The version of record is available at: http://dx.doi.org/10.1561/1900000073

Modern Datalog Engines

Bas Ketsman! and Paraschos Koutris?

YVirije Universiteit Brussel, Belgium; bas.ketsman@uub.be
2 University of Wisconsin-Madison, USA; paris@cs.wisc.edu

ABSTRACT

Recent years have seen a resurgence of interest from both
the industry and research community in Datalog. Datalog is
a declarative query language that extends relational algebra
with recursion. It has been used to express a wide spectrum
of modern data management tasks, such as data integration,
declarative networking, graph analysis, business analytics,
and program analysis. The result of this long line of research
is a plethora of Datalog engines, which support different
variants of Datalog, and have different technical specifica-
tions and capabilities. In this monograph, we provide an
overview of the architecture and technical characteristics of
these Datalog engines. We identify common architectural
decisions and evaluation methods, as well as data struc-
tures and layouts used to speed up the query execution. We
also discuss in what ways Datalog engines differ when they
specialize to workloads with different characteristics (for
example, data analytics vs program analysis vs graph anal-
ysis). One particular focus is how modern Datalog engines
scale to massively parallel environments.

Bas Ketsman and Paraschos Koutris (2022), “Modern Datalog Engines”, Foundations
and Trends® in Databases: Vol. 12, No. 1, pp 1-68. DOL: 10.1561,/1900000073.
©2022 B. Ketsman and P. Koutris

The version of record is available at: http://dx.doi.org/10.1561/1900000073

1

Introduction

Recent years have seen a resurgence of interest from both the industry
and research community in Datalog. Datalog is a declarative query
language that extends Relational Algebra with recursion. It offers a
simple declarative interface to the developer, while allowing for general
optimizations that can speed up evaluation both in single-machine and
parallel settings. During the past two decades, Datalog has been used to
express a wide spectrum of tasks in different application domains, such
as data integration (Fagin et al., 2003), declarative networking (Loo
et al., 2006), graph analysis (Seo et al., 2015; Shkapsky et al., 2016),
business analytics (Aref et al., 2015), program analysis (Whaley and
Lam, 2004; Smaragdakis and Balatsouras, 2015), and security (Marczak
et al., 2010).

Datalog received a lot of academic interest during the late 1980s and
early 1990s. During this time, the theoretical background of Datalog
was firmly established, including its syntax, semantics, and evaluation
methods. Moreover, several mature Datalog systems were developed,
among them Coral (Ramakrishnan et al., 1993), LDL (Chimenti et al.,
1990), and Glue-Nail (Derr et al., 1994). However, these systems were
not widely adopted and their development ceased.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

This trend was reversed during the last decade, with the develop-
ment and deployment of several Datalog engines, both from academia
and industry. The list of systems includes LogicBlox (Aref et al., 2015),
BigDatalog (Shkapsky et al., 2016), SociaLite (Seo et al., 2015), bddb-
ddb (Whaley and Lam, 2004), Soufflé (Scholz et al., 2016), RecStep (Fan
et al., 2019), and Graspan (Wang et al., 2017). In order to deal with the
huge volume of data they have to process, the design of these Datalog
engines focused around efficiency and scalable performance. Apart from
this, their architecture and applications show a lot of variation. Some
Datalog systems were developed to target program analysis tasks, a
fundamental area in the field of programming languages (e.g., bddb-
ddb, Soufflé). Other Datalog engines specialized on data management
problems, such as graph processing (e.g, SocialLite) or business analytics
(e.g., LogicBlox). This variation has created a diverse ecosystem of sys-
tems that support different variants of Datalog, make different design
decisions, and have different capabilities.

In this monograph, we dive deep into this ecosystem and provide
an overview of the architecture and technical characteristics of the
above Datalog systems. We identify common architectural decisions
and evaluation methods, as well as data structures and layouts used to
speed up the query execution. We also discuss in what ways Datalog
engines differ when they specialize to workloads and inputs with different
characteristics (for example, data analytics vs program analysis vs graph
analysis). One particular focus of this monograph is how modern Datalog
engines scale to massively parallel environments, which is necessary to
support the processing of very large datasets. This is a particularly
challenging task, since evaluating a Datalog program is generally not
an embarrassingly parallel task.

Finally, we remark that Datalog engines have a different focus than
SQL engines. While SQL engines are typically treated as one of many
interconnected elements in a fully-blown, transactional database man-
agement system, Datalog engines are generally more stripped down with
a strong focus on efficient recursive query processing. Another difference
is that most SQL engines make use of bag-semantics with duplicate elim-
ination as an afterthought, while Datalog engines rely on set-semantics
and therefore require specialized data structures and techniques for
efficiently dealing with sets throughout the entire computation.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

4 Introduction

1.1 An Overview of Datalog Systems

Next, we briefly introduce and describe the Datalog systems that will
be the focus of this monograph.

LogicBlox (Aref et al., 2015) is a proprietary Datalog system that
provides a general platform for developing enterprise software. It has
been used as the underlying engine for both points-to program analysis
by Doop (Bravenboer and Smaragdakis, 2009), as well as for security
applications by SecureBlox (Marczak et al., 2010).

BigDatalog (Shkapsky et al., 2016) is a parallel Datalog engine built
on top of a modified version of Apache Spark. Its main applications are
business and graph analytics.

SociaLite (Seo et al., 2015) is a parallel Datalog engine used mainly
for social network analysis. It is optimized for executing programs on
graphs, and has both a single-threaded and parallel implementation.

bddbddb (Whaley and Lam, 2004) is a single-threaded implementation
of Datalog designed specifically to support context-sensitive program
analysis. Its novelty is the use of binary decision diagrams (BDDs) to
compactly represent relations.

Soufflé (Scholz et al., 2016) is a state-of-the-art open-source Datalog
system that is used for different types of program analysis, with an
emphasis on scalability. It compiles Datalog programs to fast parallel
C++ code.

RecStep (Fan et al., 2019) is a multi-threaded implementation of
Datalog focused on main-memory execution. It compiles Datalog pro-
grams directly to a sequence of SQL queries, which is then executed on
Quickstep, a parallel in-memory relational database engine (Patel et al.,
2018).

The version of record is available at: http://dx.doi.org/10.1561/1900000073

1.2. Commercial Impact 5

RapidNet (RapidNet, n.d.) is a distributed Datalog engine for the
NDLog (Abadi and Loo, 2007) Datalog variant. It compiles Datalog
programs directly into C++ programs which run over the NS-3 network
simulator (ns-3, n.d.).

Myria and Naiad Finally, we will include in our study two efforts of
executing Datalog programs on top of scalable parallel systems: Myria
(Halperin et al., 2014) and Naiad (Murray et al., 2013). These do not
constitute fully-fledged Datalog implementations, since they require that
the user manually specifies an execution plan for the Datalog program
they want to run.

In addition to the aforementioned systems, there exist several other
Datalog engines: AbcDatalog (Bembenek et al., n.d.), the uZ system
built on top of Z3 (Hoder et al., 2011), DES, Differential Datalog (Ryzhyk
and Budiu, 2019), the DLV engine (Leone et al., 2006), which supports
Disjunctive Datalog, Dyna (Eisner and Filardo, 2011), a system that
extends Datalog for AI applications, Bud (Alvaro et al., 2011) and
WebdamLog (Moffitt et al., 2015). A few other efforts have focused on
adding recursion or fixpoint computation on top of existing relational
systems without achieving the expressivity of full Datalog. These include
extensions of MapReduce (Afrati et al., 2011; Shaw et al., 2012), or more
recent work by Gu et al. (2019) and Jachiet et al. (2020). Although the
above systems will not be the focus of this monograph, we will present
some of their techniques that are relevant to recursive computation.

1.2 Commercial Impact

In addition to the success of LogicBlox, several other commercial systems
that use Datalog or dialects of Datalog have been developed over the
last decade. We discuss next some of these developments.

Datomic is a transactional and distributed database that uses an
extended form of Datalog as the basic query language. Semmle, a
platform that supports code analysis over large code bases (acquired by
Github), has developed its own query language, called .QL, which can
be viewed as an object-oriented version of Datalog. Nicira (acquired by

The version of record is available at: http://dx.doi.org/10.1561/1900000073

6 Introduction

VMware) also uses a restricted variant of the Datalog language, called
nLog, for software defined networking. Finally, Datalog was used as
the underlying language for declarative analytics in Netsil (acquired by
Nutanix).

1.3 Relationship with Prior Work

This survey aims to present how modern large-scale systems evaluate
Datalog. It is orthogonal to a rich set of papers and surveys on the
Datalog language. What follows is a short but not complete list of
relevant work that is complementary to this monograph.

e The most related survey to this monograph is by Green et al.
(2013). It covers the core Datalog language and its extensions,
semantics, query optimizations, incremental view maintenance,
along with discussing modern applications of Datalog. Although
there is some content overlap with this monograph, our focus is on
system building and parallel evaluation. Furthermore, there has
been tremendous progress in the adoption of Datalog techniques
and many new use cases have been added after its publication.

o Several articles provide a general overview of Datalog and tech-
niques for optimizing recursive computation (Ceri et al., 1989;
Ramakrishnan and Ullman, 1995; Bancilhon and Ramakrishnan,
1986). The basic principles of Datalog are also covered in several
database textbooks (for example, see Abiteboul et al. (1995) and
Ullman (1989)).

e A long line of work in the Programming Languages community
has also studied the application of Datalog to different types
of program analysis tasks (Reps, 1993; Lam et al., 2005). For
a comprehensive survey on this subject, we refer the reader to
Smaragdakis and Balatsouras (2015).

1.4 Organization

The monograph is organized as follows.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

1.4. Organization 7

The Datalog Language In Section 2, we introduce the core Data-
log language and present its syntax and semantics. Then, we study
how different Datalog engines extend the core language to increase its
expressibility, with features that are necessary to make it usable in
practical settings. These features include negation, (recursive) aggrega-
tion, arithmetic operations and functions. We discuss how some Datalog
engines choose combinations of features that lead to imprecise language
semantics.

