles all the monitoring, as is shown by the
equivalent Potato code in listing 46. All operators in Potato, by default, moni-
tor their up- and downstreams for failure. When a failure occurs the runtime
takes care of removing the connections, and terminating the stream if necessary
(see section 2.3).

Without Potato1 F.loop_async(
2 fn {state, clients} ->
3 receive do
4 {:subscribe, pid} ->
5 Process.monitor(pid)
6 {state, Enum.uniq([pid | clients])}
7

8 {:DOWN, ref, :process, pid} ->
9 {state, Enum.reject(clients, &(&1 == pid))}

10

11 {:value, value} ->
12 #...
13 for client <- clients do
14 send(client, message)
15 end
16 end
17 end,
18 {state, []})

Listing 45: Linking to subscribed processes.

Potato1 world_stream
2 ~> filter(fn ->
3 #..
4 end)
5 ~> map(fn device ->
6 #..
7 end)

Listing 46: Skeleton code to handle failures in a stream in Potato.

Potato: A Streaming Platform for CPS 135

Mobile Code Deployment Mobile code deployment is at the heart of Potato.
It is the only mechanism to execute code on remote devices, and to distribute
streams across the network. Elixir offers semi-strong code mobility, which
makes the process of remote code deployment as simple as it is in Potato.
Listing 47 show the code necessary to deploy a function on a remote node in
Elixir, and listing 48 shows the equivalent code in Potato. The assumptions
here are that the remote device is connected to the network.

The ad-hoc deployment of processes on remote nodes makes it impossible for
the runtime to manage them. In Potato, each program is deployed by sending
on the update stream of a remote device. The receiving device has full control
over the deployment process.

Without Potato1 Node.spawn(remote, fn ->
2 #...
3 end)

Listing 47: Deploying a function on a remote device in Elixir.

Potato1 p = program do
2 #...
3 end
4 next(remote.update_stream, p)

Listing 48: Deploying a program on a remote device in Potato.

4.7.3 Memory Footprint

In what follows we compare the memory overhead of a Potato application and
a plain Elixir implementation. In order to compare the memory footprint of
Potato to plain Elixir, we inspect the second scenario from section 4.1 (i.e.,
“Noisy Campus”) in more detail.

The “Noisy Campus” scenario contains a smartphone that maintains connec-
tions with multiple sound level meters and windows. This network can be
easily scaled in terms of network size by adding more windows or sound level
meters. Additionally, the Potato application for the sound level meters also
contains meta-level behavior to integrate various data representations, taking
the memory impact of the meta-level streams into account.

We first measure the memory footprint of the plain Elixir implementation for
different network sizes. Next we measure the Potato implementation for the
same network sizes and compare the memory footprint.

136 Evaluation

Network Size

M
eg

ab
yt

e

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

VUB Phone Sound Level Meter

Figure 4.8: Memory consumption in megabyte for Phone, VUB, and Sound Level Meter
devices with varying network size in Potato.

Network Size

M
eg

ab
yt

e

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

VUB Phone SLM

Figure 4.9: Memory consumption in megabyte for phone, VUB, and sound level meter
devices with varying network size in Elixir.

Network Size

M
eg

ab
yt

e

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Phone (Creek) Phone (Elixir)

Figure 4.10: Memory consumption in megabyte for phone devices in Elixir and Potato.

Potato: A Streaming Platform for CPS 137

Network Size

M
eg

ab
yt

e

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

VUB (Creek) VUB (Elixir)

Figure 4.11: Memory consumption in megabyte for VUB devices in Elixir and Potato.

Network Size

M
eg

ab
yt

e

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sound Level Meter (Potato) Sound Level Meter (Elixir)

Figure 4.12: Memory consumption in megabyte for sound level meter devices in Elixir and
Potato.

138 Evaluation

Figure 4.9 and fig. 4.8 show the total memory footprint of the smartphone, VUB
computer, and sound level meters. Looking at the memory footprint of the
Elixir implementation in fig. 4.9, we see that both the phone and VUB device
consume more memory as the network size grows. The same pattern can be
seen in the Potato chart (fig. 4.8). This pattern is explained by the fact that
as the network grows, the VUB and smartphone need to maintain additional
connections to the devices. The VUB device connects to the device to update it
and then disconnects, but the smartphone maintains a constant connection to
the device.

The sound level meters do not consume more memory when the network size
grows. This can be explained by the fact that regardless of the network size, the
sound level meters only stream data to the smartphone. At any network size,
sound level meters only have a single outgoing stream. The VUB and phone
devices need to communicate with all the sound level meters, thus increasing
their memory footprint as the network grows.

Figure 4.10 gives a more detailed view of the memory consumption of the
smartphones in the Elixir and Potato implementation. The plain Elixir imple-
mentation requires less overhead per device compared to the Creek implemen-
tation. This means that a stream between two devices in Potato requires more
memory than a stream in Elixir. A stream in Potato consists of multiple Elixir
processes that represent individual operators in a stream. Depending on the
complexity of the stream, the constant overhead per connection increases. In
the Elixir implementation the entire computation is encapsulated in a single
actor. This explains the larger overhead per connection in Potato. Figure 4.11
shows a simliar pattern, which is also explained by the fact that Creek streams
consist of multiple Elixir actors. An important difference between fig. 4.11
and fig. 4.10 is that the smartphone has a larger constant overhead compared
the VUB device streams. Every sound level meter is streaming data which
is transformed at the meta-level, thus incurring an additional overhead per
operator in the stream. The streams for the VUB device do not have a meta-level
stream and are short-lived. In summary, the streams between the smartphone
and the sound level meters have a larger constant overhead compared to the
VUB device streams.

Figure 4.12 shows that thememory consumption for sound level meters remains
nearly constant, regardless of the network size. This is explained by the fact
that an individual sound level meter only maintains a single connection to the
smartphone, and therefore does not require more memory as the network grows.
The additional memory required in Potato can be explained by the stream that
consists of multiple actors, opposed to a single actor in case of Elixir.

Even though Potato and µCreek are an exercise in programming language

Potato: A Streaming Platform for CPS 139

design, we must conclude that there is a small performance overhead when
compared to Elixir, a general purpose programming language. We observed
that Potato adds a constant overhead per connection to a device. This overhead
can increase further, depending on the complexity of the operations applied to
that stream. We conclude that additional work needs to be performed to make
Potato applicable to real-world scenarios. However, Potato and µCreek are a
first step towards a high-level domain-specific language to express large-scale,
unreliable, open systems, such as CPSs.

4.8 Summary of Chapter

In this chapter we have evaluated Potato by implementing a representative use
case of a Cyber-Physical System (CPS) and comparing it to an implementation in
Elixir, which has no abstractions for CPSs. We compared these implementations
by classifying the lines of code according to their concerns. This confirms
our hypothesis that Potato and Creek provide abstractions that reduce the
accidental complexity in CPS applications. Specifically, service discovery, data
flows, and data routing are more elegantly expressed in Potato and Creek.
The expression of non-functional concerns was completely absent in Elixir,
entangling all non-functional code with the application code. In Potato and
Creek, this code is separated using the meta-level architecture of Creek. While
our implementation in Elixir had less code concerning data routing, we argue
that the expression of data routing in Potato offers failure handling that is
completely absent from the plain approach, at the cost of a minor increase in
lines of code.

A comparison of Creek and Potato to a state-of-the-art middleware for CPS is
desirable. However, related work either does not offer an accessible version of
the artifact or does not overlap enough in terms of functionality with Creek to
warrant a full implementation of the use case.

We identified four recurring patterns when implementing the “VUB 4,0” use
case in a general-purpose language. Failure handling of distributed data com-
munication, routing data between processes and devices, and service discovery
on the network. All these patterns are created ad-hoc, entangled with the ap-
plication logic. We explained the cause of the patterns, and compared them to
the equivalent Potato code.

Potato and Creek offer abstractions that make it possible to elegantly express
data streams and code mobility in dynamic networks of heterogeneous devices
while keeping in mind the modern software design principles. Without the
abstractions offered by Potato and Creek, the programmer has to resort to
ad-hoc solutions resulting in software of lower quality.

140 Summary of Chapter

Chapter 5
Implementation

The ideas presented in this dissertation have been supported by two artifacts.
This chapter details their implementation. Creek is a macro-based imple-
mentation of our stream Domain Specific Language (DSL), and Potato a pro-
gramming library to aid in the development of Cyber-Physical System (CPS)
applications.

We have chosen to implement Creek and Potato in Elixir, a concurrent actor
language that is based on the Erlang virtual machine (BEAM). Elixir provides
features that lower the barrier for developing distributed frameworks and DSLs.
In this section, we discuss the Elixir features we used and how they impacted
our prototypes.

5.1 Elixir as a Language Laboratory

The technology stack we used is depicted in fig. 5.1. Elixir is the technical
foundation on top of which Creek and Potato are built. µCreek is implemented
in Creek. Potato applications are built using building blocks from Creek,
µCreek, and Potato.

The Elixir programming language is based on the Erlang virtual machine
(BEAM), that was initially built for the Erlang programming language, a bit like
Scala was built on top of the Java Virtual Machine (JVM). Elixir can be consid-
ered to be a modern incarnation of the Erlang programming language. BEAM
has features such as transparent distribution and code mobility that make it
interesting for distributed and concurrent applications. Additionally, Elixir
has a well-designed macro system, similar to that of Common Lisp. Macros

141

142 Elixir as a Language Laboratory

Potato

Applications

Creek

μCreek

Potato

Elixir

Operating System

Hardware

Figure 5.1: The technology stack used to implement Creek and Potato in Elixir.

allow programmers to extend the language to cater to requirements of specific
problem domain in ways that would otherwise generate repetitive boilerplate
code. As a result, Elixir is a viable choice to design concurrent and distributed
Domain Specific Languages (DSLs). In what follows, we briefly introduce the
macro system of Elixir, and then discuss the implementation of Creek and
Potato in Elixir.

5.1.1 Macros

Macros allow programmers to extend a language with additional primitives.
Macros can be used to create an a embedded domain specific language (DSL), i.e.,
a programming language inside a programming language.

As an example of a macro, consider the unless <test> do: <body> state-
ment. It’s usage is shown in listing 49 (left). Elixir does not have an unless
statement built-in, and functions cannot be used to implement the desired
behavior, because Elixir has applicative-order evaluation, so function arguments
are evaluated before the body of the function is evaluated. An unless statement
only evaluates its body if the <test> reduces to false. The righthand side
of listing 49 shows its equivalent if expression. Implementing unless using
functions would mean that the <body> of unless would be evaluated, even
if the test was true. Macros, however, are functions that work on the AST at
compile-time, and can implement the desired behavior.

Implementation 143

unless 5 != 5 do
1

end

if !(5 != 5) do
1

end

Listing 49: An unless expression, and the equivalent if expression that the macro (see
listing 51) turns it into.

ASTs Elixir represents its code in the same data structures as its data. An Elixir
program its AST is represented as a plain Elixir tuple with three values.

1. The name of the function or expression being called (e.g., unless).

2. The context of the expression, which contains line numbers, defining
module, etc. We gloss over these details in the remainder of this chapter.

3. A list of AST nodes for each argument

As an example of an AST, consider the code in listing 50 which is the AST of the
unless expression from listing 49. An unless expression takes two operands:
the test and the body. The function is highlighted in green on line 1, the first
operand in yellow on line 2, and the second operand in red on line 3.

1 { :unless, [context: Elixir, import: Kernel] ,
2 [
3 {:!=, [context: Elixir, import: Kernel], [5, 5]} ,

4 [do: 1]
5]
6 }

Listing 50: The AST of unless 5 != 5, do: 1

Defining Macros Macros in Elixir are defined using two primitives: quote
and unquote. The quote function turns its argument expression into an AST,
instead of evaluating it. The unquote function can be used in an AST expression
and takes as argument an AST and injects it into an AST that contains the
unquote expression.

To show how quote and unquotework, consider themacro definition of unless
in listing 51. The macro transforms each unless expression into an if expres-
sion with the <test> argument negated. A new AST node to replace the if
expression is created using the quote function. The test and body arguments
are injected into the new AST using unquote.

144 Elixir as a Language Laboratory

It is important to note that in this example the macro expansion does not
evaluate any arguments. Instead, the transformation happens at the syntax
level at compile-time.

1 defmacro unless(test, do: body) do
2 quote do
3 if(!unquote(test), do: unquote(body))
4 end
5 end

Listing 51: The macro definition of unless.

Hygienic Macros The calling context is the position in the code where the
macro is called. The macro context is the place in the code where the macro
is defined. Macros in Elixir are hygienic 1. A macro cannot shadow variables
that are defined in the calling context. This ensures that macro expansion
cannot affect the environment it is called in. The programmer of the macro can
explicitly override hygiene if necessary using the var! function.

5.1.2 Creek DSL Design

Creek makes use of macros in its Directed Acyclic Graph (DAG) definition
language, and its design has been influenced by limitations of Elixir’s macro
system.

• First, Elixir macros cannot create custom infix operators. Function calls in
Elixir are denoted in prefix notation, but there are a few infix operators
such as + and *. These operators are hardcoded into the tokenizer, and
cannot be customized. The Elixir compiler supports a limited amount of
predefined and unused infix operators to partially address this issue 2.
In Creek, we have chosen to use ~> (i.e., horizontal composition) and |||
(i.e., vertical composition) as the two primitives to compose DAGs.

• The defdag and dag primitives in Creek compile the code into a function,
because Elixir only allows functions at the top-level in a module. As a
result, composing two separate DAGs requires calling their functions.
Syntactically, this does not impact the DSL, but it makes it impossible to
compile the DAGs at compile-time, and run the µCreekC truly at compile-
time. To address this problem, every DAG is compiled the first time it

1https://hexdocs.pm/elixir/Macro.html
2https://github.com/elixir-lang/elixir/blob/main/lib/elixir/src/elixir_

parser.yrl#L63-L80 [Accessed 5/2/22]

https://hexdocs.pm/elixir/Macro.html
https://github.com/elixir-lang/elixir/blob/main/lib/elixir/src/elixir_parser.yrl#L63-L80
https://github.com/elixir-lang/elixir/blob/main/lib/elixir/src/elixir_parser.yrl#L63-L80

Implementation 145

is deployed, and subsequent deployments use a cached version of the
compiled DAG.

