
Mining for Framework Instantiation Pattern
Interplays

Yunior Pacheco
Vrije Universiteit Brussel

Brussels, Belgium
yunior.pacheco.correa@vub.be

Ahmed Zerouali
Vrije Universiteit Brussel

Brussels, Belgium
ahmed.zerouali@vub.be

Coen De Roover
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract—Software frameworks define generic application
blueprints which can be instantiated into an application through
application-specific instantiation actions such as overriding a
method or providing an object that implements an interface.
In case the framework’s documentation falls short, developers
may use other instantiations of the same framework as a guide
to the required instantiation actions. In this paper, we propose an
automated approach to mining framework instantiation patterns
from existing open-source instantiations. The approach leverages
a graph-based representation to capture the common ways of
implementing instantiation actions as well as their interplays,
so called instantiation interplays. As a case study, we mined for
patterns in a set of 2,028 Java projects that instantiate four of
the most popular Java frameworks. We also classify the extracted
interplays according to the different contexts in which they occur.
We found that our approach discovers relevant practices and
interplays that are not covered by previous approaches. Our
results will allow developers to have a better understanding of
the frameworks they instantiate.

Index Terms—Software Framework, Instantiation Patterns,
Graph Mining, Mining Software Repositories

I. INTRODUCTION

Frameworks intend to reduce the cost of application devel-
opment by providing reusable concepts at the design and code
level. Well-designed frameworks adhere to the open-closed
principle, i.e., their implementation is closed for modification
but open for extension through an API [1]. The process
through which developers extend and adapt a framework to the
specific requirements of their application is called framework
instantiation. The corresponding instantiation actions taken
typically consist of registering callbacks, calling framework
methods with a parameter that implements an interface, over-
riding methods, calling the framework’s super methods and
declaring application-specific classes that subtype framework
types [2], [3]. We call these classes client classes. Instantiating
a framework might therefore require a deep understanding of
these actions, and their interplays (i.e., relationships between
framework types in the client code). For instance, which client
classes usually collaborate together.

An example of interplays can be found in the documentation
of the ProvidesResize interface of the Java framework GWT1.
It reads “With limited exceptions (such as RootLayoutPanel),
widgets that implement this interface will also implement

1http://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/
ProvidesResize.html

RequiresResize”. In this case, we can observe an explicit
relationship between two framework types: ProvidesResize and
RequiresResize.

Developers who are aware of these internal designs can
correctly choose among alternative ways to implement the
instantiation actions, to structure their code accordingly, and
to use the framework API as efficiently as possible [4]. As
a result, the development effort could be reduced. The larger
and more sophisticated the framework, the more difficult this
challenge will be, due to specific requirements and relation-
ships between its components that are sometimes difficult to
unravel.

To help framework users, several approaches [1], [5]–[8]
have been proposed that augment a framework’s documen-
tation by mining information from example instantiations.
However, these approaches do not provide explicit informa-
tion about the interplays and dependencies that are required
between instantiation actions. Following the example above,
existing approaches would provide information on how to
implement ProvidesResize in isolation and independently from
RequiresResize.

In this paper, we present a novel approach to discovering
common framework instantiation actions and their interplays.
These common practices are found by mining for frequent
subgraph patterns in a graph-based representation of the
instantiation actions found in applications that instantiate
the framework. Their interplays are found by scanning the
resulting graph patterns for connections between nodes that
represent client classes.

More specifically, we use a prototype implementation of the
approach to empirically investigate the prevalence of instan-
tiation interplays in the process of instantiating frameworks.
Our aim is to shed light on how much information is missed
by existing mining approaches. To this end, we apply the
prototype to 2,028 real-world client applications instantiating
four popular Java frameworks (JavaFx, GWT, Spring and
Play), and investigate how many interplays developers have
to manage in real-world projects as well as of what type they
are according to a preliminary classification strategy.

II. MOTIVATING EXAMPLE

To motivate the need for mining approaches that uncover the
interplays between frequent framework instantiation actions,

we use the actions required to customize the appearance of
the TableView element of the JavaFx framework2. Its docu-
mentation reads as follows: “The visuals of the TableView can
be entirely customized by replacing the default row factory
[...] In many cases, this is not what is desired however, as it
is more commonly the case that cells be customized on a per-
column basis, not a per-row basis [...] You can create custom
TableCell instances per column by assigning the appropriate
function to the TableColumn cell factory property.”

Listing 1: Example of customizing a JavaFx TableView
1 TableView<Item>table=new

TableView<>(FXCollections.observableArrayList
(new Item(Feeling.Happy), new
Item(Feeling.Happy))

2
3 TableColumn<Item, Feeling> feelingColumn =

new TableColumn<>("Feeling");
4 feelingColumn.setCellFactory(new

Callback<TableColumn<Item, Feeling>,
TableCell<Item, Feeling>> {

5 @Override
6 public TableCell<Item, Feeling> call

(TableColumn<Item, Feeling> param) {
return new EmojiCell<>();

7 }});
8
9 table.getColumns().add(feelingColumn);

10 public class EmojiCell<T> extends
TableCell<T, Feeling> {

11 private final ImageView image;
12 public EmojiCell() {...}
13 @Override
14 protected void updateItem(Feeling item,

boolean empty) {
15 super.updateItem(item, empty);
16 if(empty || item ==null) {
17 setText(null);
18 image.setImage(null);
19 } else {
20 image.setImage(item.getEmoji());
21 setText(item.getValue()); }}}

Listing 1 depicts an excerpt of an example implementation
of the instantiation process described above. To customize the
rendering of the cells displayed in a TableView object, new
instances of the framework class TableView and TableColumn
are created on line 1 and 3 respectively. Line 4 calls the set-
CellFactory() on the latter instance and passes as an argument
a Callback implementation in the form of an anonymous class
declaration. Next, line 6 overrides the method call() to create
a TableCell instance and return it. The returned instance is of
the application-specific subtype EmojiCell defined on line 10,
which overrides method updateItem() on line 14.

