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Abstract—Selecting an appropriate library for reuse within a
vast software ecosystem can be a daunting task. A list of features
for each library, i.e., a short description of the functionality that
can be reused with code examples that illustrate its usage, may
alleviate this problem. In this paper, we propose a data-driven
approach that uses both the code snippets and the accompanying
natural language descriptions from Stack Overflow posts to pro-
duce a list of features of a given library. Each extracted feature
corresponds to a cluster of API classes and methods considered
related based on attributes of the Stack Overflow posts in which
they appear. We evaluated the approach considering seven Maven
libraries and compared the resulting features against library
descriptions from cookbook-like tutorials. The approach achieves
an average accuracy of 67% across the seven libraries for the
tutorial-like features. For at least 73% of the features extracted
by the approach but missing from the documentation, we found
a matching library usage in a corpus of GitHub projects. These
results suggest that our clusters represent library features, which
paves the way to better tool support for documenting software
libraries and for selecting a library in an ecosystem.

Index Terms—features; libraries; stack overflow

I. INTRODUCTION

It is common in contemporary software development to
reuse functionality from third-party libraries in order to reduce
development time and potentially improve overall system qual-
ity [1]. Each library targets a particular domain (e.g., graphical
user interface, persistence) and offers functionality to client
systems through its Application Programming Interface (API)
that facilitates implementing a particular task (e.g., displaying
a dialog, serialising to JSON).

Software ecosystems such as Maven or NPM host an ever-
increasing number of software libraries1. As the number of
libraries grows, some are bound to offer similar features.
For example, Maven currently has 72 different libraries that
provide reusable implementations of collection data types2.
From the brief description of each library, one can infer that
they provide different kinds of collections (e.g., maps, sets,
queues, stacks, etc.) but the range of features offered is not
immediately clear (e.g., persistent or thread-safe collections,
specific utility methods for sorting or reversing collections),
neither how these features can be used (e.g., a single static
method, an instance method of a class that needs to be instan-
tiated, three methods that need to be called together), nor how

1http://www.modulecounts.com/
2https://mvnrepository.com/open-source/collections

each library compares to other libraries with similar features.
Ultimately, developers need to select the most suitable library
from the available ones for the task at hand.

When selecting a library to reuse from a vast ecosystem, it
becomes essential for developers to know the features offered
by each library. Antoniol and Guéhéneuc [2] define a feature as
“a set of data structures (i.e., fields and classes) and operations
(i.e., functions and methods) participating in the realisation
of the functionality”. Kanda et al. [3] consider a set of API
calls with a corresponding name as a feature. We generalise
their definition in this paper so that features comprise the API
elements that realise them, as well as a textual description of
the offered functionality.

The documentation provided by the maintainers of a library
is not always complete. Moreover, there is no standard for
documenting the features of a library. Even if such a standard
can be agreed upon for an ecosystem, it will take a consid-
erable effort before tools and indexing platforms will be able
to peruse the newly-documented information. At the time of
writing, the MVN repository and NPM host approximately
414K and 1.6M libraries, respectively. Although at these
scales, there is a need for automated feature documentation
techniques, they are still few and far between.

An early feature documentation technique [3] automatically
recognises similar API calls across the source code of the
clients of a library. Once recognised, these can be augmented
manually with documentation in natural language. More re-
cently, Shen et al. [4] proposed NLI2Code, an IDE plugin
capable of inserting a code template corresponding to the API
usage required for a given verb phrase such as “set colour
for an Excel cell”. NLI2Code can therefore be seen as a
natural language interface for a library. The plugin relies on
a functional feature extractor that extracts verb phrases from
Stack Overflow (SO) posts, and a code pattern miner that first
extracts the API elements mentioned in the same posts and
then mines GitHub client projects for frequent usage patterns.

In this paper, we present an approach to extract the features
of a library using the library’s JAR file and the corresponding
SO posts alone. The latter present a unique opportunity for
API mining because of their focus related to a task (i.e.,
API usages can be posted directly) and the natural language
description around code snippets. The approach first computes
the public API of the libraries in the ecosystem, and uses a
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custom island parser to recognise the usage of this API in SO
snippets. The natural language surrounding these snippets is
collected too. A clustering algorithm then clusters related API
usages together based on the extracted data. The most common
natural language terms in a cluster will form its description.

The contributions of this paper are as follows:

• We present a fully-automated and data-driven approach
to extracting the functional features of a library from its
SO posts. The approach combines hierarchical clustering
with dynamic tree cutting to produce high-quality clusters
of the API usage related to a library feature, described by
the most commonly co-occurring natural language terms.

• We empirically study and select the configuration of
parameters that produces the most cohesive clusters and
evaluate the accuracy of the best configuration against
both cookbook-style tutorials and client projects of 7
libraries.

• We share our implementation, the carefully curated
datasets used in the evaluation, and our results3.

This work has two major implications. First, developers can
take advantage of the tool instantiation to compute a set of
uncovered features for a given library and explore them. This
exploration can enhance the process of library selection which
tends to be biased towards older libraries, and the process of
library comparison by founding it on uncovered feature sets.
Second, library maintainers can improve the documentation for
and the features of their libraries. Awareness of the features
offered by competing libraries could affect future releases of
a library and ultimately improve the ecosystem’s health.

II. MOTIVATION

Support for comparing libraries: Developers rely on
metrics such as the number of downloads, votes, stars on
GitHub, open and closed issues, release frequency, etc., when
comparing libraries to use [5]. Several ecosystem indices such
as NPMCompare4, NPMTrends5 or NPMS6 have therefore
been proposed. These enable comparing libraries in terms of
metrics and quality scores. Figure 1 depicts an example of
such a comparison provided by NPMCompare. LibComp [6]
is a more recent IDE plugin that enables comparing metrics
for a system’s library dependencies and exploring alternatives.

