
Security Risks of Porting C Programs to WebAssembly
Quentin Stiévenart
Vrije Universiteit Brussel

Belgium
quentin.stievenart@vub.be

Coen De Roover
Vrije Universiteit Brussel

Belgium
coen.de.roover@vub.be

Mohammad Ghafari
University of Auckland

New Zealand
m.ghafari@auckland.ac.nz

ABSTRACT
WebAssembly is a compilation target for cross-platform applica-
tions that is increasingly being used. In this paper, we investigate
whether one can transparently cross-compile C programs to Web-
Assembly, and if not, what impact porting can have on their security.
We compile 17 802 programs that exhibit common vulnerabilities
to 64-bit x86 and to WebAssembly binaries, and we observe that
the execution of 4 911 binaries produces different results across
these platforms. Through manual inspection, we identify three
classes of root causes for such differences: the use of a different
standard library implementation, the lack of security measures in
WebAssembly, and the different semantics of the execution environ-
ments. We describe our observations and discuss the ones that are
critical from a security point of view and need most attention from
developers. We conclude that compiling an existing C program to
WebAssembly for cross-platform distribution may require source
code adaptations; otherwise, the security of the WebAssembly ap-
plication may be at risk.

CCS CONCEPTS
• Software and its engineering→ Compilers; Assembly lan-
guages; • Security and privacy;

KEYWORDS
WebAssembly, security, cross-compilation

ACM Reference Format:
Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2022. Secu-
rity Risks of Porting C Programs to WebAssembly. In The 37th ACM/SIGAPP
Symposium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual Event.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3477314.3507308

1 INTRODUCTION
WebAssembly is a recent standard for portable binary code that aims
to bring native speed to programs that run in web browsers [12].
Major browsers support WebAssembly, and its adoption has ex-
panded to, for example, IoT systems and cross-platform desktop
applications [13?]. It is also supported as a compilation target by
compilers such as Clang and Emscripten, enabling the compilation
of a wide variety of source languages to WebAssembly.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’22, April 25–29, 2022, Virtual Event
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507308

Now that it suffices to compile to WebAssembly, it seems that
cross-platform deployment of applications has finally been achieved.
Due to the recency of WebAssembly as a compiler target, however,
many toolchains (e.g., compiler backends for various languages,
and competingWebAssembly runtimes) are not yet as mature as for
existing targets. In fact, a recent work has shown that the semantics
of programs developed for native binaries may not remain the same
when compiled to WebAssembly [30]. We expand upon this work
with the aim of identifying the root causes of these differences. This
is particularly important from a security perspective: if there is a
mismatch between the security guarantees of a native application
and a WebAssembly application, it is crucial to be aware of them
when porting applications to WebAssembly.

In particular, we investigate whether we can observe any differ-
ence in the outcome of the execution of C programs compiled to
64-bit x86 native code and to WebAssembly code. To this end, we
compile 17 802 C programs containing common weaknesses to na-
tive binaries and to WebAssembly binaries. We run these programs
and investigate whether any difference can be observed across their
executions, meaning that the behaviour of the native executable
differs from the corresponding WebAssembly one. We observe such
differences in 4 911 programs, which may complicate porting C
applications to WebAssembly. We investigate all cases that expose
differences in behaviour and established their root causes. In total,
we find three classes of root causes: a different standard library
implementation, the lack of security measures in WebAssembly,
and deviating semantics of the execution environments. We de-
scribe each root cause and illustrate examples that exhibit different
behaviour. Importantly, we highlight the ones that may impact
the security of WebAssembly applications. In summary, this work
makes the following contributions:

• We identify three root causes for difference in execution of
C programs compiled to WebAssembly and to native code.

• We discuss a set of examples exposing each root cause for a
difference in behaviour, with a focus on the differences that
are the most important from a security perspective.

• Wepublicly share the dataset of 4 911 C programs that exhibit
divergent behaviour, together with the corresponding x86
and WebAssembly executables.1

The main implication of this work is to alert practitioners that
porting a C application to WebAssembly may result in different
program behaviour which can have an impact on the security of
the application. Moreover, these findings encourage researchers
to provide solutions to overcome these differences, as well as to
investigate whether other differences in behaviour may still exist.

1https://figshare.com/articles/dataset/SAC_2022_Dataset/17297477

https://orcid.org/0000-0001-9985-9808
https://orcid.org/0000-0002-1710-1268
https://orcid.org/0000-0002-1986-9668
https://doi.org/10.1145/3477314.3507308
https://doi.org/10.1145/3477314.3507308
https://figshare.com/articles/dataset/SAC_2022_Dataset/17297477

SAC ’22, April 25–29, 2022, Virtual Event Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari

The remainder of this paper is organised as follows. In Section 2,
we briefly provide the necessary background information on the
WebAssembly language and its security model. Section 3 describes
the selection of the dataset. Section 4 describes our approach to
identifying and investigating behavioural differences between the
WebAssembly and native binaries of a program. The results of our
empirical analysis are detailed in Section 5 where we illustrate
through a number of examples the differences that can arise when
porting C applications to WebAssembly, and we explain their root
causes. In Section 6, we explain the threats to validity of this work.
We discuss related work in Section 7 before concluding the paper
in Section 8.

2 BACKGROUND
We provide some background information on the WebAssembly
language to streamline the understanding of what we discuss in
this paper. We focus on the parts of the language that are relevant
to our discussion. For a full reference on the language, we refer to
its specification [26].

2.1 Execution Model
The execution model of WebAssembly is stack-based: instructions
push values on and pop values from a value stack. Values can be
stored in local variables and global variables, which are similar
to registers. Arguments for function calls are passed through the
stack; i.e., they need to be pushed on the stack beforehand. The
return value of a function is the top value of the stack after ex-
ecuting the instructions in its body. Apart from the value stack
which we described, there is no need to manually manage the call
stack in WebAssembly for function calls. The actual jumping to and
returning from function bodies is entirely managed by the runtime.

2.2 Memory Model
A WebAssembly application contains a single linear memory, i.e., a
consecutive sequence of bytes that can be read from and written
to by specific instructions. Using this linear memory properly is
left to the program at hand. Hence, the runtime does not restrict in
any way the usage of this linear memory. For example, there is no
concept of page or segment in the linear memory, unless these are
implemented in the program being executed directly.