As illustrated by the above code extract, the instantiation
actions that need to be realized in client code can be intricately
related to each other. Moreover, their importance is re-affirmed
by the framework’s documentation, which describes them

2https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/
TableView.html

more or less explicitly. The most interesting point is the close
interplay between the actions to instantiate the framework
types TableView and TableCell. We need to extend the be-
havior of the TableCell through the setCellFactory() method
in TableColumn in order to customize a TableView object.

The work of Asaduzzaman et al. FEMIR [3] is the most
relevant and related research to our work. The authors define
the concept of Extension Points as: “means provided by a
framework, which allow developers to customize its behavior,
to meet specific application requirements”. In the context
of their work an extension point is a framework type that
constitutes the formal parameter of a call into the framework.
A common way of using such an extension point (i.e., an
extension point usage) is by calling the framework method
with an instance of the framework type itself, or with an
instance of a user-defined subtype that overrides some of the
inherited methods.

In Listing 1, TableColumn in the overridden method call()
(line 6) as well as Callback in the method setCellFactory()
(line 4) are extension points because these methods take at
least one parameter of a framework-related element, i.e., a
framework class instance (i.e., param) and an anonymous
class declaration (i.e., new Callback {...}), respectively. Al-
though this approach is capable of mining code examples to
discover extension point usages and extension patterns for
each framework class and therefore get an idea of how a
certain framework element should be instantiated, interplays
between different instantiation actions are not captured. For
this example, FEMIR can provide recommendations on how
to use TableColumn or Callback but is not capable of capturing
the reference to a different instantiation action (subclassing
TableCell), meaning that the relationship between TableView
and TableCell is missed.

III. RELATED WORK

Next to the most closely-related work by Asaduzzaman et
al. [3] discussed above, more framework instantiation action
mining approaches have been proposed earlier. Heydarnoori et
al. [9] automatically extract concept-implementation tem-
plates from dynamic traces of example applications, while
Lafeta et al. [10] present documentation in a cookbook
style, where recipes consist of programming tasks and in-
formation about hotspots related to a feature instantiation.
Both approaches are supported by dynamic analysis, which
considerably limits their applicability in large-scale studies
into framework Instantiation.

Michail [11], [12] presented CODEWEB, a tool that ad-
dresses the problem of discovering library classes and member
functions, using generalized association rules. Bruch et al.
[6] proposed FRUIT, an Eclipse plug-in relying on data
mining techniques that extracts reuse patterns from existing
framework instantiations to create framework usage scenarios
based on five class properties (extends, implements, overrides,
calls, and instantiations). Thummalapenta and Xie [1] pre-
sented SPOTWEB, which assists developers in understanding
and reusing a given framework by detecting hotspots (i.e.,

2

frequently used APIs) and coldspots (i.e., barely used APIs).
Bruch et al. [5] proposed CORE, an approach that pro-
vides pieces of documentation related to how to subclass a
framework class or how to override a framework method, by
mining four kinds of documentation items. It bears repeating
that none of these approaches fully capture information about
the interplays between and the relations among instantiation
actions.

Instead of mining examples for instantiation actions, an
alternative group of approaches intends to support framework
users by requiring framework developers to document the
instantiation process in a machine-readable format.

Ortigosa et al. [13] propose an intelligent agent to guide
developers through the instantiation process based on rule-
based information specified by the framework developer. The
agent cannot provide any help on undocumented features.
Dagenais and Ossher proposed XFINDER [14] which locates,
semi-automatically, implementation examples from a code
base given the lightweight documentation of a framework.
In other words, the framework documentation is used as a
template and XFINDER finds instances of the template within
the code base.

Several approaches [15]–[21], leverage the so-called Reuse
Description Language, which allows specifying the instantia-
tion process as a series of programming activities such as class
extension, method redefinition, and design pattern application.
Similarly to Ortigosa’s work and XFINDER, the framework
design must be annotated using UML-FI stereotypes and
tagged values, and a Feature Model should be created to
represent the framework features.

Another smaller number of approaches focus on assisting
the framework instantiation process using the API documenta-
tion. The work of Montperrus [22] describes a comprehensive
taxonomy of 23 types of directives present in API documen-
tation, while Yu Zhou et al. developed DRONE [23], [24],
a framework for automatically detecting and repairing defects
in API documentation.

IV. FRAMEWORK INSTANTIATION INTERPLAY MINING

Our approach to mining instantiation patterns consists of
two components: 1) a source code importer and 2) a pattern
miner. Figure 1 depicts the interactions between these two
components.

Listing 2: Instantiation action in source code, client class
declaration.

1 public class MessageBoxController implements
Initializable {

2 public AnchorPane root;
3 @Override
4 public void initialize(URL arg0,

ResourceBundle arg1) {}
5 ...
6 private MessageBox getMessageBox() {
7 return (MessageBox)

root.getScene().getWindow();
8 }
9 private void hide() {

10 getMessageBox().hide();
11 }}
12 public class MessageBox extends Stage { ... }

A. Source Code Importer

Client code from open source projects provides valuable
scenarios on how to instantiate application frameworks. To
extract instantiation information from client code, we have
developed a source code importer. This component accepts a
framework name as the input and collects, from a repository,
open source software projects that contain framework instan-
tiation examples. We search the repository using the import
statements in Java source files.

Following that, we perform static analysis on the source
code of selected projects. As potential evidence for these
realizations, our prototype implementation considers all oc-
currences of a subtyping relation between a client type and
a framework type in the source code (i.e., a named or
anonymous class declaration in the client code that extends
a super class provided by the framework or that implements
an interface provided by the framework). Throughout the
remainder of the paper we consider an Instantiation Action as
the result of a client class declaration that subtypes a frame-
work type. Listing 2 shows an example of an instantiation
action in the project 7thwheel/medaka-chan3; a client
class declaration (i.e., MessageBoxController) implementing a
JavaFx framework interface (i.e., Initializable).