The focus on popularity-based metrics, however, tends to
bias the selection process towards the more popular and
older libraries [7]. Newly-introduced libraries with superior
functionality or with an API that requires less boilerplate code
to use might take a while to surface. None of the software
ecosystems is supported by tools that enable comparing li-
braries based on the features offered, nor on the API usage
that is required to use them.

3https://github.com/cvelazquezr/saner-2022/
4https://npmcompare.com/
5https://www.npmtrends.com/
6https://npms.io/

Fig. 1. Comparison of two libraries based on popularity metrics.

Support for exploring ecosystems: Tool support for
the ecosystem exploration phase is lacking, with most of-
ficial ecosystem indices being limited to browsing through
community-curated or maintainer-provided categories and li-
brary tags. Some ecosystem indices support natural language
queries against the short description of the indexed libraries,
but such documentation might be lacking and there is no stan-
dard format for documenting the functional features provided
by each library. With an automated means for uncovering
library features, ecosystem indices could provide a richer
browsing experience. For instance, users could inspect a list
of features that are commonly or rarely implemented by the
libraries in a selected category.

Ecosystem indices could also support queries against the
uncovered textual descriptions, as well as the API elements
that realise each feature. For instance, the query “resize an
image”, could return the API usage required for different
libraries that support this task. Users could inspect the API
usage required for a particular library and immediately nav-
igate to a competing library for which less boilerplate code
is required to use the same feature or of which the API is
more aligned with the project’s own coding conventions (e.g.,
a fluent or a regular API). Even more, developers that need
multiple features, ideally want to inspect to what extent each
library supports these features; e.g., developers might need to
“resize an image” and “convert image to pdf”. Current tool
support does not allow developers to efficiently evaluate and
compare candidate libraries w.r.t all the desired features.

III. BACKGROUND

Hierarchical Clustering: Hierarchical clustering [8] is
a technique that clusters elements based on the similarity of
their attributes, and results in a hierarchy of clusters (often
visualised as a dendrogram) so that elements in a child cluster
also belong to the parent cluster. Intuitively, each layer in
the hierarchy is characterised by its own maximum distance
among the elements in its cluster. Bottom-up (or agglomer-
ative) approaches initially form one cluster per element and
merge these clusters repeatedly according to their similarity.
The cluster at the root of the hierarchy encompasses all
elements. Top-down (or divisive) approaches initially group
all elements in a single cluster and repeatedly split until every
element is on its own.

Static and Dynamic Tree Cutting: Hierarchical clus-
tering results in a tree of clusters that needs to be cut at a
given height cutoff in order to extract a unique clustering
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of the dataset. In static cutting, each child below the given
height cutoff forms a separate cluster. However, an appropriate
height cutoff might be difficult to determine. A suboptimal
clustering can result, especially for height cutoffs at which
there are many similar elements and hence nested clusters.
Alternatively, Langfelder et al. [9] propose to cut the tree
branches dynamically based on its shape using either a top-
down or a bottom-up algorithm. These have been shown to
outperform static cutting in bioinformatics applications, and
are amenable to complete automation.

IV. APPROACH

Figure 2 depicts an overview of our approach and the
sequencing of its computational steps. The steps are denoted
by a number (e.g., 1, 2), while letters indicate the data serving
as input to or resulting from a step (e.g., A, B). Figures 3 and
5 zoom in on the internals of composite steps. The remainder
of this section details each of the steps.

A. Data collection (Steps 1-3)

Our prototype implementation requires that the groupID and
artifactID (e.g., com.google.guava and guava respec-
tively) of at least one version of the library is published in the
Maven Central repository. Once the user has selected a target
library, the approach automatically collects information about
its public API from its published JAR files (steps 2.1 and 2.2
in Figure 3) and example usages of this API from SO snippets
(step 3 in Figure 2).

To collect information about the public API of a library
(Figure 3), our approach considers all versions of the library
published on Maven Central and thus downloads their JAR
files (data 2.A). Next, step 2.2 extracts the names of the
public classes in these JAR files using the Apache BCEL7

library. Apache BCEL allows extracting information from Java
Bytecode files (e.g., *.class) such as those in JAR artifacts.
Although the public API of a library might evolve over time,
we collect all class names that were once considered part of it.
We opt for this strategy because API usage examples on SO
rarely mention the exact library version that they exemplify.
Moreover, the first automated approach [10] to determining the
compatible library versions for the API usage within a given
code snippet still produces version ranges.

Step 3 in Figure 2 collects SO answers from the SOTorrent
dataset [11]8 that are likely to contain API usages of the
selected library. Our approach uses a heuristic that considers
all answers of which the question has been tagged with the
name of the library (e.g., guava, pdfbox). More relaxed
heuristics could also be used, such as requiring the library
name to appear in the title or in the body of the question. We
opted for the tags heuristic as it is computationally inexpensive
and because its strictness minimizes false positives.

In addition to the body of the answer, step 3 also collects
the title, tags, and the body of the question for further analysis.

7https://commons.apache.org/proper/commons-bcel/
8November 16th, 2020 version from https://zenodo.org/record/4287411

B. Data processing (Steps 4-5)

Selecting SO answers based on the tags of their question
ensures that the question concerns the target library. Unfortu-
nately, not all answers associated with a question contain code
snippets from which API usage examples can be extracted.
For the Weka library9, for instance, we found that around
57% of the answers about questions tagged with weka do
not contain any code. Weka can be used as a library as well
as an independent application for machine learning. Step 4 in
Figure 2 therefore filters out all answers without code.

