
LiFUSO: A Tool for Library Feature Unveiling
based on Stack Overflow Posts

Camilo Velázquez-Rodrı́guez
Vrije Universiteit Brussel

Brussels, Belgium
camilo.ernesto.velazquez.rodriguez@vub.be

Eleni Constantinou
Eindhoven University of Technology

Eindhoven, The Netherlands
e.constantinou@tue.nl

Coen De Roover
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract—Selecting a library from a vast ecosystem can be
a daunting task. The libraries are not only numerous, but
they also lack an enumeration of the features they offer. A
feature enumeration for each library in an ecosystem would
help developers select the most appropriate library for the
task at hand. Within this enumeration, a library feature could
take the form of a brief description together with the API
references through which the feature can be reused. This paper
presents LiFUSO, a tool that leverages Stack Overflow posts to
compute a list of such features for a given library. Each feature
corresponds to a cluster of related API references based on the
similarity of the Stack Overflow posts in which they occur. Once
LiFUSO has extracted such a cluster of posts, it applies natural
language processing to describe the corresponding feature. We
describe the engineering aspects of the tool, and illustrate its
usage through a preliminary case study in which we compare
the features uncovered for two competing libraries within the
same domain. An executable version of the tool is available
at https://github.com/softwarelanguageslab/lifuso and its demon-
stration video is accessible at https://youtu.be/tDE1LWa86cA.

Index Terms—software ecosystems, features, libraries, Stack
Overflow

I. INTRODUCTION

Reusing functionality provided by third-party libraries has
become common practice [1]. For most programming lan-
guages, libraries nowadays form vast ecosystems supported by
central repositories such as Maven Central and NPM Registry.
As the number of libraries grows, some are bound to offer
similar features [2]. For example, Maven Central has at the
moment of writing, 73 different libraries that provide reusable
implementations of collection data types.1 From the brief de-
scription of each library (e.g., README files or introductory
texts on websites of libraries), one can infer that they provide
different kinds of collections (e.g., maps, sets, queues), but the
range of features offered is not immediately clear (e.g., specific
utility methods for sorting, reversing, filtering or transforming
collections), neither how these features should be used (e.g.,
a single static method call, an instance method of a class that
needs to be instantiated, three methods needed to be called
together), nor how each library compares to others on the
offered features.

At selection time, developers need to select one or more
libraries from a solution domain (e.g., PDF generation, mock-
ing). Current tool support is often based on popularity metrics

1https://mvnrepository.com/open-source/collections

(e.g., number of stars or downloads) [3] instead of on the actual
features that libraries have to offer [4]. As a consequence, less
popular libraries that offer more features or features that are
easier to use might never get selected.

As a foundation for tools that support developers in feature-
based library selection, we have proposed a data-driven ap-
proach to uncovering library features from Stack Overflow
(SO) posts [5]. SO posts with library usages represent a
unique opportunity for API mining because of their focus
on a particular task. Additionally, these posts contain natural
language descriptions around code snippets, adding meaning
to the referenced code. Our approach computes features as
clusters of API references labelled by a description of the
functionality they implement. In this follow-up tool paper,
we present LiFUSO, the first tool to combine a prototype
implementation of the approach with a graphical user interface.
We explore the engineering aspects of LiFUSO and present a
case study illustrating the intended usage of the tool.

II. LIFUSO

This section describes the architecture of LiFUSO and the
main design choices made in its implementation. We refer the
reader to Velázquez-Rodrı́guez et al. [5] for a detailed descrip-
tion and evaluation of the approach implemented by LiFUSO.
Figure 1 depicts a summary of how the approach computes
the features for a given library, and how LiFUSO visualises
them. Section II-B will give insights into the implementation
of these steps.

A. Summary of the Approach

The input of LiFUSO is a target library for which features
need to be computed. Our tool requires that the groupID and
artifactID (e.g., com.google.guava and guava respec-
tively) of at least one version of the library is available from
the Maven Central repository. The name of the target library
also needs to be a valid SO tag.2

The first step collects the names of API elements (i.e., public
classes, methods, fields) as well as answers from SO that might
contain a usage of these elements by downloading all versions
of the library from Maven and processing their bytecode.

