
Prevalence and Evolution of License Violations
in npm and RubyGems Dependency Networks

Ilyas Säıd Makari, Ahmed Zerouali, and Coen De Roover

Software Languages Lab, Vrije Universiteit Brussel, Belgium
{ilyas.said.makari | ahmed.zerouali | coen.de.roover}@vub.be

Abstract. It can be challenging to manage an open source package
from a licensing perspective. License violations can be introduced by
both direct and indirect package dependencies, which evolve indepen-
dently. In this paper, we propose a license compatibility matrix as the
foundation for a tool that can help maintainers assess the compliance of
their package with the licenses of its dependencies. Using this tool, we
empirically study the evolution, popularity, and compliance with depen-
dency licenses in the npm and RubyGems software package ecosystems.
The size of the corresponding dependency networks renders verifying li-
cense compliance for indirect dependencies computationally expensive.
We found that 7.3% of npm packages and 13.9% of RubyGems have direct
or indirect dependencies with incompatible licenses. We also found that
GPL dependencies are the major cause for incompatibilities. Our results
provide a good understanding of the state of license incompatibilities in
software package ecosystems, and suggest that individual ecosystems can
differ significantly in this regard.

Keywords: software license, license compatibility, package dependency,
npm, RubyGems

1 Introduction

Open Source Software (OSS) has become the standard in the software indus-
try, encouraging collaboration and reuse. Much of this Open Source Software
is reused by developers incorporating it into their own software as independent
building blocks, e.g., packages. As a matter of fact, online package reposito-
ries, such as npm for JavaScript and RubyGems for Ruby, provide an enormous
amount of free open source software packages. These packages are available for
any developer to use in their own software, but in many cases under particu-
lar restrictions imposed by the package owners. These restrictions constitute a
software license.

Open source packages can be distributed under licenses with varying degrees of
freedom, decided on by their owner. The variety among license types complicates
using multiple package dependencies in one software system. License restrictions
of one package may conflict with the restrictions of another, which encumbers

2 Ilyas Säıd Makari et al.

ensuring legal compliance of one’s own software with the licenses of its depen-
dencies. Moreover, depending on a package that is in violation of a license may
lead to one’s own software violating the same license.

To make sure no conflicts will occur, developers can review each package’s license
prior to incorporating it into their own software. However, this quickly becomes
cumbersome when these used packages depend on other packages, which may in
turn depend on other packages, and so on, forming a huge network of directly
and indirectly incorporated dependencies. Worse, developers have no control
over the dependencies that get included transitively into their software. Online
package repositories such as npm and RubyGems which form massive dependency
networks only aggravate the problem.

In this paper, we conduct an empirical study into the prevalence and evolution of
open source package licensing. Using a license compatibility matrix that includes
more licenses than prior work, we study the severity of license incompatibilities
in the dependency networks of npm and RubyGems, while distinguishing between
incompatibilities with direct or indirect dependencies. More concretely, we study
the following research questions:
RQ1: What are the most prevalent licenses in package repositories?
RQ2: To which extent do packages rely on direct dependencies with
incompatible licenses?
RQ3: How does license incompatibility spread across package depen-
dency networks?
The tool used to answer these questions can also be used as support by pack-
age maintainers in detecting dependency license incompatibilities for their soft-
ware.

2 Background and Related Work

This section provides the necessary background information and an overview of
the related work concerning the use of licenses and compliance therewith.

2.1 Software Licenses

Under the Berne Convention, the international agreement concerning copyright
law, an author automatically obtains the exclusive copyright to their work. This
applies to software as well, implying that software creators have the ultimate say
when it comes to granting rights and placing restrictions. The latter are typically
expressed through a software license, i.e., a contract between the copyright holder
(licensor) and the user of the software (licensee). For open source software, it
is generally advised to choose from an existing license that has already been
reviewed by organizations such as the Open Source Initiative (OSI) and the Free

Prevalence and Evolution of License Violations in npm and RubyGems 3

Software Foundation (FSF). The SPDX1 standard provides a unique agreed-
upon identifier for each such license. They can be categorized as follows from
least to most restrictive:

– Public domain: Software that is released into the public domain is free to
use, copy, modify, distribute and sell without any restrictions or attribution
required. For example, the “Unlicense” is a template for dedicating software
to the public domain. Note that software with no specific license mentioned
cannot be automatically interpreted as public domain 2.

– Permissive licenses: Software released under permissive licenses (i.e., MIT
and Apache), have little restrictions imposed. Permissive licenses allow soft-
ware reuse for any purpose, but redistributions and derivatives of the work
must include the copyright and license notice from the original author. In
general, there are little to no restrictions that will cause conflicts when a
permissive license is combined with stricter ones.