Methods for Datalog Evaluation In Section 3, we discuss the fun-
damental methods used for Datalog evaluation. We focus on the most
widely used technique, called semi-naive evaluation, and we discuss the
design choices of implementing it. Next, we study how modern Datalog
engines use parallelism to further speed up evaluation and why this can
be done effectively — both from a theoretical and practical viewpoint.
Our focus is both on parallel and multi-threaded environments. We
look at the design choices for parallel evaluation across different axes:
data partitioning methods, synchronous vs asynchronous evaluation,
and data shuffling strategies.

Data Layouts and Indices In Section 4, we study the data layouts
used by Datalog engines. Even though the input of Datalog programs is
relational data, many systems choose formats other than the traditional
row-store: these include tries, binary decision diagrams, bit matrices,
and tail-nested tables. These layouts are specialized to be performant
for specific inputs and workloads (e.g., graph-oriented data, context-
sensitive pointer analysis, dense relations). We also discuss indexing
techniques that are specialized and fine-tuned to Datalog evaluation.

Optimization Techniques In Section 5, we present the different op-
timizations that are used by Datalog engines, both on the language
level (e.g., program transformations and rewritings), as well as low-level
optimizations on the operator level. Specifically, we study how we can
rewrite a Datalog program to push selection and aggregation through
recursion, or to reduce the number of iterations and strata.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

8 Introduction

Finally, we conclude the monograph in Section 6 where we discuss
opportunities for future research directions and new possible applications
for Datalog engines.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2

The Datalog Language

In this section, we introduce the syntax and semantics of the Datalog
language and its extensions. Even though Datalog has been presented
in detail in a prior survey by Green et al. (2013), we present here its
basics in order to make this monograph self-contained. In addition to
the core language syntax and semantics, we discuss its extensions that
are typically used in modern Datalog engines: these include negation,
aggregation (and in particular recursive aggregation), as well as functions
and arithmetics (Table 2.1).

Table 2.1: Language Features of Datalog Systems

H negation aggregation | functions
BigDatalog stratified recursive yes
Soufflé stratified non-recursive yes
Socialite stratified recursive yes
RecStep stratified recursive yes
LogicBlox || stratified/general recursion yes
bddbddb stratified no yes

The version of record is available at: http://dx.doi.org/10.1561/1900000073

10 The Datalog Language

2.1 Datalog Basics

We present Datalog (Abiteboul et al., 1995) based on classical predi-
cates under the fixpoint semantics and define the relevant terminology
necessary to understand the remainder of this monograph.

2.1.1 Syntax

Datalog programs are constructed from atoms and terms. A term is
a variable or a constant. We assume throughout this monograph the
existence of an infinitely large domain of variables V and an infinitely
large but disjoint domain of data values D from which variables and
constants can be chosen. For convenience of notation, we will consistently
choose constants from the range a, b, ¢, d, e, and variables from the range
U, UV, W, T, Y, 2.

An atom is a predicate symbol followed by a sequence of terms. An
atom without variables is called a ground atom. Every predicate symbol
has an associated arity, referring to the number of terms that it expects.
To denote an atom, we write R(t1,...,t,) with R the predicate symbol,
m the arity of R and t4,...,t,, a sequence of terms.

A Datalog program is a set of rules of the following form:

A:—Bl,BQ,...,Bn.

Here, n > 0. The atom A is called the head of the rule, while the
sequence of atoms By, Bs, ..., By, is called the body of the rule.

The available predicate symbols and their arities are captured in a
schema that the program has to be consistent with. Formally, a schema
R is a finite set of available predicate symbols R with an associated arity
arity(R). The predicates in a schema R are divided in two categories':
extensional (database) predicates (EDBs) are predicates stored in the
database and can occur only in the body of rules; intensional (database)
predicates (IDBs) are predicates defined by rules in the program and
can therefore occur in the head as well as body of rules. Among the

!The terms extensional and intensional are common in logic and refer to two
different approaches of defining things: through explicit listing of their extension
(the elements they apply to) or through an intension (definition).

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.1. Datalog Basics 11

intensional predicates it is common to distinguish between base predi-
cates — predicates that represent base relations in the database — and
implicit predicates (including comparisons =, #, . ..). Implicit predicates
are usually written using infix notation, thus writing for example z =y
instead of = (x,y).

We will assume that the rules of a Datalog program are always safe.
Formally, a rule is safe if all its variables are range-restricted: a variable
x is range-restricted if it occurs in the body of the rule in either a
(non-negated) atom or in an equality = a in which a is a constant.

Example 2.1. To demonstrate Datalog syntax, we will not use the
textbook example of transitive closure in graphs, but instead we will
use an example from the domain of program analysis. Our task is to
perform a point-to analysis of variables in a C program (Smaragdakis and
Balatsouras, 2015). The instructions of the program can be translated
into EDB relations as follows:

AddressOf(a,b) representing a=&b

Assign(a,b) representing a=b

Load(a,b) representing a=*b

Store(a,b) representing *a=b

The points-to analysis can now be done using a Datalog program

storing pairs of variables a and b in intensional relation PointsTo if a
may point to b. The program contains the following four rules with the
same head:

- AddressOf(x,y).

PointsTo(x,y) :
:- Assign(x,z), PointsTo(z,y).

PointsTo(x,y
- Load(x,z), PointsTo(z,y), PointsTo(y,w).
- Store(z,w), PointsTo(z,x), PointsTo(w,y).

PointsTo(x,w

~— — — —

PointsTo(x,y

In this monograph, we will pay special attention to a class of Dat-
alog programs, called linear programs, with favorable computational
properties. In a linear program, each rule has at most one IDB relation
in its body. In practice, many Datalog programs are linear (or can be
made linear).

The version of record is available at: http://dx.doi.org/10.1561/1900000073

12 The Datalog Language

2.1.2 Semantics

The semantics of positive Datalog can be defined in several equivalent
ways. We use in this monograph the least-fixpoint semantics, which
defines the outcome of the program in an operational way, based on
repeatedly firing the program rules till no more new facts can be derived
and thus a fixpoint is reached. It is well-known that this semantics
is equivalent to the model-theoretic semantics as well as the proof-
theoretic semantics (for more details we refer the reader to Abiteboul
et al. (1995)).

Datalog programs are computed over instances. A (database) in-
stance is a finite set of ground atoms, which we denote by the symbol I.
We write I(R) to denote the relation instance for predicate R induced
by I.

The rules of a Datalog program define how new facts are derived from
a given instance in terms of variable bindings (also called valuations).
A wvariable binding v is a total function from V to D. For a rule 7, we
say that v(7) is satisfied by instance I if v(A) € I, where A is the head
atom of 7, or for at least one atom B; in the body v(B;) ¢ 1.

For an instance I and rule 7, the derived facts are defined by the set

7(I) := {v(A) | v is a variable binding not satisfied by I}.

Facts in 7(I) are called immediate consequences of rule T over
instance I. Let Tp(:) be the operator that adds to instances I the
immediate consequences of all rules in P over I, then the output P(I)
of program P over instance I is the instance obtained by repeatedly
applying Tp (called the immediate consequence operator for P) over
I till no more new facts are added; that is, until no more unsatisfied
variable bindings for rules in P exist.

The reader may observe that the above fixpoint semantics yields a
naive bottom-up evaluation algorithm for computing Datalog programs.

We should note here that Algorithm 1 will always terminate within
a polynomial (in the input size) number of steps, assuming the program

is fixed.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.2. Negation 13

Algorithm 1: Naive Evaluation of Datalog

Input: I
Output: P(I)
1 k<« 0;

2 Ip < 1,

3 repeat

4 k+—k+1,;
5 | I < Tp(Ip-1);
6 until I, =1;_q;

7 return I

2.2 Negation

The core fragment of Datalog cannot express non-monotone proper-
ties (Afrati et al., 1995). To achieve this expressibility, we need to
extend positive Datalog with negation. Several options exist to extend
positive Datalog with negation. In this monograph, we introduce two
commonly used extensions: semi-positive and stratified Datalog. These
form the foundation of the languages supported by most modern Datalog
execution engines, including Socialite, Soufflé, LogiQL, etc.

Syntactically, Datalog with negation allows rules to have, besides
(positive) atoms, also negated atoms in the body of rules. The use of
negation has a safety restriction, which means that every variable in the
body of a rule must occur in at least one positive atom. This restriction
is necessary to make the output of the program independent of the
domain of the attributes.

A Datalog program with negation is stratified if the rules of the
program can be divided in disjoint subprograms G1, Gy, ..., Gy, (hence-
forth called strata) of rules such that the following properties are true
for every IDB predicate R:

e All rules defining predicate R occur in the same subprogram, say
subprogram Gj;

e All rules mentioning predicate R in a non-negated atom occur in
groups Gj, with j > i; and

The version of record is available at: http://dx.doi.org/10.1561/1900000073

14 The Datalog Language

e All rules mentioning predicate R in a negated atom occur in
groups G, with j > 1.

We note that stratification is not always possible.

A Datalog program with negation is semi-positive if all negated
atoms have an extensional predicate symbol; that is, if the program is
stratified with only one stratum.

Example 2.2. We demonstrate Datalog with negation using an example
from graph analytics. We are given a directed graph expressed by
the relation Edge(A, B): a tuple Edge(a,b) means that node a has an
directed edge to node b. Our goal is to compute all pairs of nodes
(a,b) such that there is a directed path from a to b, but not a directed
path from b to a. This task can be expressed by the following Datalog
program:

T(x,y) :- Edge(x,y).
T(x,y) :- T(x,z), Edge(z,y).
P(x,y) :- T(x,y), not T(y,x).

This is a Datalog program with stratified negation: the first stratum
consists of the first two rules (computing the 1DB T), and the second
stratum consists of the third rule. It is not semi-positive, since negation
occurs in front of the 1DB relation T.