At this point in the approach, the class names within the
public API of the selected library (data B) and the answers
from SO with code snippets in which the API of the library
is likely to be used (data C) have been collected. Step 5
identifies answers with code snippets that use the public API
of the selected library. To this end, it relies on a robust parser
generated by a custom-built island grammar. Parsers generated
by an island grammar [12] focus on some constructs of interest
(i.e., islands) and consider the remainder of the text to parse
as irrelevant (i.e., water). They have been shown well-suited to
parsing and lightweight analysis of code that is grammatically
incomplete (e.g., a statement without a surrounding method)
or that contains syntax errors (e.g., three dots instead of an
expression) such as the snippets on SO. Ponzanelli et al. [13],
[14], for instance, have used an island parser to recognize code
snippets within the natural language of SO posts.

As our data processing focuses on the public API of
a library, our own island parser focuses on the syntactic
constructs in which method invocations can occur. Figure 4
depicts an example of its output for the code snippet shown
on the left. For a single method invocation within a variable
declaration or expression statement, it produces the name of
the statically declared type of the receiver expression followed
by the name of the invoked method. For a chain of successive
method invocations, common for libraries with a fluent API,
it produces the statically declared type of the first receiver
expression followed by the names of the successively invoked
methods. Note that it is not possible to resolve the receiver
types of an invocation within the chain without resorting to
more heavyweight program analyses.

We implemented our island parser, and its lightweight anal-
ysis that extracts API usage information using the parboiled10

framework. The parser pushes constructs of interest to an inter-
nal stack whenever islands are encountered in the sea of water.
For the encountered variable declarations and parameters, it
pushes the variable type and identifier. For the encountered
method invocations, it pushes the method name and the
receiver expression (instance method) or type name (static
method). Upon the completion of parsing, the lightweight
analysis inspects the lexical scopes on the stack for potential
matches between the identifiers in receiver expressions and
those in variable and parameter declarations. The receiver
expressions for which there is a match, are replaced by the type

9https://www.cs.waikato.ac.nz/ml/weka/
10https://github.com/sirthias/parboiled/wiki
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of their corresponding variable or parameter declaration. As a
result, the analysis is able to retrieve the simple name of the
receiver type of both instance and static method invocations.

With the API usage within each code snippet extracted by
the island parser, step 5 merely has to match the type and
method names against those of the public API of the library
(i.e., data B). SO answers without any match are discarded. For
the remaining answers, the extracted API usage information
is kept (i.e., data E) along with the natural language in their
body as well as the title and the natural language in the body
of the question to which the answer belongs (i.e., data F).

C. Data transformation (Steps 6-8)

Textual
Information Preprocess Preprocessed

Information
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TF-IDF
ModelVectorising
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6.3

F
6.A

6.B

Attribute
Vectors
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Fig. 5. Vectorisation of the textual information.

The next step in our pipeline is to transform the collected
data. The transformation (i.e., box with dashed lines containing
steps 7 and 8) independently process two inputs (e.g., text and
code) and produces a similarity matrix per input.

The transformation process is twofold where 1) the text
data is preprocessed and a TF-IDF model [15] is trained
and 2) both code and text data are transformed into vectors.
Figure 5 details how the vectorisation proceeds for the textual
information (i.e., data F). Step 6.1 removes all stop words, the
name of the programming language (i.e., Java), and the name
of the library. Symbols such as commas, question marks, and
dots are also removed in this preprocessing step.

Next, step 6.2 applies a TF-IDF vectoriser to the prepro-
cessed data. Once its model has been trained (data 6.B), the
vectors for 3 text-related attributes are calculated, namely: the
body of the question, the body of the answer, and the title.
Therefore, 3 text-based vectors will be produced for each of
the considered SO answers (data G). In the case of code data
(data E), no preprocessing or model training is needed. The
following code-related attributes are sent to step 7: the original
method names, the method names after splitting camel case,
and the API usage itself as extracted by the island parser.

Step 7 combines a preconfigured selection of attributes.
Text-based vectors are averaged and code-based attributes are
concatenated. This is to support our empirical study into
whether a single vector, a combination of some vectors, or
all vectors produce more cohesive clusters. Regardless of the
selected attribute to combine, the outcome of this step will
be a single vector of numbers or code (e.g., classes and
methods) per SO answer for text or code inputs, respectively.
A similarity matrix resulting from computing a similarity
metric between all vectors of all different answers, is finally
calculated in step 8. We use cosine similarity to compute the
distance between text-based vectors and Jaccard similarity for
code-based vectors. Cosine similarity is a well-known metric
to compute distances in text-related data, while Jaccard is
more suitable for precise information such as code [16]. The
generated matrices are the input to the next step.
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D. Clustering, selecting and naming (Steps 9-11)

Step 9 applies hierarchical clustering to the similarity matrix
of either API usages or the textual information extracted for
each SO answer. The resulting clusters (i.e., data J) are groups
of which the elements are close to one another yet far from
the elements in other clusters. The ideal cluster would be that
one in which the feature is clearly depicted. However, this
might not always be the case. We use the local outlier factor
(LOF) [17] (step 10) to check the most common elements
within a cluster. In the cases where LOF does not determine
a frequent element (or outlier), the cluster is discarded.

To facilitate interpreting the results, step 11 computes the
most frequent terms that appear within each selected cluster.
From the textual information (i.e., title, question and answer
bodies) of each SO answer, we compute the semantic tree of
each sentence [18]. For each noun and verb, we analyse the
direct typed dependencies on another verb or noun to extract
pairs of the form noun-verb or verb-noun.

Frequencies are calculated for each pair. Finally, the most
frequent pairs are obtained through LOF as previously used
for the most relevant code elements. Data L will ultimately
contain a feature with related natural language terms (e.g.,
fig. 6) and API usages.