– Copyleft licenses: These form the most restrictive category of OSS licenses,
due to their prohibition of proprietization. They require any derivative work
to be distributed under a license that preserves all the rights established by
the original license. The most popular example is the GPL license, which,
among other restrictions, requires derivatives to be licensed under the same
GPL license. Copyleft licenses that impose these rules on any kind of deriva-
tive work are called strong copyleft licenses, whereas weak copyleft licenses
make exceptions for some types of derivative work. For example, weak copy-
left licenses like LGPL make exceptions when the original work is used as an
independent building block (e.g., a library). In addition, there are network
copyleft licenses that expand strong copyleft licenses to software that can be
ran via internet or other networks, e.g., AGPL and OSL 3.0.

2.2 License Compliance

Despite the ubiquity of OSS packages, one must be careful when incorporating
them as a software dependency. For example, the licenses of two dependencies
may contain contradictory statements, rendering their combination legally im-
possible. This may also be the case for the license of the software into which the
package is included. For instance, software released under the permissive MIT
license cannot include packages released under the more restrictive GPL license
as GPL requires all derivatives to be released under the same license.

In order to identify license incompatibilities, there must be a reliable source of
truth that dictates which pairs of licenses are compatible with each other. The
FSF provides two lists3 stating which licenses are (in)compatible with the GPL.

1 https://spdx.org/licenses/
2 https://choosealicense.com/no-permission/
3 https://www.gnu.org/licenses/license-list.en.html

https://spdx.org/licenses/
https://choosealicense.com/no-permission/
https://www.gnu.org/licenses/license-list.en.html

4 Ilyas Säıd Makari et al.

However, these lists only provide an answer for a limited number of license com-
binations. They provide no information about, for instance, the combination of
MIT and BSD. Unfortunately, the required source of truth cannot be generated
automatically, since licenses are written in natural language with complex legal
terms [1]. The following approaches to determining license compatibility have
been proposed instead:

– Set-based approach: This approach is used by libraries.io’s license com-
patibility tool4. Licenses are grouped into disjunct sets ordered from least to
most restrictive: public domain, permissive, weak copyleft, strong copyleft,
etc. To say that license A is compatible with license B: (1) A must be either
public domain, permissive or weak copyleft; or (2) If A is strong copyleft,
then B must be either weak copyleft, strong copyleft or network copyleft; or
(3) If A is network copyleft, then B must also be network copyleft. However,
generalizing license compatibility in this manner will not account for the
many exceptions that exist.

– Formal approach: This approach was described by Gangadharan et al. [2].
All terms and conditions of licenses are formally specified thus enabling the
algorithmic detection of incompatibilities. The algorithm uses the following
rule: license A is compatible with license B if all license clauses from A are
compatible with those of B. However, it is far from trivial to convert all
license text into a formal specification.

– Graph-based approach: Relations between different licenses can be mod-
elled using a directed graph [3] in which each node denotes a license and each
directed edge between two nodes is used to denote a one-way compatibility,
i.e., an edge from license A to license B implies that A is compatible with
B, but not necessarily the inverse. Similarly, all licenses that can be reached
from license A are also compatible with A. The graph was constructed using
the rules that apply when the derivative work is based on the original work.
This is important, since weak-copyleft licenses (e.g., LGPL) can make the
distinction between work that is “based on a library” and work that “uses a
library”. Later on, this graph was expanded by Kapitsaki et al. [4] to include
additional licenses (e.g., MPL). The resulting graph has subsequently been
simplified by removing the incompatibility edges [1].

2.3 Studies on License Compliance in Dependency Networks

Dependency networks are created when one software package depends on other
packages which in turn depend on their own packages. The resulting network may
aggravate problems detected in a single package, as the issue may rapidly spread
to all direct and indirect dependents. This has promoted researchers to conduct
studies on license compliance in dependency networks. Kechagia et al. [5] have

4 https://github.com/librariesio/license-compatibility

https://github.com/librariesio/license-compatibility

Prevalence and Evolution of License Violations in npm and RubyGems 5

studied the FreeBSD ports collection from this perspective. They found that
GPL-licensed applications that run under FreeBSD use LGPL-licensed compo-
nents. Qiu et al. [6] have studied the prevalence of dependency-related license
violations among 419,708 npm packages. They found that very few packages
(0.644%) have dependency-related license violations. In this paper, we found
that this proportion increases to 7.3% when we study the entire ecosystem of
npm packages while inspecting more license combinations that were not consid-
ered in previous studies. In addition, developer surveys in [6] revealed two main
causes for these violations: 1) developers overlook and misunderstand them; and
2) developers find it difficult to manage them and ask for tool support.

Novelty of our contribution. Our work extends and updates the insights
from previous studies by considering a larger license compatibility matrix that
includes additional license combinations. We also carry out an empirical analysis
of license violations in both npm and RubyGems dependency networks, and com-
pare them. To the best of our knowledge, we are the first to study licensing in the
RubyGems ecosystem. Moreover, we provide a visual tool that helps developers
find incompatible transitive dependencies easily.

3 Research Method

This section discusses the details of the research method we used to answer
the research questions enumerated in Section 1, including how we created an
extended license compatibility matrix.