5.2 Creek Implementation

The main components of Creek are operators, Directed Acyclic Graphs (DAGs),
and streams. We describe their implementation in Elixir, discuss features of
the language we relied upon, describe how they influenced our design, and we
discuss the limitations they imposed.

5.2.1 Implementing Operators

The basic building block of a stream in Creek is an operator. An operator
describes what should happen to each value when it arrives. In Creek, the
operator behavior must be described by three functions for operands: next,
error, and complete, two functions for sources: tick and init, and three
functions for sinks: next, error, and complete. These functions return an
instruction for the runtime indicating what value to propagate. These functions
have to respect the canonical stream protocol (see section 2.2.5). Creek enforces
the Canonical Stream Protocol (CSP) with a behavior, similar to interfaces in
object-oriented languages.

Listing 52 shows the Elixir behavior for operators. The behavior states that
an operator must define three functions: next, error and complete. Each
function takes at least the following arguments.

1. The first argument is always an Operator tuple; a tuple that describes the
operator behavior, its arity, module implementation, and other meta-data
used by the runtime.

2. The second argument is the state of the operator. Operator state is used
by stateful operators such as the reduce operator.

3. The third argument is the gate on which the event arrived.

4. The fourth operator in the next and error functions holds the value and
error value, respectively.

The behavior also defines the allowed return values for the functions (lines 3,
5, and 7). These instructions map directly on the canonical stream protocol,
with the exception of the final instruction. This is an optimization that allows
an operator to complete in response to a next event, instead of returning next
and complete in response to the next event.

146 Creek Implementation

Listing 53 shows the implementation of the map operator in Creek as an ex-
ample. Notice that the return values of each function respect the behavior
implementation. If the programmer makes a mistake against the CSP, Elixir’s
code analyzer will throw a compile error.

1 defmodule Creek.Operator.Behaviour do
2 @spec next(Operator.t(), any, any, any)
3 :: {any, :next, any} | {any, :skip} | {any, :final, any}
4 @spec error(Operator.t(), any, any, any)
5 :: {any, :error, any} | {any, :complete}
6 @spec complete(Operator.t(), any, any)
7 :: {any, :complete} | {any, :error, any}
8 end

Listing 52: Operator behavior in Creek.

1 defmodule Creek.Operator.Map do
2 def next(this, state, _from, value) do
3 new_value = this.arg.(value)
4 {state, :next, new_value}
5 end
6

7 def error(this, state, _from, err) do
8 {state, :error, err}
9 end

10

11 def complete(_this, state) do
12 {state, :complete}
13 end
14 end

Listing 53: Implementation of the map operator.

Operator Dictionary Representation An operator expression, e.g., map(f),
returns an operator representation. An operator representation is a dictionary
that contains all the necessary meta-data for the runtime to deploy it in a DAG.
Section 5.2.1 shows an example of an operator representation for the expression
map(f). The meta-data serves two purposes. First, the arity (in and out)
allows the Creek compiler to verify that a DAG is valid. Second, it contains the
arguments that were passed by the user.

If one wants to extend the list of Creek with new built-in operators, a module
implementation similar to listing 53 must be given, as well as a description
similar to the one below.

Implementation 147

1 %Creek.Operator{opts: opts, type: :operator, arg: f, name: "map",
2 ref: Creek.Server.gen_sym(), in: 1, out: 1,
3 impl: Creek.Operator.Map}

Figure 5.2: Graphical representation
of a map operator.

Figure 5.3: Graphical representation
of a map operator as a GatedDAG.

5.2.2 Implementing DAGs

A DAG in Creek is created by composing operators and DAGs using the vertical
and horizontal composition operators (i.e., ~> and |||). We have shown how an
operator is represented as a dictionary. Next, we discuss how they are composed
into a DAG in Creek.

A DAG in Creek is internally represented as a gated dag [33]. In a gated dag,
each operator is represented by a vertex, and an additional vertex per in- and
output gate of the operator. Figure 5.2 and fig. 5.3 show this graphically for
the zip operator. The zip operator has an input arity of 2 and an output arity
of 1. Each input is represented as a green vertex with the port number in it.
Each output is represented by a red vertex with the port number in it as well.
Representing an operator in this way allows the Creek compiler to detect if
two graphs can be merged, and if a DAG is well defined. At runtime the gated
DAG makes it easier to identify from which upstream a datum came, because
the ports uniquely identify the source of a value.

5.2.3 Implementing Streams

A stream is a collection of processes in which each represent an individual
operator. A stream is created by deploying a DAG. Listing 54 shows an example
of deploying a DAG called factorial, with a given source actor src and a
given sink actor snk.

148 Creek Implementation

1 deploy(factorial, source: src, sink: snk)

Listing 54: Example of a deploy statement.

Deploying a DAG involves the following steps.

1. For each operator vertex in the gated DAG, an operator process is created.
An operator process is a plain Elixir actor that understands a specific set
of messages (i.e., the CSP).

2. The Elixir actors that are provided as sources and sinks are replaced with
the actor sockets in the gated DAG.

3. If the DAG was defined with a meta-behavior, the meta-DAG is sent to
each actor process.

4. Each process is linked to its direct up- and downstream processes. When
one of two linked process terminates, a message is sent to notify the other
process.

5. The processes representing operators, sinks, and sources, are sent an
initializationmessage. After the initialization, sources start emitting
data, and operators and sinks can initialize their state. The initialization
message acts as a barrier, ensuring no data is emitted while the stream is
being deployed.

Operator Process An operator process is a plain Elixir actor that understands
a specific set of messages. Listing 55 shows the skeleton code of an oper-
ator process. An operator process understands all the messages present in
the meta-stream protocol, plus four implementation-specific messages, i.e.,
offer_meta, add_downstream, add_upstream, and finish. Programmers
can extend Creek with custom sources and sinks by implementing a custom
Elixir process.

5.2.4 Implementing Distributed Streams

Streams inCreek are transparently distributed. A deployment (see section 2.2.4)
takes sources and sinks as its argument, and these can be located anywhere on
the network. Tomake this possible, Creek relies on the distributionmechanisms
of BEAM. In Elixir, a process has a unique identifier, called its pid. This is a
primitive Elixir value that can be sent across the network. The transparent
distribution of a process in Elixir means that links and monitors on which the
stream termination protocol relies, work regardless of the location a process. In

Implementation 149

1 def process_loop(node, upstreams, downstreams, state, meta_state) do
2 receive do
3 {:offer_meta, meta} ->
4 # ..
5 {:add_downstream, downstream} ->
6 # ..
7 {:add_upstream, upstream} ->
8 # ..
9 {:finish} ->

10 # ..
11 {:meta_message, m, from} ->
12 # ..
13 {:initialize} ->
14 # ..
15 {:next, value, from = {from_pid, _from_gate, gate}} ->
16 # ..
17 {:complete, from = {from_pid, from_gate, to_gate}} ->
18 # ..
19 m ->
20 warn("Message not understood: #{inspect(m)}")
21 process_loop(node, upstreams, downstreams, state, meta_state)
22 end
23 end

Listing 55: The skeleton of an operator actor in Creek.

150 Creek Implementation

other words, no additional engineering was necessary to facilitate data exchange
between distributed streams.

However, distribution in Elixir requires it to be part of a cluster of computing
nodes. To connect to a cluster, a node needs an IP address and port of another
machine that is already in a cluster. An explicit connection has to be made
to join the cluster. For example, Node.connect(:"cdt@example.com") con-
nects to a node running on the server at example.com. Setting up a cluster is
considered out of the scope of Creek. In section 5.3.2 section we detail how
Potato automates cluster discovery.

5.2.5 Implementing µCreekR
The high-level architecture of µCreekR has been discussed in detail in sec-
tion 3.4. In this section we discuss the technical implementation of Creek in
Elixir.

Defining meta-DAGs A meta-DAG in µCreekR is defined as a triple of DAGs,
a DAG for operators, sinks, and sources. These three DAGs must be defined in
a single module with the names source, sink, and operator. Each of these
DAGs requires a single source and a single sink. There are no other restrictions
on the topology of the DAG.

Loading meta-DAGs When an operator process is spawned, and a meta-DAG
is defined, the operator process first creates a meta-source and meta-sink, and
deploys an instance of the meta-DAG. The source is a subject that the operator
process will use to inject meta-messages into the meta-stream. The sink is
a tap sink, which sends the response of the meta-DAG back to the operator
process.

1 def process(node, upstreams, downstreams) do
2 if node.meta_dag != nil do
3 src = Creek.Source.subject()
4 snk = Creek.Sink.tap(self())
5 deploy(node.meta_dag, [src: src, snk: snk])
6 loop(%{node | meta: src}, upstreams, downstreams, node.arg, nil)
7 else
8 loop(node, upstreams, downstreams, node.arg, nil)
9 end

10 end

Listing 56: Code to deploy the meta-DAG when an operator process is started.
Code is redacted for readability, for full implementation see https://github.com/
softwarelanguageslab/creek.

https://github.com/softwarelanguageslab/creek
https://github.com/softwarelanguageslab/creek

Implementation 151

Meta-Messages For every incoming internal message (see listing 55), the
operator process creates a meta-message and emits into the meta-source. The
operator process blocks until it receives a meta-response from the meta-sink.
If a message is processed via the meta-DAG, the operator process does not
take any action, other than updating the state of the operator. As an example,
consider listing 57, which contain the code that handles a completemessage in
an operator process. The structure is the same for all other internal messages.
If no meta-source is present, the process calls the base level (base stage) and
sends the necessary messages to the downstream operators (effects stage) based
on the response from the base level. If a meta-stream is present, a meta-event is
created, and sent on the meta-source, and the process waits until the meta-DAG
emits the new operator state.

1 if node.meta_source != nil do
2 meta_event = {%{meta_state: .., ..}, ..}
3 next(node.meta_source, meta_event)
4

5 receive do
6 {p, :ok} ->
7 process_loop(p.node, p.us, p.ds, p.state, p.meta_state)
8 end
9 else

10 response = node.base.complete(node, state)
11 case response do
12 {state, :complete} ->
13 send_self({:finish})
14 effects_complete(from, downstreams, upstreams, self())
15 process_loop(node, upstreams, downstreams, state, meta_state)
16 ..
17 end
18 end

Listing 57: Conditional structure to process internal messages in an operator process.
Code is redacted for readability, for full implementation see https://github.com/
softwarelanguageslab/creek.

Intra-Meta Communication A meta-DAG can send messages to other oper-
ators at the meta-level (see appendix E for an example). However, the actor
process only understands the canonical stream protocol. To process intra-meta-
messages, each operator process must understand a generic meta_message
message. Whenever an intra-meta-message is sent to an operator, the runtime
wraps it in a meta_message event. These types of messages are forwarded
directly to the meta-DAG, if present. When no meta-DAG is present, they are
ignored.

https://github.com/softwarelanguageslab/creek
https://github.com/softwarelanguageslab/creek

152 Creek Implementation

5.2.6 The µCreekC Compilation Pipeline

Compiler
Meta
DAG

Compiler

Inst
Seq

Internal

DAG

{}

1 2 3 4 5 60

Figure 5.4: A graphical depiction of the compilation pipeline in µCreek.

A Creek DAG is defined using one of the macros offered by Creek, i.e., dag or
defdag. µCreekC transforms DAGs by streaming them through a meta-DAG in
the form of instructions. Both macros execute the following steps for each user
DAG at compile-time. The numbers indicate on which stage of the compiler
pipeline they map in fig. 5.4.

1. For each actor socket, a new variable is inserted into the scope where
the user DAG is defined (unhygienic).

2. Constant values that are passed to DAGs are inserted into the scope where
the DAG is defined (unhygienic).

3. Each actor socket in the user DAG is verified to be either source or sink
position.

4. The DAG is verified to be a well-formed DAG (see section 2.2.3).

5. If a meta-DAG is present, the following steps are taken.

(a) Topologically sort the user DAG

(b) For each vertex, create an operator instruction, followed by a name
instruction.

(c) For each edge, create a corresponding instruction.

(d) Deploy the compile-timeDAG and stream the instructions through.

(e) Replace the user DAG with the result of the meta-stream.

6. For each operator in the user DAG, install a copy of the µCreekR DAG.

7. Store the compiled user DAG in memory.

Steps 1 to 3 from the above enumeration are executed at compile-time of the
Elixir program. Steps 4 to 7 are executed the first time the DAG is deployed,
during the runtime of the Elixir program. This is a limitation due to the Creek
compiler being written as macros.

Implementation 153

5.3 Potato

5.3.1 Implementing Node Discovery

A Potato application makes use of the cluster functionality of BEAM. Dis-
tributed nodes can connect to each other, provided that they know a shared
secret, IP addresses, and usernames. Setting up a cluster is a tedious task,
and Potato automates this process using node discovery. When a device run-
ning Potato connects to a shared network, it will automatically discover other
Potato instances.

Central to code discovery in Potato is the discovery process. When a Potato
device connects to a network for the first time, the discovery process announces
its presence with a magic packet, an UDP datagram 3 that is broadcast onto
the entire network. A Potato device continuously listens for magic packets
from other devices on the network. When a magic packet is received by another
discovery process, both nodes attempt to connect to each other to form a cluster.
If the connection is successful, the nodes exchange node descriptors, and the
devices their clusters are merged, and form a single Potato application. The
application is notified of this change with a join network event on the world
stream (see section 4.4).

A distributed cluster can become partitioned in case of network failure. Erlang
has built-in functionality to monitor nodes in a cluster, similar to links and
monitors for processes. The discovery process on each device monitors the clus-
ter to detect network partitions. When a node disconnects from the cluster, the
discovery process is notified, and Potato exposes this event to the application
by emitting a leave event on the world stream.

Preliminary work has been done to extend Potato with non-IP networks, such
as Bluetooth or NFC. For example, using a Bluetooth low-energy stack, devices
can detect other devices in their proximity. We extended Potato to emit two
additional types of network events: near and far events. This is achieved by
adding a discovery process that monitors a Bluetooth service, rather than a
network service. Bluetooth Potato devices implement an Eddystone 4 beacon,
and announce their ethernet IP address via bluetooth. When another bluetooth
discovery process picks up this signal, it emits a network event that the given
device is near. When the devices are no longer in close proximity they both
emit a far network event.