Fig. 6. A name for an uncovered feature suggesting operations on cache.

V. EVALUATION

Our approach is assessed by measuring the cohesiveness
of the generated clusters, by comparing the obtained features
with ground truth code in cookbooks or tutorials, and lastly
by matching non-covered features in sampled GitHub projects.
The evaluation of our approach focuses on the API calls of the
generated features. The cluster names, i.e., the most frequent
pair of terms that we extract as names of these clusters,
need to be further researched and evaluated with controlled
experiments (i.e., a user study) in follow-up work.

Specifically, our study aims to answer the following research
questions:

RQ1. Which combination of SO answer attributes produces
the most cohesive clusters?

RQ2. How similar are the automatically uncovered features
to documented tutorial features?

RQ3. To which extent do the uncovered features that do
not match documented tutorial features correspond
to actual API usage in client projects?

A. Selection of libraries

As candidate subjects for the evaluation of our approach, we
consider any Java library from the Maven software ecosystem.
We restrict candidate libraries to those that are used in SO
snippets, so our approach can extract features from this usage.

Moreover, candidate libraries need to have publicly available
cookbooks or tutorials that illustrate the proper usage of the
library. This is to enable comparing the features extracted by
our approach with those documented for the library.

We selected the 50 most popular Maven libraries, measured
in terms of GitHub repositories that use them according to
the Libraries.io dataset11. From the initial population, we
were able to find usage examples of features in tutorials
or cookbooks in 7 libraries: Guava, HttpClient, JFreeChart,
JSoup, PDFBox, Apache POI-OOXML and Quartz. These
libraries form the subject systems for our evaluation, and cover
diverse application domains.

Guava is a multi-purpose library collecting various auxil-
iaries related to data structures, I/O, caching, hashing, etc.
HttpClient enables sending HTTP requests and process their
responses. JFreeChart provides an API for creating and export-
ing graphics. JSoup facilitates manipulating elements present
in web pages (e.g., links, divs). Similarly, Apache POI facili-
tates processing documents created with the Microsoft Office
suite. We selected the sub-library dedicated to Excel work-
sheets (i.e., Apache POI-OOXML). Finally, Quartz allows
launching and scheduling jobs programmatically.

Table I depicts the number of SO code snippets from where
API usages are extracted for each library.

TABLE I
SO CODE SNIPPETS MAKING USE OF THE LIBRARIES.

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Snippets 1 522 628 882 3 465 945 2 010 511

B. Features Terminology

For disambiguation purposes, we consider it necessary to
define some terminology before starting with the evaluation.
We consider three types of constructs referred to as features
or possibly containing a feature. First, we refer to the fea-
tures generated by our approach as “uncovered features”, i.e.,
clusters that contain related API usages. Second, we refer to
the features which we extracted manually from cookbooks as
“tutorial features”. We use these tutorial features as a first
ground truth to compare our uncovered features with. Third,
the “GitHub API usages” correspond to usages of a library at
the method level in a client project from GitHub that depends
on the library. The GitHub API usages form our second ground
truth in the evaluation below.

C. RQ1. Which combination of SO answer attributes produces
the most cohesive clusters?

Design: This research question investigates which of the
attributes related to API usage examples on SO produce more
cohesive clusters and therefore more defined features (i.e.,
features with API calls present solely in one cluster).

To this end, we recall the attributes extracted from a SO
post: the title of the question, the body of the question,

11https://libraries.io/api
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the body of the answer, method names, method names split
by CamelCase (CC), and complete API calls. Section IV
categorised these attributes into a text attribute category and a
code attribute category.

We check the cohesiveness of the clusters resulting from
clustering solely on each attribute, as well as from clustering
on combinations of attributes (e.g., question bodies combined
with titles). Each vector in an attribute matrix represents
the combination corresponding to one code snippet for that
attribute (or the combination of several attributes). Once our
approach obtains a matrix for each attribute, it proceeds to
generate combinations with other matrices. The number of
possible combinations equals 14 when considering combina-
tions of size 1 to 3 for the attributes in each category; hence
each category will produce 7 matrix combinations. For the 8
cases where a combination involves more than one attribute,
a mean matrix (between the matrix attributes’ vectors) results
from the average of matrices in the combination. Therefore,
14 matrices, one per combination, will be analysed below.

We apply hierarchical clustering (see Section III) to each
computed matrix and compute the quality of the resulting
clusters. We determine the cohesiveness of the clustering of
each combination using the Silhouette score [19]:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(1)

where i represents one vector in the matrix, a(i) calculates
the distance between a vector i and its j cluster neighbours,

a(i) =
1

|Ci| − 1

∑
j∈Ci,i̸=j

d(i, j) (2)

whereas b(i) measures the distance between the vector i and
other vectors j that are part of a different cluster,

b(i) = min
k ̸=i

1

|Ck|
∑
j∈Ck

d(i, j) (3)

The Silhouette score is in the range [-1, 1]; values closer to 1
imply more cohesive clusters, while values closer to −1 imply
clusters with incorrectly clustered elements. More cohesive
clusters are clusters of which the elements are close to each
other and at the same time further away from the elements of
other clusters.

Results: Table II shows the Top-K Silhouette scores
for all combinations with K ranging from 1 to 3. The
best attribute combinations are very similar for most of the
libraries. Methods CC appear in the Top-3 for all libraries.
Other combinations are frequent throughout libraries such as
Methods and Methods + Methods CC. Methods, Methods CC
and Methods + Methods CC are the most frequent in the Top-
1 with 3 appearances each (notice the same score for Top-2
and Top-3 in some cases).