2.3 Application Structure
A WebAssembly application is composed of, among other compo-
nents, a number of functions. Functions have a number of parame-
ters, and their body comprises a set of instructions. Some functions
can be exported, and one such function can be specified as the entry
point of the program. Exported functions are made available to the
runtime. For example, programs compiled with the WebAssembly
System Interface (WASI) expose a _start function, corresponding
to the main function of a C program. This function will be called to
start the program.

Functions have access to local variables, akin to local registers,
in which they can store intermediary results. Function arguments
can also be retrieved through these local variables.

An example function definition is the following:

1 (func $main (type 4)
2 (param i32 i32)
3 (result i32)
4 (local i32)
5 local.get 0)

This function takes two 32-bit integers as parameters (Line 2), and
returns a 32-bit integer (Line 3). When the function is called, the
stack is initially empty and the parameters are stored in local vari-
ables 0 and 1. A third local variable is accessible as the function
declares the need to access an extra local variable on Line 4. The
function body consists of a single instruction on Line 5. This in-
struction accesses the value of the first local variable (i.e., the first
argument of the function) and pushes it on the stack. After the last
instruction, the function execution ends and the value remaining
on the stack is the return value.

2.4 Example Instructions
We have seen the local.get instruction to access a local variable
and push it on the stack. There exist many other instructions; those
of interest are the following:

• i32.const N pushes constant N on the top of the stack.
• i32.add and i32.sub respectively add and subtract the two
top values of the stack.

• local.set N pops the top value of the stack and sets the Nth

local variable to this value. local.tee N works similarly,
but leaves the stack untouched.

• i32.store takes two values from the stack and stores the
first value at the address pointed to by the second value in
the linear memory.

Finally, note that there are variations of these instructions such as
i64.const, which pushes a 64-bit integer value on the stack, or
i32.store8 offset=N which stores a byte in the memory with
the given offset.

2.5 Stack Memory Management
WebAssembly applications also have access to a number of global
variables, which are accessed and modified similarly to local vari-
ables, but through the global.get and global.set instructions. C
compilers like Clang rely on the first global variable, which we call
g0, to model the stack memory of the C program they compile using
the linear memory of WebAssembly: g0 acts as the stack pointer.
The portion of the linear memory starting at g0 is therefore used
to store stack-allocated data. A common pattern encountered in
WebAssembly applications compiled from C that need to allocate
space for stack data is therefore the following:

1 global.get 0
2 i32.const 64
3 i32.sub
4 global.set 0 ;; g0 becomes g0-64
5 [...] ;; function body
6 global.get 0
7 i32.const 64
8 i32.add
9 global.set 0 ;; restore value of g0

Security Risks of Porting C Programs to WebAssembly SAC ’22, April 25–29, 2022, Virtual Event

This excerpt takes the current stack pointer (global.get 0),
decreases it by 64, and updates the stack pointer (global.set 0).
This effectively allocates 64 bytes of data onto the stack. The rest
of the function body can therefore store data in that portion of the
memory. When the allocated memory is not needed anymore, the
stack pointer is restored to its original value (Lines 6-9).

2.6 Security Model
The WebAssembly standard has been designed with security in
mind, as evidenced among others by the strict separation of appli-
cation memory from the execution environment’s memory. Being
executed in a sandbox, a compromisedWebAssembly binary cannot
compromise the browser or any other kind of runtime that executes
the binary [12?].

Moreover, WebAssembly includes several features that aim at
limiting the impact of a vulnerability being exploited. Unlike in x86,
the return address of a function in WebAssembly is implicit and
can only be accessed by the execution environment. This precludes
among others return-oriented programming attacks, and reduces
the potential for stack-smashing attacks. As another example, Web-
Assembly supports function pointers but only in so-called indirect
calls for which the target function is determined by a statically-
defined table. This again limits the range of control flow exploits
that are possible through function pointers: only those functions
that are declared to be possible targets of indirect calls can be called
indirectly, which prevents calling arbitrary functions available in
the application.

2.7 WebAssembly Vulnerabilities
Despite the sandbox in which they are executed and the overall
security-minded design of the instructions of the language, Web-
Assembly binaries may still suffer from a number of security vul-
nerabilities [17] rendering them easily exploitable – sometimes
easier than native code. For example, the use of critical functions
such as eval or exec in a binary enables arbitrary code execution.
The eval function enables evaluating arbitrary pieces of JavaScript
on the browser executing the WebAssembly application. If one
such function can be the legitimate target of an indirect call, and if
the WebAssembly application is prone to buffer overflows that can
rewrite function pointers for example, then theWebAssembly appli-
cation may see its control-flow redirected to call it with untrusted
data [18]. Although sandboxing precludes the need for provisions to
protect the host from stack smashing and the likes, a WebAssembly
application may still be prone to vulnerabilities that could allow
arbitrary code execution of JavaScript for example [18].

3 DATASET
For our empirical analysis, we rely on the Juliet Test Suite 1.3 for C2

of the Software Assurance Reference Dataset [3], released in October
2017 and which has been used to compare static analysis tools that
detect security issues in C and Java applications [6]. It contains
54 484 test cases illustrating 118 different common weaknesses
(CWE) that can arise in C programs. Each test case consists of a
C program that contains a vulnerability, but no attempt to exploit
it: for example, there is no attempt to reroute the control flow
2https://samate.nist.gov/SARD/testsuite.php

of the program by manipulating function pointers. As we focus
on security-related differences, we chose this dataset because it
exhibits common weaknesses that can cause security issues. We
focus our analysis on programs that have deterministic behaviour,
with the assumption that one expects such behaviour to match
between the x86 binary and the WebAssembly application. Figure 1
depicts our dataset selection pipeline. We conduct our empirical
analysis on a machine with an AMD Ryzen Threadripper 3990X
64-Core CPU (2.9 GHz) with HyperThreading and 256 GiB of RAM.