License Compatibility Matrix. We created an extensive and up-to-date com-
patibility matrix starting from the aforementioned graph proposed by Kapitsaki
et al. [1]. The graph alone does not suffice for our study, as it does not include
some of the licenses used by popular npm and RubyGems software packages.
Moreover, for the context of this work, the meaning of the edges in the graph
needs to change from a project being “based on” another project to a project
“depending on a library”. For example, a project with a permissive license such
as MIT is allowed to include an LGPL dependency. This requires including ad-
ditional edges that account for this possibility. Finally, the absence of a path
between two licenses A and B in the graph does not suffice to deem A and B
as incompatible. It merely means that the compatibility cannot be determined
from the graph alone.

Our matrix therefore aims to provide a definitive answer for as many actual
license combinations as possible. To this end, we started from the graph and
manually included information from the following sources: (1) the FSF has two
lists5 stating which licenses are compatible and incompatible with the various
GPL licenses; (2) the European Commission maintains a matrix that has an an-

5 https://www.gnu.org/licenses/license-list.en.html

https://www.gnu.org/licenses/license-list.en.html

6 Ilyas Säıd Makari et al.

swer for a couple more license combinations 6; and (3) the FSF provides a matrix7

to determine which (L)GPL licenses are compatible with each other.

Currently, our license compatibility matrix includes 1,681 pairs of licenses. How-
ever, it does mark the compatibility of 205 (12.2%) license pairs as “Unknown”.
These are the license pairs for which we could not determine the compatibility
either due to a lack of publicly available information or due to varying opinions
among lawyers. Many licenses and combinations thereof remain to be tested in
the courts.

Package License Extraction: Package managers have a structured method
to keep track of metadata, such as licenses and dependencies. Packages from
npm come with an automatically created “package.json” manifest that includes
these metadata, while RubyGems has “Gemfile”. To have the information about
licenses used by npm and RubyGems packages, we relied on the latest version of
libraries.io Open Data 8 that was released on 12 January 2020. libraries.io dataset
contains metadata of packages hosted on 32 different package repositories, in-
cluding npm and RubyGems. It identifies the licenses of each package using the
standardized SPDX identifiers. To identify the versions of the dependencies of
each package, we relied on the dependency constraint resolver proposed in [7],
which supports the npm and RubyGems package distributions. We determined
the appropriate versions of packages to be included for each dependent according
to the constraints for its run-time dependencies. As some constraints may resolve
to different versions at different points in time, we used the libraries.io snapshot
date as the resolution date. This implies that we study licenses in packages as if
they were installed or deployed on January 12th, 2020. Having determined the
versions of all direct dependencies, we then identify the indirect ones.

More specifically, we inspected 749, 823 and 94, 953 npm and RubyGems pack-
ages (i.e., their latest version) which depend on 66, 404, 594 and 1, 190, 422 run-
time dependencies, from which 3, 527, 000 and 211, 336 are direct, respectively.
We only focused on run-time dependencies because development ones are only
needed during development (e.g., unit tests libraries, transpilers, etc). To de-
termine the license compatibility between a dependency and its dependent, we
relied on our license compatibility matrix. A dependency is either compatible, in-
compatible or unknown. We found that 7.3% (54,778) and 13.9% (13,271) of npm
and RubyGems packages have direct or indirect dependencies with incompatible
licenses, respectively. We also found the amount of unknown incompatibilities
for all (transitive) dependencies to be very small, i.e., 2.9% for npm and 5.6%
for RubyGems. After having a deeper look at which license combinations were
unknown, it became clear that it mostly consists of multi-licenses, i.e., a package
can be used with license A or with license B, e.g., keypair 9. This is due to the

6 https://ec.europa.eu/jrc/sites/default/files/20150930-second-best-practices-tto-
circle-gentile en.pdf

7 https://www.gnu.org/licenses/gpl-faq.en.html
8 https://libraries.io/data
9 https://www.npmjs.com/package/keypair

https://www.gnu.org/licenses/gpl-faq.en.html
https://libraries.io/data
https://www.npmjs.com/package/keypair

Prevalence and Evolution of License Violations in npm and RubyGems 7

fact that our compatibility matrix can only provide answers for pairs of singu-
lar licenses. Moreover, there are some packages that can be used with different
licenses depending on the third-party that is going to use them. For example,
developers of webgazer 10 state that their package is “licensed under GPLv3”
while “companies have the option to license WebGazer.js under LGPLv3 while
their valuation is under $1, 000, 000”. Extracting such information requires us to
process natural language text written in different files like README and then
check conditions with dependent packages, which is a complex task. Thus, it is
important to note that any incompatibilities with multi-licensed packages will
not be taken into account in this study.

4 Results

We now evaluate the state of license compliance among the dependency networks
formed by the popular package repositories npm and RubyGems.

RQ1: What are the most prevalent licenses in package
repositories?