The output of semi-positive Datalog programs is defined as before,
except that for a rule 7 and instance I, v(7) is satisfied by I if v(A) € 1,
v(B;) ¢ I for one of the positive atoms B; in the body, or v(B;) € 1
for one of the negated atoms B; in the body of the rule. The output
of a stratified Datalog programs over a given database I is defined as
the result of applying the different strata of the program (which can
be seen as sub-programs) one-by-one after each other, while taking as
input the result of the previous stratum.

2.3 Aggregation

In order to support any type of data analytics, it is necessary to extend
Datalog to support some form of aggregation. Many Datalog systems

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.3. Aggregation 15

support aggregation in a similar way as they support negation: through
stratification. An aggregate rule then has the following form.

R(z1,...,2n, F(x0)) :- ¥(x1,...,Tn,To).

Here, F' is an aggregate function, for instance min, max, sum, count,
and ¥ (z1,...,Zn, xo) is some rule body mentioning at least all variables
of the head. The following Datalog program is one with stratified
aggregation.

Example 2.3. For an example, suppose that we want to compute the
connected components in a graph whose relations are represented by
the binary relation Edge.

Connected(x, Edge(x,y).

y) :-

Connected(x,y) :- Connected(x,z), Edge(z,y).

Connected(x,y) :- Connected(y,x).
) :-

Component(x,min(y)) :- Connected(x,y).

The semantics of stratified aggregation follows the same logic as with
stratified negation: each stratum of the program is executed one-by-one,
while taking as input the result of the previous stratum. Most of the
systems (see Table 2.1) support stratified aggregation.

Recursive Aggregation. Unfortunately, Datalog with only stratified
aggregation is not sufficiently expressive to solve a large class of recursive
problems, such as shortest paths. Few Datalog systems support some
form of recursive aggregation (Socialite, RecStep, and BigDatalog). From
a theoretical perspective, early foundational work (Ross and Sagiv, 1992)
proposed to use monotonic aggregation functions to support aggregation
inside recursion. Informally, an aggregate function is monotonic if adding
more elements to the multi-set being operated upon can only increase
(or decrease) the value of the aggregate (e.g, min, sum). However, in
order to guarantee the existence of a unique minimal fixpoint, several
complex conditions must hold. As we will see next, most systems avoid
this complexity by incorporating recursive aggregation with different
choices on syntax.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

16 The Datalog Language

Socialite supports recursive monotone aggregation for aggregate
functions that are meet operators and form a semi-lattice. More precisely,
an aggregation operator F' must also be the least-upper bound of some
semi-lattice. Then, the semantics of a rule are extended by taking a
group-by over the non-lattice elements and computing F' for the lattice
elements in the particular group. That is,

{(x1,.. ., 20, F{(z0) | R(21,...,2n,20) €I})) | R(x1,...,2n,20) € I}.
Specifically, min, max are meet aggregate operators, but sum is not.

Example 2.4. As an example, we show how to compute the length of
the shortest path from some source node s to some sink node t in a
graph represented through the binary relation Edge.

Path(i, min(d)) :- Edge(s, i, d).
Path(i, min(d)) :- Path(i’, d"), Edge(i’, i, d"),d = d" + d".
MinDistance(min(d)) :- Path(t, d).

At every iteration the body of the rule computes all the distances of
paths starting at node s. The distances are then grouped by the end
node, and then the min aggregate is applied to only keep the minimum
distance. The final rule takes another minimum over all distances of
paths that end at t.

Observe that Socialite expresses aggregation in the head of the rule,
in precisely one variable. Other languages like LogiQL in LogicBlox make
different syntactic choices on how to represent aggregation.

RecStep and Myria allow aggregation inside recursion, but they leave
it up to the programmer to make sure that the program terminates.
Generally, it is not easy to check whether the program reaches a fixpoint
after a finite number of iterations, especially as the program becomes
more complex.

Flix (Madsen et al., 2016), a Datalog system designed for static
program analyses, also supports aggregation through monotone opera-
tions over lattices. In Flix, every predicate symbol is associated with a
lattice. The partial order of the elements in the lattice induces a partial

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.3. Aggregation 17

order on models (outputs) of the Datalog program. This allows to lift
set-based positive Datalog to lattice-based positive Datalog, where all
the nice Datalog properties and optimizations carry over. Using this
formulation, Flix can support monotone aggregation operators inside
recursion with well-defined semantics. Unfortunately, Flix does not have
an efficient implementation yet. Thus, although operating directly on
lattices is theoretically elegant, it is unclear whether it can be practical
with large-scale data.

BigDatalog chooses yet another direction on how to support recursive
aggregation (Mazuran et al., 2013; Shkapsky et al., 2015; Zaniolo et al.,
2017). Specifically, the standard aggregate operators (min, max, sum,
count) are replaced by specialized versions named mmin, mmax, msum,
mcount respectively. To demonstrate how these operators work, consider
the following recursive rule taken from a program that computes shortest
paths in a graph:

Path(x,y, mmin(d)) : - Path(x, z, d'), Edge(z, y d"),d =d" + d".

Using this rule, a new tuple Path(x,y,d) will be added if either the
endpoints are new, or the distance between x,y is smaller than any
currently known length in the 1DB. In this way, the sequence of values
produced by the aggregate operator for a specific pair x,y will be mono-
tone (decreasing). Contrast this to the use of the standard min operator,
which adds any length that is not yet discovered. In other words, the
idea behind the semantics of recursive aggregation in BigDatalog is to
explicitly make the operator monotonic.

Finally, we should mention that Bloom”

, an extension of the language
Bloom (Conway et al., 2012), also extends Datalog with support for
lattices and monotone functions. However, in Bloom’ the goal is to
guarantee that the computation is confluent, meaning that a distributed
computation terminates correctly with the same result regardless of the

order in which messages are received over the network.

In summary, there is no widely accepted standard on how recursive
aggregation can be supported in a practical system. The key underlying
idea is to impose some form of monotonicity on the aggregate function.
One design point is to use naive evaluation and burden the user with

The version of record is available at: http://dx.doi.org/10.1561/1900000073

18 The Datalog Language

checking for termination. Another design point is to syntactically restrict
its use, with the trade-off of losing some expressive power.

2.4 Other Language Extensions

In this section, we briefly mention other ways in which modern systems
extend the (positive) Datalog language, in addition to negation and
aggregation. As these extensions break the domain semantics, and so
the earlier mentioned polynomial time complexity is not applicable here.

Arithmetic Operators. Many practical applications need some form
of arithmetic calculations (e.g., addition, multiplication). For instance,
we need addition to express the shortest path Datalog program men-
tioned in the above section. Such calculations can be easily incorporated
in the syntax by viewing each arithmetic operator as a relation. For
example, the assignment d = d'+d" is equivalent to the ternary predi-
cate +(d,d’,d"). However, because the relations corresponding to these
arithmetic operators can be of infinite size, in general there is no guar-
antee that the fixpoint computation will terminate. There is a long
line of research on how to guarantee well-behaved semantics in this
case (Kifer, 1998; Ramakrishnan et al., 1987), but systems generally
leave this burden to the user.

As an example, consider the following Datalog program that runs the
PageRank algorithm (Brin and Page, 1998), which combines aggregation
with addition and division.

Rank(i+1,v,sum(r)) :- Nodes(v), r = 0.2/N.
:- Rank(i,u,s), Edge(u,v), EdgeCnt(u,c), r = 0.8 s/c.

The above program does not terminate, since the term ¢ + 1 in the
head of the rule will produce an infinitely increasing sequence of integers
in the first attribute of Rank. Hence, there are no well-defined semantics
here and it is up to the user to specify a termination condition for
evaluation.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.5. Distributed Datalog 19

Functions. The addition of functions is also necessary for better expres-
sivity (e.g., string transformations, list concatenation). Such functions
require that the Datalog program does value invention (Cabibbo, 1995).
As with arithmetic operators, under the presence of value invention
many of the nice properties of Datalog programs, including guaranteed
finiteness, are lost and become a responsibility of the programmer. Some
systems (e.g., Soufflé) also support user-defined functions.

Other Features. Modern Datalog systems support other language
features as well. Soufflé, SociaLite, and RecStep support primitive and
complex types for the attributes in a relation (e.g., integers, strings,
floats, etc). LogicBlox supports refmode predicates that associate with
an entity a unique primitive identifying value. A few systems (SociaLite,
Soufflé, BUD) support e the greedy choice operator, an operator that
chooses a tuple non-deterministically in its evaluation (Greco et al.,
1992). The Vadalog System (Bellomarini et al., 2018) supports existen-
tially quantified rule heads, which is a central feature in the Datalog+ /-
family (Cali et al., 2010) of Datalog-based languages for knowledge
graph reasoning and ontology querying.

2.5 Distributed Datalog

At the end of this section, we present extensions of Datalog that allow to
explicitly encode forms of distributed computation. We should emphasize
that this should not be confused with the parallel execution of Datalog,
where data distribution and exchange is decided by the system and not
explicitly captured in the program.

NDlog (Network Datalog) is a language for declarative network
specification (Loo et al., 2006). It is a restricted variant of Datalog
that allows for explicit control on data placement and movement, and
it is intended to be computed in distributed fashion on a physical
network. Such a network may not be fully connected, i.e., one node may
not be able to directly communicate with all other nodes. In order to
capture this restriction, NDlog uses addresses to specify the location of
data on the network, and forces the computation to only work across
links that are provided as input to the program and correspond to

The version of record is available at: http://dx.doi.org/10.1561/1900000073

20 The Datalog Language

the actual physical links. We should note here that this restriction on
communication is fundamentally different from parallel execution of
Datalog, where it is typically assumed that all nodes can freely talk
with each other.

WebdamLog (Moffitt et al., 2015) is a version of distributed Datalog
that captures applications where peers exchange messages and rules.
In WebdamLog (Abiteboul et al., 2011), a fact R(t1,...t;) is also
parametrized by a peer p as RQp(ty,...ty,). Informally, this means that
the fact is located at p. A rule can then specify how data and rules
are exchanged between the peers during evaluation of the program. For
instance, consider the following rule, where the $ symbol is used to
denote a variable:

album®@joe($pid,$photo,$f) : - friend@joe($f), album@$f($pid,$photo).