2https://stackoverflow.com/tags



Library

Answers
from SO

Public API 
Names

Answers 
with Code 

Filtered
Answers

Island
Parser

Cluster

Features

Name
Clusters

Calculate
Similarity

Similarity
Matrix

AB
C

D

Selected
Clusters

Collecting Information Filtering

API Usage
Information

Clustering and Naming

Representing Features
Named
Clusters

Name
Selection

Named Clusters 
with 

Selected Names

API Reference
Selection

Processed
Clusters

Creating Visual Interface
Calculate Shared and 

Unique Features
Features per Library and

Comparison Features

Render Visual InterfaceLiFUSO GUI

Fig. 1. Summary of the approach implemented by LiFUSO.

SO answers are obtained from the SOTorrent dataset [6]3 by
searching posts with the name of the library among their tags.

The subsequent Filtering step excludes answers without any
code snippets as we are interested in showing code usages
with an associated name to potential users. As SO code
snippets are not necessarily complete nor syntactically correct,
LiFUSO relies on a robust parser generated by a custom-
built island grammar to this end. Our custom parser focuses
on the syntactic constructs in which method invocations can
occur. For a single invocation within a variable declaration or
expression statement, it produces the name of the statically
declared type of the receiver expression followed by the
name of the invoked method (e.g., JSoup.parse). For a
chain of successive invocations, common for libraries with a
fluent API, it produces the statically declared type of the first
receiver expression followed by the names of the successively
invoked methods (e.g., Document.body.text). In case a
code snippet contains API references from the library under
analysis, the extracted usages, as well as their surrounding
text, are stored for further processing.

The Clustering and Naming step first constructs a matrix
of the Jaccard similarity between all SO answers based on
their usage of the library’s API elements. Next, it applies
hierarchical clustering to the matrix and by means of a
dynamic cut tree technique [7] selects the optimal cutting
point to form clusters. The resulting clusters are groups of
which the elements are close to one another yet far from
the elements in other clusters. Using the local outlier factor
(LOF) [8] technique, the most frequent API elements within
the cluster are identified (i.e., the local outliers). In case LOF
cannot determine such elements, the cluster is discarded.

A semantic tree [9] is computed for the sentences in the
title of and in the text surrounding each SO answer. For each
noun and verb, the direct typed dependencies on another verb

3November 16th, 2020 version from https://zenodo.org/record/4287411

or noun are analysed to extract pairs of the form noun-verb
or verb-noun. The most frequent verbs and nouns in the pairs
(using LOF once again) are retained as candidates for the name
of the feature.

Although the clusters have now been computed according
to our previously-published approach, the LiFUSO tool still
needs a way to represent them to the developer. In step
Representing Features, LiFUSO selects the top-5 most fre-
quent pairs as the representation of the name of the feature.
We found that selecting more frequent pairs (e.g., top-10,
top-20) hinders discerning interesting features among several
displayed next to one another, and encumbers understanding
individual features displayed in isolation. As the representation
for the API references in the clustered snippets, LiFUSO
displays only those extracted through the LOF technique in a
previous step. As such, clusters with the most frequent name
pairs and API references are outputted.

The actual visualisation is produced in the Creating Visual
Interface step. Depending on the view selected by the de-
veloper, the features common to a set of libraries as well as
features unique among a set of libraries are computed and
displayed. Individual features can be inspected in detail too.

B. Implementation

LiFUSO implements the above approach using a series of
components, each responsible for a separate data processing
step. All steps up to and including the computation of the
shared and unique features are pre-computed and their results
are persisted. The tool’s graphical user interface (GUI) uses
the pre-computed information, so navigation is swift. The
following choices were made in the implementation of each
component:
Collecting Public API Names Implemented in Scala, this

component uses the requests library4 to query Maven

4https://github.com/com-lihaoyi/requests-scala



Central for all versions of a library. Once their JAR
files have been downloaded, the names of the public API
elements are extracted by processing their bytecode using
the Apache BCEL5 library.

Collecting SO Answers with Code The Scala implementa-
tion of this component uses the JSoup6 library to process
the HTML of each SO answer that has the name of the
library among its tags. Answers without a code block
are discarded.