We start by determining the most common open source licenses found in each
package repository. The ecosystems around some repositories might have a more
permissive climate than those around others. According to a blog post [8] from
WhiteSource, in 2012 open source software was predominantly using copyleft
licenses (59%). Three years later, GitHub [9] reported a shift towards more
permissive licenses. With this research question, we want to investigate whether
such a shift has also happened among the npm and RubyGems packages, by
investigating the evolution of the most popular licenses over time.

MIT ISC
None

Apache-2.0

BSD-3-Clause
GPL-3.0

0.0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
of

 p
ac

ka
ge

s

59.8%

19.7%
8.0% 4.8% 2.0% 1.0%

npm

MIT
None

Apache-2.0

BSD-3-Clause
GPL-3.0

GPL-2.0
0.0

0.2

0.4

0.6

0.8
66.3%

22.3%

4.8% 1.3% 1.1% 0.6%

RubyGems

Fig. 1: Top 6 most used licenses

Figure 1 shows the top-6 most popular licenses in npm and RubyGems. We observe
that the MIT license is the most popular by far. 59.8% and 66.3% of npm and

10 https://www.npmjs.com/package/webgazer

https://www.npmjs.com/package/webgazer

8 Ilyas Säıd Makari et al.

RubyGems packages make use of the MIT license. Most licenses in the top 6 list
are permissive.

From the figure, we also observe that there is a considerate proportion of packages
that do not have any license (i.e., None), not even a public domain waiver like
“Unlicense”. This is worrying as without a specified license, no one can copy,
distribute, or modify the package except for the original developers. In fact, it is
advised not to make use of such software 11. We expect these packages to cause
many license incompatibility problems in package dependency networks.

Figure 2 depicts the evolution of license usage in the npm ecosystem. The X-axis
shows the creation date for each package. We observe that the permissive MIT
license has been popular since the beginning. Furthermore, in 2014, there seems
to be a sudden increase of the ISC license, taking over the popularity of the BSD-
3-Clause license. This can be explained by the v1.4.8 update12 of npm in May
2014, where the previous default license, BSD-3-Clause, was replaced by the ISC
license, which is similar to the BSD-2-Clause and MIT licenses. This caused all
new npm packages, from May 2014 onwards, to be licensed under the ISC license
by default. The main difference between ISC and its predecessor is that ISC does
not include a non-endorsement statement preventing users of a package to claim
they are endorsed by the author of that package. The urge to replace BSD-3-
Clause with ISC, might be due to the endorsement of the OpenBSD project [10].
However, in 2015, the Internet Systems Consortium (creators of the ISC license)
stated that there is no longer a good reason for ISC to have its own license. Even
though ISC is equivalent to the very permissive MIT license, lawyers prefer the
more popular license that they are already familiar with [11]. There is now an
ongoing discussion in npm to change the default license from ISC to MIT. This
is mainly to avoid license proliferation, as the permissive ISC license poses no
threats when it comes to license compliance.

Figure 3 shows the evolution of license usage in the RubyGems ecosystem.
RubyGems is a repository that has been around for a bit longer, compared to
npm. From the figures, we observe that MIT gradually evolved into the most
popular license as the number of packages without a license decreased to just
6% of the packages created in 2019. At the start of RubyGems, it did not come
with a package manager. Later in 2009, Bundler was eventually introduced as
its package manager, but did not come with a standard license until 201113.
The introduction of MIT as the standard license for RubyGems may be a factor
to MIT’s rise in popularity as well. Figure 3 also reveals that the Apache-2.0
license is gradually increasing in popularity. Over the last few years, Apache has
become the second most popular license choice within the RubyGems ecosystem.
Overall, the climate of the ecosystem is predominantly permissive. However,
even though Apache-2.0 is a permissive license, it is not fully compatible with
the GPL. Apache-2.0 is only compatible with GPLv3. Thus, developers have to

11 https://choosealicense.com/no-permission/
12 https://github.com/npm/cli/blob/latest/changelogs/CHANGELOG-1.md
13 https://github.com/rubygems/bundler/blob/master/CHANGELOG.md

https://choosealicense.com/no-permission/
https://github.com/npm/cli/blob/latest/changelogs/CHANGELOG-1.md
https://github.com/rubygems/bundler/blob/master/CHANGELOG.md

Prevalence and Evolution of License Violations in npm and RubyGems 9

be careful not to use any Apache-licensed dependencies in their GPLv2-licensed
software directly or indirectly.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0.00

0.25

0.50

0.75

1.00
%

 p
ac

ka
ge

s
Apache-2.0
BSD-3-Clause
GPL-3.0
ISC
MIT
None

Fig. 2: Proportion of npm packages grouped by license and year of release.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0.00

0.25

0.50

0.75

1.00

%
 p

ac
ka

ge
s

Apache-2.0
BSD-3-Clause
GPL-2.0
GPL-3.0
MIT
None

Fig. 3: Proportion of RubyGems packages grouped by license and year of release.