The mean of the Top-1 scores is 0.48, indicating that
clusters are sufficiently cohesive and differentiated. Their
quality, on average, is on the borderline of what Kaufman and
Rousseeuw [20] term “reasonable structure”. A vast majority

TABLE II
TOP-K SCORES FOR ALL COMBINATIONS OF LIBRARY ATTRIBUTES.

BETWEEN PARENTHESES IS THE OBTAINED SCORE.

Library K=1 K=2 K=3

Guava Methods (0.6) Methods CC (0.6) Methods +
Methods CC (0.59)

HttpClient API Calls (0.46) Methods (0.45) Methods CC (0.45)

JFreeChart Methods (0.38) Methods CC (0.38) Methods +
Methods CC (0.38)

JSoup API Calls (0.63) Methods CC (0.51) Methods (0.51)

PDFBox Methods + Methods CC (0.36) Methods (0.36)
Methods CC (0.37)

Apache-POI Methods (0.52) Methods CC (0.52) Methods +
Methods CC (0.51)

Quartz Methods + Methods CC (0.42) API Calls (0.42)
Methods CC (0.45)

of the combinations are vectors formed by single attributes
(e.g., Methods) denoting lower scores for combinations of
more attributes. Finally, all combinations in Table II refer to
code attributes instead of textual attributes. Code information
is more concise and less ambiguous than textual information,
as a feature can be expressed in many ways using natural
language text. Moreover, the text information present in each
SO answer is rather specific to the solved task and might not
be related to other answers.
Among the 14 considered attribute combinations, the single-
ton attribute combination Methods CC is the most frequent
among those resulting in the Top-3 most cohesive cluster-
ings. The Top-1 attribute combinations achieve a mean score
of 0.48, and the formed clusters exhibit reasonable structure
on average.

D. RQ2. How similar are the automatically uncovered fea-
tures to documented tutorial features?

Design: For each of the 7 selected libraries, we manually
extracted the usages from their tutorial features, similar to the
outcome of the island parser in Figure 4.

Tutorial features are compared one by one with all uncov-
ered clusters. A tutorial feature is matched to an uncovered
feature based on the class and method names within each
other. When matches occur, we store the uncovered feature
identifier (i.e., a number) and the tutorial feature that was
matched. Classes and methods in both types of features (i.e.,
tutorial and uncovered) could be fully or partially matched.
For example, for HttpClient chained API calls are common in
its SO answers. A tutorial may split these chains into separate
invocations over several lines that produce the same outcome.
Conversely, a single tutorial feature could illustrate the usage
of more than one of our uncovered library features.

As API calls of a tutorial feature could be underrepresented
in the uncovered feature’s population, i.e., other classes or
methods might appear in the latter which are not part of the
former, we assess our approach using a relevance score:
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relevance = avg(relc + relm) (4)

where relevance is the average between relc and relm that
measure the relevance of the uncovered feature classes and
methods, respectively. In turn, relc and relm are defined as:

relc =
∑NCF

i=1
NCi
CA

NCF , relm =
∑NMF

j=1

NMj
CA

NMF

where NCi is defined as the number of SO answers in the
uncovered feature that contains the tutorial class i, while CA
denotes the total number of SO answers in the uncovered
feature. Similarly, NMj denotes the number of SO answers
in the uncovered feature that contains the tutorial method j.
Finally, NCF and NMF represent the number of classes and
methods respectively that comprise a tutorial feature.

relc measures the average percentage of SO answers in the
uncovered feature that contain each tutorial feature class, and
accordingly relm measures the percentage for methods. Both
relc and relm are within the range [0, 1] thus bounding the
relevance score in Equation (4) within the same range. Values
closer to 0 or 1 indicate weak or strong relevance of the
uncovered features w.r.t. the tutorial features, respectively. We
aggregate relevance values for uncovered features of a library
by averaging the relevance scores of each feature.

In a similar way to the relevance score, we compute an
overflow metric that calculates the number of classes and
methods, within an uncovered feature, that differ from the
tutorial features. The overflow metric is defined as:

overflow = avg(overc + overm) (5)

overc =
CF\CC

NCF − CC\CF
NCC , overm = MF\MC

NMF − MC\MF
NMC

where NCF and NMF are defined in Equation (4), NCC
and NMC are defined as the number of classes and methods
within an uncovered feature, respectively. CC and CF are
the classes of uncovered and tutorial features respectively;
equivalently MC and MF represent the methods also in
uncovered and tutorial features, respectively. The overflow
ranges from [−1; 1] with a score closer to -1 meaning an
abundance of classes and methods in uncovered features not
being present in tutorial features. In contrast, values closer to
1 allow concluding that the tutorials contain several elements
from the uncovered features. An overflow metric close to 0
means that a tutorial and an uncovered feature are at an average
distance of zero from each other. A value of 0 can arise in
two possible scenarios: 1) there is a similar disparity between
overc and overm but with different signs (e.g.,-0.5 and 0.5),
or 2) there is a similar set of classes and methods between the
tutorial and the uncovered feature. The last scenario (number
2) is desirable, i.e., the ground truth and uncovered features
are closer to each other.

Finally, we measure the accuracy of the matches, i.e., how
many uncovered features match tutorial ones. Other metrics
considering the total number of features (e.g., recall) are not
realistic since those found in tutorials might only represent a
fragment of the features of a library.

Results: Table III presents the results for the matches
between uncovered and tutorial features. The second column
of the table shows the number of tutorial features for each
of the libraries, while the third column displays the number
of matches between the uncovered features and the tutorial
features. Also, we report the number of tutorial features that
are not found in our data (fourth column), and the scores of
accuracy, relevance and overflow in the last four columns. Note
that a tutorial feature might be present in several uncovered
features with different relevance scores, however, we select
the cluster with the highest relevance. A higher relevance
implies similar classes and methods between the features in
comparison. The averages of highest relevances and overflows
per library are shown in Table III.