3https://datatracker.ietf.org/doc/html/rfc919
4https://github.com/google/eddystone

https://datatracker.ietf.org/doc/html/rfc919
https://github.com/google/eddystone

154 Summary of Chapter

5.3.2 Implementing Mobile Code

Potato features first-class reactive programs. Applications can create programs
and emit them onto the update stream of other devices to deploy them remotely.
Potato exposes an update stream to the network that allows remote devices to
stream applications to other devices.

The program primitive of Potato is macro that captures its body as a delayed
computation. The program primitive rewrites its body to an anonymous func-
tion (“lambda”). There was no further need to modify the code, as Elixir’s
anonymous functions can be sent across the network and can be classified
as semi-strong mobility [43]. In brief, code mobility was “free”, because the
Elixir code mobility features align with the requirements for first-class reactive
programs in Potato.

5.4 Summary of Chapter

We developed two prototypes to support the ideas presented in this disser-
tation. Potato implements the design we proposed in chapter 4, and Creek
implements the meta-level architecture we discussed in chapter 2. The imple-
mentation of Potato relies on the distributed programming features of Erlang.
More specifically, Potato relies on the clustering, node monitoring, transparent
distribution of Elixir, and Creek relies on actor links and monitors. Without
these features, the implementation would require a significant amount of ad-
ditional engineering time. Creek and its meta-level architecture µCreek use
the macro facilities of Elixir to create the Creek Domain Specific Language
(DSL). The macro system of Elixir, in spite of its limitations, makes Elixir into a
viable choice as language laboratory. The source code for these artifacts can be
found online at https://github.com/softwarelanguageslab/creek and
https://github.com/softwarelanguageslab/potato.

https://github.com/softwarelanguageslab/creek
https://github.com/softwarelanguageslab/potato

Chapter 6
Conclusion

This chapter concludes this dissertation. We revisit our contributions and how
they address the challenges to CPS development introduced in chapter 1. We
conclude with the limitations of Potato and Creek and we discuss avenues for
further research.

6.1 Revisiting Problem Statement

Cyber Physical Systems (CPSs) are systems that consist of many heterogeneous
devices and devices with limited resources. These large-scale systems are prone
to failure, open-ended, and data-driven. To some degree, CPSs are similar to
Internet of Things (IoT) and Wireless Sensor Networks (WSNs), but focus
on autonomous data and instruction exchange. Expressing these data flows
in large-scale unreliable distributed networks is difficult with contemporary
programming languages. We proposed the stream paradigm as a foundation to
address the software design challenges.

Surveying the state of the art, we concluded that the state-of-the-art approaches
for CPSs address only a subset of the software design challenges. Some ap-
proaches are implementation-driven, meaning that the applications are largely
influenced by the hardware platform, and often lack high-level abstractions.
Implementation-driven applications are mostly written in C or Assembly and
have to deal with concerns such asmemorymanagement and radiomanagement.
Application-driven driven approaches abstract away from the lower level with
abstractions for communication, discovery, and data routing between devices.
However, none of the approaches provide a unified programming paradigm
and only tackle a subset of the challenges.

155

156 Summary

We proposed an application-driven approach that incorporates our approach to
all challenges in the stream paradigm. In our approach the network, devices,
programs, non-functional concerns, and data streams are all expressed in
the stream paradigm. Concretely, we addressed the following problems.

1. Large Scale CPSs can contain hundreds of devices. Writing software
that orchestrates data flows between so many devices using traditional
communication abstractions is challenging.

2. Dynamic Networks Dynamic networks mean that devices can join and
leave at unforeseen moments in time. The software has to deal with these
changes without interrupting the application.

3. Heterogeneity The heterogeneous devices exhibit non-functional traits
that programmers must address to integrate them into an application. In
traditional software engineering, the principle of “Separation of Concerns”
(SOC) dictates that different concerns should not be mixed.

4. Dynamic Networks The dynamic network means that devices can join
and leave at undefined times. The software has to deal with these changes
without interrupting the application.

5. Data-Driven The devices in a CPS are continuously executing data and
instructions with each other. Devices rely on other data from other devices
to provide a service.

6. Limited Computational Power Some devices in the application are lim-
ited in computational power, which limits the computations they can
execute, and the services they can provide.

6.2 Summary

In this section we restate our contributions per chapter.

• Chapter 2 surveyed the state of the art in stream-based Domain Specific
Languages (DSLs). Based on the literature, we proposed a taxonomy for
stream DSLs along four axes: parallelism, phases, propagation semantics,
and backpressure. Finally, the chapter introduces Creek, a prototypical
stream DSL used as a language testbed in Chapter 3. Finally, we define
the communication protocol between operators in a stream in the context of
Creek. Finally, we discuss how distributed streams are ensured to terminate
by the Stream Termination Protocol.

• Chapter 3 introduced the meta-level architecture for stream DSLs, called
µCreek. It consists of two parts, µCreekR and µCreekC . µCreekC is a

Conclusion 157

compile-time intercession framework that represents the stream as a stream of
events at compile-time and allows the structure of the stream to be changed.
µCreekR is the run-time counterpart and allows the semantics of the stream
to be changed at run-time. Both µCreekR and µCreekC meta-programs
are expressed as streams. In other words, the application and the meta-
level are both expressed in the streamparadigm. We evaluate the expres-
siveness of µCreek by implementing operator fusion, timestamping, and
parallelization of streams. We also evaluate the performance overhead of
the meta-level. We concluded the chapter with a debugger implemented
at the meta-level.

• Chapter 4 introduced Potato, a framework for Cyber-Physical System
(CPS) applications. Potato is centered around stream-based programming.
Potato addresses the challenges distilled from literature in a single
programming paradigm, stream programming. The hypothesis was
that stream programming is ideal for expressing data-driven large-scale
systems. This chapter shows how to tackle the software design challenges
in CPS in the stream paradigm. First, the dynamic network is exposed
to the application as a stream of join and leave events. Applications that
use the world stream as a source to express applications as declarative
transformations of this stream deal with the dynamic network by design. A
device identifies itself on the network with a node descriptor that contains
meta-information about the device. The node descriptor allows devices to
be designated based on logical properties, such as exposed services and type.
Devices can be updated via their update stream, a stream dedicated to
transmit programs across the network. Devices multicast data on the
network via their data stream, and can set up dedicated communication
channels using first-class programs. We evaluate Potato by implementing
the “VUB 4.0” use case and comparing it to an implementation in a general
purpose programming language without abstractions designed for CPSs.

• Chapter 5 describes our implementation of Potato and Creek in broad
strokes. We explain how the Creek DSL creates Directed Acyclic Graphs
(DAGs) at compile-time, and how DAGs are turned into streams. Next,
it explains how the Stream Termination Protocol is implemented using
links and monitors. Finally, the implementation of Potato is explained.

6.3 Revisiting The Contributions

In chapter 1 we listed five challenges that programmers face when design-
ing CPS applications today. In what follows we revisit our contributions and
summarize how they address these challenges.

158 Revisiting The Contributions

6.3.1 The Creek & µCreek Models

In chapter 2 we taxonomized the state of the art in stream DSLs, and designed
a novel DSL, called Creek. Creek is used as an experimentation vehicle to im-
plement a novel meta-level architecture for stream DSLs, called µCreek.

In a CPS there is heterogeneity between the devices connected to the network.
The heterogeneity introduces a variety of non-functional concerns that the appli-
cation logic has to address to integrate these devices in the network. As a result,
the non-functional logic is entangled with the application logic. To the best
of our knowledge there is no meta-level architecture design for stream-based
languages.

µCreek is a meta-level architecture for stream DSLs founded on the canonical
stream protocol (see section 2.2.5). µCreek consists of two complementary
approaches: µCreekR and µCreekC .

• µCreekC is stream-based structural reflection andallows ameta-program
to change the structure of a stream at compile-time. This makes it pos-
sible to implement non-functional concerns such as operator fusion, time
stamping, and encryption.

• µCreekR is stream-basedbehavioral reflection andallows ameta-program
to change the semantics of the stream at runtime. µCreekR makes it
possible to change the propagation semantics of a stream, and change the
way an operator handles incoming and outgoing values.

In summary, Creek and µCreek express the application logic, compile-time
meta-programs, and run-time meta-programs in a single paradigm: streams.
In section 4.5 we show how µCreek can be used to integrate different types of
thermometers into a single application.

6.3.2 The Potato Framework

In chapter 4 we introduced our design for a stream-based CPS framework.
We explained our design, and validated it by implementing a use case from
literature.

CPSs are event-driven systems that contain of heterogeneous devices connected
via an open and unreliable network. Some devices in a CPS have limited com-
putational power, and require other devices to execute complex computations.
Our hypothesis was that stream programming is an interesting foundation
to build stream-based applications, and we investigated how to address the
software design issues in CPSs in the stream paradigm. Potato addresses the
issues listed in chapter 1 as follows.

Conclusion 159

• Challenge 2: Large Scale The large-scale of the network is addressed by
the way applications are defined in Potato. The world stream addresses
the scalability because idiomatic applications define domain logic as dis-
tributed streams that are set up when the necessary devices are discovered
on the network. As a result, the application is not affected if it works for
a few devices or hundreds of devices.

• Challenge 3: Unreliable Systems The unreliable nature of the CPS its
network can cause network partitions that affect the application. Potato
adopts the Erlang approach of “let it crash”. When a network partition
occurs, the stream termination protocol (see section 2.3) ensures that
the distributed streams are cleaned up on the network. In combination
with the ‘world stream, the distributed streams are redeployed when the
necessary devices are discovered.

• Challenge 4: Open Systems The open network in Potato is exposed to
the application as the world stream, a stream that emits messages when the
network topology changes. Canonical Potato applications are expressed
in terms of theworld stream, ensuring that they deal with the open network
by design.

• Challenge 5: Limited Computational Power Some devices in a CPS have
limited computational power, which limits the types of services they can
provide to the network. Every Potato device has a unique update stream,
which can be used by other devices to stream first-class reactive programs
to the devices. Devices automatically deploy these applications locally.
First-class reactive programs can be used to set up distributed streams, to
involve more powerful devives in computations.

6.4 Limitations and Future Work

In this section we discuss the limitations of the work we presented.

Security Potato allows devices to distribute application logic across devices
when they connect to the network. An obvious limitation of this approach is
security. Malicious actors can join the network and inject malicious code onto
devices.

Potato does not give a device control over which streams are deployed locally
by other devices. Conversely, there is no limitation on which devices a device
can deploy streams onto.

A possible solution to this problem is a form of capabilities per device. Cut-
tlefish [77] and MundoCore[6], for example, define the capabilities per device

160 Limitations and Future Work

and only deploy services onto the devices with the right capabilities. These
deployments are managed by the runtime and not at the application level. De-
vices in Potato define their capabilities through their node descriptor. When
a device wishes to deploy a stream onto another device, it must designate it
by filtering it out of the world stream based on its node descriptor. A device
is free to designate any device it wants. Introducing automatic authorization
when programs are deployed onto devices, or a form of code signing, can help
in limiting which devices can be used to deploy code onto.

Code Management A deployment in Potato is a so-called “fire and forget”
deployment. The application is transmitted to the target device and deployed
there. The sender has no control or information about the deployment once the
program has been transmitted. The receiver of the deployment has no control
over the deployment either. This is particularly limiting in case of network
failures. The current semantics of a network partition in distributed streams
is that the streams are terminated. When the devices reconnect, the stream is
recreated completely. This is wasteful in terms of network resources, but also
in terms of computational power.

Afirst possible solution has been investigated by amaster student. The approach
is two-pronged. First, a first-class program can be annotated with instructions
on the desired behavior in the face of network partitions. Possible behaviors are
pausing the program, deleting the program, or keeping the program alive until
the device reconnects. Second, when a program is deployed, a meta-stream is
returned that streams information about the deployed program to the sender of
the program. This meta-stream can be used by the Potato runtime to control
the remote deployment.

Composable µCreekR Creek injects meta-behavior into all the streams de-
fined in a module when a behavior pragma is present in that module. The
compiler pairs this behavior to the Directed Acyclic Graphs (DAGs) at compile-
time, and the runtime injects the behavior every time the DAG is deployed. A
limitation of the current approach is that only one meta-DAG can be defined
per module, and per stream. It is, for example, not possible to have pull-based
semantics together with encryption semantics in a single stream without man-
ually creating a specific behavior that implements both these concerns. The
root of the problem is that these meta-behaviors are not serially composable.
Directing the output (i.e., meta-responses) of the first behavior to the input
(i.e., meta-messages) of the second behavior is not possible, because a µCreekR
application has two distinct stages. First, the base stage calls the base level,
and secondly, the effects stage sends the necessary messages. The composition
of two meta-programs requires the base stages to be combined, and then the

Conclusion 161

effects stages.

We see a possible starting point in splitting the two stages explicitly in the
meta-program. This would allow the compiler to compose the stages freely, but
would make the meta-program definition less elegant. The current structure of
a meta-program does not require a clear separation of these two stages.

Higher-Order Streams As a consequence of the lack of composability of meta-
streams, Creek does not support higher-order streams (i.e., runtime topology
changes). Higher-order streams make it possible to add or remove operators
in a stream at runtime. Currently this is only possible for sinks and sources.
Consider the sample in section 6.4 as a hypothetical Creek program. For each
value from the source, the map creates a new stream source, resulting in a
stream of streams using the Creek.Source.single function that turns a single
value into a stream that emits that value and then completes. The flatten
operator is an operator that assumes its upstream to emit streams. Each of these
streams is added as an upstream of the flatten operator. The values emitted
by its upstreams are passed onto its downstream. This changes the topology of
the stream at runtime.

1 source
2 ~> map(fn value -> Creek.Source.single(value) end)
3 ~> flatten
4 ~> sink

Figure 6.1 graphically depicts this process. The source operator emits integers,
and the map operator turns each of them into a singlestream. The flatten
operator deploys the streams at runtime and places itself as the sink of the
deployed stream. In this particular case this results in a stream of integers
again.

source map flatten sink
1

single

1

single

(1) 1

Figure 6.1: A graphical depiction of the flatten operator.

162 Limitations and Future Work

Meta-level Streams and Higher-Order Streams Consider the case where
the stream in section 6.4 is deployed with a meta-behavior. Each stream that
is added at runtime must understand the meta-level protocol of the original
stream. However, if the new streams have a different meta-behavior it has to be
composed with the existing meta behavior.