3.1 Categorisation of Test Cases
The test cases from this dataset are decomposed into 118 weak-
nesses, where for each weakness test cases are decomposed in
further categories. All test cases within one such category rely
on the same mechanism to trigger the weakness, but test cases
within one category differ slightly in their control flow. For exam-
ple, the test case called CWE121_Stack_Based_Buffer_Overflow_
_dest_char _alloca_cpy_01.c contains a stack-based buffer over-
flow (CWE 121), triggered by using a char buffer allocated with
alloca and copied into with strcpy. This test case has 50 varia-
tions, each identified by a different number suffix and demonstrating
different usages of the same functions to trigger the stack-based
buffer overflow. Variations can, for instance, feature a more com-
plex control flow stemming from additional conditionals. In total,
there are 1258 categories in the dataset. We group programs per
categories when we need to manually inspect them.

3.2 Pre-processing
In order to be able to compare runs of the program across the
two configurations (WebAssembly and native), we remove any
source of controllable non-determinism in the programs so that
multiple runs are expected to produce the same results. To do so,
we replace all calls to rand() with the constant 1. This choice is
made because, after manual investigation of the programs in the
Juliet Test Suite that call rand(), most are using the return value
as a condition to execute the unsafe behaviour it contains. This
does not mean however that all sources of non-determinism have
been eliminated: programs can depend on uninitialised memory for
example and exhibit non-deterministic behaviour. We will filter out
such programs and do not consider them in our empirical analysis,
as comparing non-deterministic programs based on their output
will produce false positives when detecting differences of behaviour
between the compilation targets.

3.3 Compilation of Test Cases
Each of the test cases can be configured to exhibit only the safe be-
haviour, only the unsafe behaviour, or both.We configure the dataset
to include both behaviours when compiled. We are interested in
particular in the unsafe behaviour, as we expect it to uncover more
differences than the safe behaviours. However, in case there are no
differences in the unsafe behaviour, there could still be potential
differences in the safe behaviour too, which is why we consider
both configurations at the same time. A program compiled with
the configuration both will first execute its unsafe behaviour, and
then execute its safe behaviour.

https://samate.nist.gov/SARD/testsuite.php

SAC ’22, April 25–29, 2022, Virtual Event Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari

Figure 1: Dataset selection pipeline

We compile each test case to WebAssembly and to 64-bit x86
with Clang v12.0.13, the latest version available when we performed
our analysis in September 2021, with the default flags and the -O2
level of optimisations to reflect a real-world scenario.

We filter out programs that cannot be compiled to WebAssembly,
as some programs depend on system-specific functions or on fea-
tures that are not yet supported byWebAssembly, such as threads or
sockets. In total, out of the 54 484 test cases, 19 534 can be compiled
(36%).

3.4 Selection of Deterministic and Terminating
Programs

Because we want to compare the results of running each binaries,
we need to ensure that each binary produces deterministic results.
As mentioned before, we did ensure that controllable sources of
non-determinism (i.e., rand) are deterministic. The goal here is to
remove programs that contain non-controllable sources of non-
determinism. To that end, we first run each version of each pro-
gram 10 times: if we notice that either the x86 executable or the
WebAssembly executable is non-deterministic, we filter out this
program. We manually inspected that each of the filtered out pro-
grams indeed had non-deterministic behaviour. Note that none of
the programs in our dataset feature concurrency, as threads are not
(yet) supported in WebAssembly.

Some of the programs in the Juliet Test Suite also expose non-
terminating behaviour through programs that indefinitely print new
output. Because the output of such programs will differ between
their x86 and WebAssembly versions due to speed differences, we
also exclude such programs from our empirical analysis.We identify
them by running each program with a timeout of 100 seconds and
by excluding those that fail to terminate within the time limit. This
leaves us with 17 802 programs in total, which form our dataset.

4 RESEARCH METHOD
We describe the process that we followed in order to analyse the
programs in our dataset.

4.1 Identifying Different Execution Behaviour
For each program, we have two executables: one compiled to 64-bit
x86 native code, and one compiled to WebAssembly. We run each
executable with a timeout of 100 seconds, and record its outcome in
terms of return code (e.g., successful exit or crash) and in terms of
standard output. The programs are executed on a machine running

3All Clang flags and their default values are listed on the relevant documentation page:
https://clang.llvm.org/docs/ClangCommandLineReference.html

Linux 5.4.0, and the WebAssembly applications were run with the
Wasmer 2.0.04 WebAssembly runtime, the latest version available
at the time of writing. In total, our analysis spent 2h10 compiling to
WebAssembly, 1h05 compiling to x86, 8h59 running WebAssembly
applications, and 32 minutes running x86 binaries.

We then compare, for each program, the outcome of the native
and WebAssembly binaries: in case there is a mismatch, this is an
example of a difference in behaviour. We do notice a non-negligible
subset of test cases for which both configurations produce differ-
ent results: 28% of the dataset (4 911 programs) exhibit different
behaviour exhibit different behaviour in their native version and
in their WebAssembly version. We make this dataset of C sources,
WebAssembly binaries, and x86 binaries publicly available.5

4.2 Manual Analysis
In total, there are 318 categories across 40 CWEs present in this
set of programs that exhibit differences. We manually inspect 3
programs for each category, and check that all other programs
in the same category which are marked as producing different
behaviour, follow the same pattern of difference. For example, when
3 programs from the same category result in the same error in their
native version but run to completion in WebAssembly, we check
that, among the other programs that exhibit differences from that
category, all their native version result in the same error, and all
their WebAssembly version run to completion. Among a category,
the core of the program remains the same but only differs in terms
of control flow.

5 FINDINGS
We present the differences that we encountered, through various
examples. As a summary of our findings, we extract the following
three main root causes that explain these differences:

• Differences due to a mismatch in the standard library im-
plementations used for each binary. When compiling to a
native binary, the OS’s implementation of the standard C
library is used (in our case, glibc), while when compiling
to WebAssembly it is the standard library provided by the
WebAssembly System Interface (WASI), which is based on
the musl standard library. Multiple differences occur from
this use of a different implementation.

• Differences due to missing security protections. When some-
thing supposedly bad happens in native code, it can hap-
pen that the program crashes. This may be due to compiler

4https://wasmer.io/
5https://figshare.com/articles/dataset/SAC_2022_Dataset/17297477

https://clang.llvm.org/docs/ClangCommandLineReference.html
https://wasmer.io/
https://figshare.com/articles/dataset/SAC_2022_Dataset/17297477

Security Risks of Porting C Programs to WebAssembly SAC ’22, April 25–29, 2022, Virtual Event

protections or to OS-level protections. This is on purpose
to avoid possible exploitation of this program, and can be
detected by instrumentation added to the binary by the com-
piler, or directly at the hardware level. However, we notice
that some of these protection mechanisms do not have an
equivalent in WebAssembly, and the program therefore runs
to completion.