RQ2: To which extent do packages rely on direct dependencies with
incompatible licenses?

Developers have full control over which direct dependencies to incorporate. Thus,
it should be easier for them to verify compliance with direct dependencies, com-
pared to transitive dependencies. However, developers often have to rely on their
own knowledge of legal compliance when declaring a license for their own soft-
ware, allowing room for mistakes. Although tools exist to detect license incom-
patibilities, they are far from perfect. With RQ2, we aim to answer to which
extent incompatibilities are caused by direct dependencies.

After computing all (dependent, dependency) license pairs, we found that the
proportion of direct dependencies with incompatible licenses is low. We only
found 32,323 (0.89%) and 11,121 (4.3%) npm and RubyGems dependencies to
have licenses that are incompatible with those of their dependents. These in-
compatibilities are caused by 11,858 and 3,677 unique npm and RubyGems pack-
ages used as dependencies and are affecting 23,178 (3.1%) and 9,387 (9.9%)
unique npm and RubyGems dependent packages. One could hypothesize that
larger ecosystems with lots of dependencies have a higher chance of containing
incompatibilities. Interestingly, the smaller ecosystem (RubyGems) seems to have
a higher proportion of incompatible dependencies. A possible explanation for
this phenomenon is that developers in large ecosystems may have more choices
between packages with equivalent functionalities. This allows them to pick a
dependency that fits their licensing needs.

10 Ilyas Säıd Makari et al.

Figure 4 shows the most common incompatible direct (dependent, dependency)
license pairs for npm and RubyGems packages (Y-axis in log scale). As expected,
most of the incompatibilities (i.e., 85% for npm and 76.7% for RubyGems) hap-
pen because of the fact that many packages used as dependencies do not have
a license, i.e., (, None) while “ ” refers to any license. For dependencies that
have a license, we observe that the most common pair of incompatible licenses in
npm is (MIT, GPL-3.0), i.e., when permissive MIT packages depend on strong-
copyleft GPL packages. This is the epitome of a severe license violation. Beyond
unfamiliarity with software licensing, there is no other conceivable reason for de-
velopers to incorporate these strong-copyleft-licensed packages directly into their
permissive-licensed packages. Interestingly, after a manual inspection of the MIT
packages with dependency license incompatibilities, we found that many of the
maintainers (especially of the most popular packages) have decided to get rid
of their GPL dependencies in the meantime. The second most common incom-
patible pairs are strong-copyleft GPLv2-licensed packages relying on permissive
Apache-licensed projects. At first sight, this does not seem like it should be clas-
sified as an incompatibility since Apache is a permissive license. However, as
explained before, Apache does impose some restrictions which render it incom-
patible with the GPLv2.

For RubyGems, we observe one incompatible pair of licenses (MIT, GPL-2.0)
that heavily stands out from the other pairs. Again, unfamiliarity with soft-
ware licensing is a plausible cause. However, the problem gets amplified because
RubyGems has proportionally more GPLv2 packages than npm. Additionally,
RubyGems is the smaller ecosystem, implying that developers might not always
find a permissive-licensed alternative for their GPL-licensed dependency. With
deeper inspection, we also noticed that some packages could also benefit from
downgrading their license from GPLv3 to GPLv2. This is the case for GPLv3
packages that use GPLv2 dependencies, which is not allowed, but easily be reme-
died with a downgrade to either GPL-2.0 or GPL-2.0-or-later.

(_, N
one)

(MIT, GPL-3.0)

(ISC, GPL-3.0)

(MIT, AGPL-3.0)

(GPL-2.0, Apache-2.0)

103

104

105

de

pe
nd

en
cie

s 27472
(85.0%)

1148
(3.6%) 482

(1.5%)
426

(1.3%)
425

(1.3%)

npm

(_, N
one)

(MIT, GPL-2.0)

(None, GPL-2.0)

(MIT, GPL-3.0)

(None, GPL-2.0+)

103

104

105

8531
(76.7%)

1489
(13.4%)

269
(2.4%) 211

(1.9%) 144
(1.3%)

RubyGems

Fig. 4: Top 5 illegal license pairs (dependent, dependency).

Prevalence and Evolution of License Violations in npm and RubyGems 11

RQ3: How does license incompatibility spread across package
dependency networks?

The previous research question focused solely on the direct dependencies, i.e.,
the dependencies over which the maintainer of a project has complete control.
As mentioned before, the maintainer does not have control over which indirect
dependencies are used by their project’s (in)direct dependencies. Thus, it be-
comes harder to verify each of the transitive dependencies for potential license
incompatibilities. This research question therefore aims to answer to which ex-
tent incompatibilities are caused by transitive dependencies. To this end, we
will evaluate how prevalent incompatibilities are at each level in the dependency
tree of a package. This provides insights into the difficulties maintainers face in
keeping track of their transitive dependencies, and into the propagation of in-
compatibilities through the dependency networks formed by package repositories
such as npm and RubyGems.