For each client declaration in an instantiation action, the
importer identifies the extended class, the implemented in-
terfaces, the newly declared fields, and the newly declared
and overriding method declarations. In addition, their body is
scanned for all method calls of which the statically-declared
type of the receiver expression is a framework type or a
client type that is subtype thereof. The same goes for instance
creation expressions. The Eclipse JDT parser is used for
parsing and type binding resolution.

All this extracted information is used to construct a graph-
based representation called Instantiation Graph

Instantiation Graph. We construct an instantiation graph
for each instantiation action to describe how it has been created
and how it could be related to other framework elements and
instantiation actions. Notice that since multiple instantiation
actions can occur within a single project, we can obtain
multiple instantiation graphs in each project. Figure 2 depicts
the instantiation graph generated for the instantiation action
shown in Listing 2. A framework instantiation graph consists
of the following types of nodes:
- Outer call: a method call where it receives an anonymous
class declaration as an argument.
- Framework type: a class or interface type provided by the
framework.
- Client type: a client class declaration, anonymous or not, that
extends or implements a framework type. At the core of each
instantiation graph there is a Client type node, that we call

3https://github.com/7thwheel/medaka-chan

3

Instantiation actions

Classes

Methods

Types

Variables

Pre-processed

instantiation graphsInstantiation patterns

Instantiation
interplays

Project

Builder

Code
Analyser

Interplay
Scanner

Graph
Importer

Frequent
subgraph

Miner

.dot files Neo4j database

Instantiation graphs
Graph

Exporter
Graph

GeneratorSource code

Source Code Importer

Pattern Miner

Fig. 1: Overview of the approach

the main Client type to differentiate it from other Client type
nodes in the graph that represent external instantiation actions.
- Field declaration: a field of the class whose type is related to
the framework.(i.e., either a Framework type or a Client type).
- Parameter declaration: a parameter of a method declaration
whose type is related to the framework.
- Variable expression: a variable used in the body of a method
declaration, whose type is related to the framework. The
variable can reference a field of the class, a parameter of the
method declaration or can be the result of a constructor or a
method call.
- Overriding method declaration: a method declared in a client
type that overrides a framework method.
- Client method declaration: a method declared in a client
type. To be included in the graph, the client method declaration
must have in its body or signature a reference to an external
instantiation action.
- Framework method call: a method call whose receiver type
is related to the framework.
- Constructor call: a constructor that instantiates a type related
to the framework.
- Super method call: a super method called by an overriding
method.

In the instantiation graphs, the edges represent dependencies
between the nodes (i.e., subtyping declarations or actions).
In general the edge labels are self-explanatory, for example,
edges with label Implement or Extend represent inheritance
relationships between a Client type node and a Framework
type node. In the same manner the Call label represents actions
between a Variable expression node and Framework method
call or Constructor call nodes. More details on the generated

instantiation graphs can be found in the replication package.4

Instantiation Interplays. Figure 2 de-
picts two Client type nodes with labels
seventhwheel.pos.controller.MessageBoxCon-
troller and seventhwheel.pos.control.Messag-
eBox. The first one is adjacent to the Framework type
node with label javafx.fxml.Initializable.
This means that this client class extends the framework
interface Initializable. The other Client type node
is adjacent to the Client method declaration node with
label seventhwheel.pos.c- ontrol.MessageBox
getMessageBox() and to the Framework type node with
label: javafx.stage.Stage. This means that the method
getMessageBox() declared in this client class returns a
client type that extends the framework class Stage. Note that
there is a reference to an instantiation action (MessageBox
extends Stage) inside the body of another instantiation
action (MessageBoxCo- ntroller implements
Initializable). This is an example of what we refer to
as instantiation interplay.

We define an instantiation interplay as the relation between
an instantiation action on a framework type, which we call
main, and another instantiation action on a framework type,
which we call related. 5

In the above example, a relationship is established be-
tween the instantiation action of the framework interface

4https://github.com/ypacheco/Mining-for-Framework-Instantiation-Pattern-
Interplays/

5The relation occurs if within the implementation of a main instantiation
action we find a reference of another (i.e., related) instantiation action. As we
can find various instances of related instantiation actions within the body of a
main instantiation action (i.e., different client class declarations that subtype
different frameworks types), it is possible to find an interplay involving several
frameworks types.

4

seventhwheel.pos.controller.MessageBoxController

javafx.fxml.Initializable

IMPLEMENT

root

DECLARE_FIELD

void initialize(java.net.URL,java.util.ResourceBundle)

OVERRIDE

seventhwheel.pos.control.MessageBox getMessageBox()

DECLARE_METHOD

javafx.scene.layout.AnchorPane

OF_TYPE

seventhwheel.pos.control.MessageBox

RETURN

VAR0

INSTANTIATE

root

INSTANTIATE

javafx.stage.Stage

EXTEND

javafx.scene.Scene

OF_TYPE

getWindow()

CALL

javafx.scene.Node

OF_TYPE

getScene()

CALL

Fig. 2: Instantiation graph generated from the instantiation action in Listing 2.

Initializable, which is considered the main framework
type, and the instantiation action of the framework class
Stage, which is considered the related framework type. In
some cases the interplay occurs between two instantiation
actions that extend the same framework type. We consider
this case an instantiation interplay because although the two
instantiation actions extend the same framework type, they are
different actions.

Types of Instantiation Interplays. As previously men-
tioned, the instantiation actions can be the result of a named or
an anonymous class declaration that subtype a framework type.
Considering that an instantiation interplay is composed of two
instantiation actions, main and related, there are four possible
scenarios in which an interplay is classified according to how
the instantiation actions involved are implemented: Client-
Client, Client-Anonymous, Anonymous-Client, Anonymous-
Anonymous.