Extracting Natural Language Terms The Java implemen-
tation of this component uses the Stanford NLP Toolkit7

to extract the natural language terms from the title of and
the text surrounding the remaining SO answers.

Extracting API Usage Information We constructed an is-
land parser with the help of the parboiled8 library.
Using the API usage information extracted by the parser
for each SO answer, we used the Jaccard similarity to
construct a similarity matrix.

Clustering To compute the clusters given the similarity ma-
trix, we used the hclust function in the stats package
from the R standard library and relied on the dynamic tree
cut feature of the third-party dynamicTreeCut9 library.

Cluster Selection and Naming To discard low-quality clus-
ters without frequent API references, we used the LOF
implementation provided by the scikit-learn10 library of
Python. We rely on reticulate11 for the interoperability be-
tween R and Python. All other data between components
is exchanged through CSV and TXT files. The previously
extracted natural language terms are now used to name
each remaining cluster.

Extracting Feature Representations As mentioned, the top-
5 most frequent verb-noun pairs are extracted as the
name representation whereas API references filtered by
LOF are selected for the code part of the feature. The
usage frequency of the API references in all clustered
code snippets is also calculated and included in the
feature information. We implemented these frequency
calculations using the R programming language.

Calculating Common and Unique Features Every pair of
two libraries in the ecosystem is considered and their
features are compared. The comparison focuses on the
names produced for their features: if two features from
different libraries have a common name (i.e., a verb-noun
pair), then these features are included in those considered
shared by the two libraries. Conversely, if no other library
has a feature with the same name, then that feature
is considered unique to the library under analysis. We
implemented this comparison in the Julia programming
language.

5https://commons.apache.org/proper/commons-bcel/
6https://jsoup.org/
7https://nlp.stanford.edu/software/
8https://github.com/sirthias/parboiled
9https://cran.r-project.org/web/packages/dynamicTreeCut/
10https://scikit-learn.org/stable/index.html
11https://rstudio.github.io/reticulate/

Graphical User Interface We used the Nuxt12 framework for
JavaScript to implement the tool’s graphical user inter-
face. Through this interface, users can explore features
present in an ecosystem and compare libraries to one
another. Currently, the interface only supports selecting
two libraries for comparison. Future improvements will
support comparing a selection of multiple libraries.

The polyglot nature of our implementation is due to our
decision to select a programming language and the third-party
libraries for each component separately.

C. Graphical User Interface

(A)

(B)

(C)
Library Names

Feature Names

API References

Fig. 2. Front page of LiFUSO with the Search functionality tab activated.

Figure 2 depicts the main interface through which users
can explore the features of a library. The tab bar surrounded
by the rectangle labelled A, enables switching between the
feature Search and the library Compare features of the tool.
The Search tab is active by default and contains the elements
with labels B and C. The search box with label B enables
searching through the features uncovered for the ecosystem
using natural language queries, which are matched against the
feature names. Example queries include “collection”, “filter
collection”, “create chart”, or “extract image”.

Features that match the query are displayed in a grid of
feature views labelled C. Each individual feature view depicts
the following information:
Library Name Centered in red at the top of the box (e.g.,

jfreechart).
Feature Name Collection of frequent verb-noun pairs de-

scribing the feature. Each noun is rendered in a bolder
font, and followed by the verbs that are commonly used
together with that noun.

API References The most frequent API references from SO
posts to that feature are shown in a darker colour at
the bottom of the box. The percentage shown next to
each reference corresponds to the frequency at which the
reference occurs within the SO posts clustered together
for the feature.

12https://v3.nuxtjs.org



Figure 3 shows the Compare tab activated and its widgets.
The two combo boxes in the rectangle labelled D are populated
with the libraries in the ecosystem, and enable selecting the
two libraries of which the features need to be compared.

III. CASE STUDY

We now report on a small case study in which we use
LiFUSO for a feature-based comparison of the ITextPDF and
PDFBox libraries. While these libraries differ in their actual
API, we expect them to offer similar features as both are
intended for manipulating PDF files. We should therefore be
able to spot shared natural language terms for the names of
the features computed by LiFUSO, as well as some that are
unique to each library.