This rule says that any friends of Joe should send their photos to the
album that Joe has.

Dedalus (Alvaro et al., 2010), a Datalog variant used for reason-
ing about distributed systems, parametrizes each fact not only with
location but also time (modeled as consecutive integers). For example,
R(t1,...,tm)[T] means that fact R(t1,...,ty) is true at time 7T'. Dedalus
supports deductive rules, which are derivations referring to the same
time, and inductive rules, which are temporal rules that derive facts
using facts from the previous time. Concretely, consider the following
program:

ROIIT] :- S(xy)[T]-
ROOIT+1] - S(uy)[T], UW)I[T]:

Here, the first rule is deductive, while the second rule is inductive. The
inclusion of time in the syntax makes it possible to have clean minimal
model semantics, even when expressing non-monotonic operations such
as deletions. In addition to inductive and deductive rules, Dedalus also
supports asynchronous rules, where the relationship between the time
in the head and the body is unknown.

In all the above cases, the language itself implicitly specifies how
the computation must proceed and how facts are communicated to the

The version of record is available at: http://dx.doi.org/10.1561/1900000073

2.5. Distributed Datalog 21

different locations. In particular, if a fact is in location @p and is needed
in location @Qr to fire a local rule, then it must be sent from Qr to
@p. As we will see in the next section on parallel evaluation, Datalog
engines hide this specification from the programmer and instead let the
optimizer make the choice on how data should be shuffled around.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3

Evaluation

In this section, we discuss the evaluation strategies used by modern
Datalog engines. We focus both on single-threaded implementations,
as well as multi-threaded and parallel execution. Table 3.1 provides an
overview of some of the properties of these engines with respect to their
evaluation strategies, as well as the data layouts they use.

3.1 Semi-naive Evaluation

Most modern Datalog engines, including BigDatalog, Soufflé, SocialLite,
and RecStep, use semi-naive evaluation as the core evaluation method.
LogicBlox also used semi-naive evaluation in its earlier versions, but

Table 3.1: Table of properties of Datalog Systems

‘ H execution ‘ data layout ‘ evaluation strategy ‘ sync/async ‘
BigDatalog parallel row-store semi-naive synchronous
Soufflé multi-threaded tries/B-trees semi-naive asynchronous
SocialLite multi-threaded /parallel | tail-nested tables semi-naive asynchronous
RecStep multi-threaded row-store semi-naive synchronous
LogicBlox multi-threaded B-trees/B¢-trees semi-naive N/A
bddbddb single-threaded BDDs semi-naive N/A
Myria parallel row-store semi-naive both

22

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.1. Semi-naive Evaluation 23

then switched to other methods based on incremental view mainte-
nance. Semi-naive evaluation is a bottom-up technique. It improves upon
naive evaluation by taking care to use only newly discovered facts in
subsequent iterations. Specifically, for every iteration k > 1 and IDB
predicate R, it calculates the new facts AR, = Ri — Rp_1. Then, it
uses ARy, to do an incremental computation of the next iteration Ry
in the Datalog program through an incremental immediate consequence
operator ATp (Algorithm 2). As an example, consider the following
Datalog program that computes the transitive closure of a graph:

T(x,y) : - Edge(x,y).
T(x,y) :- T(x,z), Edge(z,y).

Then, ATy, = 734 (ATj—1(x, 2) > Edge(z,y)) — ATj_1. The above
program is a linear program, so the incremental operator ATp only
needs to consider the newly generated facts AI,_; to compute Iy. For
non-linear programs the incremental operator AT p will also depend on
previous facts that have been discovered in earlier iterations, Ij_o.

Algorithm 2: Semi-Naive Evaluation of Datalog

Input: I, Datalog program P
Output: P(I)

1 Iy« @, I, <1;

2 k<« 1;

3 repeat

4 k< k+1;

5 | ALy < ATp(Ix—2, Alx—1) — Ix—1;
6 I, < I UAI;

7 until AI, = 0;

8 return I

Semi-naive computation minimizes both computation, since facts
are not repeatedly discovered across iterations, and communication in a
parallel setting since only A R needs to be communicated across machines
at every iteration. On the other hand, an efficient implementation of
semi-naive evaluation requires the construction of multiple indices,

The version of record is available at: http://dx.doi.org/10.1561/1900000073

24 Evaluation

100,000,000
—tuples produced by join
10,000,000

—tuples not previously discovered

1,000,000

$ 100,000
o

10,000

1,000

100

10

1
0 20 40 60 80 100 120 140 160 180
iteration #

of tu

Figure 3.1: A plot of the number of facts generated per iteration for the Datalog
program computing reachability.

since we potentially have to build a different set of indices for each
A rule. Hence, while in theory semi-naive evaluation is always more
efficient, in practice there is no guarantee that it will run faster than
naive evaluation. The effect of index construction on evaluation will be
discussed in more depth in Section 4.

Semi-naive evaluation is particularly effective for linear Datalog
programs. The gains are particularly visible in later iterations of a
program, when the number of new facts can be very small (Shaw et al.,
2012) and hence the savings in communication and computation can
help substantially reduce the total running time. For instance, Figure 3.1
shows how the number of new facts produced at later iterations of a
Datalog program computing reachability are orders-of-magnitude fewer
compared to earlier iterations.

In the end of this section, we will briefly discuss other evaluation
methods, but for the subsequent sections we will focus on how different
engines implement semi-naive evaluation. Looking again at Algorithm 2,
we observe that all of the computation happens at line 5, and it can be
split into two fundamental operations:

Rule Evaluation: The first operation computes the incremental op-
erator AT p(Ix_o, Al;_1). Computing this operator amounts to
executing a query ¢ in Relational Algebra, where ¢ is a (distinct)
union of join-project queries. As we will see next, different sys-

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.1. Semi-naive Evaluation 25
U
18 T i
> >]
> Store X Store X Store
PointsTo; APointsTo; ; APointsTo; ;
APointsTo;, PointsTo; APointsTo; 4

Figure 3.2: The query plan for evaluating a non-linear rule at iteration i.

tems perform this computation using different techniques and
optimizations.

Difference: The second operation filters out the facts that we have
already seen in previous iterations by computing the difference
with Ix_1. In this case, there are again different strategies on how
to perform this computation.

3.1.1 Query Plans for Rule Evaluation

Within the general framework of semi-naive evaluation, there are differ-
ent methods of how each rule is executed. For example, consider the
following rule from the Datalog program for points-to analysis:

PointsTo(x,y) : - Store(z,w), PointsTo(z,x), PointsTo(w,y).

Computing this rule amounts to a query ¢ in Relational Algebra
(see Figure 3.2) which is a union of three join-project queries. (Recall
that we also need to take another union across all rules with the same
DB predicate.) This query remains the same across all iterations, but
the input to the query changes since the IDB relations are updated at
every iteration.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

26 Evaluation

Static vs Dynamic Plans. There are two design choices at this point,
by choosing a static or dynamic query plan for q.

Static: Pick a fixed plan for ¢ that remains the same independent of
the iteration number (e.g., BigDatalog).

Dynamic: Attempt to find the best plan for ¢ based on the most recent
IDB inputs (e.g., RecStep).

The first choice may lead to suboptimal behavior when the optimal
query plan for ¢ varies across different iterations. For example, in some
Datalog programs, the size of AR produced in the first few iterations
might be much larger than a joining EDB table. Hence, if the query plan
performs a hash join between these two tables, the hash table should
be preferably built on the EDB side. However, as the AR produced in
later iterations tend to become smaller, the build side for the hash table
should be switched after some point.

The second choice of searching for an optimal query plan at every
iteration requires that we collect data statistics across iterations, which
may be a costly endeavor. RecStep mitigates this issue by collecting only
lightweight statistics (e.g., hash-table size, size of tables) specifically
tuned for the operators (join, projection) we want to execute. One thing
to note here is that dynamic plans are more challenging to implement
for systems that compile Datalog, such as Soufflé or Socialite, since
runtime information needs to be incorporated into plan generation.

Plan Optimization. Another design point is the choice of how to
compute the best (static or dynamic) plan for ¢q. RecStep translates
rules with the same head to a single SQL query, which is then issued to
the query optimizer of the underlying RDBMS, QuickStep, that finds
the best plan for the current iteration. In the Datalog implementation
on Myria and Naiad, the user must provide the plan manually to the
system. BigDatalog translates each rule to a sequence of joins following a
left-to-right-order, hence doing almost no search to find an optimal plan.
Soufflé uses a fixed plan, but instead of considering multiple physical
operators for joins (e.g., hash-join, sort-merge join), it limits the choice
to a nested loop join for every rule. The nested loop join is accelerated

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation 27

by the use of specialized concurrent data structures such as B-trees and
tries (we will discuss more on this on Section 4).

It is worth noting that plan optimization is even more challenging
compared to optimizing SQL queries, since data statistics for later
iterations do not exist and are very hard to estimate accurately. This is
the reason why most systems opt for simple plans.

3.1.2 Difference Computation

In semi-naive evaluation, the engine must compute the set difference
between the newly produced facts and the entire IDB relation (Rj_1) at
the end of every iteration, to generate the new ARy. Since set difference
is executed at every iteration for every IDB, it forms a computational
bottleneck that must be highly optimized.

We mention next some of the data structures that have been used
to speed up this bottleneck. In Soufflé, set difference is computed by
checking membership against the data structure (B-tree) that holds
the IDB relation: this data structure is designed to make this check
efficiently. RecStep in contrast implements a specialized dynamic set
difference operator to perform this task efficiently. This operator changes
its core algorithm depending on the relative size of the IDB to the newly
generated facts. Another option for computing the difference is to use
versioned B-trees; it is relatively efficient to compute the difference of
such trees since they will have a common history (i.e., the previous
iterations).