In the example of Figure 2 both instantiation actions corre-
spond to named client classes (MessageBoxController
and MessageBox) thus the interplay is classified as Client-
Client. These types of interplays can help framework design-
ers in verifying how client applications implement elements
intended to be reused anonymously, e.g., through the use of
events or callbacks.

In order to describe the instantiation interplays not only
by the scenarios in which the main and related instantiation
actions may be realized, we categorize them according to the
context (in the body of the main instantiation action) in which
references to the related instantiation action are found:
- Field declaration: a field declared in the main client class
whose type is another client class that subtypes a framework
type.
- Parameter declaration: a parameter declared in the signature
of a method in the main client class, whose type is another
client class that subtypes a framework type.
- Return type: the declared return type of a method in the main
client class is another client class that subtypes a framework
type. The above example occurs in this context.
- Instantiation: a client class instantiated in the body of a
method in the main client class, while subtyping a framework

type.
- Method call: a framework method call in the body of a
method in the main client class, for which the statically
declared type of the receiver is another client class that
subtypes a framework type.
- Client method declaration: the interplay occurs in the body
or the signature of a client method declaration.
- Overriding method declaration: the interplay occurs in the
body or the signature of an overriding method declaration.

An instantiation interplays may be present in one or more of
these contexts. The related client class, the one that extends
the related framework type, may appear in several contexts
e.g., it may be the declared type of a field of the main client
class and the type of an instantiation expression within an
overriding method. In this case, we categorize the interplay
as the combination of all these contexts: Field declaration +
Instantiation + Overriding method declaration.

By categorizing interplays in this manner, our approach
does not only produce information about which framework
instantiation actions are often related in client projects, but
also the form this relation tends to take in the body of the
main client class.

B. Pattern Miner

In the second step, the Pattern Miner imports and pre-
processes the instantiation graphs previously generated by
the importer. The pre-processing is required as the mining
algorithm is oblivious to node types and their equality relation.
First, the labels of all nodes derived from client code are
replaced by a generic label. This operation may introduce
ambiguity; thus, for nodes representing variables, the declared
type of the variable is added to the node label. The type of
each node is also appended to their label. Figure 3 depicts the
result of pre-processing the instantiation graph of Figure 2.

After the instantiation graphs have been processed, they can
be given as input to the mining algorithm. In addition to the
pre-processed instantiation graphs, the algorithm takes as input
a minimum support value minsup and obtains the so-called
instantiation patterns. These patterns are frequent subgraphs
present in the set of all instantiation graphs. A subgraph occurs

5

CLIENT
 Client type

javafx.fxml.Initializable
 Framework type

IMPLEMENT

FIELD:javafx.scene.layout.AnchorPane
 Field declaration

DECLARE_FIELD

void initialize(java.net.URL,java.util.ResourceBundle)
 Overriding method declaration

OVERRIDE

METHOD_DECLARATION
 Client method declaration

DECLARE_METHOD

javafx.scene.layout.AnchorPane
 Framework type

OF_TYPE

CLIENT
 Client type

RETURN

VAR:javafx.scene.Scene
 Variable expression

INSTANTIATE

VAR:avafx.scene.Node
 Variable expression

INSTANTIATE

javafx.stage.Stage
 Framework type

EXTEND

javafx.scene.Scene
 Framework type

OF_TYPE

getWindow()
 Framework method call

CALL

javafx.scene.Node
 Framework type

OF_TYPE

getScene()
 Framework method call

CALL

Fig. 3: Pre-processed version of the instantiation graph from Figure 2.

frequently if its support is greater than or equal to the initially
defined minsup. The support of a subgraph is its number of
occurrences in the input set of graphs. It is possible that a
subgraph occurs more than once within a graph, in this case,
for the calculation of support, we count only one occurrence.
We consider this approach since we are interested in finding
patterns across multiple instantiation actions.

Our implementation is based on a variant of the frequent
subgraph mining algorithm from MuDetect [25], which has
been used effectively in other work [26]. This algorithm
implements the basic idea of the Apriori algorithm for mining
frequent substructures in graphs [27]. It starts by generating all
frequent singleton subgraphs and iteratively and incrementally
expands them to larger subgraphs. Our variant incorporates
a heuristic to determine the nodes that will be considered as
singleton graph seeds from which all frequent subgraphs will
be grown.

The heuristic only considers nodes of type Client type as
seed nodes, as those are the only ones involved in potential
realizations of the subtyping instantiation action. Moreover,
during the first iteration of the algorithm, the heuristic does
not consider any possible expansion of the seed nodes that
we know to typically have a very high support. By excluding
expansions that are very frequent but may have adjacent
nodes that are not (i.e., Variable expression, Client method
declaration, Framework method call), the heuristic prevents
the algorithm from generating a large number of candidate
subgraphs which will be discarded later. Note that the initially
excluded nodes remain in the search space. They will still be
considered for expansions of non-singleton subgraphs later.

Interplays in Instantiation Patterns. In the final step,
the instantiation patterns resulting from the frequent subgraph
mining algorithm are scanned for possible interplays. The
resulting patterns describe common ways of implementing
instantiation actions and their interplays, hence, they can help
novice developers to implement similar instantiation actions.
Figure 4a shows one of the patterns obtained by our approach
for the GWT framework. In this example the pattern contains
an interplay between the actions that subtype the framework
types EntryPoint and ClickHandler. This interplay is of type
Client-Anonymous and Instantiation+Overriding method dec-
laration according to the two classification strategies described

in Section IV-A. Figure 4b shows a source code example of
one of the occurrences of the pattern in Figure 4a. These
source code examples and the interplays represented in the
mined patterns could be used to recommend to a novice
developer facing an instantiation process, instantiation actions
related to the ones that are being implemented.

V. EMPIRICAL STUDY INTO INSTANTIATION INTERPLAYS

We now apply the prototype implementation of our ap-
proach to real-world framework clients. Our goal is to un-
derstand the nature of the interplays between framework
instantiation actions. More specifically, our study answers the
following research questions:

• RQ1 How prevalent are instantiation action inter-
plays?