We start by comparing the proportions of incompatible license pairs between
these repositories. We found that npm packages have more indirect dependen-
cies with incompatible licenses than RubyGems. This is due to the high number
of dependencies that npm packages include. The latter have license incompati-
bility with 58,388 indirect dependencies, while RubyGems packages have 8,562.
However, RubyGems has proportionally more incompatible indirect dependencies
than npm (i.e., 0.82% against 0.09%, respectively).

Figure 5 depicts the proportion of license incompatibilities at each level in the
packages’ dependency trees, including the first level (i.e., direct dependencies).
We notice that for both package repositories, the proportion of incompatible de-
pendencies decreases from one level to the next until the deepest levels where we
see a rise again. The latter is more outspoken for RubyGems, where the propor-
tion of incompatible dependencies is higher than 5% at the 8th and 9th levels. A
closer inspection revealed that this is mainly because of the set of metanorma-x
packages (e.g., metanorma-gb and metanorma-vsd) which have a BSD-2-Clause
license but indirectly depend on the package latex-decode which has a GPL-3.0
license. Note that with these two licenses, it is legal to have a license pair (GPL-
3.0, BSD-2-Clause), but not the other way around (BSD-2-Clause, GPL-3.0).
Finally, we found that dependencies without a license constitute 86% of license
incompatibilities with indirect dependencies for both package repositories.

1 2 3 4 5 6 7 8 9 10 11
dependency level for npm

0.0

0.2

0.4

0.6

0.8

%
 d

ep
en

de
nc

ie
s

1 2 3 4 5 6 7 8 9
dependency level for RubyGems

0

2

4

6

Fig. 5: The proportion of incompatibilities in each level in the dependency tree.

12 Ilyas Säıd Makari et al.

Figure 6 shows the most common illegal pairs of licenses of the format (depen-
dent, indirect dependency) that were found at each level of the packages’ de-
pendency trees. We observe that the number of dependencies without a license
decreases from one level to the next as we go deeper in both package repositories.
This means that packages that can be found at deeper levels of the dependency
tree usually have a license. One reason might be that deeper packages provide
core functionalities and are thus more popular with a more mature management
of legal issues such as licensing. We also observe that (MIT, GPL) is less common
in indirect dependencies, compared to direct dependencies (See RQ2). In fact,
this is more relevant in the case of npm where we see that (GPL-2.0, Apache-
2.0) is the most common incompatible license pair. Interestingly, the number of
(MIT, GPL) pairs seems to gradually decrease from a dependency tree level to
another while the second-most common illegal pair increases: (GPL-2.0, Apache-
2.0). This means that the Apache-2.0 license is more common among the deeper
levels. Consequently, direct incompatibilities with this Apache license are more
likely in deeper levels.

One hypothesis explaining this phenomenon is that some core packages make
use of the Apache-2.0 license. These would be packages that are important but
are not regularly needed as direct dependencies, which is why they occur more
as indirect dependencies. Such packages are more likely to be older packages
which happened to be licensed under Apache 2.0 before the dominance increase
of MIT and ISC licenses.

Having a closer look at the concrete packages that reside in the deeper levels, we
indeed found that these are packages that provide core functionalities. Examples
of these Apache-licensed packages at the deeper levels are thread safe and ad-
dressable from RubyGems, and oauth-sign, forever-agent, aws-sign2 and caseless
from npm. These are popular packages downloaded millions of times and they
were all released years ago. Moreover, some of them have not been updated for
more than three years. In fact we noticed that most Apache-licensed packages
that occur at the deeper levels in npm happen to be coming from the same or-
ganization. This is an interesting observation as it shows the influence that one
single organization can have in a software ecosystem. By choosing the Apache
license for all their packages that provide core functionalities, they unwillingly
prevent other developers from releasing their software under the GPLv2. How-
ever, several package developers are unaware of this incompatibility or simply
do not care, making (GPL, Apache) the most common illegal license pair.

5 Discussion

In RQ1 we found that package repositories have indeed moved towards a more
permissive climate. The MIT license, with its permissive and simple nature,
has become the primary license of choice for many open source developers both
in npm and RubyGems. An important factor that limits the license choice are
the chosen third-party dependencies. If one must comply with the licenses of

Prevalence and Evolution of License Violations in npm and RubyGems 13

(A
pa

ch
e-

2.
0,

 G
PL

-2
.0

)
(G

PL
-2

.0
, A

pa
ch

e-
2.

0)
(L

GP
L-

2.
1,

 A
pa

ch
e-

2.
0)

(M
IT

, G
PL

-2
.0

)
(M

IT
, G

PL
-3

.0
)

(_
, N

on
e)

9
8

7
6

5
4

3
2de

pe
nd

en
cy

 le
ve

l 0 88 0 0 0 12
0 67 8.3 0 0 25
0 49 14 0 0 37

0.31 32 1.7 0 0 65
0.89 14 0.51 0 0 84

0 11 0.67 0 0.76 86
0 8.1 0.71 0 1.9 86
0 3.8 0 1.6 1.8 88

npm

(B
SD

-2
-C

la
us

e,
 G

PL
-3

.0
)

(G
PL

-2
.0

, A
pa

ch
e-

2.
0)

(G
PL

-2
.0

, L
GP

L-
3.