3.2 Parallel Evaluation

In this section, we discuss how Datalog evaluation is parallelized by
state-of-the-art systems. This capability is increasingly important as the
volume of data that needs to be processed increases. We first present
the theoretical underpinnings of parallelizing Datalog. Then, we discuss
parallel strategies for both multi-threaded and distributed systems.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

28 Evaluation

3.2.1 Theoretical Foundations of Parallel Datalog

Evaluating queries in Relational Algebra (the core fragment of SQL)
is in the complexity class ACy, which corresponds to boolean circuits
with polynomial size and constant depth. Since the depth of a circuit is
a proxy of how well computation can be parallelized, this means that
for all practical purposes RA is embarrassingly parallel. Note that RA
roughly corresponds to Datalog with negation but without recursion. On
the other hand, Datalog evaluation is P-complete (Abiteboul et al., 1995).
Since it is widely believed that the P-complete class includes inherently
sequential problems, it is highly unlikely — at least theoretically — that
every Datalog program can be significantly sped up using parallelism.

Evaluating linear Datalog programs, such as transitive closure or
reachability in graphs, belongs in the complexity class NC (Kanellakis,
1986; Cosmadakis and Kanellakis, 1986). More generally, if a Datalog
program has the polynomial fringe property, which says that every
fact in the output has a proof tree of polynomial size, evaluation is in
NC (Ullman and Gelder, 1988). Every piecewise linear Datalog program
(a slight generalization of linear programs) has the polynomial fringe
property and is thus in NC. At a high level, NC contains the problems
that can be solved by boolean circuits of polynomial size but logarithmic
depth. Hence, from a theoretical perspective such Datalog programs
admit an efficient parallelization. In practice, one can think of such
programs as programs that terminate — after some rewriting — within
a logarithmic number of iterations. We should note here two things:
(7) most Datalog programs observed in graph processing and business
analytics are linear, and (ii) linear programs are the ones where semi-
naive evaluation is particularly efficient.

On the other hand, non-linear programs (such as most points-to
program analyses) are generally not in NC. Since it is widely believed
that NC is strictly contained in P, we do not expect such programs to
be easily parallelizable. For instance, the simple Datalog program below
is P-complete:

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation 29

Unfortunately, there exists no general method to decide whether a
Datalog program is in NC or not, with the exception of a result on a
small fragment of Datalog programs called chain queries (Afrati and
Papadimitriou, 1987).

3.2.2 Shared-nothing Datalog Engines

Shared-nothing architectures are typically deployed to scale out data pro-
cessing (Stonebraker, 1985; DeWitt and Gray, 1992). In a shared-nothing
architecture, a large number of independent processors/machines are
connected via a fast communication network. Several big data systems
have been deployed on top of a shared-nothing architecture (Zaharia
et al., 2016; Malewicz et al., 2010; Dean and Ghemawat, 2004).

Shared-nothing architectures have been the core of several scalable
Datalog systems as well. BigDatalog provides scalable evaluation of
Datalog on top of Spark (Shkapsky et al., 2016). In Wang et al. (2015),
the authors consider asynchronous Datalog evaluation on top of Myria.
Socialite also has a shared-nothing parallel implementation (Seo et al.,
2013b). Finally, Datafrog is a lightweight implementation of Datalog
using the underlying Naiad system (Murray et al., 2013).

Since semi-naive evaluation can be thought of as a sequence of
relational queries, parallel Datalog engines borrow many techniques
from traditional parallel query processing (Kossmann, 2000). Both 1DB
and EDB relations are partitioned (sharded) to the machines using hash-
partitioning or another partitioning method. Using the partitioning
scheme, the engine can then pick a parallel query plan for every rule,
and also form a communication pattern of where to send the new facts
that are produced at each machine. However, the decision on when to
send the data and whether (and when) synchronization is needed differs
across the engines. Over the next part, we will discuss these design
choices in detail.

Data Partitioning Strategies. The partitioning strategy is a critical
design choice for efficient parallel evaluation in Datalog. Although the
partitioning of an EDB relation is done once at the beginning, 1DB
relations may have to be repartitioned at every iteration as new facts

The version of record is available at: http://dx.doi.org/10.1561/1900000073

30 Evaluation

are produced. This happens because a parallel join operator needs to
partition each relation by their join key, but the newly generated tuples
may end up in a different block of the partition. Hence, in order to
minimize data communication — and thus the total running time — it is
important to choose an appropriate partitioning strategy.

A rich line of research on partitioning strategies for Datalog exists
since the 1990s (Ganguly et al., 1990; 1992; Wolfson, 1989; 1990; 1993;
Zhang et al., 1995). These partitioning strategies are very general, in
the sense that they allow for adding extra conditions to the bodies
of rules in the form of restricting predicates. For example, consider
a hash function h that maps values from the domain to one of the p
machines. Then, add the following predicates @h to each rule of the
linear transitive closure program:

T(x,y) :- Edge(x,y) ©@h(x).
T(x,y) :- T(x,z), Edge(z,y) @h(z).

We interpret this as follows for the second rule: for any two facts
that join on z = a, their result must be produced at machine h(a). This
restriction implicitly describes a parallel evaluation strategy: relation
Edge is partitioned on its first attribute (just once), and any new fact
T(a,b) discovered at iteration ¢ must be sent to machine h(b) for the next
iteration. Then, the rules can be locally executed to produce the new
facts. Note that this is equivalent to a parallel hash join followed by a
reshuffling step, but one can express much more complex strategies using
more general predicates. It is worth contrasting this way of representing
a partitioning strategy (hidden from the programmer) with the location
specifiers used in distributed Datalog (Dedalus, WebdamLog).

Existing parallel Datalog engines deploy simpler partitioning meth-
ods. The standard partitioning method for parallel execution in Datalog
is hash partitioning (see BigDatalog, SocialLite, Myria). Hash partition-
ing is a technique widely used in parallel RDBMSs. Every relation
(extensional or intentional) chooses a subset of its attributes to be
partitioned by. Since there can be a mismatch between an operator’s
input partitioning and the chosen partitioning, a shuffling step is often
required to repartition the relation. For instance, in the example above,

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation

w

1

e\ e\ (—

Ta(x, @1) Ta(x, @1)

|

—

(— (——
Edge(@2, y) Edge(@2, y) Edge(@2, y)
reshuffling AT Ti(x, @2) reshuffling AT T,(x, @2)

—
J(—
(Edseloz,y |

—

|

Tax, @3)

Figure 3.3: Communication pattern and partitioning for linear transitive closure.
The newly produced facts at every machine must be reshuffled at the end of every
iteration using the second attribute as partitioning key.

the newly produced facts of T" will not be partitioned at all, so we need
to partition them using the second attribute (see Figure 3.3).

BigDatalog chooses by default the first attribute of a relation as its
partitioning key, while SociaLite leaves this choice to the user. Socialite
also employs a different partitioning method, range partitioning. Range
partitioning is implemented by dividing the range into consecutive sub-
ranges that are evenly distributed across the machines. In Socialite, the
users themselves have to specify the communication pattern according
to the partitioning method. This may work for small programs, but is
infeasible for larger programs with more rules.

Finally, we should mention that in cases where an EDB relation is
relatively small, the system could also consider broadcasting the relation
instead of using partitioning. Broadcasting is particularly effective in
Datalog, since it needs to be done once in the first iteration, but then
it requires no communication for the subsequent iterations.

Decomposability. Some Datalog programs allow for a particularly
efficient type of parallel evaluation, where after the initial partitioning of

The version of record is available at: http://dx.doi.org/10.1561/1900000073

32 Evaluation

the EDB relations there is no data transfer of IDB facts between machines
and no redundancy of computation as well (the second condition is
needed because one could replicate a sequential computation across
all machines). A program that admits such an execution is called
decomposable. It will be helpful to explain decomposable programs using
the following example, which computes all pairs of nodes in a graph
connected by an odd-length path:

T(x,y) :- Edge(x,y).
T(xy) :- T(x,z), Edge(z,w), Edge(w,y).

For this program, we deploy the following strategy: we hash-partition
T according to its first attribute, and broadcast the EDB relation Edge
to all machines. The advantage of this strategy is that every new fact
generated by the recursive rule will automatically be in the correct block
of the partition, and since Edge is broadcast, there is no need for any
repartitioning. Figure 3.4 depicts this strategy. This strategy does not
produce any extra work, since each fact in 7" will be produced by exactly
one machine. Additionally, since there is no need for communication
(with the exception of the initial partitioning step), each machine can
do its computation without the need of any further synchronization.
On the other hand, this strategy may be infeasible if the EDB relations
are so large that they can not be stored in a single machine.

Unfortunately, there is no systematic way to decide whether a Data-
log program is decomposable or not (Wolfson and Ozeri, 1990). However,
there exist a number of sufficient conditions that imply decomposability
based on the existence of a pivot, a property identified first in Wolfson
and Silberschatz (1988) in the context of single-rule programs. In our
example, the pivot consists of the first attribute position of 7. The
notion of a pivot was later generalized to full Datalog as generalized
pivoting (Seib and Lausen, 1991).

The generalized pivoting technique has been adopted in BigDatalog
and is part of its compiler. If the compiler can find a generalized pivot set,
the Datalog program is decomposable and an appropriate partitioning
is constructed based using its pivot set.

Recently, a line of work has looked at how decomposable strate-
gies can be generalized to incorporate more general partitioning meth-

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation 33

T

Edge(z, y) Edge(z, y) Edge(z, y)
[

Edge(z, y) Edge(z, y) Edge(z, y)

no communication no communication
T:(@2,2)
Edge(z, y) Edge(z, y) Edge(z, y)

Figure 3.4: Communication pattern and data partitioning using a decomposable
strategy. There is no communication or synchronization necessary.

ods (Ketsman et al., 2020), specifically using the Hypercube tech-
nique (Afrati and Ullman, 2010; Beame et al., 2017).