• RQ2 What are the most common instantiation action
interplays?

To answer these questions, we mined for instantiation
patterns and their interplays in a corpus of 2,028 projects
instantiating four of the most popular Java frameworks: JavaFx
(639), GWT (185), Spring (963) and Play (241). As a source
for these projects, we used the Sourcerer JBF dataset [28]
which contains 50,000 compilable Java projects. Each project
in this dataset comes with references to all the dependencies
required to compile it, the resulting bytecode, and the scripts
with which the projects were built.

All code and data required to reproduce the analysis in this
paper is available in a replication package 7.

RQ1 How prevalent are instantiation action interplays?

To analyze the prevalence of instantiation interplays, we first
built two datasets from the Sourcerer JBF dataset. The first
dataset consists of all instantiation graphs produced by our
Source Code Importer for each of the 2,028 client projects.
These graphs provide insights into how developers instantiate
the same framework across multiple projects. The second
dataset consists of all instantiation patterns found by our
Pattern Miner in the graphs. The found patterns reveal the
common ways of implementing instantiation actions and their

6https://github.com/xinl/feedlosophor
7https://github.com/ypacheco/Mining-for-Framework-Instantiation-Pattern-Interplays

6

new Button()

VAR

CALL

addClickHandler()

CALL

com.google.gwt.user.client.ui.Button

OF_TYPE

void onModuleLoad()

INSTANTIATE

VAR

INSTANTIATE

CLIENT

OVERRIDE

com.google.gwt.core.client.EntryPoint

IMPLEMENT

ANONYMOUS

OF_TYPE

com.google.gwt.event.dom.client.ClickHandler

IMPLEMENT

(a) Instantiation pattern

public class Feedlosophor implements EntryPoint {
...
public void onModuleLoad()
{

...
// Create the popup dialog box
final DialogBox dialogBox = new DialogBox();
dialogBox.setText("Remote Procedure Call");
dialogBox.setAnimationEnabled(true);
final Button closeButton = new Button("Close");
...
// Add a handler to close the DialogBox
closeButton.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent event) {
dialogBox.hide();
sendButton.setEnabled(true);
sendButton.setFocus(true);

} });
... }}

(b) Source code example

Fig. 4: Example of a mined pattern and one of its occurrences from the project xinl/feedlosophor 6.

interplays. To find as many relevant patterns as possible, we
configured the miner with low support (i.e., minsup=2). In
what follows, we analyze the first and the second dataset to
investigate the overall prevalence of interplays in all frame-
work clients and their most common realizations respectively.

Table I summarizes the number of interplays present in
the two datasets for each framework. We found the highest
proportion of graphs and patterns containing interplays in
the frameworks GWT and JavaFx, e.g., 22% and 24.8% for
GWT, respectively. The lowest proportions were found in Play
and Spring. It is important to clarify that for instantiation
patterns this proportion is not calculated based on the total
number of patterns found, but on the number of patterns that
contain at least one node of type Framework type. These plain
statistics give us a general idea of the presence of interplays
in the analyzed frameworks. However, to analyze in depth
the prevalence of interplays in these datasets, we must also
consider other aspects.

Number of interplays per graph. The first aspect to con-
sider is the distribution of the number of interplays present in
the instantiation graphs and patterns that contain occurrences
of them. Figure 5 shows that for nearly all frameworks, most
of the instantiation graphs and patterns have a low number of
interplays, which means that the interplays are not exclusive
for a specific group of instantiation graphs and patterns.
The exception is Play where we only found two graphs and
one pattern with interplays. It is important to mention that
instantiation graphs and patterns with no interplays are not
included.

In Table I, we also observe that for frameworks in which
the proportion of graphs and patterns containing interplays is
significant, such as GWT and JavaFx, the patterns obtained
usually included more interplays than the number that is
generally present in the instantiation graphs. For example,
in JavaFx, the median of the distribution of interplays in
instantiation patterns is 2, which is higher than what we found
for interplays in instantiation graphs i.e., 1.

Number of interplays per framework type. Another
aspect we consider is the framework types present in the
instantiation interplays. As part of the study, we collected, for
the two sets of instantiation graphs and instantiation patterns,
all the framework types that are extended. We order these
types by the number of graphs and patterns in which they are
present. For example, we found that the top framework types
for JavaFx, Play, GWT and Spring are present in 42%, 29.3%,
24.9% and 4.4% of the instantiation graphs, respectively.

Focusing only on GWT and JavaFx, we found that 79.6%
and 92.6% of the interplays from these two frameworks,
respectively, are between just two frameworks types, in the
sense that one framework type is being used in the context
of another framework type. Note that it is possible to find
an interplay that involves multiple framework types (i.e.,
more than 2). In addition, an interplay between specific
framework types can appear multiple times accross different
projects and within the same project. For JavaFx, we found
that framework types with the highest number of unique
interplays (i.e., each interplay is counted only once even if
it occurs multiple times) are involved in the most popular
interplays that are found in nearly half of the projects. On
the other hand, we found that the most popular interplay in
GWT has a related type that has a low number of unique
interplays, i.e., com.google.gwt.event.dom.client.ClickHandler.
In other words, one framework type can have a low number
of relationships with other framework types, but it may be
needed in the most popular interplay across projects. Overall,
we found that 230 of GWT framework types and 107 of
JavaFx’s were present in at least one interplay. This shows
that the types within these two frameworks are related to each
other.

Number of interplays per project. Finally, we study how
the instantiation interplays behave within the client application
where they are implemented. In this way we will not only have
a general overview of the extent of the instantiation interplays
in the analyzed frameworks, but also of the context in which

7

TABLE I: Summary of the datasets used in this study for each framework. Nodes here refer to patterns containing Framework
type nodes.