0+
)

(M
IT

, G
PL

-2
.0

)
(M

IT
, G

PL
-3

.0
)

(N
on

e,
 G

PL
-2

.0
)

(_
, N

on
e)

7
6

5
4

3
2

67 0 0 0 0 0 33
25 4.7 0 0 0 0 70
0 6.6 2.2 2.2 0 0 82
0 7.4 0 3.4 0 2.7 80
0 2.9 0 2.8 0 3.7 85
0 0 0 3.6 2.1 1.6 89

RubyGems

0

20

40

60

80

0

20

40

60

80

Fig. 6: Top illegal license pairs (dependent, indirect dependency) and their pro-
portion in each level in the dependency tree.

every used dependency, the options become limited, especially when strong-
copyleft licensed dependencies are being used. Furthermore, ecosystems that
predominantly contain copyleft packages, cause all other packages that depend
on them to also be copyleft. WordPress plugins 14 form a good example of
an ecosystem in which copyleft licenses are popular. In contrast, we noticed
that npm has few copyleft projects, possibly due to the high community appeal
for npm packages and JavaScript libraries in general. This is also one of the
observations already made in the FreeBSD ecosystem [5].

While having a look at the ecosystems separately in RQ2, it became clear that
both ecosystems are facing the same problems to some extent. The main problem
is that some developers directly incorporate dependencies with strong-copyleft
licenses or without any license into their permissive-licensed packages. This can
be resolved by creating more awareness around this topic within the ecosystem
that has formed around the package repositories. We did find, however, that
in the meantime some developers had realized their mistakes and got rid of
their GPL dependencies. However, the overall prevalence of license dependency
incompatibility in package repositories can be easily reduced if packages without
a license included one. We would recommend developers of such packages to
choose a permissive license such as MIT and ISC, as most of the packages make
use of permissive licenses. Another common incompatibility that occurs in both
ecosystems is GPLv2 packages using Apache-licensed dependencies. This could
be easily solved by upgrading the license from GPL-2.0 to GPL-3.0. One of the
main issues that the GPLv3 tried to address was the compatibility with licenses
such as Apache.

Given the complexity of assessing license compliance across all dependency tree
levels, we hypothesized that most incompatibilities would be caused by licenses
of indirect dependencies. After investigating this in RQ3, we observed the ex-
act opposite happening: the first levels cause many more incompatibilities than

14 https://choosealicense.com/community/

https://choosealicense.com/community/

14 Ilyas Säıd Makari et al.

the deeper ones, and this in both package repositories. Thus, in general the hy-
pothesis cannot be accepted, although there were some cases where one type of
incompatibility was more prominent at deeper levels than at the first levels (e.g.,
(BSD, GPL) in RubyGems). However, these observations seem to be tied to the
practices within the ecosystem and its history rather than a mere consequence of
their contributors’ unfamiliarity with licensing. For example, we have seen that
npm has a high concentration of Apache packages at the deeper levels. Similarly,
it was mentioned how all ecosystems have a higher concentration of GPL pack-
ages at the first levels than at the deeper levels. Due to the viral nature of the
GPL license, the concentration of GPL violations is a higher at the first levels
than at the deeper ones.

Our findings have only shed a quantitative light on the prevalence and evolution
of license incompatibilities across a package’s dependency tree. Further research
is needed to understand how developers perceive and resolve these issues in
practice, as well as the kind of tool support they require.

Tooling: In order to support software developers, we developed a license com-
patibility tool that enables developers to cope with different license compatibility
issues in their own software distributions. For npm packages, our tool uses a vi-
sual representation of a project’s dependency tree to easily spot legal issues
throughout the different levels of the dependency graph. Our tool is based on a
GitHub project anvaka/npmgraph.an15 that constructs a dependency graph for
any given npm package using npm’s API. Currently, our tool is limited to npm
packages only but we are planning to extend it in the future to support other
package repositories as well.

Using our tool 16, maintainers of npm packages can spot possible incompati-
bilities across all levels of their dependency graph. After activating the license
incompatibility tester, the tool will highlight nodes and edges where severe in-
compatibility is identified with a red color (See Figure 7).

6 Threats to validity

The main threat to construct validity comes from imprecision in or incomplete-
ness of the data sources we used to identify licenses. We assumed that the li-
braries.io dataset represents a sound and complete list of packages and their
dependencies and licenses. In constructing our license compatibility matrix, we
consulted various sources of information. Mistakes in these sources or our inter-
pretation thereof might lead to false positives and false negatives in the compat-
ibility of a license pair. Nevertheless, to mitigate these issues we have conducted
manual inspections of samples of the data to verify their soundness.