Synchronous vs Asynchronous Computation. An important design
point in parallel computation of Datalog is whether the execution should
be synchronous or asynchronous. In a synchronous execution model, at
the end of every iteration there exists a synchronization barrier, that is,
all machines need to make sure they have completed their computation
before progressing to the next iteration. This execution model is a nat-
ural fit to semi-naive evaluation, which splits computation in iterations
and uses only the recently discovered facts (in the previous iteration)
to produce new facts. However, synchronous execution introduces a
possible computational bottleneck, since a straggler machine or the
existence of data skew will make the computation slower. This problem
is exacerbated in Datalog (compared to non-recursive computation),
since the number of synchronization points depends on the number of
iterations and can be very large.

On the other hand, asynchronous processing has the benefit of re-
silience against uneven load distribution because each machine performs

The version of record is available at: http://dx.doi.org/10.1561/1900000073

34 Evaluation

computation without the need of synchronization. However, there are
several drawbacks to the use of asynchronous execution methods. First,
not all Datalog programs are amenable to asynchronous evaluation. For
example, the existence of negation in the rules often requires that the
execution method uses some synchronization at this point, otherwise
the output result is not guaranteed to be correct. Second, not all parallel
systems are amenable to asynchronous execution of their operators,
since this requires that the data can be pipelined from one operator to
the next without synchronization. For example, Spark does not natively
support a pipelined execution of its data shuffling step, and thus it needs
to be extended before it can support asynchronous execution. Third,
asynchronous evaluation can lead to a larger computational load, and
in particular computation that is replicated across different machines.
The reason for this redundancy is that it is possible that a machine that
is further ahead in terms of computation accesses stale data in some
other machine instead of waiting for the newer data to arrive.

BigDatalog adopts the synchronous execution model, with a syn-
chronization barrier at the end of every iteration. Socialite chooses a
mixture of synchronous and asynchronous execution. In particular, syn-
chronization is only needed when computation moves from one stratum
to the next stratum of the program; within the same stratum, results
are communicated as soon as they are ready with message passing (with
the exception of possible batching).

In Loo et al. (2006), the authors implement NDlog by using an asyn-
chronous distributed variation of semi-naive evaluation called pipelined
semi-naive evaluation (PSN). In PSN, a new tuple is processed on a
node as soon as it is received, without waiting for the current iteration
to complete. In order to guarantee that the same inference will not be
computed multiple times, PSN assigns to each new tuple a timestamp
(instead of a number based on the iteration it was generated), and the
new tuple can be matched only with tuples that have the same or an
older timestamp. PSN thus allows for a fully pipelined evaluation, with
the trade-off that set-oriented processing is not fully utilized.

In Wang et al. (2015), the authors implement and compare the
synchronous and asynchronous mode of execution over the same parallel
system, Myria. Their study shows that none of the two execution models

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation 35

is superior. For instance, asynchronous computation was much faster
for the task of computing the connected components of a graph, while
synchronous computation performed considerably better for the task
computing the least common ancestor for pairs of publications in a
citations graph. The choice of which strategy is better depends on the
number of iterations of the program and the number of intermediate
facts produced during execution. Since both of these parameters are
only known at runtime and are difficult to estimate, this optimization
choice becomes a challenging problem in practice.

Asynchronous and Coordination-Free Programs Extreme examples
of asynchronous Datalog computations are found in the context of
declarative networking (Loo et al., 2009), where Datalog and extensions
of Datalog are used to program networks with minimal synchronization
and blocking mechanisms in place. In such settings, a great deal of effort
goes into understanding the distributed semantics of programs.

Example 3.1. Take as an example the single-rule semi-positive Datalog
program,

Abort() : - not VotesForCommit(ip), Machine(ip).

that instructs machines to abort a transaction if one of machines in the
network fails to vote for a commit. Timing matters for this program,
as the intended semantics is only obtained if the rule executes after
all machines have had enough time to populate the VotesForCommit
relation with their vote.

This example is in stark contrast to the case for programs written
in positive Datalog, whose semantics preserves without any artificial
blocking mechanisms in place. The outcome of positive Datalog pro-
grams eventually converge to agree with the program’s non-distributed
sequential semantics, despite temporal non-determinism caused by dis-
orderly firing rules, network delays, and re-applying rules over inflating
instances.

Based on the observed correlation between negation and need for
blocking, Hellerstein (2010) raised the question to what extent blocking

The version of record is available at: http://dx.doi.org/10.1561/1900000073

36 Evaluation

and synchronization are required by the semantics of Datalog programs;
conjecturing a strong relationship between the (eventual) consistency
of program executions and whether the program is monotone. A formal
exploration of CALM — the common acronym to refer to this relationship
— was done first by Ameloot and Van Den Bussche (Ameloot et al., 2013),
who, for a particular definition of non-blocking (called coordination-
freedom) showed that all, and only, monotone queries (not necessarily
written in Datalog) have a non-blocking strategy. Their model assumes
only weak forms of network reliability (like guaranteed at-least once
arrival of messages) and puts no restrictions on the way data is initially
partitioned and placed on machines in the network. In later work, it
was shown that there is a leverage between the semantics of programs
that allow non-blocking computations and system knowledge about the
initial data partitioning (Ameloot et al., 2016). One such result is that
semi-monotone programs require no blocking if a partitioning-strategy is
used and known by the machines in the system. (In Datalog terms, these
contain the semi-positive programs). The crux underlying this result is
that a semi-monotone query can be seen as a monotone query taking as
input over the input relations and their complements (Abiteboul et al.,
1995).

In a parallel setting, a partitioning strategy makes individual nodes
responsible for certain facts, these nodes can thus infer that “facts that
are absent on a node, but fall under that node’s responsibility, cannot
reside on other nodes either”. Through distributed effort, the entire
complement relations become computable without blocking and there-
fore allow to also compute the remaining (now monotone) computation
without blocking.

Example 3.2. For an example, consider the semi-positive Datalog pro-
gram,

Poi(x) : - Supplier(x), not Customer(x).

asking for all suppliers who are not in the customer relation. Let us
assume that the customer relation is range-based (or hash-based) parti-
tioned over a number of machines, and that all these machines have a
local predicate Customerjoca) for the fragments of customers at hand and

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.2. Parallel Evaluation 37

a local predicate Range),.,; representing the range that the particular
machine is responsible for. Then, every machine can execute a rule
collecting suppliers that are not in the customer relation at hand but
within the partition’s range,

NoCustomer(x) : - Supplier(x), not Customeriocai(x), Range,car(X)-

which, through distributed effort, computes the complement of the
customer relation. The positive Datalog rule,

Poi(x) :- Supplier(x), noCustomer(x).
completes the execution.

The theoretical upper bounds unfortunately yield no direct practical
algorithms and rely on sending all facts to all nodes, which is the best
one can do for arbitrary monotone queries (in no particular language).
As we discussed in the previous section, systems like BUD (Alvaro et al.,
2011; Conway et al., 2012) explore these upper-limits through extensions
of Datalog with more expressive rules, which are still monotone, but
over arbitrary user-defined lattices. Since some of the features, like
arithmetics, do not guarantee convergence and termination, this requires
some reasoning by the programmer.

3.2.3 Shared-Memory Datalog Engines

In addition to distributed environments, another line of work has looked
at scaling up Datalog in shared-memory settings: RecStep (Fan et al.,
2019), Datalog-MC (Yang et al., 2017), Soufflé, and Graspan (Wang et al.,
2017). In such an architecture, computation is spread across multiple
units, but the main memory and disk are shared resources. The first
three systems focus on main-memory settings, where the data fits in
memory, while Graspan considers also disk movement. However, the
expressivity of Graspan is restricted to binary relations (graphs) and
hence it does not support the full positive Datalog.

While in a distributed setting the key concern is to minimize commu-
nication and synchronization, in a shared-memory architecture the core
challenge is to handle the contention on the data structures that are

The version of record is available at: http://dx.doi.org/10.1561/1900000073

38 Evaluation

repeatedly accessed at every iteration. Thus, there is a common thread
across all shared-memory Datalog engines to construct specialized data
structures and specialized operators with a high degree of concurrency,
instead of using a generic concurrent implementation. In what follows,
we dive deeper on how these engines work.

Datalog-MC hash-partitions tables and executes the partitions on
cores of a shared-memory multicore system using a variant of hash-join.
The decision on which attributes should be used for the partitioning
(called discriminating sets) is made by an optimizer and takes into
account the query workload and the estimated cost of the best plan for
each query in the query workload. To evaluate Datalog in parallel, the
rules are represented as and-or trees, where an “and” corresponds to
a join operator, and an “or” corresponds to an operation like filter or
union. During evaluation, the and-or tree is traversed in a bottom-up
fashion, by sending new facts from the leaves of the tree towards its root.
The parallelism comes from creating copies of the and-or tree, one for
each partition, that can be evaluated simultaneously. This formulation
allows Datalog-MC to reason in a fine-grained manner on whether a
read or write lock is needed to move the evaluation forward, hence
minimizing contention. Datalog-MC also uses B-trees as the default
indices to speed up search.

RecStep takes the approach of using a very fast main-memory
RDBMS as its underlying engine. It compiles Datalog directly to a
sequence of SQL queries, and lets the RDBMS optimize and execute
each query. All relational operators in QuickStep have high-performance
parallel implementations, but special care needed to be taken for the
deduplication operator. Recall that deduplication happens at every
iteration for every idb relation, and it is necessary to avoid redundant
computation. RecStep implements the deduplication operator by a global
latch-free hash table, in which tuples from each data partition can be
inserted in parallel. The size of the hash table is also tuned by the
optimizer to use as many pre-allocated buckets as the available memory
allows, thus preventing memory contention.

Soufflé achieves high scalability by parallelizing the execution of
the nested loops in C++. Recall that Soufflé evaluates each rule by

The version of record is available at: http://dx.doi.org/10.1561/1900000073

3.3. Compilation vs Interpretation 39

executing an (indexed) nested loop join over the atoms in the body
of the rule. Parallelizing the execution of each loop means that when
Soufflé has to check whether a fact exists in a relation when Soufflé
inserts a new fact in the relation, the engine must be able to perform
these operations concurrently. To solve this issue, Soufflé has built its
own concurrent data structures specialized to Datalog execution (Jordan
et al., 2019a; 2019b). We will discuss these techniques in more detail in
Section 4.