Instantiation Graphs Instantiation Patterns
Framework projects total interplays % total nodes interplays %
GWT 185 4720 1040 22 1433 817 203 24.8
JavaFx 639 4938 965 19.5 2740 978 332 33.9
Play 241 58 2 5.2 47 26 1 3.8
Spring 963 904 89 9.8 373 243 16 6.6

GWT JAVAFX PLAY SPRING
0

2

4

6

8

10

12

14

Nu
m

be
r o

f i
nt

er
pl

ay
s

kind
Graphs
Patterns

Fig. 5: Distribution of the number of interplays present in the instantiation graphs and patterns for each framework.

TABLE II: Number of graphs and interplays per projects.

Framework total graphs (%) interplays (%) % projects with interplays from graphs
GWT 185 168 (90.8) 145 (78.4) 86
JavaFx 639 480 (75.1) 308 (48.2) 64.2
Play 241 25 (10.4) 2 (0.8) 8
Spring 963 356 (37) 52 (5.4) 14.6

they appear in a client application. Table II shows the number
of instantiation actions and interplays present in the analyzed
projects. The proportion refers to the number of projects with
interplays out of all projects with instantiation graphs. For
the GWT and JavaFx frameworks a considerable number of
projects containing instantiation actions have interplays. Play
and Spring are opposite cases. In these two frameworks,
very few projects contain instantiation actions and therefore
instantiation graphs. For GWT and JavaFx, 86% and 64.2% of
the projects that performed an instantiation process included
at least one interplay, respectively. Focusing only on these
projects, we found that the median number of interplays in
them is 5 and 3 for GWT and JavaFx, respectively. These
numbers decrease to 4 and 2 when only computing the unique
number of interplays present in each project. This means it is
possible to find the same interplays several times within the
same project.

Instantiation interplays occur consistently in instantiation
actions regardless of the different ways of implementing
them. Instantiation interplays are prevalent within software
projects instantiating GWT and JavaFx frameworks. They
are also distributed in different parts within the same project.

RQ2 What are the most common instantiation action inter-
plays?

To identify the most common instantiation interplays, we
must collect the interplays present in the instantiation patterns.
To distinguish the different types of instantiation interactions,

we use the categorization described in Section IV-A. Once
classified, we identify the most frequent interplays by comput-
ing the average support of the patterns in which the interplays
occur.

Table III shows for each framework, the most frequent
class of interplays according to two different aspects. The
first one (Class category) categorizes interplays depending on
the context in which the interplay occurs, while the second
one (Class scenario) is based on the scenarios in which the
instantiation actions present in the interplay are realized.

TABLE III: Most frequent interplay classes for each frame-
work.

Class Category Class Scenario
Framework Context Main client type Related client type
gwt return type of client method declaration Client Anonymous
javafx instantiation in the body of client method Client Anonymous
play field declaration Client Client
spring field declaration Client Client

For GWT framework, the most frequent interplays,
depending on the context where they are found, are those
that appear as a return type of a client method declaration.
For JavaFx, the most common ones are instantiations in the
body of a client method. If we analyze the client classes
involved in the interplay, the most common class for GWT
and JavaFx is when an anonymous declaration is instantiated
in the body of a client class declaration. The most popular
interplays in GWT and JavaFx contain the framework
types (javafx.fxml.Initializable, javafx.event.EventHandler)

8

and (javafx.application.Application, javafx.event.Ev-
entHandler) 8, respectively. The only interplay we were
able to extract for Play is a field declaration in the body of a
client class declaration, similar to the most frequent classes
for Spring.

In our study of interplay categories present in the instanti-
ation patterns, we found that interplays present in the context
of the body of a client method declaration, such as parameter
type declarations (Parameter declaration-Client method dec-
laration), instantiations (Instantiation-Client method declara-
tion) or return type declarations (Return type-Client method
declaration), are the most common. On the other hand, the
most common scenarios we found, include the creation of an
anonymous class to instantiate an object in the body of a client
class (Client-Anonymous).

The most frequent interplays are present in the body
or signature of a client method declaration and usually
comprise an anonymous class declaration to subtype the
related framework type.

VI. DISCUSSION

Prevalence of instantiation action interplays. In frame-
works that are intended to be instantiated through subtyping
and that have a relatively high number of instantiation actions,
such as GWT and JavaFx, there is a significant prevalence
of these interplays. In Spring and Play we find much fewer
instantiation actions and therefore much fewer interplays.
We believe that this is likely explained by the fact that
in the case of Spring the instantiation process is heavily
based on the use of annotations. Play, on the other hand,
is a framework built on the Model-View-Controller (MVC)
architecture and relies, for the manipulation of its Model
components, on Object/Relational Mapping (ORM) tools that
also make extensive use of annotations. We conclude that
interplays are not exclusive of a specific group of instantiation
actions nor a specific type of client projects, although they do
depend on the reuse mechanisms provided by the frameworks.
The presence of interplays between instantiation actions is a
common phenomenon in framework instantiation processes.

Common instantiation interplays. Existing approaches
focus on program elements such as overriding method declara-
tions and named class declarations, since these are considered
to be the fundamental elements in the instantiation process
driven by subtyping. On the other hand, these approaches
suffer from technical limitations such as the lack of support for
anonymous classes or lambda expressions. From the results of
our study we can conclude that the most frequent interplays are
closely bound to program elements that are not traditionally
considered as direct participants in the framework instantiation
process. This is the case for instantiation in the body of
client method declarations and anonymous class declarations.
This indicates that for the JavaFx and GWT frameworks, the
mechanisms for client applications to implement the reuse

8In the tuple (Type1, Type2), Type1 is the main framework type whereas
Type2 is the related framework type.

elements they provide are significantly driven by the use of
events or callbacks. Dependency injection is another reuse
mechanism provided by the frameworks. This mechanism
generally involves the use of annotations. The low number of
instantiation graphs and interplays obtained in Play and Spring,
discussed above, corresponds to the use of this form of inver-
sion of control. In this case, the frameworks Play and Spring
rely on dependency injection through the use of annotations to
make client applications observe the reuse mechanisms they
provide. These results indicate that there are multiple factors
such as interplays, in addition to those traditionally analyzed,
that play a significant role in the instantiation process.