• Differences due to specifics of the execution environments of
each binary. There is behaviour that is specific to an execu-
tion environment and architecture, and the specifics of the
WebAssembly platform can produce behaviour that is differ-
ent from a native program executed on an 64-bit machine.

We summarise how these root causes are encountered in Table 1.

5.1 Security-Critical Differences
We first focus on the differences that can have critical implica-
tions in terms of the security of an application, when compiled to
WebAssembly.

malloc/free implementation. In order to compile C code toWeb-
Assembly, we use theWebAssembly System Interface (WASI), which
itself relies on the musl standard library instead of the standard
library provided by the OS, which in our case is glibc. As a result,
the implementation of standard library functions that are related to
memory allocation and de-allocation see some difference in their
behaviour, which may result in security concerns.

Consider the following code. A buffer of 100 bytes is allocated on
Line 1 and initialized on Line 2. On Line 3, the pointer pointing to
that buffer is incremented by 10, resulting in the pointer pointing
to somewhere in the middle of the buffer afterwards. Finally, free
is called with that pointer, which is an unsafe operation because
free should always be called on the beginning of a dynamically
allocated buffer.

1 char *data = malloc(100 * sizeof(char));
2 strcpy(data, SOURCE);
3 data += 10;
4 free(data);

When compiled to native code, this situation is properly handled
by free: it prints the error free(): invalid pointer and aborts
the program (SIGABRT). However, the WebAssembly application
continues its execution after performing the free operation. As a
result, due to a programmer error on Line 3, it could be the case that
sensitive data remains accessible during the rest of the execution
of the program.

This is an important difference that may extend beyond the use
of musl, as many custom implementations of malloc and free for
WebAssembly exist and are used in practice [15], and such differ-
ences in behaviour could be encountered in other implementations.
In total, we encountered this difference in 259 programs. An exam-
ple program that exhibits this difference is CWE761_Free_Pointer
_Not_at_Start_of_Buffer__char_fixed_string_01.c.

Missing Stack-Smashing Protections. Code compiled toWebAssembly
does not contain stack-smashing protections such as stack canaries.
As a result, programs in which a stack smashing occurs and there-
fore may crash when executed natively, will see the corresponding

overflow always undetected in WebAssembly. Consider the follow-
ing code.
1 char * data;
2 char dataBadBuffer[50];
3 data = dataBadBuffer;
4 data[0] = '\0';
5 char source[100];
6 memset(source, 'C', 100-1);
7 source[100-1] = '\0';
8 for (i = 0; i < 100; i++) {
9 data[i] = source[i];
10 }
11 data[100-1] = '\0';
12 printLine(data);

This code allocates a destination buffer of 50 elements in the stack
memory on Line 2, and a source buffer of 100 elements on Line 5,
before copying the entire contents of the source buffer to the des-
tination buffer through the loop on Line 8. However, because the
destination buffer is too small, elements will be copied outside of
the destination boundary.

We perform a manual inspection of the native x86 executable
with radare26. It operates as one would expect from the C source
code, but it contains the following addition at the end of the com-
piled function:

mov rax, qword fs:[0x28]
mov rcx, qword [var_8h]
cmp rax, rcx
jne 0x12b7 ;; jump to final call instruction
add rsp, 0xc0
pop rbp
ret
call sym.imp.__stack_chk_fail ;; address 0x12b7

This is the code that checks the stack canary generated by the com-
piler and stops the program’s execution when a stack overflow is
detected. The canary is the value of the stack pointer before the ex-
ecution of the function, and it is compared to the stack pointer after
the execution of the function. If an inconsistency is detected, the
execution of the program is aborted by calling __stack_chk_fail.

The C excerpt compiles to the following WebAssembly:
1 (func $main (type 4)
2 (param i32 i32) (result i32)
3 (local i32)
4 global.get 0
5 i32.const 64
6 i32.sub
7 local.tee 2 ;; l2 = g0-64
8 global.set 0 ;; g0 = g0-64
9 i32.const 0
10 ...
11 local.get 2 ;; [g0]
12 i32.const 67 ;; ['C', g0]
13 i32.const 99 ;; [99, 'C', g0']
14 call $memset
15 local.tee 2

6https://rada.re/n/

https://rada.re/n/

SAC ’22, April 25–29, 2022, Virtual Event Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari

Table 1: Breakdown of root causes and actual differences.

Root cause Due to Programs affected

Different standard library 3574

Wide characters 3253
malloc/free 259
puts 36
printf 26

Security protections 769

Stack smashing 626
Memory protections 143

Execution environment 444

Uninitialised data 382
Size of pointers 26
Size of numbers 18
OS’ environment 18
Memory layout 18

16 i32.const 0
17 i32.store8 offset=99
18 ...)

Wenotice that the source buffer has been inlined; the generated code
operates directly on the destination buffer. Line 8 moves the stack
pointer (g0) up by 64 bytes to allocate stack space for the destination
buffer. The memset call on Line 14 fills it with 99 C characters.
Afterwards, Line 17 writes the final null character to position 99
of the destination buffer. Note that because the destination buffer
has only been allocated 64 bytes, these operations will result in a
stack overflow. However, we do not observe the presence of a stack
protection mechanism in the WebAssembly code, and executing
the WebAssembly application will not result in a crash, letting the
overflow occur silently.

We observe this difference in behaviour in 626 programs. An
example program that exhibits this difference is CWE665_Improper
_Initialization__char_cat_01.c.

Missing Memory Protections. A number of differences are caused
bymemory protections being present in x86 but not inWebAssembly.
As a result, a native executable will crash with a segmentation fault
(SIGSEGV), usually being detected at the hardware level. However,
in WebAssembly, there is no equivalent protection as there is no
concept of page or segment in the linear memory. The linear mem-
ory is a contiguous block of bytes, and there is no restriction in
reading from or writing to it.

For example, buffer underwrites are a situation where data is
copied before its destination buffer. In native code, underwrites can
be detected at the hardware level, or through some form of bounds
checking, and a program performing an underwrite will often crash
with an address boundary error. However, in WebAssembly, such
underwrites remain undetected and the program continues to run.