Graspan operates only on graphs (i.e., binary relations), and creates
partitions of the edges by splitting according to the source vertex. In
each iteration, two partitions are loaded into memory and joined to
produce new facts — this can be done in parallel across all partitions.
When a partition becomes too large, Graspan dynamically repartitions
to smaller partitions. We should note that the focus of Graspan is to
minimize memory-disk movement, which is not a focus of all other
Datalog engines.

Finally, we should also point out here a line of work that uses
GPUs to achieve high-performance parallel Datalog processing in a
shared-memory setting (Martinez-Angeles et al., 2013). Their basic
data structure is an array of tuples which allows for duplicate facts.
Thus, after every relational operation, explicit duplicate elimination
is performed — which for some cases dominates execution time. The
system also takes care to minimize the movement between GPU and
CPU by keeping facts in the GPU as long as possible.

3.3 Compilation vs Interpretation

A different design point on how to architect a Datalog engine is whether
the Datalog program is compiled or interpreted. This is a particularly
interesting trade-off in the design space, since as we discussed Datalog
execution is a dynamic process: the number of iterations is not known
a priori, and it is possible that the optimal query plan in every iter-
ation is different. Hence, compilation limits the amount of on-the-fly
optimizations one can apply when computing a Datalog program.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

40 Evaluation

Among the Datalog systems we are focusing on, Soufflé compiles
down to a parallel C++ program. Socialite also compiles to Java code
(using an underlying distributed file system). On the other hand, RecStep
produces a sequence of SQL statements that run on top of an RDBMS,
while BigDatalog runs on top of (modified) Apache Spark.

3.4 Other Evaluation Methods

Apart from bottom-up evaluation strategies, there exists another family
of evaluation methods that operates in top-down fashion. For example,
in the query-subquery (QSQ) method (Abiteboul et al., 1995), we start
from the goal and attempt to find facts that match the goal. This
approach can be beneficial when it is possible to obtain the output
without computing the full model of the Datalog program. However,
top-down approaches are unlikely to work once the input relations get
really large as with many modern applications (e.g., program analysis,
graph processing), and none of the systems presented in this monograph
use them. We should note here that languages that include Datalog as
a special case (e.g., Prolog), use top-down (or goal-oriented) evaluation
as the default evaluation method.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

4

Data Layouts and Indices

In this section, we discuss how data is represented in modern Datalog
engines. First, we present the various data layouts used to facilitate
Datalog evaluation. Even though most engines prefer the standard row-
oriented representation, several engines use different data layouts to
optimize for specific application domains. For example, to accelerate the
evaluation of context-sensitive program analyses, bddbddb uses binary
decision diagrams to efficiently represent a relation. Socialite uses a
generalized adjacency list layout to represent graphs, while RecStep uses
bit matrices to represent dense relations of small arity. In the second
part, we discuss various indexing techniques used by modern Datalog
engines.

4.1 Data Layouts for Datalog

Most Datalog engines use the standard row-oriented representation for
both the IDB and EBD relations. We will use the instance in Table 4.1
of a ternary relation R(A, B, (') as a running example throughout this
section, depicted using a row-oriented representation.

A row-oriented representation also helps interfacing with any under-
lying Relational DBMS that the engine may use. We should note here

41

The version of record is available at: http://dx.doi.org/10.1561/1900000073

42 Data Layouts and Indices

that in most applications of Datalog the number of columns on each
relation is quite small, and hence column-oriented representations have
not been used in practice.

Even though row-oriented representations are prevalent, there are
Datalog engines that use other representations targeted to optimize
the performance of specific applications. Most of these data layouts
exploit properties of the input distribution (e.g., density) to design
representations that both save space and speed up the performance.
We next present in detail these data layouts and discuss their target
application.

Table 4.1: Instance of a ternary relation R(A, B,C) used as a running example.

(A[B|C]

NN
=== O =] O

= Ol W W] =] =

4.1.1 Binary Decision Diagrams

bddbddb uses Binary Decision Diagrams (BDDs) to perform pointer
analysis on large programs. As we have seen, pointer analysis can be
naturally expressed in Datalog. However, for certain types of pointer
analysis, such as context-sensitive analysis, the IDB relations we want
to compute grow exponentially large with the size of the code. Thus,
even for relatively small EDBs it becomes inefficient to represent the
IDB relations in a row-oriented store. BDDs offer a much more com-
pact representation for these relations, hence allowing for an improved
performance.

In order to represent a relation R(Aj,...,Ay) as a BDD, we first
need to perform a binary encoding of the relation. Assume that each
value of attribute A; comes from a domain D;, which takes values from
{0,1,...}. We can then encode each value with at most log,(n) bits

4.1. Data Layouts for Datalog 43

by
A B C bz bz
by | by | bs | by | bs
o (oo |1]o0 bs bs
olo o |1]1
oo 1|1]o b b
olo 1|1]2
bs bs
110]o |0 |1
110]o |1]2

o

Figure 4.1: Binary encoding and corresponding OBDD for the running example.
The solid edges correspond to 1-edges and the dashed edges to 0-edges.

where n is the size of the relation. For our running example, we have
D4y ={0,1,2,3}, Dp ={0,1,2,3} and D¢c = {0,1}. Thus, we need 2
bits for attributes A, B and 1 bit for attribute C', for a total of 5 bits.
We can now think of an instance as a boolean function f that maps
each element from D; X D X --- x Dy to {0,1}: f(t) = 1 if a tuple
t exists in the instance, otherwise f(¢t) = 0. Figure 4.1 (left) depicts
the encoding as a boolean function for the running example (only the
entries with f(t) = 1 are shown).

A BDD is a directed acyclic graph (DAG) with a single root node
and two terminal nodes: 1 and 0. Each non-terminal node is an input
variable and has two outgoing edges: a 1-edge and a 0-edge. The 1-edge
represents the case where the variable for the node is true, and the
0-edge represents the case where the variable is false. To evaluate a
BDD for a specific input, one starts at the root node and, for each node,
follows the 1-edge if the input variable is 1, and the 0-edge if the input
variable is 0. The value of the terminal node that we reach is the value
of the BDD for that input. Figure 4.1 (right) depicts a BDD for the
running example using the binary encoding on the left.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

44 Data Layouts and Indices

bddbddb uses a variant of BDDs called Ordered BDDs, or OBDDs.
An OBDD has the constraint that on all paths from the root to a
terminal node the variables we meet follow a fixed variable order. The
choice of the variable order can make a huge difference on how compact
the BDD is, but unfortunately computing the optimal order is an
NP-hard problem (Bollig and Wegener, 1996). bddbddb heuristically
attempts to choose a good order. In addition, when we construct the
BDD we take care to collapse common subgraphs into a single graph and
share these nodes. This means that the more commonalities there are
in the structure of the BDD, the more space-saving this representation
will be. This is exactly the reason why BDDs are so space-efficient (and
thus performant) when used for context-sensitive program analysis.

4.1.2 Tail-nested Tables

Tail-nested tables are a data layout explicitly designed for represent-
ing graphs. They have been used as the core data representation for
Socialite (Seo et al., 2013a), a Datalog engine geared towards social net-
work analytics. Tail-nested tables generalize the notion of an adjacency
list to represent edges in a graph.

Formally, the last column of a tail-nested table may contain pointers
to two-dimensional tables, whose last columns can themselves expand
into other tail-nested tables. The level of nesting is arbitrary and it is
indicated by parentheses in the table declarations.

For example, a tail-nested representation of a ternary relation R
with three attributes A, B, C' can be written as R(A, (B,(C)). In this
case, the data layout has one column for attribute A with pointers to
a two-dimensional table, where each row of the table stores a value
of attribute B and a value of attribute C. To apply this to the graph
setting, let attribute A denote the source of an edge, B its target, and
C a property of either the edge or the target node. Figure 4.2 depicts
the data layout for this example.

There are two benefits of tail-nested tables when representing graphs.
First, the edges of the graph can be compactly stored, since edges with
the same source need to store the source node once. Second, the data
representation itself forms an index that can speed up the evaluation

The version of record is available at: http://dx.doi.org/10.1561/1900000073

4.1. Data Layouts for Datalog 45

W Wk |k | m
RO, |[O| 0O

Figure 4.2: The tail-nested table R(A, (B, C)) for the running example.

of Datalog programs. Indeed, it is straightforward to see how both
hash-joins and nested-loop joins can be modified to handle tail-nested
tables as the input representation.

4.1.3 Tries

A data representation of similar flavor to tail-nested tables are tries. A
trie is a tree data structure, where each level of the leaf corresponds
to an attribute of the relation. Moreover, each tuple corresponds to a
unique path from the root to a leaf of the trie. To speed up search, one
can also choose to order the children of a node in the trie according
to some fixed order that is consistent throughout the same level. We
should note here that a trie requires a specific ordering of its attributes
(as with an OBDD) and different orderings will lead to possible different
running times for a program. Finding the optimal attribute ordering
for a given workload is a hard optimization problem. Figure 4.3 shows
the trie for the running example if the attribute order is A, B, C.
Tries offer compact representation similarly to tail-nested tables.
Moreover, they are particularly effective when used to compute non-
recursive Datalog programs through worst-case optimal algorithms —
see for example the Leapfrog TrieJoin algorithm (Veldhuizen, 2014).
The LogicBlox engine uses tries as a virtual abstraction over more
conventional data structures. Soufflé also implements a specialized

46 Data Layouts and Indices

R
0 2 A
1 3 0 1 B

Figure 4.3: A trie for the running example when the attribute ordering is A, B, C.

version of a trie called brie (Jordan et al., 2019b), which is a specialized
concurrent data structure that can be viewed as a combination of a
trie (meaning the tuples are encoded in the root-to-leaf path) and a
B-tree. This data structure is particularly effective for relations of high
density. Intuitively, density measures the fraction of points that in the
relation out of all the possible points that can be constructed using
the values in that relation. For example, a binary relation R(A, B) has
the maximum possible density if it is the Cartesian product of the two
attribute columns. High density implies a lot of repetition, and hence
compacting the representation is beneficial. As we will see next, bit
matrices are also effective in representing high density relations.