1 Answer

Fig. 6: Accepted answer to a Stack Overflow question involv-
ing an instantiation interplay 9.

Interplays in practice. Our approach discovers relevant
practices that can support developers in the framework in-
stantiation process. Using the interplays present in these
practices we can suggest instantiation actions that should be
implemented in conjunction with those already implemented.
Thereby a novice programmer can perform the instantiation
of a framework efficiently without having deep knowledge
of its covert relations. A possible idea would be to match
the developer’s ongoing edits to one of the mined patterns
and then collect the occurrences of that pattern and translate
them into user-friendly code skeletons depicting the related
instantiation actions that should be completed. We can find
an example of this possible use in a question from Stack
Overflow 9. In this question the user wants to know how
to implement a ClickHandler in the body of an already
defined class: "myClass implements EntryPoint".
This clearly means that this developer is going to perform
an interplay between two instantiation actions: a client class
that implements the EntryPoint interface and another client
class that should implements the ClickHandler interface. If
we compare the accepted answer to this question shown in
Figure 6 with the code snippet in Figure 4b, we observe that
they are remarkably similar. The pattern obtained in Figure 4a
and the corresponding source code example of its occurrences,
provide the solution that the user expected. This is a clear
example of the relevance of the instantiation patterns and

9https://stackoverflow.com/questions/18323473/

9

interplays obtained by our approach to assist novice developers
in the process of instantiating a framework.

Framework designers can also benefit from these con-
cepts. Using knowledge from the interplays found in client
applications, they can analyze whether the API’s high-level
architecture complies with the design principles for which
it was conceived. Incorrect implementations of these de-
sign principles in client code do not tend to make sys-
tems unstable or malfunction, but they can make software
maintenance difficult. As an example, JavaFx designers can
verify how client applications observe the “Hollywood Prin-
ciple” [29] when reusing their framework by analyzing
the extracted interplays. Among the most common frame-
works types involved in the extracted interplays we find:
javafx.event.EventHandler, javafx.beans.value.ChangeListener
and javafx.util.Callback. More precisely, one of the most
popular ways of obeying the Hollywood principle is to use
events or callbacks. A deeper and more comprehensive anal-
ysis of these interplays can help framework designers answer
questions such as: do framework instantiation interplays affect
other properties like instance, modularity, reusability, error-
proneness, reliability or performance?

Finally, other researchers can use this work as a baseline for
future work. We believe that instantiation interplays constitute
an interesting phenomenon that through their study may pro-
vide potential insights for frameworks designers and users to
enhance maintainability and augment existing documentation.
As such, it is a promising area for further research.

VII. THREATS TO VALIDITY

Internal: We decided to study four of the most popular
Java frameworks. In addition to their popularity, which served
to find a large number of client applications, we decided to
include frameworks designed for different purposes, which is
difficult to accomplish since most of the current Java frame-
works share similarities with each other, including the selected
ones. However, we believe that the selection made provides the
study with a variety of different scenarios to analyze. Thus,
we have a framework for handling AJAX technology (GWT),
for the creation of rich internet applications (JavaFx), for the
development of web applications (Play) and finally one for
general purposes (Spring).

Construct: The main threat to construct validity arises from
the technical limitations of the Importer component of our
approach. Our prototype implementation does not account
for the latest Java language features such as Sealed Classes.
Recent client applications may use these features as part
of the framework instantiation process while our approach
is not able to capture them. However, we believe that by
exploring a large number of projects, we have reduced the
impact of possible missed instantiation actions in our results.
Furthermore, our approach does not take into account the
version of the framework used by the client applications. The
possible inconsistencies that could be introduced by analyzing
different versions of the same framework are small compared
to the total number of instantiation actions obtained. Possibly,

our approach could find workarounds that are not intended or
recommended by framework developers, i.e., that can become
deprecated in future versions and probably should not be used.

External: Our findings are specific to our problem domain.
Our approach is designed to analyze instantiation actions in
client applications that instantiate Java frameworks. Hence,
the Importer component heavily relies on the Eclipse JDT
to parse the source code of these applications. Moreover,
the proposed graph-based model contains elements specific
to the Java programming language. Nevertheless, the idea
of representing relationships between source code elements
in a graph-based structure and applying a frequent subgraph
mining algorithm to find patterns can be generalized to other
programming languages and other problem domains where the
relationships to uncover are different.

Conclusion: Our conclusions are based mainly on empir-
ical observations of the results obtained from applying our
approach. On the other hand, the graph-based model used
to represent instantiation actions and the interplays between
them, is inspired from another graph-based model [2], widely
used for mining software repositories. Similarly, the mining
algorithm used in our approach is based on the mining algo-
rithm from MuDetect [25]. Therefore, there is a reduced risk of
reaching incorrect conclusions when applying our approach.

VIII. CONCLUSION

In this paper, we have introduced a graph-based represen-
tation for framework instantiation actions and their interplays.
This representation enables mining example clients of the
same framework for frequent subgraph patterns. The mined
patterns can serve to augment a framework’s documentation.
The results of our empirical study, on 2,028 projects using four
popular Java frameworks, show that the extracted interplays
describe how application developers adhere to the reuse mech-
anisms provided through the framework’s API. Instantiation
interplays are common among instantiation actions, and are not
restricted to a particular type of these nor to a particular type of
client applications. In many cases, the most common method
of realizing instantiation actions involves several of these
interplays. Moreover, the most common interplays appear as
part of elements that have been ignored by existing approaches
on framework instantiation.

The potential benefits of the study of interplays include
assisting novice developers in the instantiation process as well
as analyzing relevant properties in the design of software
frameworks. Due to their importance, framework instantiation
interplays should be studied in greater depth. Our approach is
the first to uncover them automatically.