TABLE III
ANALYSIS OF THE MATCHED FEATURES PER LIBRARY.

Library No. Feat. Match. Not Found Acc. R-Acc. Relv. Over.

Guava 30 22 7 0.73 0.97 0.71 -0.28
HttpClient 12 9 3 0.75 1.0 0.71 -0.23
JFreeChart 9 8 0 0.89 0.89 0.73 -0.26
JSoup 15 11 0 0.73 0.73 0.95 -0.51
PDFBox 15 8 4 0.53 0.73 0.82 -0.30
Apache-POI 20 10 3 0.50 0.59 0.75 -0.39
Quartz 22 12 5 0.55 0.71 0.65 -0.58

A total of 123 features (sum of No. Feat.) were collected.
Our approach achieves high accuracy for the JFreeChart
library with 89% and at least 50% for all libraries in the anal-
ysis. It achieves more modest accuracy scores on Apache-POI,
PDFBox and Quartz with 50%, 53% and 55% respectively.

Interestingly, the features that our approach did not recover
comprise API calls that were not found in SO. For Guava,
7 out of 30 tutorial features were missing from the SO data,
representing around 23% of Guava’s features. The same goes
for HttpClient, for which 3 out of 12 (25%) of the tutorial
features did not have SO snippets involving their API calls.
Column R-Acc. therefore depicts the accuracy of uncovered
features, but this time only considering the tutorial features of
which the API usage also appears in SO snippets. Here, our
approach improves its accuracy by 13% w.r.t. the Acc. column.

The relevance results (Relv. column in Table III) shows good
performance generally. The average relevance achieved for the
libraries is 76% with a standard deviation of ±9, with the
lowest score being achieved for Quartz. The highest relevance
score, 95%, was achieved on the JSoup library. This library
does not have a great variety of classes and methods, hence, the
generated clusters cover the majority of classes and methods
referenced in tutorials.

The overflow metric (Over. column in Table III) shows
negative scores on average for all libraries indicating the
presence of classes and methods in the uncovered features not
being in the tutorial features. The overflow results combined
with the relevance scores suggest that tutorial features are in
their majority covered, but there might be additional classes
or methods in the uncovered feature that are frequently used.
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Uncovered features have an average accuracy of 67%, which
increases to 80% when comparing only to tutorial features
with calls that appear in SO code snippets. High relevance
scores indicate that uncovered features are highly similar to
tutorial features. Our uncovered features are very likely to
contain additional classes or methods, as indicated by the
scores on the overflow metric.

E. RQ3. To which extent do the uncovered features that do
not match documented tutorial features correspond to actual
API usage in client projects?

Design: Tutorial features might cover but a fragment of
the features of a library. As the complete set of features is not
well-defined by developers nor by the community, tutorials
do not allow us to fully evaluate the features uncovered
by our approach. We therefore look into alternative sources
to verify the unmatched uncovered clusters from RQ2. We
select GitHub as such an alternative source. Numerous GitHub
projects can depend on a particular library, each using a diverse
set of library features.

To obtain the API usage from GitHub clients for a particular
library, we first query the API of Libraries.io to retrieve
candidate client projects with a declared dependency on the
library under analysis. Note that these client projects declare
a dependency to libraries in their configuration file, but do not
necessarily contain actual API usage of the library in their
source code [21]. We therefore discard GitHub client projects
without actual API usage of the library under analysis. We
continue this filtering process until we have collected, for
each library in our evaluation, a statistically significant sample
of GitHub client projects from Libraries.io with a confidence
level of 95% and a confidence interval of 5%12.

We clone the sampled GitHub repositories, extract the
bodies of their method declarations, and obtain the API usages
within each method using our island parser. We only extract
and keep the API usage that belongs to the library under
analysis.

We then compare the resulting API usages to the non-
matched clusters from RQ2. In this experimental setting, the
relevance (Equation (4)) and overflow (Equation (5)) scores
are also computed to compare GitHub API usages with the
uncovered features produced by our approach.

TABLE IV
CLIENT PROJECTS INFORMATION FROM GITHUB.

Library Clients Sample No. Methods

Guava 103 158 383 7 198
HttpClient 71 540 382 1 672
JFreeChart 2 830 338 3 829
JSoup 33 203 380 4 575
PDFBox 3 703 348 2 017
Apache-POI 35 517 380 1 769
Quartz 17 460 376 1 737

Results: Table IV presents information about the GitHub
projects that use each library. The number of client projects

12https://www.surveysystem.com/sscalc.htm

(second column in Table IV) ranges from approximately 3K
to more than 100K. This is expected since a multi-purpose
library such as Guava is useful across application domains.

TABLE V
NEWLY MATCHED FEATURES FROM GITHUB CLIENT PROJECTS.

Library No. Feat. M-RQ2 U-RQ2 M-RQ3 % Relv. Over.

Guava 110 22 14 91 95 0.45 0.00
HttpClient 38 9 7 24 77 0.50 0.05
JFreeChart 70 8 5 55 85 0.35 0.02
JSoup 81 11 11 52 74 0.60 -0.21
PDFBox 44 8 7 32 86 0.42 0.01
Apache-POI 81 10 9 53 74 0.50 -0.10
Quartz 31 12 5 19 73 0.48 0.00

Table V presents the information w.r.t. matching the un-
covered features with GitHub API usages. Note that we split
our results since we (a) perform a second evaluation for the
uncovered features that were matched to tutorials in RQ2
and (b) evaluate the remaining clusters, i.e., those features
that were not matched against tutorials in RQ2. Columns No.
Feat. and M-RQ2 refer to the number of uncovered features
extracted by our approach and the number of matched tutorial
features from the cookbooks (cfr. RQ2) respectively. The
features matched in RQ2 (column M-RQ2) were inspected to
check unique matches in column U-RQ2.