This situation is encountered in the following example. A buffer
of 100 bytes is allocated and filled in Line 1-4. On Line 4, the data
variable points to 8 bytes before the buffer, and therefore to an

invalid location. Line 9 copies a source buffer of 100 bytes at the
location pointed by data, resulting in a buffer underflow.
1 char *dataBuffer =
2 (char *)alloca(100*sizeof(char));
3 memset(dataBuffer, 'A', 100-1);
4 dataBuffer[100-1] = '\0';
5 data = dataBuffer - 8;
6 char source[100];
7 memset(source, 'C', 100-1);
8 source[100-1] = '\0';
9 strcpy(data, source);

We observe this difference in behaviour in 143 programs. An
example program that exhibits this difference is CWE124_Buffer
_Underwrite__wchar_t_alloca_cpy_01.c and

5.2 Non-Security-Critical Differences
We briefly present other behavioural differences we encountered.
These differences are of less importance when it comes to the se-
curity of the application, but are nonetheless useful to be aware of
when porting a C application to WebAssembly.

Different Standard Library Implementation. As mentioned previ-
ously, programs compiled to WebAssembly with the WebAssembly
System Interface (WASI) rely on the musl libc implementation. In
contrast, when they are compiled to native code in our setup, they
rely on glibc. This difference in standard library implementation
results in several behavioural differences. Besides the different be-
haviour of malloc and free, which we consider a critical difference
and covered in the previous section, a number of other functions
exhibit differences. In our dataset, we found behavioural differences
that can be linked to the following elements of a standard C library.

• Wide character’s mode for wprintf (3253 programs). In na-
tive code, wprintf has the default behaviour of not print-
ing anything to the console unless fwide(stdout, 1) has
been called before. However, in WebAssembly, we observe

Security Risks of Porting C Programs to WebAssembly SAC ’22, April 25–29, 2022, Virtual Event

that by default, wprintf does print to the console, result-
ing in the output to differ compared to the native executa-
bles. An example programt htat exhibits this difference is
CWE126_Buffer_Overread__CWE170_wchar_t_loop_01.c

• puts return value (36 programs). Functions puts and fputs
return a non-negative number upon success. The return
value however depends on the libc implementation: in musl,
0 is returned upon success, while in glibc, a positive num-
ber is returned. This results in a divergent behaviour for
some CWE253 benchmarks (Incorrect Check of Function Re-
turn Value), which check whether the return value of fputs
is 0. An example program that exhibits this difference is
CWE253_Incorrect_Check_of_Function_Return_Value_
_char_fputs_01.c.

• Missing arguments to printf (26 programs). Calls to printf
with missing arguments behave differently. For example,
printf("%s") prints some “garbage” when executed on x86,
but prints (null) when executed in WebAssembly, indicat-
ing a different implementation of printf from musl. An
example program that exhibits this difference is CWE134
_Uncontrolled_Format_String__char_console
_vfprintf_44.c.

Security Protections. We covered the critical differences in the
previous section. We did not encounter any difference in terms of
security protection that we considered non-critical.

Semantic Differences in Execution Platforms. The remaining differ-
ences can be traced back to the WebAssembly and native execution
platforms.

• Size of pointers (26 programs). On a 64-bit machine, pointers
are 8 bytes long, while in WebAssembly they are 4 bytes.
Hence, the return value of sizeof(void *) differs between
the two, resulting in observable differences in execution. An
example program that exhibits this difference is CWE789
_Uncontrolled_Mem_Alloc__malloc_char_fgets_01.c.

• Different number sizes (18 programs). This is related to the
previous point: long does not have the same size in Web-
Assembly as on a 64-bit machine. Therefore, we observe
differences for example in the return value of strtol when
it results in an overflow and therefore returns LONG_MAX as
the default value, which is set to 263 − 1 on a 64-bit machine,
while inWebAssembly it is set to 232−1. An example program
that exhibits this difference is CWE391_Unchecked_Error
_Condition__strtol_01.c.

• Uninitialised data behaviour (382 programs). Relying on uni-
tialised data in C is considered as an undefined behaviour.
In native code, accessing uninitialised data may trigger a
SIGSEGV error or result in garbage being treated as data. In
WebAssembly however, the linear memory is initially filled
with 0s. As an example, printing a string that is not null-
terminated in native code may print garbage after the string,
while in WebAssembly, the byte that follows the string of-
ten is 0, which acts as the null terminator. In other cases,
when the WebAssembly application reads from outside of
the expected bounds, it can reach data that has already been

written to, while a native application will crash or reach
different data. We therefore encounter differences in output.
Similarly, accessing a pointer whose value is NULL can also
trigger a SIGSEGV error or use uninitialised data. In Web-
Assembly however, in both situations the program continues
its execution and uses data that is set to 0. The following ex-
ample demonstrates this: *pointer is 0 as it is not initialised,
hence printing *data prints a string that contains only the
character \0.

double **pointer =
(double **)alloca(sizeof(double *));

double *data = *pointer;
printDoubleLine(*data);

An example program that exhibits this difference is CWE457
_Use_of_Uninitialized_Variable__char_pointer_01.c.

• Different execution environments (18 programs). We observed
some differences due to the execution environment being
different in WebAssembly and in native code. For example,
the getenv function can be used to access the executable’s
environment variables. In the native binary, the environment
is inherited from the process that launched it, and it contains
environment variables defined by the user (e.g., PATH). With
wasmer however, the environment is initially empty unless
specified otherwise. An example program that exhibits this
difference is CWE526_Info_Exposure_Environment
_Variables__basic_01.c.

5.3 Discussion
We observed multiple differences in behaviour between a C appli-
cation compiled to native code and compiled to WebAssembly. We
see that porting a C application to WebAssembly may not be as
easy as switching compiler flags. Although it is not always clear
who is responsible for these differences (i.e., are they the responsi-
bility of the programmer, the standard library, the compiler, or the
runtime?), it is important to identify them. Moreover, we believe
that addressing them earlier in the development pipeline is to be
preferred: having the same security measures put in place by the
compiler across compilation targets is a desirable property.