Quality of Service Potato proposes a design that integrates the network,
devices, and their datastreams in the stream paradigm. This approach tackles
challenges related to software design, but does not fully address concerns in
context of Quality of Service. There are many approaches to add QoS to a
distributed system. Some approaches require information about the underlying
systems, such as CPU utilization, network congestion, and memory usage.
However, from within µCreek, it is only possible to offer QoS approaches that
are based on information of the data itself, or the frequency of tranmission. In
section 3.4.2 we explained what information is reified at the meta-level, and this
information does not contain any introspection into the underlying hardware, or
network connection. However, approaches such as only transmitting values that
are significantly different from previous emitted values, throttling transmission,
or caching values [56] are within the possibilities of µCreek. Every meta-stream
in µCreek is stateful, and can inspect the application-level values at run-time
and apply statistical models on transmission rate.

Real-Time Some CPS applications require some form of real-time constraints,
such as hard real-time or soft real-time. Timing compliance is especially crucial
for mission-critical systems, such as healthcare or aviation systems. Previous
work has investigated how real-time compliance can be obtained in mobile
agents for Cyber Physical Systems (CPSs) [23], Real Time Operating Systems
(RTOS) [22], and reflective middlewares for embedded systems [29]. Work in
context of functional reactive programming has also investigated how real-
time constraints can be obtained in functional reactive programming [95], by
statically defining the total cost of expressions in time and space. Meta-level
approaches to express real-time constraints in a system have been done in
context of actors [47] and operating systems [98]. Central to real time constraints
based on reflection, is that the reflective systems need to have access to metrics
about the underlying system such as the CPU, memory, and network.

µCreek is a meta-level about the data streams between systems, and not about
the hardware the application is deployed on. Therefore, µCreek does not reify
information of the underlying system to make real time constraints possible
through reflection. Potato is built on top of the Erlang VM, which at best
can guarantee soft real-time constraints. Creek and Potato do not have the
facilities to improve upon this.

Conclusion 163

6.5 Closing Remarks

CPSs have introduced challenges in several fields such as network engineering,
hardware engineering, and software engineering. We investigated on how to
improve the state of the art in software engineering for CPSs. We proposed
stream-based programming as an ideal starting point to express CPS appli-
cations, because it is well-suited to express event-driven systems. However,
CPSs introduce software design challenges due to heterogeneous devices, dy-
namic networks, and unreliability of devices. We investigated how we can
address these challenges from within the stream paradigm. Additionally, the
heterogeneity of the devices requires a structural approach to separate the
non-functional concerns from the application. This dissertation proposed the
first meta-level architecture for stream-based languages in a uniform pro-
gramming paradigm, i.e., the stream paradigm. Additionally, we proposed a
framework for CPS applications that exposes the dynamic network, the data
exchange between devices, and the code deployments as streams. To the best
of our knowledge, Potato and Creek are the first stream-based approach that
expresses all concerns of a CPS in the stream paradigm, and we consider our
work a first step towards stream-based CPSs.

164 Closing Remarks

Appendix A
A Primer on Elixir
Programming

Figure A.1: Joe Armstrong,
inventor of Erlang. Image
used with permission from
learnyousomeerlang.com.

The approach of this dissertation is demonstrated us-
ing two prototypeswritten in Elixir. Creek, an embed-
ded Domain Specific Language (DSL), and Potato, a
programming framework for Cyber Physical Systems
(CPSs). To ensure this dissertation is self-contained,
this chapter serves as a primer on Elixir and will be
referenced in this dissertation.

Elixir is an industry-strength language invented by
Jose Valim in 2011. The language is built on top of
the Erlang programming language and reuses much
of its ecosystem (i.e., virtual machine, compiler, and
standard library). Elixir and Erlang are dynamically
typed, functional, declarative, concurrent, and dis-
tributed programming languages. Everything discussed in this chapter applies
to both languages unless explicitly stated otherwise. Originally, Erlang was
designed to program telephone systems. Through the years, however, together
with Elixir, it has evolved as one of the best choices to create communication-
driven software (90% of all Internet traffic goes through Erlang-programmed
hardware 1). Companies such as Pinterest, The Financial Times, Toyota, Dis-
cord, and Pepsi have redesigned large-scale systems from more traditional
languages to Elixir because of the advantages it offers.

1https://codesync.global/media/https-youtu-be-077-xjv6plq/

165

https://codesync.global/media/https-youtu-be-077-xjv6plq/

166

Wehave chosen to implement prototypes of our approach in the Elixir ecosystem
for the following reasons. Elixir takes over the majority of features present
in Erlang. Erlang is a good candidate because it is highly concurrent, has
built-in mechanisms for fault-tolerance in distributed systems, and offers live
code updates. Elixir extends Erlang with a more modern syntax, extensions to
the Erlang standard library, and improved meta-programming facilities. The
combination of all these features makes Elixir an ideal candidate to develop
distributed applications on open networks, such as CPSs.

This chapter gives a short introduction to the Elixir programming language and
the features we rely on in our prototypes (i.e., Creek and Potato).

Sequential Elixir

Primitive Data Types

Elixir has eight primitive data types.

• Integers Integers are represented using Arbitrary-precision arithmetic,
meaning that there is no minimum and maximum value, and they have
exact precision. Examples are 123 and -123.

• Atoms Atoms are alphanumerical constants whose value is their name.
Two atoms with the same value are always equal. Examples are :foo and
:"an atom".

• Floats Floating-point numbers in Elixir are represented as IEEE 754 [1]
numbers; they are represented as 64-bit numbers. Examples are 1.23 and
123.4e10.

• Pids Process identifiers are the unique identifier for an Elixir process. A
local pid is unique within the virtual machine instance, and a global pid
is universally unique. Pids cannot be manually created; only the spawn
primitive can create pids. An example is #PID<0.112.0>.

• Functions Functions are lexically scoped closures. Free variables are not
allowed, and functions can be nested. Functions are created using the
fn x -> x + 1 end syntax, or the shorthand &(&1 + 1).

• Strings Strings are syntactic sugar to create a binary representation of a
UTF-8 encoded string. Examples are "Elixir is fun" and "héllo".

• Tuples Tuples are the primary compound data type used in Elixir. They
have a fixed number of items and are immutable. They are created using
the {x, y} syntax. Each element in a tuple can be a primary or compound

A Primer on Elixir Programming 167

value. Values are accessed in constant time. Examples are {:tag, 123.4}
and {:tag, {1,2}}.

• Lists Lists are dynamic containers for a variable amount of values. A list
is created using the [x | xs] syntax, where x is a value, and xs a list
of values. [] is the empty list. The list [1 | [2 | []]] can be written
using the shorthand [1,2]. Lists are accessed in linear time.

Variables

Variables in Elixir are alphanumerical tokens that start with a lowercase letter
and contain alphanumerical characters. x1 and true? are valid variable names.
Elixir variables are single assignment. When a variable is bound to a value,
it cannot be changed. Opposed to Erlang, however, Elixir variables can be
shadowed. The example below shows how assignment in Erlang is simulated
using new variable names and how it is done Elixir by shadowing. Ignoring
the capitalization of the variables, the Elixir program on the right is not a valid
Erlang program, but the Erlang program is a valid Elixir program.

X = 5
X1 = X + 1

x = 5
x = x + 1

Table A.1: Single Assignment in Erlang (left) and rebinding in Elixir (right).

Pattern Matching

Elixir and Erlang rely heavily on pattern matching for function definitions,
composite data structure deconstruction, and conditionals. A pattern is defined
as a data type, a variable, or constructed with lists and tuples of patterns. A
ground term in Elixir is a term where no variables are present. It can be a
primitive data type, tuple, or list. Pattern matching is the process of unifying
ground terms with patterns. Patterns can contain the same variable more than
once, requiring them to be unified with the same ground term. Listing 58 shows
three examples of pattern matching. The right-hand side of the expression is a
ground term, and the left-hand side is a pattern.

1 iex(1)> {name, born} = {"Joe Armstrong", {:born, 1950}}
2 iex(2)> {:born, year} = born
3 iex(3)> age = 2021 - year

Listing 58: REPL session to showcase pattern matching.

168

Modules and Functions

Elixir code is divided into modules.

Amodule is defined using the defmodule <name> syntax. Anymodule consists
of functions or module attributes.

A function is defined using the def <name>(<params>) syntax. A function
defined with defp <name>(<params>) is a private function and can only be
accessed from within its module. Function definitions cannot be nested. Func-
tions can be overloaded in function arity. In Elixir terminology, each overloaded
function is called a clause. Elixir has tail-call optimization; function-calls in
tail position do not create an additional stackframe. Module attributes are
compile-time constants. They are defined using the @<name> <value> syntax
and can only be referenced from the module in which they are defined.

The example in listing 59 defines the Mathmodule. The module implements
the factorial function. In the example, the factorial function is overloaded
with an accumulator parameter to allow for tail-call optimization by the inter-
preter. The version of the module is defined as the versionmodule attributed
with value 1.0.

1 defmodule Math do
2 @version 1.0
3 def factorial(n), do: factorial(n, 1)
4 defp factorial(0, acc), do: acc
5 defp factorial(n, acc), do: factorial(n - 1, acc * n)
6 end

Listing 59: Iterative factorial implementation in Elixir.

1 iex(1)> Math.factorial(5)
2 120

Listing 60: REPL session to calculate the factorial of 5.

Functions in Elixir are first-class citizens. Functions can be assigned to vari-
ables, returned from functions, and passed to functions. To capture a func-
tion in a variable the &Module.function/arity syntax is used. For example,
&Math.factorial/1 captures the factorial function from the Math module.
Functions assigned to variables are called with a slightly different syntax. Reg-
ular functions are called by their names, followed by parentheses’ arguments.
First-class functions require a dot between the name and the parentheses. List-
ing 61 show a function call to a higher-order function.

A Primer on Elixir Programming 169

1 iex(1)> fac = &Math.factorial/1
2 iex(2)> fac.(5)
3 120

Listing 61: REPL session to calculate the factorial of 5 using higher-order functions.

Concurrent Elixir

Processes

Elixir implements the actor model, meaning that the basic unit of concurrency
is an actor. In Elixir, actors are called processes. The spawn function creates a
process by running its argument in a new process. The function expects an
anonymous function as its argument. An overloaded version takes a module,
function name, and list of parameters. Listing 64 call the same function twice
using both clauses of the spawn function. Processes in Elixir are lightweight
in terms of memory and computational overhead. It is not uncommon to have
thousands of processes running in a single application. The time it takes to
create a process is in the order of microseconds.

1 iex(1)> pid = spawn(fn -> SQL.connect("127.0.0.1", "admin", "secret") end)
2 iex(2)> pid = spawn(SQL, :connect, ["127.0.0.1", "admin", "secret"])

Listing 62: REPL session to create a database process in a separate process.

Processes can communicate with each other throughmessage passing. A process
has a mailbox in which messages are queued. A message can be sent to a given
process with the send function. It takes a pid as its first argument (the recipient)
and any Elixir term as its second argument (the message). A process can obtain
its process identifier using the self function. Messages are queued into the
actor’s mailbox in the order in which they were sent. If A sends five messages
to B, the messages are guaranteed to arrive in the order they were sent.

An actor can process a message from its inbox with the receive statement. The
receive statement defines one or more patterns. The first message in the inbox
is tested against each pattern. If a pattern matches, the sequence of statements
after the pattern is executed. No additional messages are processed until the
next receive statement is encountered. If no pattern matches any message in
the inbox, the receive statement blocks until a matching message arrives. An
optional after defines a timeout. If no matching message is received within
the defined interval, the receive block executes the expression sequence after
the after clause.

170

1 receive do
2 pattern_1 ->
3 exp_1
4 ..
5 exp_n
6 pattern_n ->
7 exp_1
8 ..
9 exp_n

10 after timeout ->
11 exp_1
12 ..
13 exp_n
14 end

Listing 63: Syntax of the receive statement.

Actor db

def loop() do
 receive do
 {:query, q, from} ->
 r = MySQL.run_query(q)
 send(from, {:result, r})
 loop()
 :disconnect ->
 :ok
 end
end

Actor client

q = "select * from people;"
send(db, {:query, q, self()})

receive do
 {:result, r} ->
 process(r)
end

Figure A.2: Two actors sending a message to each other.

Links and Monitors

The Erlang mantra is “let it crash”. In Erlang and Elixir, applications are not
supposed to try and catch all the possible exceptional states to avoid appli-
cation crashes. It is idiomatic not to catch exceptions and let a process crash.
Elixir offers mechanisms for monitoring processes and reacting to a crashed
process.

Process Monitors When a process is monitored, the monitoring process will
receive a message in case the monitored process crashes. The message allows
the monitor to respawn the process, for example. To monitor a given process,
the monitor function is used. For example, if pid is a variable containing a
process, it can be monitored using Process.monitor(pid). If the monitored
process crashes, a message containing the error is sent to the monitoring process.

A Primer on Elixir Programming 171

For instance, if the pid process encountered a division by zero, the following
message will be in the mailbox of the monitoring process.

1 {:DOWN, #Reference<0.3246560077.66060294.216107>,
2 :process, #PID<0.17167.0>,
3 {:badarith, [{:erlang, :/, [1, 0], []}]}}

Listing 64: Example of a monitor message. The monitored process encountered a division
by zero.

Process Links A process link is a strong bond between two processes than
monitors. When one of two linked processes fails, the other process is brought
down with it. For instance, a process that acts as an interface to a database
and a process that manages the database connection should be linked together.
It is easier to bring both of them down in case of failure and bring up two
fresh instances. A process can link to many processes and can monitor many
processes. A process can be monitored by many processes and linked to many
processes. Multiple processes that are linked form a cluster; in case of failure,
all processes terminate.

To link to a pid pid the Process.link(pid) function is used.

Distributed Elixir

Elixir has features to distribute computation across several virtual machine
instances. A single instance of the Erlang Virtual Machine is called a node. A
single computer can run multiple Erlang nodes. Every computer has to run
a single instance of the Erlang Port Mapper Daemon (EPMD). This process
keeps track of the process identifiers on its own machine. It communicates with
other machines to track which machine contains which processes.

If a process wants to communicate with a node on another server, it will ask
the local server’s EPMD for the routing information. Regardless of the virtual
machine (i.e., same computer or remote server), the EPDM will supply the
routing information and ensure that the messages get to their destination.