Features in U-RQ2 were removed from the uncovered
features (column No. Feat.) to compute the new matches.
Values in the column M-RQ3 show the number of new matched
features found in GitHub API usages and their coverage
percentages (column %).

GitHub API usages cover the unmatched uncovered features
to a high degree, with the highest coverage scores being
realised for Guava, PDFBox and JFreeChart with 95%, 86%,
and 85% respectively. This finding reveals that many tutorials
paint an incomplete picture of a library’s features. Moreover,
some of the unmatched ones might still be used in a project
outside of our sample or they might represent rare features.

We measure once again the relevance (column Relv.) of the
uncovered features w.r.t. the GitHub usages to quantify the
similarity of the two types of data. Relevance in Table V
is on average lower in this case. Lower relevance is related
to the overflow metrics (column Over.) which have positive
values for most of the libraries —in contrast to Table III.
Although overflow scores are positive, they are still close to
zero; however, a closer inspection reveals that the overflow
of classes remains mostly negative whereas methods are in
their majority shifted to positive values, hence the mean seems
steady towards zero. This finding (reflected in Table VI)
suggests that the GitHub methods from which we extracted
the API usage either tend to use several uncovered features
together in their body, or that the way developers group API
calls together into client methods does not align with the
boundaries of our grouping into uncovered features.
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TABLE VI
DETAILED OVERFLOW SCORES PER LIBRARY.

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Classes -0.18 0.03 -0.21 -0.27 -0.15 -0.30 -0.24
Methods 0.18 0.06 0.26 -0.15 0.17 0.10 0.24

The majority of the uncovered features are found in sampled
GitHub client projects. On average, the uncovered features
are considered relevant with respect to the API usage within
GitHub client methods. GitHub usages might be less focused
or encompass more than one of our features.

VI. DISCUSSION

Clusters as features: Our approach uses a set of attributes
about SO posts to obtain a coherent clustering of API usages.
The evaluation shows that the best clusters are formed under
attribute configurations that include the methods that are
involved in an API usage (see Table II). The combination
Methods + Methods CC might initially introduce a repetition
of the information, especially in methods with no CamelCase
style. However, many of the libraries (6 out of 7) in Table II
present a different score for the mentioned combination and
their constituents, except for JFreeChart. Although small,
these differences indicate some degree of CamelCase usage
and therefore, different information to be analysed.

Some of the resulting clusters even contain calls to API
methods that belong to different classes. For example, one
of the clusters obtained for Guava has the transform API
method as the most frequent element. This feature is intended
for transforming one collection data type into another. As a
result, several classes implement it such as Lists and Maps.

Features can also include several API method calls that have
to be used together. Listings 1 and 2 depicts examples from
JFreeChart and PDFBox respectively.

1 // draw line, use chart, add jpanel, ...
2 XYSeries.add(...);
3 ChartFactory.createXYLineChart(...);
4 // show value, show percentage, change size, ...
5 DefaultPieDataset.setValue(...); // or
6 DefaultCategoryDataset.setValue(...)
7 ChartFactory.createPiechart(...);

Listing 1: Examples of features uncovered for JFreeChart.

1 // convert image, convert pdf
2 PDDocument.load(...);
3 PDDocument.getPage(...);
4 PDPageContentStream.drawImage(...);
5 PDDocument.save(...);
6 // merge file, reuse PDFMergerUtility, ...
7 PDFMergerUtility.mergeDocuments(...);

Listing 2: Examples of features uncovered for PDFBox.

However, our approach does also produce some clusters
that are difficult to interpret as features of a library. Listing 3
depicts clusters that consist of a single API call, which should

not be used on its own but together with other calls. Line 2
could be used as a closing statement for an HTTP response,
line 4 as an additional attribute to the axis configuration of
charts, and lines 6 and 8 as predicates within a conditional.
Such clusters are likely to result from calls that appear in
isolation without further context within the text of an answer.

1 // Feature from HttpClient
2 CloseableHttpResponse.close();
3 // Feature from JFreeChart
4 CategoryPlot.setAxisOffset(...);
5 // Feature from Apache-POI
6 POIXMLDocument.hasOOXMLHeader(...);
7 // Feature from Quartz
8 JobDetail.equals(...);

Listing 3: Examples of non-feature clusters uncovered.

Limitations: The lack of previous work on automatically
uncovering features for libraries represents a hurdle to the eval-
uation of our approach. There is no ground truth of features
for a library. The feature set uncovered by our approach may
not be complete itself. The results in Table V already indicated
that some API usage in GitHub client projects does not match
any of the features uncovered from SO data. This might be
due to our approach producing an incorrectly formed cluster
that does not correspond to a feature, or due to the API usage
in the client project corresponding to a rarely used feature for
which little SO data is available.

As such cases were rare, however, the evaluation strengthens
our believe that crowd knowledge (i.e., SO data) covers a
large number of library features. The fact that the majority
of uncovered features was found in client projects strengthens
our confidence in their correctness.

Potential Impact: As revealed by our evaluation, a sub-
stantial number of library features is not documented in any
tutorial for their library. Our approach can help users to under-
stand the features offered by a library, and library maintainers
to document these features. Once applied to all libraries within
a software ecosystem, our approach will enable comparing
competing libraries in terms of their feature sets. This might
help developers in selecting the most appropriate library for
the task at hand, and library maintainers to assess the ease
of use of the APIs of different libraries for the same feature.
This could stimulate cross-pollination between libraries and
increase the dissemination of novel ideas within a library
domain, thereby improving the health of the ecosystem.