ACKNOWLEDGMENTS

This research was partially funded by the Excellence of
Science project 30446992 SECO-Assist financed by F.R.S.-
FNRS and FWO-Vlaanderen.

10

REFERENCES

[1] Suresh Thummalapenta and Tao Xie. Spotweb: Detecting framework
hotspots and coldspots via mining open source code on the web. In
Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pages 327–336. IEEE Computer
Society, 2008.

[2] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-
Kofahi, and Tien N Nguyen. Graph-based mining of multiple object
usage patterns. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 383–392.
ACM, 2009.

[3] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and
Daqing Hou. FEMIR: A tool for recommending framework extension
examples. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 967–972. IEEE Press,
2017.

[4] Martin P Robillard. What makes APIs hard to learn? Answers from
developers. IEEE software, 26(6):27–34, 2009.

[5] Marcel Bruch, Mira Mezini, and Martin Monperrus. Mining subclassing
directives to improve framework reuse. In Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on, pages 141–150. IEEE,
2010.

[6] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. Fruit: Ide support
for framework understanding. In Proceedings of the 2006 OOPSLA
workshop on eclipse technology eXchange, pages 55–59. ACM, 2006.

[7] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and
Daqing Hou. Recommending framework extension examples. In 2017
IEEE International Conference on Software Maintenance and Evolution,
pages 456–466. IEEE, 2017.

[8] Yunior Pacheco, Jonas De Bleser, Tim Molderez, Dario Di Nucci,
Wolfgang De Meuter, and Coen De Roover. Mining Scala Framework
Extensions for Recommendation Patterns. In SANER 2019 - Proceedings
of the 2019 IEEE 26th International Conference on Software Analysis,
Evolution, and Reengineering, 2019.

[9] Abbas Heydarnoori, Krzysztof Czarnecki, Walter Binder, and Thi-
ago Tonelli Bartolomei. Two studies of framework-usage templates
extracted from dynamic traces. IEEE Transactions on Software En-
gineering, 38(6):1464–1487, 2012.

[10] Raquel FQ Lafetá, Marcelo A Maia, and David Röthlisberger. Frame-
work instantiation using cookbooks constructed with static and dynamic
analysis. In 2015 IEEE 23rd International Conference on Program
Comprehension, pages 125–128. IEEE, 2015.

[11] Amir Michail. Data mining library reuse patterns in user-selected
applications. In ase, page 24. IEEE, 1999.

[12] Amir Michail. Data mining library reuse patterns using generalized
association rules. In Proceedings of the 22nd international conference
on Software engineering, pages 167–176. ACM, 2000.

[13] Alvaro Ortigosa, Marcelo Campo, and Roberto Moriyón. Towards agent-
oriented assistance for framework instantiation. SIGPLAN Notices (ACM
Special Interest Group on Programming Languages), 35(10):253–263,
2000.

[14] Barthélémy Dagenais and Harold Ossher. Automatically locating frame-
work extension examples. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages
203–213. ACM, 2008.

[15] Talita Gomes, Toacy Cavalcante de Oliveira, Donald D Cowan, and
Paulo SC Alencar. Mining reuse processes. In CIbSE, pages 179–190,
2014.

[16] Ivan Mathias Filho, Toacy C. De Oliveira, and Carlos J.P. De Lucena. A
framework instantiation approach based on the Features Model. Journal
of Systems and Software, 73(2):333–349, 2004.

[17] Talita Lopes Gomes. REUSE MINER: MINING FRAMEWORK INSTAN-
TIATION PROCESSES. PhD thesis, 2015.

[18] Edson M. Lucas, Toacy C. Oliveira, Kleinner Farias, and Paulo S.C.
Alencar. CollabRDL: A language to coordinate collaborative reuse.
Journal of Systems and Software, 131:505–527, 2017.

[19] Toacy C. Oliveira, Paulo S.C. Alencar, Carlos J.P. de Lucena, and
Donald D. Cowan. RDL: A language for framework instantiation
representation. Journal of Systems and Software, 80(11):1902–1929,
2007.

[20] Toacy Oliveira, Paulo Alencar, Marcilio Mendonca, and Donald Cowan.
Assisting Framework Instantiation: Enhancements to Process-Language-
based Approaches. Technical Report August, 2005.

[21] Toacy C. Oliveira, Paulo S.C. Alencar, Ivan M. Filho, Carlos J.P. De
Lucena, and Donald D. Cowan. Software process representation and
analysis for framework instantiation. IEEE Transactions on Software
Engineering, 30(3):145–159, 2004.

[22] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini.
What should developers be aware of? An empirical study on the
directives of API documentation. Empirical Software Engineering,
17(6):703–737, 2012.

[23] Yu Zhou, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella,
and Harald Gall. Automatic detection and repair recommendation of
directive defects in java api documentation. IEEE Transactions on
Software Engineering, 46(9):1004–1023, 2018.

[24] Yu Zhou, Xin Yan, Taolue Chen, Sebastiano Panichella, and Harald
Gall. Drone: a tool to detect and repair directive defects in java
apis documentation. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 115–118. IEEE, 2019.

[25] Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and
Mira Mezini. Investigating Next Steps in Static API-Misuse Detection.
pages 265–275, 2019.

[26] Ruben Opdebeeck, Johan Fabry, Tim Molderez, Jonas De Bleser, and
Coen De Roover. Mining for graph-based library usage patterns in cobol
systems. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 595–599. IEEE, 2021.

[27] Charu C Aggarwal and Rodrigo Goyena. Data mining: the textbook,
volume 53. Springer, 2015.

[28] Pedro Martins, Rohan Achar, and Cristina V Lopes. The java build
framework: Large scale compilation. arXiv preprint arXiv:1804.04621,
2018.

[29] Michael Mattsson, Jan Bosch, and Mohamed E Fayad. Framework
integration problems, causes, solutions. Communications of the ACM,
42(10):80–87, 1999.

11