Differences with security implications. Most importantly, there
are a number of differences that may have a serious impact on
the security of the program. Even though WebAssembly has been
designed with security in mind so that for example, control-flow
hijacking attacks through e.g., return oriented programming are
impossible, and even though WebAssembly is executed in a sand-
boxed environment, there are still some concerns. For example, the
design documents of WebAssembly state that “common mitigations
such as [...] stack smashing protection (SSP) are not needed by
WebAssembly programs”, while clearly WebAssembly applications
can be the target of overflow-based attacks as we have seen with
the missing stack-smashing protection differences: stack smashing
may cause a native program to crash due to compiler protections,
while the program will continue its execution in WebAssembly. In
practice, exploiting such a vulnerability may be more complicated
in WebAssembly than in a native binary: the call stack does not
reside in WebAssembly’s linear memory where the overflow hap-
pens, and typical stack smashing exploits are therefore prevented.

SAC ’22, April 25–29, 2022, Virtual Event Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari

However, the buffer overflow goes undetected and may overwrite
data used later in the program, potentially controlling the future of
the program’s control flow. Even though the program remains sand-
boxed in its environment, the control or data flow of the program
may be exploited by an attacker. This is particularly important for
server-side WebAssembly applications, for example executed on
the wasmer environment, or integrated in Node.js applications. For
example, Node.js applications relying on vulnerable WebAssembly
code could then be prone to remote code execution attacks [17].
Similarly, WebAssembly applications do not feature the same mem-
ory protection as native binaries, resulting in different outcomes in
case of, for example, buffer underwrites. A final critical difference
is related to the memory allocation functions. It has been observed
that a non-negligible set of WebAssembly applications relies on
non-standard allocators: no less than 11 allocators have been found
in the wild by Hilbig et al. [15], with 38% of the programs relying
on a custom allocator. The use of a non-standard allocator can be
motivated by the importance of minimizing code-size when deploy-
ing applications on the Web, and by the use of toolchain-specific
allocators, e.g., provided by Emscripten, the Go, Rust, or Assem-
blyScript toolchains. Such differences may be observed with other
memory allocators that are used in practice when compiling to
WebAssembly.

Other differences without security implicitaions. There are a num-
ber of additional differences to be aware of when porting an appli-
cation to WebAssembly, even though these have a lesser impact
on the security of the application. These are related to the use of
different standard libraries and to the different semantics of the
execution platforms. Regarding the standard library, musl is an es-
tablished alternative to glibc, which has seen its first stable release
10 years ago and has been used in many Linux distributions as the
default standard library. However, we still observe non-negligible
differences of behaviour with glibc. This indicates that one has to
remain careful when porting an application to WebAssembly.

Reliance on undefined behaviour. An important aspect is that the
code discussed here sometimes relies on undefined behaviour. Even
though this means that compilers are allowed to transform such
programs and that there is no guarantees about their execution, it is
important to know how such behaviour may differ across different
compilation targets.

As a result from our empirical evaluation, we see that besides
a number of non-critical differences in the execution of C applica-
tion compiled to WebAssembly with respect to their native code
execution, there are three differences that have an impact of the
security of a C application when ported to WebAssembly.

6 THREATS TO VALIDITY
We identify three main threats to validity. First, a threat to external
validity is that we rely on an existing test suite of programs with
known vulnerabilities. The set of vulnerabilities included in this
test suite may not be exhaustive, and the root causes we identified
may therefore not be exhaustive either. The latest release of the
Juliet Test Suite dates from 2017, and there could be other vulner-
abilities or patterns to express them that are not present within
the test suite. For instance, one aspect missing in the programs

we inspected is the use of function pointers. We selected all pro-
grams that could be compiled to WebAssembly and that exhibited
deterministic behaviour when ran multiple times, in order to enable
the comparison. There could however be differences between the
behaviour of the WebAssembly binary and the native binary for
non-deterministic programs, although these require a much more
careful analysis and are beyond the scope of this paper. Similarly,
we replaced calls to rand by the constant 1 to avoid unnecessary
non-determinism. This has no impact on the differences that we
have encountered (i.e., no false positives) nor on the identification
of their root causes, but this does imply that some differences may
have been missed (i.e., potential false negatives).

A threat to internal validity is the fact that we focus on incon-
sistencies which are exhibited through differences in the program
outcome, both on the level of the return code and of the standard
output. Programs may produce the same output, yet have differ-
ent semantics depending on the execution platform. Identifying
different behaviour for programs that result in the same outcome
is something that requires a thorough analysis of programs which
we leave for future work.

Finally, another threat to internal validity regards the setup of
our empirical analysis. We performed our analysis using Clang
to compile programs in WebAssembly, while it is also possible to
compile them using GCC with the Emscripten toolchain7. We leave
a comparison to the results of GCC for future work. Moreover, all
executables were run on a Linux platform with the wasmer run-
time; results may differ on another architecture, platform or with
another runtime. We performed our analysis using -O2 as the opti-
misation level. Repeating the analysis under alternative compiler
configurations could highlight more root causes of divergence.

7 RELATEDWORK
The number of security issues has increased in the past years, and
only a tiny group of developers are responsible to address such
issues [4]. Therefore, researchers and practitioners have put great
effort in identifying and resolving security risks [8–11, 14]. In the
following, we only discuss the most relevant literature to this work.

7.1 WebAssembly Applications Security
WebAssembly has been designed from the start with a focus on
security [?]. Despite this focus, WebAssembly binaries may still
suffer from a number of weaknesses. Lehmann et al. [17] demon-
strated through a number of exploits that WebAssembly binaries
can be more easily exploitable than native binaries. For example,
the presence of critical functions exported from the environment
such as eval or exec may enable arbitrary code execution in the
browser. These security risks have also been identified byMcFadden
et al. [18].

A recent study of the usage of WebAssembly in a wide range of
sources (websites, code repositories, and package managers) [15]
demonstrates that around two thirds of WebAssembly binaries are
developed in memory-unsafe languages, and are therefore prone to
vulnerabilities that affect the source language. Romano et al. [25]
performed an empirical study of bugs in WebAssembly compil-
ers, based on existing bug reports. Our method is not focused on
7https://emscripten.org/

https://emscripten.org/

Security Risks of Porting C Programs to WebAssembly SAC ’22, April 25–29, 2022, Virtual Event

already fixed compiler bugs, but instead enables the detection of
inconsistencies that could be potential bugs.