In Erlang, it is possible to spawn a function on a remote node in the network.
Instead of passing a pid to the spawn function, a node name can be passed
(e.g., :"othermachine@1.2.3.4)). Spawning on a remote node transports the
function across the network and executes it there. This mechanism is limited
in the code that can be sent, however. When the function references code
that is defined in a non-built-in module, e.g., our Math module, the code is
expected to reside on the remote machine, or it will throw an error. Code is not

172

EPMD

Server A

EPMD

Server B

Figure A.3: Diagram of communication between two physical servers, each running three
nodes.

automatically transmitted when a function is executed on a remote machine.
Erlang has a built-in code server that allows devices to exchange code, but this
has to be manually enabled.

The Erlang Actor Model

The actor model, invented by Hewitt et al. [52], knows many variations [63].
The variation present in Erlang and Elixir is the process model. Each actor is
modeled as a lightweight process that runs from start to finish. Each process
has its private memory and message mailbox. During execution, a process can
do arbitrary function calls and block its execution to wait for a message using
the receive statement. If no message in the inbox matches any of the patterns,
the process blocks.

A receive statement can have multiple clauses. Patterns are matched from
first to last. The first pattern that matches any message in the inbox is exe-
cuted.

We have previously mentioned that Elixir has tail-call optimization. Tail-call
optimization makes it possible to create infinite processes using recursive func-
tions. The process is contained in a function that recursively calls itself and
keeps its state in its arguments. The server/2 function in the EchoServer
module in listing 65 is an example of such an idiomatic Elixir process. The
server process keeps its state in the count variable which is updated every
recursive call. To run this function in a separate process, spawn/1 must be
used. A new server can be started using the spawn(&EchoServer.start/0)
expression.

A Primer on Elixir Programming 173

1 defmodule EchoServer do
2 def server(count) do
3 receive do
4 {m, from} ->
5 send(from, "#{m} was the #{count}th message.")
6 server(count + 1)
7 end
8 end
9

10 def start() do
11 server(0)
12 end
13 end

Listing 65: An echo server that echos the sent messages and keeps track of how many
messages it received.

Macros

Elixir hasmeta-programming in the form of macros. Meta-programming is “code
about code”. There are many forms of meta-programming (see chapter 2), and
macros are only one of them. Macros are code that generates code during the
compilation of the program. This process is called macro expansion. Macros are
useful to extend a programming language with new primitives, and therefore
the primary tool to create Domain Specific Languages (DSLs) in Elixir. For in-
stance, Elixir is a functional language and therefore does not contain imperative
constructs such as a while loop. Using macros, it is possible to add a while
loop as syntactic sugar over a recursive function.

Macros are functions that take code as parameters and return code as a result
during compilation. To make code a first-class citizen of the programming
language, it has to be represented as a value. Elixir represents code as the AST
of the code. The AST is defined using primitive data types such as maps and
lists. For example, the expression 1 + 2 its AST is {:+, [context: Elixir,
import: Kernel], [1, 2]}. Every macro takes an AST as its parameter and
must return an AST.

To turn any Elixir expression into its AST representation, the quote function
must be used. The parameter of a quote expression is the Elixir code that will
be turned into its AST representation. For example, quote do: 1 + 2 returns
{:+, [context: Elixir, import: Kernel], [1, 2]}. When defining an
AST (i.e., in a quote block), other ASTs can be injected using the unquote
function.

Listing 66 defines the while macro. A macro is defined using the defmacro

174

1 defmacro while(predicate, do: body) do
2 quote do
3 loop = fn loop ->
4 if unquote(predicate) do
5 unquote(body)
6 loop.(loop)
7 end
8 end
9 loop.(loop)

10 end
11 end

Listing 66: A macro that adds a while loop to Elixir.

1 def wait_on_termination(pid, t) do
2 while Process.alive?(pid) do
3 Process.sleep(100)
4 end
5 end

Listing 67: A function that uses the while macro. The function blocks until the given pid
terminates.

syntax and takes an arbitrary amount of parameters. Each of these parameters
is an AST. Inside the macro, a quote block is opened to define the AST that will
be returned. The macro transforms the while expression into an anonymous
function that is called with itself as an argument to simulate recursion. List-
ing 67 shows a function that employs the whilemacro to wait for a process to
terminate.

In the definition of the while macro variable names such as loop are used.
To avoid these names clashing with names in the application, Elixir ensures
macros are hygienic. Behind the scenes, Elixir will ensure that these variable
names are unique and never shadow bindings from outside the macro. The
macro programmer can override hygiene with the var! function to introduce
variables in a quote block.

Conclusion

In this chapter, we introduced the Elixir programming language. We started
with the sequential parts, followed by the local concurrency and distributed
aspects. Finally, we gave a brief overview of macros in Elixir.

After presenting the features present in Elixir to design concurrent and dis-
tributed systems, as well as macro facilities, we conclude it is a good fit to

A Primer on Elixir Programming 175

develop a DSL and programming framework for Cyber-Physical System (CPS).
Languages that do not have these features would require us to implement these
features ourselves.

176

Appendix B
Source Code Logging

1 defmodule Logging do
2 use Creek.MetaBehaviour
3
4 dag default as base ~> effects
5
6 dag snk_default as filter(&(not match?({_, :next, _, _}, &1)))
7 ~> default
8
9 dag src_default as filter(&(not match?({p, :tick}, &1)))

10 ~> default
11
12 dag opr_default as filter(&(not match?({_, :next, _, _}, &1)))
13 ~> default
14
15 # Source
16 dag log_next as filter(&match?({_, :next, _, _}, &1))
17 ~> map(fn {p, :next, v, f} ->
18 IO.puts("#{p.node.name} incoming: #{v} from #{f}")
19 {p, :next, v, f}
20 end)
21 ~> base
22 ~> map(fn result ->
23 case result do
24 {p, {state, :next, value}} ->
25 IO.puts("#{p.node.name} outgoing: #{inspect(value)}")
26
27 _ ->
28 :ok
29 end
30
31 result
32 end)
33 ~> effects
34
35 # Source
36 dag source_tick as filter(&match?({p, :tick}, &1))
37 ~> map(fn {p, :tick} ->

177

178

38 IO.puts("Source signaled to produce!")
39 {p, :tick}
40 end)
41 ~> base
42 ~> map(fn result ->
43 case result do
44 {p, {state, :tick, value}} ->
45 IO.puts("Source outgoing: #{inspect(value)}")
46
47 _ ->
48 :ok
49 end
50
51 result
52 end)
53 ~> effects
54
55 defdag operator(src, snk) do
56 src
57 ~> dup()
58 ~> (log_next ||| opr_default)
59 ~> merge()
60 ~> snk
61 end
62
63 defdag source(src, snk) do
64 src
65 ~> dup()
66 ~> (source_tick ||| src_default)
67 ~> merge()
68 ~> snk
69 end
70
71 defdag sink(src, snk) do
72 src
73 ~> dup()
74 ~> (log_next ||| snk_default)
75 ~> merge()
76 ~> snk
77 end
78 end

Listing 68: Full source code for logging in µCreekR.

Appendix C
Source Code Operator Fusion in
µCreekC

1 defmodule Fusion do
2 use Structural
3
4 defdag metadag(src, snk) do
5 src
6 ~> dup()
7 ~> (edge ||| others)
8 ~> merge()
9 ~> proceed

10 ~> snk
11 end
12
13 defdag edge as
14 filter(fn event ->
15 match?({{:edge, _, _, _, _}, _, _}, event)
16 end)
17 ~> map(fn {{:edge, from, fidx, to, toidx}, dag, it} ->
18 a = fetch!(dag, from)
19 b = fetch!(dag, to)
20 case {a.name, b.name} do
21 {"map", "map"} ->
22 [x] = inputs(dag, a)
23 c = fuse(a, b)
24 dag = delete(dag, a)
25 dag = delete(dag, b)
26 dag = add!(dag, c)
27 {{:edge, x.ref, 0, c.ref, 0}, dag, it}
28 _ ->
29 {{:edge, from, fidx, to, toidx}, dag, it}
30 end
31 end)
32
33 defdag others as
34 filter(fn event ->

179

180

35 not match?({{:edge, _, _, _, _}, _, _}, event)
36 end)
37 end

Listing 69: Full source code for operator fusion in µCreekC .

Appendix D
Source Code Parallelization in
µCreekC

1 defmodule Parallelize do
2 use Structural
3
4 defdag op as,
5 filter(fn event ->
6 match?({{:operator, _}, _, _}, event)
7 end)
8 ~> map(fn {{:operator, op}, dag, it} ->
9 if Keyword.has_key?(op.opts, :parallel) do

10 factor = Keyword.get(op.opts, :parallel)
11
12 # +---+
13 # |dup|
14 # +---+
15 # v v
16 # +--++ ++--+
17 # |map| |map|
18 # +---+ +---+
19 # v v
20 # ++-++
21 # |mrg|
22 # +---+
23 # The output of the transform must be duplicated factor times.
24 # After the operations it must also be merged together.
25
26 # The transform operator will tag each value with an index.
27 # This is used to balance them across the parallel pipelines.
28 f1 =
29 Creek.Operator.transform(
30 0,
31 fn x, state ->
32 tag = rem(state + 1, factor)
33 {tag, {tag, x}}
34 end

181

182

35)
36
37 insert(f1)
38
39 # The parallel pieplines need to be merged together in the end.
40 f_n = Creek.Operator.merge(factor, start: f1.ref)
41 insert(f_n)
42
43 # The transformed tagged values need to duplicated across
44 # each pipeline using duplicate.
45 f2 = Creek.Operator.dup(factor)
46 insert(f2)
47
48 # Transform emits to duplicate directly.
49 connect(f1, 0, f2, 0)
50
51 dag =
52 0..(factor - 1)
53 |> Enum.reduce(dag, fn i, dag ->
54 f =
55 Creek.Operator.filter(fn {tag, v} ->
56 tag == i
57 end)
58
59 m =
60 Creek.Operator.map(fn {_tag, value} ->
61 op.arg.(value)
62 end)
63
64 insert(f)
65 insert(m)
66 # Connect map after filter.
67 connect(f, 0, m, 0)
68 # Each map outputs to the merge.
69 connect(m, 0, f_n, i)
70 # Each filter is connected to the duplicator.
71 connect(f2, i, f, 0)
72 dag
73 end)
74
75 {{:operator, f_n}, dag, it}
76 else
77 {{:operator, op}, dag, it}
78 end
79 end)
80
81 defdag edge as,
82 filter(fn event ->
83 match?({{:edge, _, _, _, _}, _, _}, event)
84 end)
85 ~> map(fn {{:edge, from, fidx, to, toidx}, dag, it} ->
86 b = fetch!(to)
87
88 if Keyword.has_key?(b.opts, :start) do
89 actual_to = Keyword.get(b.opts, :start)
90 {{:edge, from, fidx, actual_to, toidx}, dag, it}
91 else
92 {{:edge, from, fidx, to, toidx}, dag, it}
93 end

Source Code Parallelization in µCreekC 183

94 end)
95
96 defdag metadag(src, snk) do
97 src
98 ~> dup(3)
99 ~> (op ||| edge ||| default_name)

100 ~> merge(3)
101 ~> proceed()
102 ~> snk
103 end
104 end

Listing 70: Full source code for parallelizing operators in µCreekC .

184

Appendix E
Source Code Pull Semantics in
µCreekR

1 defmodule SmartPull do
2 use Creek.MetaBehaviour
3
4 # This \gls{DAG} handles all events with default behavior.
5 defdag default as base ~> effects
6
7 ##
8 # Operators
9

10 # This \gls{DAG} propagates every demand message upstream.
11
12 defdag forward_demand as
13 filter(&match?({_, :meta, :demand, from}, &1))
14 ~> map(fn {p, :meta, :demand, from} ->
15 # Demand as operator means it needs to be propagated.
16 # Only propagate to the operators which are not marked
17 # as "demanded".
18 demanded = p.meta_state
19 to_demand = p.us |> Enum.filter(&(not MapSet.member?(demanded, &1)))
20 propagate_upstream_meta(:demand, to_demand, p.pid)
21 meta_state = MapSet.new(p.us)
22 {%{p | meta_state: meta_state}, :ok}
23 end)
24
25 # If an operator does not propagate a vlaue the demand is "lost".
26 # As soon as no value is propagated in response, a new demand is sent.
27 defdag opr_next as
28 filter(&match?({_, :next, _, _}, &1))
29 ~> map(fn {p, :next, v, from} ->
30 meta_state = p.meta_state |> MapSet.delete(from)
31 {%{p | meta_state: meta_state}, :next, v, from}
32 end)
33 ~> base()
34 ~> map(fn {p, base_response} ->

185

186

35 if match?({_, :skip}, base_response) do
36 demanded = p.meta_state
37 to_demand = p.us |> Enum.filter(&(not MapSet.member?(demanded, &1)))
38 propagate_upstream_meta(:demand, to_demand, p.pid)
39 end
40
41 {p, base_response}
42 end)
43 ~> effects()
44
45 defdag opr_default as
46 filter(&(not match?({_, :meta, :demand, _}, &1)))
47 ~> filter(&(not match?({_, :next, _, _}, &1)))
48 ~> filter(&(not match?({_, :init_opr}, &1)))
49 ~> default
50
51 defdag init_opr as
52 filter(&match?({_, :init_opr}, &1))
53 ~> base()
54 ~> map(fn {p, resp} ->
55 p = %{p | meta_state: MapSet.new()}
56 {p, resp}
57 end)
58 ~> effects()
59
60 defdag operator(src, snk) do
61 src
62 ~> dup(4)
63 ~> (opr_default ||| forward_demand ||| opr_next ||| init_opr)
64 ~> merge(4)
65 ~> snk
66 end
67
68 ##
69 # Sources
70 # Intercept the init event for sources to stop them from ticking themselves.
71 defdag init_src as
72 filter(&match?({_, :init_src}, &1))
73 ~> base()
74 ~> map(fn {p, {state, :initialized}} ->
75 # Here we would normally send tick to ourselves, but we dont (pull).
76 {%{p | state: state}, :ok}
77 end)
78
79 # This \gls{DAG} handles the demand messages.
80 defdag demand_src as
81 filter(&match?({p, :meta, :demand, _}, &1))
82 ~> map(fn {p, :meta, :demand, _} ->
83 # If a source receives demand it ticks itself.
84 send_self({:tick}, p.pid)
85 {p, :ok}
86 end)
87
88 # If a source gets a tick event (from itself)
89 # it will produce a value and tick itself again.
90 # We intercept that tick and stop from sending it.
91 defdag tick_src as
92 filter(&match?({p, :tick}, &1))
93 ~> base()