A. Use of LiFUSO in the Case Study

We configured LiFUSO with the appropriate groupID and
artifactID for the two libraries. The number of initial SO
answers with at least one tag with the name of the libraries is
8,511 and 2,643 for ITextPDF and PDFBox respectively. The
remaining number of answers after the processing described
in Section II is 3,004 and 945 respectively.

(D)

Fig. 3. Shared features for the studied libraries.

The tool was able to compute 70 features for ITextPDF and
36 features for PDFBox. We used the Compare tab of the
GUI to select these two libraries. Figure 3 depicts features in
common to each of the libraries. First, a list of checkboxes is
displayed, each of which corresponds to a shared feature. The
number of features being shared is 13. Upon any checkbox
activation, the corresponding features in each library with the
same name are shown in the view below the checkboxes. The
left and right sides of the view depict the shared features of the
library selected in the left and right combo box respectively.
This view enables seeing how two competing libraries offer
the same feature in different ways, and to inspect their API
differences. In the case of Figure 3, the feature create pdf
is shared by both libraries and is therefore displayed on both
sides of the view. ITextPDF has four features that include
create pdf as name, whereas PDFBox has two.

Several features are unique to ITextPDF and PDFBox, as
depicted in Figure 4. In particular, the features about font

Fig. 4. Unique features for the studied libraries.

register, font use and show instruction seem to
be unique to the ITextPDF library. Alternatively, PDFBox
appears to have some unique functionalities about the set
of values for text fields and variables (e.g., value be)
and the specification of a signature for a field (e.g., sign
field, put field, sign field, specify field,
etc.). Other interesting unique features of ITextPDF are add
cell, set appearance and read bookmark. Con-
versely, convert image, merge file, and replace
image seem unique to PDFBox.

To verify whether the unique features of a library are not
implemented in the library being compared to, we still need
to consult the developers of both libraries or to manually
inspect their documentation. We leave this for our immediate
future work. Note, however, that we have already compared
the features computed for PDFBox against online tutorials
for the library during the actual quantitative evaluation of the
approach underlying the LiFUSO tool [5].

IV. CONCLUSION

We presented LiFUSO as a data-driven tool for enumerating
the features offered by the libraries in a software ecosystem. To
this end, the tool processes Stack Overflow posts, including the
API references within their snippets and the natural language
terms in the surrounding sentences. LiFUSO extracts the API
references by means of a tailor-made island parser. Similarities
between the API references within the snippets are calculated
to finally return features as clusters, named according to the
most frequent noun-verb pairs in the surrounding sentences. In
this tool paper, we described the engineering aspects of the tool
and reported on a small case study in which we conducted a
feature-based comparison of two libraries in the same domain.

ACKNOWLEDGEMENTS

This research was carried out in the context of the Exce-
llence of Science project 30446992 SECO-ASSIST financed
by FWO-Vlaanderen and F.R.S.-FNRS.



REFERENCES

[1] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured approach
to assess third-party library usage,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 483–492.

[2] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, Studying Evolving
Software Ecosystems based on Ecological Models. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 297–326. [Online]. Available:
https://doi.org/10.1007/978-3-642-45398-4 10

[3] R. El-Hajj and S. Nadi, “LibComp: An IntelliJ Plugin for Comparing
Java Libraries,” The 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1591–1595, 2020.

[4] E. L. Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting Third-Party Libraries: The Practitioners’ Perspective,” The
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 245–
256, 2020.

[5] C. Velázquez-Rodrı́guez, E. Constantinou, and C. De Roover, “Uncover-
ing library features from API usage on Stack Overflow,” in Proceedings of
the 29th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER 2022), 2022.

[6] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Reconstruct-
ing and Analyzing the Evolution of Stack Overflow Posts,” in The 15th
International Conference on Mining Software Repositories (MSR 2018),
2018, pp. 319–330.

[7] P. Langfelder, B. Zhang, and S. Horvath, “Defining clusters from a hierar-
chical cluster tree: the Dynamic Tree Cut package for R,” Bioinformatics,
vol. 24, no. 5, pp. 719–720, 2008.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
Density-Based Local Outliers,” in The 2000 ACM SIGMOD International
Conference on Management of Data, 2000, pp. 93–104.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in The 52nd Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, 2014, pp. 55–60.