7.2 Hardening WebAssembly
There have been numerous works related to harden WebAssembly
applications in order to improve their security, by extending the
language, improving compilers and tools, or by improving runtimes.

Disselkoen et al. propose an extension to WebAssembly that
allow developers to encode C and C++ memory semantics in Web-
Assembly, by reifying segments and handles in the language [7].
Swivel [22] is a new compiler framework that hardensWebAssembly
binaries against Spectre attacks, which can compromise the isola-
tion guarantee of WebAssembly. Arteaga et al. propose an approach
to achieve code diversification for WebAssembly [5], by generating
multiple programs variants from an input program. This mitigates
attack vectors on vulnerabilities that a application can have, after
having been compiled to WebAssembly. Namjoshi et al. present a
self-certifying compiler for WebAssembly [21], so that the optimi-
sations performed during compilation are generated with proofs of
their correctness.

Static analysis can also help identify potential security risks
in an application. Wassail [28] is a static analysis framework for
WebAssembly that has been used to build an information flow
analysis [27] in order to detect higher-level security concerns such
as leaks of sensitive information.

At the level of the runtime, Ménétrey et al. [19] present a trusted
runtime forWebAssembly by executing the runtime inside a trusted
execution environment such as Intel SGX, thereby diminishing the
potential impact of vulnerabilities. Nieke et al. [23] also rely on
SGX to improve host security in the context of using WebAssembly
binaries for edge computing. Solutions based onmechanisms similar
to SGX may however suffer from some limitations when it comes
to input/output or when it is necessary to exit from the boundaries
of the enclave.

7.3 Identifying Language Bugs and
Inconsistencies

Our method for identifying the difference between multiple com-
piler configuration is inspired by compiler fuzzing. Csmith [31]
performs fuzzing of compilers by generating C programs, compil-
ing them with several compilers, and observing their result: any
difference in output is likely a bug. Similarly, Midtgaard et al. [20]
discover bugs in the backends of the OCaml compiler, by generating
source code which is then compiled with two different backends. If
a difference in output is observed, a potential bug is found. In our
case, we also target two backends of the same compiler, but we rely
on a predefined set of input programs by using the Juliet Test Suite
for C instead of generating these programs. Stiévenart and Mad-
sen [29] apply the same idea, but only to one configuration at a time:
given a program that must adhere to a given behaviour, if, during
its execution, the program does not yield the expected behaviour,
a language bug is identified. The idea of generating programs has
been applied to WebAssembly by Perényi and Midtgaard [24]: gen-
erating WebAssembly applications and running them with multiple
runtimes enables the detection of disagreements between these
runtimes.

When only one compiler configuration is available, one can rely
on Equivalence Modulo Input (EMI) instead [16]: two programs
that differ in their source code but not in the expected behaviour
are compiled and run, and if any difference is observed, a compiler
bug is potentially found.

8 CONCLUSION
We investigated whether differences can arise between the execu-
tion of a C program compiled to WebAssembly and the execution
of that program compiled to another target such as x86. We studied
the consequence of such differences, and whether they may have a
critical impact on the security of an application.

We have observed that, out of 17 802 C programs containing
knownweaknesses, 4 911 differ in outcomewhen theirWebAssembly
and their x86 binary is executed, either by printing different output,
or by differing in their return code. We manually inspected these
differences and observed that they are the result of three main root
causes. First, the use of a different standard library often results in
minor issues, but also in critical issues from a security perspective
due to the different guarantees provided by the memory allocators.
Second and more importantly, there are critical differences due to
security protections, particularly stack-smashing and memory pro-
tections, that are missing in WebAssembly. Consequently, a native
program that would potentially crash when encountering unsafe
behaviour, may still run to completion in WebAssembly. There-
fore, applications that were protected from certain vulnerabilities
when compiled to native code can become insecure when compiled
to WebAssembly. Finally, there are minor differences that are due
to the semantics of each execution platform, such as the size of
numeric data types or behaviour with respect to uninitialised data.

We believe that these observations are important for practition-
ers when porting C programs to WebAssembly. Future research is
needed to scrutinise these differences and resolve them to enable
the secure and painless deployment of WebAssembly binaries com-
piled from C programs. Finally, follow-up research may explore
whether more of such differences can occur in other languages and
environments.

REFERENCES
[1])]wasmer [n. d.]. Wasmer: The leading WebAssembly Runtime supporting

WASI and Emscripten. https://github.com/wasmerio/wasmer, last accessed
on 2021/08/16.

[2])]wasmsecurity [n. d.]. WebAssembly: Security. https://webassembly.org/docs/
security/, last accessed on 2021/08/16.

[3] Tim Boland and Paul E Black. 2012. Juliet 1.1 C/C++ and Java test suite. Computer
45, 10 (2012), 88–90.

[4] Noah Bühlmann and Mohammad Ghafari. 2022. How Do Developers Deal with
Security Issue Reports on GitHub?. In The 37th ACM/SIGAPP Symposium on
Applied Computing (SAC).

[5] Javier Cabrera-Arteaga, Orestis Floros Malivitsis, Oscar Luis Vera-Pérez, Benoit
Baudry, and Martin Monperrus. 2020. CROW: Code Diversification for Web-
Assembly. CoRR abs/2008.07185 (2020). arXiv:2008.07185 https://arxiv.org/abs/
2008.07185

[6] Thomas Charest, Nick Rodgers, and Yan Wu. 2016. Comparison of static analysis
tools for Java using the Juliet test suite. In 11th International Conference on Cyber
Warfare and Security. 431–438.

[7] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and
Deian Stefan. 2019. Position paper: Progressive memory safety for webassembly.
In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy. 1–8.

[8] Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz.
2018. Security code smells in Android ICC. Empirical Software Engineering 24, 5
(2018), 3046–3076. https://doi.org/10.1007/s10664-018-9673-y

https://github.com/wasmerio/wasmer
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://arxiv.org/abs/2008.07185
https://arxiv.org/abs/2008.07185
https://arxiv.org/abs/2008.07185
https://doi.org/10.1007/s10664-018-9673-y

SAC ’22, April 25–29, 2022, Virtual Event Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari

[9] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, and Oscar Nier-
strasz. 2020. Web APIs in Android through the Lens of Security. In 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
13–22. https://doi.org/10.1109/SANER48275.2020.9054850

[10] Pascal Gadient, Oscar Nierstrasz, and Mohammad Ghafari. 2021. Security Header
Fields in HTTP Clients. In The 21st IEEE International Conference on Software
Quality, Reliability and Security (QRS 2021).