Source Code Pull Semantics in µCreekR 187

94 ~> map(fn base_result ->
95 case base_result do
96 {p, {state, :complete}} ->
97 effects_complete(nil, p.ds, p.us, p.pid)
98 {%{p | state: state}, :ok}
99

100 {p, {state, :tick, value}} ->
101 propagate_downstream({:next, value}, p.ds, p.pid)
102 {%{p | state: state}, :ok}
103 end
104 end)
105
106 # This \gls{DAG} handles all events except the ones we intercepted.
107 defdag src_default as
108 filter(&(not match?({_, :init_src}, &1)))
109 ~> filter(&(not match?({_, :meta, _, _}, &1)))
110 ~> filter(&(not match?({p, :tick}, &1)))
111 ~> default
112
113 defdag source(src, snk) do
114 src
115 ~> dup(4)
116 ~> (src_default ||| init_src ||| demand_src ||| tick_src)
117 ~> merge(4)
118 ~> snk
119 end
120
121 ##
122 # Sinks
123
124 # When a sink is initialized it normally doesnt do anything.
125 # In pull-based we must send the first pull message.
126 defdag init_snk as
127 filter(&match?({_, :init_snk}, &1))
128 ~> base()
129 ~> map(fn {p, {_, :ok}} ->
130 # Normally no side-effects happen in a sink init,
131 # but now e must propagate demand upstream.
132 propagate_upstream_meta(:demand, p.us, p.pid)
133 {p, :ok}
134 end)
135
136 # This \gls{DAG} ensures that a new demand is sent when a next value arrived.
137 defdag next_snk as
138 filter(&match?({_, :next, _, _}, &1))
139 ~> default()
140 ~> map(fn {p, :ok} ->
141 # After the default, we send demand upstream.
142 propagate_upstream_meta(:demand, p.us, p.pid)
143 {p, :ok}
144 end)
145
146 # This \gls{DAG} handles all events except the ones we intercepted.
147 defdag snk_default as
148 filter(&(not match?({_, :init_snk}, &1)))
149 ~> filter(&(not match?({_, :next, _, _}, &1)))
150 ~> default()
151
152 defdag sink(src, snk) do

188

153 src
154 ~> dup(3)
155 ~> (init_snk ||| snk_default ||| next_snk)
156 ~> merge(3)
157 ~> snk
158 end
159 end

Listing 71: Full source code for pull-based semantics in µCreekR.

Appendix F
Decoding Thermometer
Measurements in µCreekR

1 defmodule ThermometerMeta do
2 use Creek.MetaBehaviour
3
4 def is_xml?({:xml, _}), do: true
5 def is_xml?(_), do: false
6
7 def is_json?({:json, _}), do: true
8 def is_json?(_), do: false
9

10 def xml_to_float({:xml, value}), do: value
11 def json_to_float({:json, value}), do: value
12
13 dag not_next as filter(&(not match?({_, :next, _, _}, &1)))
14 ~> base
15 ~> effects
16
17 dag next as filter(&match?({_, :next, _, _}, &1))
18 ~> map(fn {state, :next, encoded, from} ->
19 decoded =
20 cond do
21 is_xml?(encoded) -> xml_to_float(encoded)
22 is_json?(encoded) -> json_to_float(encoded)
23 true -> encoded
24 end
25
26 {state, :next, decoded, from}
27 end)
28 ~> base()
29 ~> effects()
30
31 dag encoding_meta as dup
32 ~> (next ||| not_next)
33 ~> merge
34

189

190

35 defdag operator(src, snk) do
36 src
37 ~> base
38 ~> effects
39 ~> snk
40 end
41
42 defdag source(src, snk) do
43 src
44 ~> encoding_meta
45 ~> snk
46 end
47
48 defdag sink(src, snk) do
49 src
50 ~> base
51 ~> effects
52 ~> snk
53 end
54 end

Listing 72: Full source to decode the values from thermometers.

Appendix G
Source Code Anabranch Directed
Acyclic Graph (DAG) in
µCreekR

1 defmodule Debugging2 do
2 use Creek.MetaBehaviour
3
4 dag default as base ~> effects
5
6 ##
7 # Operators
8 dag opr_outgoing as map(fn r ->
9 case r do

10 {p, {state, :next, value}, _} ->
11 {:outgoing, p.pid, state, value}
12
13 {p, {state, :ok}, _} ->
14 {:update, p.pid, state}
15
16 _ ->
17 :skip
18 end
19 end)
20 ~> filter(fn x -> x != :skip end)
21
22 dag opr_complete as map(fn r = {p, {state, instr}, from} ->
23 if instr == :complete do
24 {:complete, p.pid}
25 else
26 :skip
27 end
28 end)
29
30 dag incoming as map(fn {p, :next, v, from} ->
31 {:incoming, p.pid, v, p.state}

191

192

32 end)
33
34 dag opr_done as map(fn r = {p, _} ->
35 if p.us == [] do
36 {:complete, p.pid}
37 else
38 :skip
39 end
40 end)
41 ~> filter(fn x -> x != :skip end)
42
43 dag rest? as filter(&(not match?({_, :next, _, _}, &1)))
44 ~> filter(&(not match?({_, :complete, _from}, &1)))
45 ~> filter(&(not match?({_, :meta, _m, _from}, &1)))
46
47 dag next?(as filter(&match?({_, :next, _, _}, &1)))
48
49 dag complete?(as filter(&match?({_, :complete, from}, &1)))
50
51 defdag operator(src, snk, sock) do
52 let meta?(as filter(&match?({_, :meta, m, from}, &1)))
53
54 # Update the argument if this is the right node.
55 let metas as meta?
56 ~> map(fn {p, :meta, m, _from} ->
57 IO.inspect "Meta message in meta stream: #{inspect m}"
58 case {m, inspect(p.pid)} do
59 {{:update_arg, arg, pid}, pid} ->
60 {arg, _} = Code.eval_string(arg)
61 IO.inspect arg, label: "new arg"
62 {%{p | node: %{p.node | arg: arg}}, :ok}
63
64 _ ->
65 {p, :ok}
66 end
67 end)
68 ~> snk
69
70 # Handle next events for operators.
71 let incomings as incoming
72 ~> filter(fn x -> x != :skip end)
73 ~> sock
74
75 let outgoings as opr_outgoing
76 ~> filter(fn x -> x != :skip end)
77 ~> sock
78
79 let do_effects as effects
80 ~> snk
81
82 let next as next?
83 ~> dup(2)
84 ~> (incomings |||
85 base
86 ~> dup
87 ~> (outgoings ||| do_effects))
88
89 # All unprocessed events.
90 let others as rest? ~> default ~> snk

Source Code Anabranch Directed Acyclic Graph (DAG) in µCreekR 193

91
92 # Handle completes.
93 let complete_before_effects as opr_complete
94 ~> filter(fn x -> x != :skip end)
95 ~> sock
96
97 let complete_after_effects as effects
98 ~> dup
99 ~> (snk ||| opr_done ~> sock)

100
101 let completes as complete?
102 ~> base
103 ~> dup
104 ~> (opr_complete
105 ~> sock |||
106 effects
107 ~> dup
108 ~> (snk ||| opr_done ~> sock))
109
110 src
111 ~> dup(4)
112 ~> (next ||| others ||| completes ||| metas)
113 end
114
115 ##
116 # Sources
117
118 defdag source(src, snk, sock) do
119 # Filters.
120 let tick? as filter(&match?({_, :tick}, &1))
121 let rest? as filter(&(not match?({_, :tick}, &1)))
122
123 # All other events.
124 let rests(as rest? ~> default ~> snk)
125
126 # Tick events.
127 let export as map(fn e ->
128 case e do
129 {p, {state, :tick, value}} ->
130 {:outgoing, p.pid, state, value}
131
132 {p, {_, :complete}} ->
133 {:complete, p.pid}
134
135 _ ->
136 :skip
137 end
138 end)
139 ~> sock
140
141 let ticks as tick?
142 ~> base
143 ~> dup
144 ~> (export ||| effects ~> snk)
145
146 src
147 ~> dup
148 ~> (ticks ||| rests)
149 end

194

150
151 ##
152 # Sources
153
154 defdag sink(src, snk, sock) do
155 let next? as filter(&match?({_, :next, _, _}, &1))
156 let rest? as filter(&(not match?({_, :next, _, _}, &1)))
157 let complete? as filter(&match?({_, :complete, _}, &1))
158
159 let rests as rest? ~> default ~> snk
160
161 let incoming as map(fn {p, :next, v, _} ->
162 {:incoming, p.pid, v, p.state}
163 end)
164
165 let incomings as incoming
166 ~> filter(fn x -> x != :skip end)
167 ~> sock
168
169 let nexts as next?
170 ~> dup(2)
171 ~> (incomings |||
172 base
173 ~> effects
174 ~> snk)
175
176 let export_completes as map(fn r = {p, {state, instr}, from} ->
177 if instr == :complete do
178 {:complete, p.pid}
179 else
180 :skip
181 end
182 end)
183 ~> filter(fn x -> x != :skip end)
184
185 let completes as complete?
186 ~> base
187 ~> dup
188 ~> (export_completes ~> filter(fn x -> x != :skip end) ~> sock |||
189 effects
190 ~> snk)
191
192 src
193 ~> dup(3)
194 ~> (nexts ||| rests ||| completes)
195 end
196 end

Listing 73: Full source code for operator fusion in µCreekC .

Appendix H
Source Code for Potato
Scenarios

Scenario 1: Adaptive Lecture Hall

195

196

Source Code for Potato Scenarios 197

198

Source Code for Potato Scenarios 199

200

Source Code for Potato Scenarios 201

202

Source Code for Potato Scenarios 203

204

Scenario 2: Noisy Campus

Source Code for Potato Scenarios 205

206

Source Code for Potato Scenarios 207

208

Source Code for Potato Scenarios 209

Scenario 3: Student Tracking

210

Source Code for Potato Scenarios 211

212

Bibliography

[1] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70,
2008. doi: 10.1109/IEEESTD.2008.4610935.

[2] Reactive streams. http://www.reactive-streams.org/, 2014. [Online;
accessed 17-February-2020].

[3] Elixir programming language. https://hexdocs.pm/elixir/Kernel.
html, 2018. [Online; accessed 19-April-2018].

[4] Stackexchange 2020 developer survey. https://insights.
stackoverflow.com/survey/2020, 2020. [Online; accessed 27-
May-2020].

[5] S. M. Abu Adnan Abir, Adnan Anwar, Jinho Choi, and A. S. M. Kayes.
Iot-enabled smart energy grid: Applications and challenges. IEEE Access,
9:50961–50981, 2021. doi: 10.1109/ACCESS.2021.3067331. URL https:
//doi.org/10.1109/ACCESS.2021.3067331.

[6] Erwin Aitenbichler, Jussi Kangasharju, and Max Mühlhäuser. Mundocore:
A light-weight infrastructure for pervasive computing. Pervasive andMobile
Computing, 3(4):332–361, 2007. ISSN 1574-1192. doi: https://doi.org/
10.1016/j.pmcj.2007.04.002. URL https://www.sciencedirect.com/
science/article/pii/S1574119207000296. Middleware for Pervasive
Computing.

[7] Sven Akkermans, Stefanos Peros, Nicolas J. Small, Wouter Joosen, and
Danny Hughes. Supporting iot application middleware on edge and cloud
infrastructures. InNicoHerzberg, ChristophHochreiner, Oliver Kopp, and
Jörg Lenhard, editors, Proceedings of the 10th Central European Workshop
on Services and their Composition, Dresden, Germany, February 8-9, 2018,

213

http://www.reactive-streams.org/
https://hexdocs.pm/elixir/Kernel.html
https://hexdocs.pm/elixir/Kernel.html
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://doi.org/10.1109/ACCESS.2021.3067331
https://doi.org/10.1109/ACCESS.2021.3067331
https://www.sciencedirect.com/science/article/pii/S1574119207000296
https://www.sciencedirect.com/science/article/pii/S1574119207000296

214

volume 2072 of CEUR Workshop Proceedings, pages 40–46. CEUR-WS.org,
2018. URL http://ceur-ws.org/Vol-2072/paper7.pdf.

[8] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actorwe
refer to entities that can act on the network as actors they are sometimes
referred to as actuators in related literature. networks: research challenges.
Ad Hoc Networks, 2(4):351–367, 2004. ISSN 1570-8705. doi: https://doi.
org/10.1016/j.adhoc.2004.04.003. URL https://www.sciencedirect.
com/science/article/pii/S1570870504000319.

[9] Jameela Al-Jaroodi and Nader Mohamed. Middleware is STILL every-
where!!! Concurr. Comput. Pract. Exp., 24(16):1919–1926, 2012. doi:
10.1002/cpe.2817. URL https://doi.org/10.1002/cpe.2817.

[10] Jameela Al-Jaroodi, Nader Mohamed, Imad Jawhar, and Sanja Lazarova-
Molnar. Software engineering issues for cyber-physical systems. In 2016
IEEE International Conference on Smart Computing, SMARTCOMP 2016,
St Louis, MO, USA, May 18-20, 2016, pages 1–6. IEEE Computer Society,
2016. doi: 10.1109/SMARTCOMP.2016.7501717. URL https://doi.
org/10.1109/SMARTCOMP.2016.7501717.

[11] Jamal Al Qundus, Kosai Dabbour, Shivam Gupta, Régis Meissonier, and
Adrian Paschke. Wireless sensor network for ai-based flood disaster detec-
tion. Annals of Operations Research, pages 1–23, 2020.

[12] Mussab Alaa, AA Zaidan, BB Zaidan, Mohammed Talal, and MLM Kiah.
A review of smart home applications based on internet of things. Journal
of Network and Computer Applications, 97:48–65, 2017.