VII. THREATS TO VALIDITY

Internal: We chose TF-IDF for the vectorisation of text
attributes, even though more semantic approaches such as
Word2Vec have recently been proposed. An initial experiment
with Word2Vec resulted in less than five clusters per library
where one cluster grouped most of the elements, but other
vectorisation algorithms might still outperform TF-IDF. For
the clustering algorithm, we selected hierarchical clustering
based on its speed, effectiveness, and prior successes in API
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classification [16]. Other clustering algorithms such as e.g.,
K-Means or DBSCAN might produce different results.

Construct: Our approach considers an SO post to be
related to a library if the library’s name appears among the
tags of the post. This heuristic minimizes false positives, but
more relaxed ones could be used (e.g., library name in question
body). There is also a minor risk that some of the GitHub
projects considered for RQ3 might have copied their code from
SO. However, we believe that the impact of this threat is very
low because the results of RQ2 align with the results of RQ1.

External: The success of our approach cannot be gener-
alised readily to other Maven libraries, as it depends on the
extent that their features are used in SO answers. Our approach
might fail to uncover features for less popular libraries for
which there is little usage in SO answers (see Table I).

Conclusion: Our selection of the best-performing at-
tribute combinations relies on the Silhouette score. The score
is a proven technique for analysing the quality of cluster-
ings [19], [20], [22].

VIII. RELATED WORK

Feature Uncovering: Kanda et al. [3] present an ap-
proach to uncovering functional features from the source
code of an Android application. The approach exploits the
assumption that apps with similar features make similar calls
to the Android SDK. It is semi-automated as call sequences
that are frequent across apps need to be described manually as
a feature. Our approach differs in intent and nature, but shares
the definition of a functional feature as a set of related API
calls with a textual description.

Zhang and Hou [23] analyse forum discussions in search
of problematic APIs. Their tool Haystack identifies sentences
with a negative sentiment that contain API tokens. Through
the Stanford NLP toolkit, it recommends API feature names
(e.g., resize jscrollpane). We also use the Stanford toolkit to
extract pairs of words as candidate names for the features.
However, our features are accompanied by API code examples.
Moreover, we focus on all API usages that our tool finds in
SO and not only on posts with negative sentiments.

Guzman et al. [24] and Shah et al. [25] uncover features
from app reviews using NLP techniques such as collocation
finding and topic modelling. Al-Subaihin et al. [26] use
developer-provided descriptions to this end, while Guo et
al. [27] extract textual information from their GUI instead.

The NLI2Code plugin for IntelliJ proposed by Shen et al. [4]
bridges the natural language and functional perspectives on
features. The method invocations in the same posts are used
to retrieve candidate API elements, of which API usages are
extracted from client projects on GitHub. Finally, a frequent
pattern mining algorithm is used to obtain the frequent API
usage patterns. Our approach solely uses API usages from SO
posts, and therefore relies on island parsing to extract API
usage from incomplete and syntactically incorrect snippets.

API Usage Analysis: Amann et al. [28] survey several
API usage miners targeting API misuse detection. They differ
in the techniques used to extract and subsequently analyse API

usage for frequent patterns. Our approach extracts API usage
from SO snippets through an island parser, and subsequently
clusters them according to attribute-based similarities.

Zhong and Mei [29] found that single-type usages (i.e.,
of a single API class) are as common as multi-type usages
(i.e., involving more than one API class). API usages in code
snippets follow such findings, forming in many cases clusters
with a handful of related classes whereas in others the diversity
of API classes is much higher. Gu et al. [30] propose to cluster
API usage graphs by embedding them into a continuous space
using a graph kernel and applying spectral clustering. Our
approach uses an attribute vector combination upon which we
perform hierarchical clustering with dynamic tree cutting.

Library Recommendation: The CLAN tool [31] com-
putes the similarity of applications based on term-document
matrices and Latent Semantic Indexing between a user query
and the API semantics. Thung et al. [32] use association rule
mining and collaborative filtering to propose libraries given
other libraries in clients. Chen et al. [33] extracts analogical
libraries based on SO tag sentences where libraries are used.
A multi-objective search algorithm such as NSGA-II is used
by Ouni et al. [34] to suggest the most appropriate library
to a specific system. Req2Lib [35] uses instead a Sequence-
to-Sequence Deep Learning architecture to propose the most
suitable library given a description of requirements, addressing
in this way the cold-start problem inherently adhered to recom-
mendations. Our goal instead is to extract features that might
be the foundation for library comparison and recommendation.

Library Documentation: Treude and Robillard [36] ex-
tract meaningful sentences from SO which contribute to API
documentation. Tutorials are fragmented and then analysed
by FRAPT [37], an unsupervised approach that automatically
finds relevant textual fragments around code usages. Souza
et al. [38] generate cookbooks from API usages based on
SO how-to posts. Velázquez-Rodrı́guez and De Roover [39]
propose an approach to recommend multiple tags for libraries
based on their Java byte code. We do not focus on improving
library documentation, although we foresee a potential use for
our generated features in this area.

IX. CONCLUSION

This paper proposes a data-driven approach to uncovering li-
brary features from API usage in Stack Overflow answers. The
approach combines hierarchical clustering with dynamic tree
cutting to group the answers based on vectorised attributes.

We evaluated our approach on 7 popular libraries with
cookbook-style documentation of their features. We achieve
good performance for our uncovered features since accuracies
and relevances are 67% and 76% on average, respectively.
Uncovered features are highly covered by GitHub API usages
(81% on average), however they might be part of larger usages
as our results indicate.
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