[11] Mohammad Ghafari, Pascal Gadient, and Oscar Nierstrasz. 2017. Security smells
in Android. In 17th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 121–130.

[12] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017.
185–200.

[13] Adam Hall and Umakishore Ramachandran. 2019. An execution model for
serverless functions at the edge. In Proceedings of the International Conference on
Internet of Things Design and Implementation, IoTDI 2019. 225–236.

[14] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz. 2020.
Java Cryptography Uses in the Wild. In Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM) (Bari, Italy) (ESEM ’20). Article 40, 6 pages. https://doi.org/10.1145/
3382494.3422166

[15] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-World WebAssembly Binaries: Security, Languages, Use Cases. InWWW
’21: The Web Conference 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie
Tang, and Leila Zia (Eds.). ACM / IW3C2, 2696–2708. https://doi.org/10.1145/
3442381.3450138

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via
equivalence modulo inputs. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216–226.
https://doi.org/10.1145/2594291.2594334

[17] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
NewAgain: Binary Security ofWebAssembly. In 29th USENIX Security Symposium,
USENIX Security 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX
Association, 217–234. https://www.usenix.org/conference/usenixsecurity20/
presentation/lehmann

[18] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler. 2018. Security
Chasms of WASM.

[19] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2021. Twine:
An Embedded Trusted Runtime for WebAssembly. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 205–216. https://doi.org/10.1109/ICDE51399.2021.00025

[20] Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson,
and Hanne Riis Nielson. 2017. Effect-driven QuickChecking of compilers. Proc.
ACM Program. Lang. 1, ICFP (2017), 15:1–15:23. https://doi.org/10.1145/3110259

[21] Kedar S. Namjoshi and Anton Xue. 2021. A Self-certifying Compilation Frame-
work for WebAssembly. In Verification, Model Checking, and Abstract Interpreta-
tion - 22nd International Conference, VMCAI 2021 (Lecture Notes in Computer Sci-
ence, Vol. 12597), Fritz Henglein, Sharon Shoham, and Yakir Vizel (Eds.). Springer,
127–148. https://doi.org/10.1007/978-3-030-67067-2_7

[22] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan
Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham,
Dean M. Tullsen, and Deian Stefan. 2021. Swivel: Hardening WebAssembly
against Spectre. In 30th USENIX Security Symposium, USENIX Security 2021, Au-
gust 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIXAssociation,
1433–1450. https://www.usenix.org/conference/usenixsecurity21/presentation/
narayan

[23] Manuel Nieke, Lennart Almstedt, and Rüdiger Kapitza. 2021. Edgedancer: Se-
cure Mobile WebAssembly Services on the Edge. In EdgeSys@EuroSys 2021: 4th
International Workshop on Edge Systems, Analytics and Networking, Online Event,
United Kingdom, April 26, 2021, Aaron Yi Ding and Richard Mortier (Eds.). ACM,
13–18. https://doi.org/10.1145/3434770.3459731

[24] Árpád Perényi and Jan Midtgaard. 2020. Stack-Driven Program Generation of
WebAssembly. In Programming Languages and Systems - 18th Asian Symposium,
APLAS 2020, Fukuoka, Japan, November 30 - December 2, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12470), Bruno C. d. S. Oliveira (Ed.). Springer, 209–
230. https://doi.org/10.1007/978-3-030-64437-6_11

[25] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An Empir-
ical Study of Bugs in WebAssembly Compilers. (2021).

[26] Andreas Rossberg. 2020. WebAssembly Core Specification.
https://www.w3.org/TR/wasm-core-1/.

[27] Quentin Stiévenart and Coen De Roover. 2020. Compositional Information
Flow Analysis for WebAssembly Programs. In 20th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2020. IEEE, 13–24.
https://doi.org/10.1109/SCAM51674.2020.00007

[28] Quentin Stiévenart and Coen De Roover. 2021. Wassail: a WebAssembly Static
Analysis Library. In Fifth International Workshop on Programming Technology for
the Future Web.

[29] Quentin Stiévenart and Magnus Madsen. 2020. Fuzzing channel-based concur-
rency runtimes using types and effects. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 186:1–186:27. https://doi.org/10.1145/3428254

[30] Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2021. The Security
Risk of Lacking Compiler Protection in WebAssembly. In 21st IEEE International
Conference on Software Quality, Reliability and Security, QRS 2021.

[31] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, Mary W. Hall
and David A. Padua (Eds.). ACM, 283–294. https://doi.org/10.1145/1993498.
1993532

https://doi.org/10.1109/SANER48275.2020.9054850
https://doi.org/10.1145/3382494.3422166
https://doi.org/10.1145/3382494.3422166
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/2594291.2594334
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1109/ICDE51399.2021.00025
https://doi.org/10.1145/3110259
https://doi.org/10.1007/978-3-030-67067-2_7
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1145/3434770.3459731
https://doi.org/10.1007/978-3-030-64437-6_11
https://doi.org/10.1109/SCAM51674.2020.00007
https://doi.org/10.1145/3428254
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Background
	2.1 Execution Model
	2.2 Memory Model
	2.3 Application Structure
	2.4 Example Instructions
	2.5 Stack Memory Management
	2.6 Security Model
	2.7 WebAssembly Vulnerabilities

	3 Dataset
	3.1 Categorisation of Test Cases
	3.2 Pre-processing
	3.3 Compilation of Test Cases
	3.4 Selection of Deterministic and Terminating Programs

	4 Research method
	4.1 Identifying Different Execution Behaviour
	4.2 Manual Analysis

	5 Findings
	5.1 Security-Critical Differences
	5.2 Non-Security-Critical Differences
	5.3 Discussion

	6 Threats to Validity
	7 Related Work
	7.1 WebAssembly Applications Security
	7.2 Hardening WebAssembly
	7.3 Identifying Language Bugs and Inconsistencies

	8 Conclusion
	References