[13] Salman Ali, Saad Bin Qaisar, Husnain Saeed, Muhammad Farhan Khan,
Muhammad Naeem, and Alagan Anpalagan. Network challenges for
cyber physical systems with tiny wireless devices: A case study on reliable
pipeline condition monitoring. Sensors, 15(4):7172–7205, 2015. doi:
10.3390/s150407172. URL https://doi.org/10.3390/s150407172.

[14] MassimoAncona,Walter Cazzola, Gabriella Dodero, and Vittoria Gianuzzi.
Channel reification: A reflective model for distributed computation. In
1998 IEEE International Performance, Computing and Communications Con-
ference. Proceedings (Cat. No. 98CH36191), pages 32–36. IEEE, 1998.

[15] Giuseppe Attardi, Cinzia Bonini, Maria Rosario Boscotrecase, Tito Flagella,
andMauroGaspari. Metalevel programming in clos. In ECOOP, volume 89,
pages 243–256, 1989.

http://ceur-ws.org/Vol-2072/paper7.pdf
https://www.sciencedirect.com/science/article/pii/S1570870504000319
https://www.sciencedirect.com/science/article/pii/S1570870504000319
https://doi.org/10.1002/cpe.2817
https://doi.org/10.1109/SMARTCOMP.2016.7501717
https://doi.org/10.1109/SMARTCOMP.2016.7501717
https://doi.org/10.3390/s150407172

Bibliography 215

[16] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem,
Stijn Mostinckx, and Wolfgang De Meuter. A survey on reactive program-
ming. ACM Comput. Surv., 45(4):52:1–52:34, 2013.

[17] Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smarag-
dakis. Streams a la carte: Extensible pipelines with object algebras. In
John Tang Boyland, editor, 29th European Conference on Object-Oriented
Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, vol-
ume 37 of LIPIcs, pages 591–613. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015. doi: 10.4230/LIPIcs.ECOOP.2015.591.

[18] Borja Bordel, Ramón Alcarria, Tomás Robles, and Diego Martín. Cyber-
physical systems: Extending pervasive sensing from control theory to the
internet of things. Pervasive Mob. Comput., 40:156–184, 2017.

[19] Kenneth A. Bowen and Tobias Weinberg. A meta-level extension of pro-
log. In Proceedings of the 1985 Symposium on Logic Programming, Boston,
Massachusetts, USA, July 15-18, 1985, pages 48–53. IEEE-CS, 1985.

[20] Gilad Bracha and David M. Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. In John M.
Vlissides and Douglas C. Schmidt, editors, Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver,
BC, Canada, pages 331–344. ACM, 2004. doi: 10.1145/1028976.1029004.

[21] Manfred Broy and Albrecht Schmidt. Challenges in engineering cyber-
physical systems. Computer, 47(2):70–72, 2014. doi: 10.1109/MC.2014.30.

[22] Davide Calvaresi, Paolo Sernani, Mauro Marinoni, Andrea Claudi, Alessio
Balsini, Aldo Franco Dragoni, and Giorgio Buttazzo. A framework based
on real-time os and multi-agents for intelligent autonomous robot com-
petitions. In 2016 11th IEEE symposium on industrial embedded systems
(SIES), pages 1–10. IEEE, 2016.

[23] Davide Calvaresi, Mauro Marinoni, Arnon Sturm, Michael Schumacher,
and Giorgio Buttazzo. The challenge of real-time multi-agent systems for
enabling iot and cps. In Proceedings of the International Conference on Web
Intelligence, WI ’17, page 356–364, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450349512. doi: 10.1145/3106426.
3106518. URL https://doi.org/10.1145/3106426.3106518.

[24] Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolf-
gang De Meuter. Loosely-coupled distributed reactive programming in
mobile ad hoc networks. In Jan Vitek, editor, Objects, Models, Components,

https://doi.org/10.1145/3106426.3106518

216

Patterns, 48th International Conference, TOOLS 2010, Málaga, Spain, June
28 - July 2, 2010. Proceedings, volume 6141 of Lecture Notes in Computer
Science, pages 41–60. Springer, 2010. doi: 10.1007/978-3-642-13953-6_3.
URL https://doi.org/10.1007/978-3-642-13953-6_3.

[25] Walter Cazzola et al. Communication-oriented reflection: a way to open
up the rmi mechanism. 2000.

[26] Saurabh Chauhan, Pankesh Patel, Flávia CDelicato, and Sanjay Chaudhary.
A development framework for programming cyber-physical systems. In
Proceedings of the 2nd International Workshop on Software Engineering for
Smart Cyber-Physical Systems, pages 47–53. ACM, 2016.

[27] S. Chetan, J. Al-Muhtadi, R. Campbell, and M.D. Mickunas. Mobile gaia:
a middleware for ad-hoc pervasive computing. In Second IEEE Consumer
Communications and Networking Conference, 2005. CCNC. 2005, pages
223–228, 2005. doi: 10.1109/CCNC.2005.1405173.

[28] Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian Pietro Picco.
Teenylime: transiently shared tuple space middleware for wireless sensor
networks. In Vinny Cahill and Sam Michiels, editors, Proceedings of the
First International Workshop on Middleware for Sensor Networks, MidSens
2006, November 28, 2006, Melbourne, Australia, Co-located with Middleware
2006, volume 218 of ACM International Conference Proceeding Series, pages
43–48. ACM, 2006. doi: 10.1145/1176866.1176874.

[29] J.K. Cross and D.C. Schmidt. Meta-programming techniques for dis-
tributed real-time and embedded systems. In Proceedings of the Seventh
IEEE International Workshop on Object-Oriented Real-Time Dependable Sys-
tems. (WORDS 2002), pages 3–10, 2002. doi: 10.1109/WORDS.2002.
1000030.

[30] Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the
masses - practical extensibility with object algebras. In James Noble,
editor, ECOOP 2012 - Object-Oriented Programming - 26th European Con-
ference, Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of
Lecture Notes in Computer Science, pages 2–27. Springer, 2012. doi:
10.1007/978-3-642-31057-7_2.

[31] Rustem Dautov, Salvatore Distefano, Dario Bruneo, Francesco Longo, Gio-
vanni Merlino, and Antonio Puliafito. Data processing in cyber-physical-
social systems through edge computing. IEEE Access, 6:29822–29835,
2018. doi: 10.1109/ACCESS.2018.2839915.

https://doi.org/10.1007/978-3-642-13953-6_3

Bibliography 217

[32] Adam L. Davis. Akka Streams, pages 57–70. Apress, Berkeley, CA, 2019.
ISBN 978-1-4842-4176-9. doi: 10.1007/978-1-4842-4176-9_6.

[33] Christophe De Troyer. Gated dag, March 2022. URL https://doi.org/
10.5281/zenodo.6360753.

[34] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and
Wolfgang De Meuter. Ambient-oriented programming in ambienttalk.
In European Conference on Object-Oriented Programming, pages 230–254.
Springer, 2006.

[35] Nilanjan Dey, Amira S. Ashour, Fuqian Shi, Simon James Fong, and João
Manuel R. S. Tavares. Medical cyber-physical systems: A survey. J. Medical
Syst., 42(4):74:1–74:13, 2018. doi: 10.1007/s10916-018-0921-x. URL
https://doi.org/10.1007/s10916-018-0921-x.

[36] Edsger W Dijkstra. On the role of scientific thought. In Selected writings
on computing: a personal perspective, pages 60–66. Springer, 1982.

[37] AdamDunkels, Björn Grönvall, and Thiemo Voigt. Contiki - A lightweight
and flexible operating system for tiny networked sensors. In 29th Annual
IEEE Conference on Local Computer Networks (LCN 2004), 16-18 November
2004, Tampa, FL, USA, Proceedings, pages 455–462. IEEE Computer Society,
2004. doi: 10.1109/LCN.2004.38.

[38] Felix Erlacher, Bernhard Weber, Jan-Thomas Fischer, and Falko Dressler.
Avarange–using sensor network ranging techniques to explore the dynam-
ics of avalanches. In 2016 12th Annual Conference on Wireless On-demand
Network Systems and Services (WONS), pages 1–4. IEEE, 2016.

[39] Aliaa Essameldin and Khaled A. Harras. The hive: An edge-based middle-
ware solution for resource sharing in the internet of things. In Proceedings
of the 3rd Workshop on Experiences with the Design and Implementation of
Smart Objects, SMARTOBJECTS ’17, page 13–18, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450351416. doi:
10.1145/3127502.3127508. URL https://doi.org/10.1145/3127502.
3127508.

[40] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla: A
mobile agent middleware for self-adaptive wireless sensor networks. ACM
Trans. Auton. Adapt. Syst., 4(3):16:1–16:26, 2009. doi: 10.1145/1552297.
1552299. URL https://doi.org/10.1145/1552297.1552299.

[41] John Fox. Knowledgeable machines - knowledge-based systems in ar-
tificial intelligence. randall davis douglas lenat. mcgraw-hill: 1983. pp.

https://doi.org/10.5281/zenodo.6360753
https://doi.org/10.5281/zenodo.6360753
https://doi.org/10.1007/s10916-018-0921-x
https://doi.org/10.1145/3127502.3127508
https://doi.org/10.1145/3127502.3127508
https://doi.org/10.1145/1552297.1552299

218

490. The Knowledge Engineering Review, 1(2):42–44, 1984. doi: 10.1017/
S0269888900000527.

[42] Daniel P. Friedman and Mitchell Wand. Reification: Reflection with-
out metaphysics. In Robert S. Boyer, Edward S. Schneider, and Guy
L. Steele Jr., editors, Proceedings of the 1984 ACM Conference on LISP
and Functional Programming, LFP 1984, Austin, Texas, USA, August 5-8,
1984, pages 348–355. ACM, 1984. doi: 10.1145/800055.802051. URL
https://doi.org/10.1145/800055.802051.

[43] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
code mobility. IEEE Transactions on software engineering, 24(5):342–361,
1998.

[44] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, Fernando Losilla,
Pawel Kulakowski, Joan Garcia-Haro, Alejandro Rodríguez, José-Vicente
López-Bao, and Francisco Palomares. Wireless sensor network deployment
for monitoring wildlife passages. Sensors, 10(8):7236–7262, 2010.

[45] David Gay, Philip Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer,
and David E. Culler. The nesc language: A holistic approach to networked
embedded systems. In Ron Cytron and Rajiv Gupta, editors, Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation 2003, San Diego, California, USA, June 9-11, 2003, pages
1–11. ACM, 2003. doi: 10.1145/781131.781133.

[46] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M. Leung.
Developing iot applications in the fog: A distributed dataflow approach. In
5th International Conference on the Internet of Things, IOT 2015, Seoul, South
Korea, 26-28 October, 2015, pages 155–162. IEEE, 2015. doi: 10.1109/IOT.
2015.7356560. URL https://doi.org/10.1109/IOT.2015.7356560.

[47] Michael Golm and Jürgen Kleinöder. Implementing real-time actors with
metajava. In Jan Bosch and Stuart Mitchell, editors, Object-Oriented Tech-
nology, ECOOP’97 Workshop Reader, ECOOP’97 Workshops, Jyväskylä, Fin-
land, June 9-13, 1997, volume 1357 of Lecture Notes in Computer Science,
pages 68–73. Springer, 1997. doi: 10.1007/3-540-69687-3_13. URL
https://doi.org/10.1007/3-540-69687-3_13.

[48] Rachid Guerraoui, Benoît Garbinato, and Karim R Mazouni. Garf: A tool
for programming reliable distributed applications. IEEE concurrency, 5(4):
32–39, 1997.

[49] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and
Domnic Savio. Interacting with the soa-based internet of things: Discovery,

https://doi.org/10.1145/800055.802051
https://doi.org/10.1109/IOT.2015.7356560
https://doi.org/10.1007/3-540-69687-3_13

Bibliography 219

query, selection, and on-demand provisioning of web services. IEEE Trans.
Serv. Comput., 3(3):223–235, 2010. doi: 10.1109/TSC.2010.3. URL https:
//doi.org/10.1109/TSC.2010.3.

[50] Levent Gürgen, OzanNecati Günalp, Yazid Benazzouz, andMathieuGallis-
sot. Self-aware cyber-physical systems and applications in smart buildings
and cities. In Enrico Macii, editor, Design, Automation and Test in Europe,
DATE 13, Grenoble, France, March 18-22, 2013, pages 1149–1154. EDACon-
sortium San Jose, CA, USA / ACMDL, 2013. doi: 10.7873/DATE.2013.240.
URL https://doi.org/10.7873/DATE.2013.240.

[51] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt.
Inter-language reflection: A conceptual model and its implementa-
tion. Computer Languages, Systems and Structures, 32(2):109–124,
2006. ISSN 1477-8424. doi: https://doi.org/10.1016/j.cl.2005.10.
003. URL https://www.sciencedirect.com/science/article/pii/
S1477842405000448. Smalltalk.

[52] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal mod-
ular ACTOR formalism for artificial intelligence. In Nils J. Nilsson, editor,
Proceedings of the 3rd International Joint Conference on Artificial Intelligence.
Standford, CA, USA, August 20-23, 1973, pages 235–245. William Kauf-
mann, 1973.

[53] Md. Abdus Samad Kamal, Chee Pin Tan, Tomohisa Hayakawa, Shun-Ichi
Azuma, and Jun-ichi Imura. Control of vehicular traffic at an intersection
using a cyber-physical multiagent framework. IEEE Trans. Ind. Informatics,
17(9):6230–6240, 2021. doi: 10.1109/TII.2021.3051961. URL https:
//doi.org/10.1109/TII.2021.3051961.

[54] KennedyKambona, ElisaGonzalez Boix, andWolfgangDeMeuter. An eval-
uation of reactive programming and promises for structuring collaborative
web applications. In Proceedings of the 7th Workshop on Dynamic Languages
andApplications, DYLA ’13, NewYork, NY,USA, 2013. Association for Com-
puting Machinery. ISBN 9781450320412. doi: 10.1145/2489798.2489802.
URL https://doi.org/10.1145/2489798.2489802.

[55] Sungjoo Kang, Ingeol Chun, andWontae Kim. Dynamic software updating
for cyber-physical systems. In The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014), pages 1–3, 2014. doi: 10.1109/ISCE.
2014.6884473.