As a threat to conclusion validity, to identify the license for a package, we only
considered the license of the latest release of each package. It could be possible

15 https://github.com/anvaka/npmgraph.an
16 https://doi.org/10.5281/zenodo.5913761

https://github.com/anvaka/npmgraph.an
https://doi.org/10.5281/zenodo.5913761

Prevalence and Evolution of License Violations in npm and RubyGems 15

Fig. 7: Screenshot of the license compatibility checking tool.

that some packages have changed their licenses before. However, previous studies
have shown that software projects do not usually change their licenses and when
they do, they usually migrate to less restrictive licenses [12]. The latter finding
means that only considering the license of the latest package releases may lead to
an underestimation of the severity of license violations in dependency networks,
since older releases of used packages are linked to more restrictive licenses.

Another threat to conclusion validity stems from the fact that whenever faced
with uncertainty on the compatibility of a license pair, it was marked as “Un-
known”. Thus, only the most severe incompatibilities were marked as incompati-
ble. Moreover, we only studied packages with a single license. However, we found
that the proportion of packages with multiple licenses is small leading to a small
proportion of dependencies without a compatibility status “Unknown”.

We have also found many packages without a license, which led us to mark any
license pair with the format (, None) as incompatible 17. It could be possible
that some of these packages without a license intentionally neglected to include
a license, which means that our results here represent an overestimation with
respect to license incompatibility with dependencies without a license.

7 Conclusion

This study evaluated the severity of license violations across transitive dependen-
cies of npm and RubyGems packages. We hypothesized that due to the complex-
ity of manually assessing compliance across all levels of a dependency tree, there
would be more incompatibilities caused by deeper-level dependencies. Contrary
to the hypothesis, this study has shown that deeper-level dependencies cause
fewer incompatibilities than those at the shallow levels. Besides dependencies

17 In (, None), “ ” refers to dependent with any license and None refers to dependency
without a license.

16 Ilyas Säıd Makari et al.

without a license, we found that GPL dependencies are the major cause for in-
compatibilities, and that they are more present in the first level of dependency
trees. Furthermore, this study has also shown how a set of packages created by
a single organization can influence an ecosystem when it consistently releases
useful packages under a particular license. For future work, we plan to inves-
tigate the impact of the license preferences of an individual or organisation in
OSS package repositories even further. Finally, to assist developers in detecting
and resolving these issues, we have created a graphical tool out of the algorithm
at the heart of our empirical study.

Acknowledgments

This research was partially funded by the Excellence of Science project 30446992
SECO-Assist financed by F.R.S.-FNRS and FWO-Vlaanderen.

References

1. Georgia M Kapitsaki, Frederik Kramer, and Nikolaos D Tselikas. Automating the
license compatibility process in open source software with spdx. Journal of Systems
and Software, 131:386–401, 2017.

2. GR Gangadharan, Vincenzo DAndrea, Stefano De Paoli, and Michael Weiss. Man-
aging license compliance in free and open source software development. Information
Systems Frontiers, 14(2):143–154, 2012.

3. David A. Wheeler. The free-libre / open source software (floss) license slide,
September 2007.

4. Georgia M Kapitsaki, Nikolaos D Tselikas, and Ioannis E Foukarakis. An insight
into license tools for open source software systems. Journal of Systems and Soft-
ware, 102:72–87, 2015.

5. Maria Kechagia, Diomidis Spinellis, and Stephanos Androutsellis-Theotokis. Open
source licensing across package dependencies. In 2010 14th Panhellenic Conference
on Informatics, pages 27–32. IEEE, 2010.

6. Shi Qiu, Daniel M German, and Katsuro Inoue. Empirical study on dependency-
related license violation in the javascript package ecosystem. Journal of Informa-
tion Processing, 29:296–304, 2021.

7. Alexandre Decan and Tom Mens. What do package dependencies tell us about
semantic versioning? IEEE Transactions on Software Engineering, 2019.

8. Sivan Michaeli. Top 10 open source software licenses of 2016 and key
trends. https://resources.whitesourcesoftware.com/blog-whitesource/top-10-open-
source-software-licenses-of-2016-and-key-trends, January 2017.

9. Ben Balter. Open source license usage on github.com. https://github.blog/2015-
03-09-open-source-license-usage-on-github-com/, March 2015.

10. Openbsd copyright policy.
11. Brian Reid. Kea to be released under mozilla public license 2.0, December 2015.
12. Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano

Di Penta, Daniel German, and Denys Poshyvanyk. License usage and changes:
a large-scale study of java projects on github. In 2015 IEEE 23rd International
Conference on Program Comprehension, pages 218–228. IEEE, 2015.

	Lecture Notes in Computer Science
	Introduction
	Background and Related Work
	Software Licenses
	License Compliance
	Studies on License Compliance in Dependency Networks

	Research Method
	Results
	Discussion
	Threats to validity
	Conclusion