[56] Woochul Kang, Krasimira Kapitanova, and Sang Hyuk Son. Rdds: A
real-time data distribution service for cyber-physical systems. IEEE Trans-

https://doi.org/10.1109/TSC.2010.3
https://doi.org/10.1109/TSC.2010.3
https://doi.org/10.7873/DATE.2013.240
https://www.sciencedirect.com/science/article/pii/S1477842405000448
https://www.sciencedirect.com/science/article/pii/S1477842405000448
https://doi.org/10.1109/TII.2021.3051961
https://doi.org/10.1109/TII.2021.3051961
https://doi.org/10.1145/2489798.2489802

220

actions on Industrial Informatics, 8(2):393–405, 2012. doi: 10.1109/TII.
2012.2183878.

[57] Shweta Khare, Kyoungho An, Aniruddha Gokhale, Sumant Tambe, and
Ashish Meena. Reactive stream processing for data-centric publish/sub-
scribe. In Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems, pages 234–245. ACM, 2015.

[58] Shweta Khare, Kyoungho An, Aniruddha S. Gokhale, Sumant Tambe,
and Ashish Meena. Reactive stream processing for data-centric pub-
lish/subscribe. In Frank Eliassen and Roman Vitenberg, editors, Pro-
ceedings of the 9th ACM International Conference on Distributed Event-
Based Systems, DEBS ’15, Oslo, Norway, June 29 - July 3, 2015, pages
234–245. ACM, 2015. doi: 10.1145/2675743.2771880. URL https:
//doi.org/10.1145/2675743.2771880.

[59] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. The art
of the metaobject protocol. MIT press, 1991. ISBN 9780262610742.

[60] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka, edi-
tors, ECOOP’97 - Object-Oriented Programming, 11th European Confer-
ence, Jyvaskyla, Finland, June 9-13, 1997, Proceedings, volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer, 1997. doi:
10.1007/BFb0053381.

[61] Alexander Kirsanov, Iakov Kirilenko, and Kirill Melentyev. Robotics
reactive programming with f# mono. In Proceedings of the 10th Central and
Eastern European Software Engineering Conference in Russia, CEE-SECR ’14,
New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450328890. doi: 10.1145/2687233.2687249.

[62] Igor Kopestenski and Peter Van Roy. Achlys: Towards a framework for
distributed storage and generic computing applications for wireless iot
edge networks with lasp on grisp. In IEEE International Conference on
Pervasive Computing and Communications Workshops, PerCom Workshops
2019, Kyoto, Japan, March 11-15, 2019, pages 875–881. IEEE, 2019. doi:
10.1109/PERCOMW.2019.8730773. URL https://doi.org/10.1109/
PERCOMW.2019.8730773.

[63] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years
of actors: a taxonomy of actor models and their key properties. In
Sylvan Clebsch, Travis Desell, Philipp Haller, and Alessandro Ricci,

https://doi.org/10.1145/2675743.2771880
https://doi.org/10.1145/2675743.2771880
https://doi.org/10.1109/PERCOMW.2019.8730773
https://doi.org/10.1109/PERCOMW.2019.8730773

Bibliography 221

editors, Proceedings of the 6th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE 2016, Ams-
terdam, The Netherlands, October 30, 2016, pages 31–40. ACM, 2016. doi:
10.1145/3001886.3001890.

[64] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha. Ac-
tornet: an actor platform for wireless sensor networks. In Hideyuki
Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, edi-
tors, 5th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006, pages
1297–1300. ACM, 2006. doi: 10.1145/1160633.1160871. URL https:
//doi.org/10.1145/1160633.1160871.

[65] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason L. Hill, Matt Welsh, Eric A.
Brewer, and David E. Culler. Tinyos: An operating system for sensor
networks. In Werner Weber, Jan M. Rabaey, and Emile H. L. Aarts, edi-
tors, Ambient Intelligence, pages 115–148. Springer, 2005. doi: 10.1007/
3-540-27139-2_7.

[66] Inc. Lightbend. Akka streams. https://doc.akka.io/docs/akka/
current/stream/index.html, 2020. [Online; accessed 19-April-2020].

[67] Samuel Madden, Michael J. Franklin, JosephM. Hellerstein, andWei Hong.
Tinydb: an acquisitional query processing system for sensor networks.
ACM Trans. Database Syst., 30(1):122–173, 2005. doi: 10.1145/1061318.
1061322.

[68] Pattie Maes. Concepts and experiments in computational reflection. In
Norman K. Meyrowitz, editor, Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’87), Orlando, Florida, USA,
October 4-8, 1987, Proceedings, pages 147–155. ACM, 1987. doi: 10.1145/
38765.38821. URL https://doi.org/10.1145/38765.38821.

[69] Andrea Maglie. Rxjava and android. In Reactive Java Programming, pages
95–105. Apress, Berkeley, CA, 2016. ISBN 978-1-4842-1428-2. doi: 10.
1007/978-1-4842-1428-2_6.

[70] Jeff McAffer. Meta-level programming with coda. In Walter G. Olthoff,
editor, ECOOP’95 - Object-Oriented Programming, 9th European Con-
ference, Århus, Denmark, August 7-11, 1995, Proceedings, volume 952
of Lecture Notes in Computer Science, pages 190–214. Springer, 1995.
doi: 10.1007/3-540-49538-X_10. URL https://doi.org/10.1007/
3-540-49538-X_10.

https://doi.org/10.1145/1160633.1160871
https://doi.org/10.1145/1160633.1160871
https://doc.akka.io/docs/akka/current/stream/index.html
https://doc.akka.io/docs/akka/current/stream/index.html
https://doi.org/10.1145/38765.38821
https://doi.org/10.1007/3-540-49538-X_10
https://doi.org/10.1007/3-540-49538-X_10

222

[71] Samir Medjiah and Christophe Chassot. On the enhancement of non-
functional requirements for cloud-assistedmiddleware-based iot and other
applications. CoRR, abs/2010.16147, 2020. URL https://arxiv.org/
abs/2010.16147.

[72] Nader Mohamed, Jameela Al-Jaroodi, Sanja Lazarova-Molnar, and Imad
Jawhar. Middleware challenges for cyber-physical systems. Scalable Com-
put. Pract. Exp., 18(4):331–346, 2017.

[73] Roberto Morabito, Riccardo Petrolo, Valeria Loscrì, and Nathalie Mit-
ton. Reprint of : Legiot: A lightweight edge gateway for the internet of
things. Future Gener. Comput. Syst., 92:1157–1171, 2019. doi: 10.1016/j.
future.2018.10.020. URL https://doi.org/10.1016/j.future.2018.
10.020.

[74] Luca Mottola and Gian Pietro Picco. Programming wireless sensor net-
works: Fundamental concepts and state of the art. ACM Comput. Surv., 43
(3):19:1–19:51, 2011. doi: 10.1145/1922649.1922656.

[75] Angeles G. Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval.
Analytical modeling of pipeline parallelism. In PACT 2009, Proceedings of
the 18th International Conference on Parallel Architectures and Compilation
Techniques, 12-16 September 2009, Raleigh, North Carolina, USA, pages
281–290. IEEE Computer Society, 2009. doi: 10.1109/PACT.2009.28.

[76] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macropro-
gramming system. In Information Processing in Sensor Networks, 2007.
IPSN 2007. 6th International Symposium on, pages 489–498. IEEE, 2007.

[77] Andreas Pamboris, Charalampos Kozis, and Herodotos Herodotou. Cuttle-
fish: A flexible and lightweight middleware for combining heterogeneous
iot devices. In CCNC, pages 1–6. IEEE, 2020.

[78] Gerardo Pardo-Castellote. OMG data-distribution service: Architectural
overview. In 23rd International Conference onDistributed Computing Systems
Workshops (ICDCS 2003 Workshops), 19-22 May 2003, Providence, RI, USA,
pages 200–206. IEEEComputer Society, 2003. doi: 10.1109/ICDCSW.2003.
1203555. URL https://doi.org/10.1109/ICDCSW.2003.1203555.

[79] Pankesh Patel and Damien Cassou. Enabling high-level application de-
velopment for the internet of things. Journal of Systems and Software, 103:
62–84, 2015. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2015.01.
027. URL https://www.sciencedirect.com/science/article/pii/
S0164121215000187.

https://arxiv.org/abs/2010.16147
https://arxiv.org/abs/2010.16147
https://doi.org/10.1016/j.future.2018.10.020
https://doi.org/10.1016/j.future.2018.10.020
https://doi.org/10.1109/ICDCSW.2003.1203555
https://www.sciencedirect.com/science/article/pii/S0164121215000187
https://www.sciencedirect.com/science/article/pii/S0164121215000187

Bibliography 223

[80] Per Persson and Ola Angelsmark. Calvin – merging cloud and iot. Procedia
Computer Science, 52:210–217, 2015. ISSN 1877-0509. doi: https://doi.org/
10.1016/j.procs.2015.05.059. URL https://www.sciencedirect.com/
science/article/pii/S1877050915008595. The 6th International
Conference on Ambient Systems, Networks and Technologies (ANT-2015),
the 5th International Conference on Sustainable Energy Information Tech-
nology (SEIT-2015).

[81] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and
Siobhán Clarke. Middleware for internet of things: A survey. IEEE Internet
Things J., 3(1):70–95, 2016. doi: 10.1109/JIOT.2015.2498900. URL https:
//doi.org/10.1109/JIOT.2015.2498900.

[82] ReactiveX. Reactivex: Observables done right. https://reactivex.io/,
2014. [Online; accessed 19-April-2020].

[83] ReactiveX. Rxjava. https://github.com/ReactiveX/RxJava, 2020.
[Online; accessed 19-April-2020].

[84] IBM Emerging Technology Services. Node-red. https://nodered.org/,
2018. [Online; accessed 19-April-2018].

[85] Yuanchun Shi, Weikai Xie, Guangyou Xu, Runting Shi, Enyi Chen, Yan-
hua Mao, and Fang Liu. The smart classroom: Merging technologies for
seamless tele-education. IEEE Pervasive Comput., 2(2):47–55, 2003. doi:
10.1109/MPRV.2003.1203753.

[86] Thirunavukkarasu Sivaharan, Gordon S. Blair, and Geoff Coulson. GREEN:
A configurable and re-configurable publish-subscribe middleware for
pervasive computing. In OTM Conferences (1), volume 3760 of Lecture
Notes in Computer Science, pages 732–749. Springer, 2005.

[87] Alessandro Sivieri, LucaMottola, and Gianpaolo Cugola. Building internet
of things software with eliot. Computer Communications, 89:141–153, 2016.

[88] Brian Cantwell Smith. Reflection and semantics in lisp. In Ken Kennedy,
Mary S. VanDeusen, and Larry Landweber, editors, Conference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages,
Salt Lake City, Utah, USA, January 1984, pages 23–35. ACM Press, 1984.
doi: 10.1145/800017.800513. URL https://doi.org/10.1145/800017.
800513.

[89] Brian Cantwell Smith. Reflection and semantics in lisp. In Proceedings of
the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 23–35, 1984.

https://www.sciencedirect.com/science/article/pii/S1877050915008595
https://www.sciencedirect.com/science/article/pii/S1877050915008595
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1109/JIOT.2015.2498900
https://reactivex.io/
https://github.com/ReactiveX/RxJava
https://nodered.org/
https://doi.org/10.1145/800017.800513
https://doi.org/10.1145/800017.800513

224

[90] Daniel Charles Sturman. Modular specification of interaction policies in
distributed computing. University of Illinois at Urbana-Champaign, 1996.

[91] Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Georgantas.
Service oriented middleware for the internet of things: A perspective.
In Witold Abramowicz, Ignacio M. Llorente, Mike Surridge, Andrea Zis-
man, and Julien Vayssière, editors, Towards a Service-Based Internet, pages
220–229, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-24755-2.

[92] Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter. First-class
reactive programs for CPS. In Guido Salvaneschi, Wolfgang De Meuter,
Patrick Eugster, and Lukasz Ziarek, editors, Proceedings of the 4th ACM
SIGPLAN International Workshop on Reactive and Event-Based Languages
and Systems, Vancouver, BC, Canada, October 23, 2017, pages 21–26. ACM,
2017. doi: 10.1145/3141858.3141862.

[93] Christophe De Troyer, Jens Nicolay, Wolfgang De Meuter, and Christophe
Scholliers. Abstractions for distributed event-driven applications: Position
paper. In Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter,
editors, Companion to the first International Conference on the Art, Science
and Engineering of Programming, Programming 2017, Brussels, Belgium, April
3-6, 2017, pages 18:1–18:2. ACM, 2017. doi: 10.1145/3079368.3079395.

[94] Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter. Building
iot systems using distributed first-class reactive programming. In 2018
IEEE International Conference on Cloud Computing Technology and Science,
CloudCom 2018, Nicosia, Cyprus, December 10-13, 2018, pages 185–192.
IEEE Computer Society, 2018. doi: 10.1109/CloudCom2018.2018.00045.

[95] ZhanyongWan, Walid Taha, and Paul Hudak. Real-time frp. In Proceedings
of the Sixth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’01, page 146–156, New York, NY, USA, 2001. Association for
Computing Machinery. ISBN 1581134150. doi: 10.1145/507635.507654.
URL https://doi.org/10.1145/507635.507654.

[96] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: A frame-
work for composable semantic interpretation of sensor data. In Kay Römer,
Holger Karl, and Friedemann Mattern, editors, Wireless Sensor Networks,
pages 5–20, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-32159-0.

[97] Roel Wuyts and Stéphane Ducasse. Symbiotic reflection between an object-
oriented and a logic programming language. In In ECOOP 2001 Inter-

https://doi.org/10.1145/507635.507654

Bibliography 225

national workshop on MultiParadigm Programming with Object-Oriented
Languages, pages 81–96, 2001.

[98] Yasuhiko Yokote. The apertos reflective operating system: The concept
and its implementation. In Conference Proceedings on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA ’92, page
414–434, New York, NY, USA, 1992. Association for ComputingMachinery.
ISBN 0201533723. doi: 10.1145/141936.141970. URL https://doi.
org/10.1145/141936.141970.

[99] Tao Zheng, Jian Wan, Jilin Zhang, Congfeng Jiang, and Gangyong Jia. A
survey of computation offloading in edge computing. In 2020 International
Conference on Computer, Information and Telecommunication Systems (CITS),
pages 1–6, 2020. doi: 10.1109/CITS49457.2020.9232457.

https://doi.org/10.1145/141936.141970
https://doi.org/10.1145/141936.141970