4.1.4 Bit Matrices

In evaluating Datalog programs, it can happen that we start with sparse
EDB relations with a relatively small active domain, but end up with
large and dense output relations. This phenomenon has been observed
in both graph analytics and program analysis (recall for example the
discussion on the use of BDDs). A typical example of this behavior is
the classic Datalog program of computing the transitive closure on a
directed graph:

TC(x,y) : - Edge(x,y).
TC(x,y) :- TC(x,z), Edge(z,y).

4.1. Data Layouts for Datalog 47

B B
1]2 | 1(2(3]4s
1 |4 1fof2lof1]o
2 |1 2|1]olofo]1
2 |5 A lszlolo|o|1]o
3 |4 alo|ofo]o|o
5 |5 s{ofofofo]|1

Figure 4.4: A binary relation R(A, B) along with its representation as a 2-
dimensional bit matrix.

In the above program, even if the input graph is sparse (meaning that the
number of edges is O(n), where n is the number of nodes), the IDB TC
can grow very large after only a few iterations and can become as large
as O(n?). A row-oriented store will thus grow large and consequently
fast join processing (e.g., using a hash join) will become memory-costly
and slow. In the extreme, the intermediate table will become too big to
fit in main memory, thus incurring additional I/O overhead.

To overcome this issue, RecStep proposes to use a specialized data
structure, called a bit-matriz (Fan et al., 2019). A bit-matrix represen-
tation is particularly effective when the active domain of the attributes
in an IDB relation is relatively small, but the final result can grow large,
hence ending up with a dense relation.

We describe here the bit matrix for binary relations, but the tech-
nique can be extended in a straightforward way to relations of higher ar-
ity. Let R(A, B) be a binary IDB relation, with active domain {1,2,...,n}
for both attributes. Instead of representing R as a set of tuples, we
represent it as an n x n 2-dimensional bit matrix M. If R(a,b) is a
tuple in the instance, the bit at the a-th row and b-th column, denoted
MTa,b] is set to 1, otherwise it is 0. Figure 4.4 shows an example of
such a representation.

The reader should note here that a relation in bit-matrix format
can be updated during each iteration by simply setting bits from 0
to 1 whenever a new fact is generated. Moreover, the space required

The version of record is available at: http://dx.doi.org/10.1561/1900000073

48 Data Layouts and Indices

to represent the IDB remains constant throughout the iterations. One
additional important feature of the bit-map representation is that it
allows easy parallelization in a multi-core setting, by partitioning the
bit-matrix row-wise and assigning each partition to a different thread.
In fact, this partitioning technique leads to an almost zero-coordination
algorithm for every iteration.

4.2 Indexes

In addition to the choice of data layout, a second important consideration
of how data is represented in the context of a Datalog engine is what
indexes should be built. Since most Datalog engines in their core perform
relational data processing (and in particular join processing), the use of
standard index structures such as hash-tables and B-trees does speed
up the evaluation and is common in many engines. Nevertheless, as we
will see next, some engines (Soufflé, LogicBlox) choose to implement
their own specialized indexes.

4.2.1 Specialized Indexes for Datalog

B-trees have been successfully used in multicore data processing (Graefe,
2010; Sewall et al., 2011), and they have also been used to accelerate
parallel Datalog evaluation in Soufflé. We should at this point examine
closer Datalog with synchronous versus asynchronous evaluation. In the
case of synchronous evaluation, there is a clear separation of reads and
writes in the data structure: at every iteration read operations (eval-
uating the rules) are always followed by several write-only operations
(inserting the new facts in the index). An asynchronous evaluation strat-
egy does not have this property, since the order of reads and writes will
be arbitrary. Soufflé takes advantage of this separation by building an
in-memory B-tree data structure that has a new optimistic fine-grained
locking scheme using optimistic read-write locks (Jordan et al., 2019a).
In addition to these algorithmic ideas, the actual implementation used
in Soufflé carefully tunes several other features to improve performance
for Datalog.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

4.2. Indexes 49

4.2.2 Index Selection

There is a large body of literature on index recommendation techniques
for RDBMSs, most of them based on heuristic methods (Agrawal et al.,
2000). Unfortunately, these techniques are not sufficient when applied
to evaluating Datalog programs. There are multiple reasons for this.
First, indexes are needed for both IDB and EDB relations, and the former
need a dynamic indezx, since the relation changes after every iteration.
Second, some Datalog programs — especially in program analysis —
consist of hundreds of relations and rules, which means that typical
index recommendation techniques that do not scale fail.

Most Datalog engines require that the user manually specifies what
indexes should be used (e.g. Doop, Socialite), or default to simple
strategies. For example, RecStep does not build any indexes up front,
but the underlying RDBMS will build on-the-fly hash indexes for the
join and deduplication operator. For the engines that use indexes based
on a fixed attribute order (e.g., tries in LogicBlox, BDDs in bddbddb), an
additional challenge becomes the choice of the optimal attribute order.
In general the latter problem is intractable (especially since different
rules possibly have different optimal orders), hence the only solution is
to use heuristic methods based on collected data statistics.

Souffle uses a different approach and instead automatically constructs
an appropriate set of indices (Suboti¢ et al., 2018). Recall that Soufflé
executes each rule as a nested loop join, which is sped up via the use
of B-trees. The order of the predicates in the nested loop determines
which B-trees would be useful to speed up the given rule. The access
pattern for a B-tree in Datalog evaluation is typically a selection with
equality predicates on a subset of the attributes. For example, consider
the following recursive rule:

T(x,y) :- up(x,z), T(z,w), down(y, w).

Suppose that the nested loop join visits the predicates in the same
order as they appear in the above rule: up,T,down. In this case, we
would build a B-tree on T with search key the first attribute, and a
B-tree on down with search key its second attribute. Since there are
multiple rules in a Datalog program, it is possible that there is overlap

The version of record is available at: http://dx.doi.org/10.1561/1900000073

50 Data Layouts and Indices

between such indices, for example in the case where the search key
of the one B-tree is a prefix of the search key of the other B-tree.
Soufflé finds an appropriate subset of indices that “covers” all necessary
B-trees to speed up the nested loop joins, and constructs all of them
before evaluation starts. Even though index recommendation is generally
intractable (Piatetsky-Shapiro, 1983), in this more restrictive setting it
can be solved in polynomial time.

We should note here that this design choice by Soufflé means that it
can construct multiple indexes for the same relation. Hence, although
performance can substantially improve, the memory footprint can be-
come very large, which is prohibitive in a main memory setting.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

5

Optimizations

In this section, we present optimization techniques implemented in
Datalog systems to further speed up evaluation. We distinguish these
optimizations into two categories: language-level optimizations that
attempt to rewrite the Datalog program into a more efficient program,
and low-level optimizations that operate on the logical and physical
operators of the translated Datalog program.

5.1 Language-level Optimizations

This section discusses optimizations that happen on the language level
through different rewriting techniques.

5.1.1 The Magic-Set Transformation

A standard optimization for Datalog programs is the magic set trans-
formation (Beeri and Ramakrishnan, 1987). We should remark here
that the magic sets rewriting technique has also been applied in the
context of non-recursive computation, and in particular to evaluate
more efficiently correlated subqueries: this method is known as magic
decorrelation (Seshadri et al., 1996).

51

The version of record is available at: http://dx.doi.org/10.1561/1900000073

52 Optimizations

Some systems (Soufflé, SocialLite) implement this transformation (or
a restricted version of it), while other systems do not. From a high level,
this technique can be thought of as the equivalent of pushing a selection
condition in a query plan, albeit now it happens within a recursive
program. For example, consider the following Datalog program:

T(x,y) : - Edge(x,y).
T(xy) :- T(x,z), Edge(z,y).

A(y) :- T(a)y).

This program computes all the nodes in a graph reachable from node
a. Note that the program is essentially a recursion followed by a selec-
tion operator. Semi-naive evaluation will compute all tuples in T before
applying selection, hence performing redundant computation. The equiv-
alent rewritten program produced by the magic-set transformation is

as follows:
Tbf(x,y) :- Ti(x), Edge(x,y).
T(x,y) :- Ti(x), Tbf(x,z), Edge(z,y).
Ti(x) :- Tbf(x,y).
Ti(a) :-.
A(y) :- Tbf(a,y).

For the above program, semi-naive evaluation will only compute
the necessary facts because the selection has been pushed inside the
recursion through the predicate Ti. Hence, the evaluation will be much
more efficient. We will not cover magic sets in more depth here, and we
refer the reader to another survey by Green et al. (2013) for an in-depth
presentation of the technique.

5.1.2 Reducing the Number of Iterations

As we discussed in earlier sections, in parallel systems with synchronous
computation, the number of iterations determines the number of syn-
chronization barriers during computation. Hence, reducing the number
of iterations could speed up parallel evaluation. For instance, linear
transitive closure can be rewritten to the following non-linear Datalog

The version of record is available at: http://dx.doi.org/10.1561/1900000073

5.1. Language-level Optimizations 53

program which is guaranteed to terminate in a logarithmic number of
iterations (w.r.t. the input size).

T(x,y) :- Edge(x,y).
T(xy) :- T(x,2), T(zy).

Unfortunately, the above program will reduce the number of rounds
at the expense of an increase in the number of facts that will be produced.
In other words, synchronization will decrease, but communication will
increase. In a recent work, Afrati and Ullman (2012) explore whether
one can achieve the best of both worlds. They show that some Datalog
programs can be evaluated with a logarithmic number of rounds and no
order-of-magnitude increase in the number of facts deduced. Transitive
closure is an example of such a program. On the other hand, for other
(even linear) Datalog programs, this is not possible. For example, reach-
ability and same-generation do not admit such an effective rewriting.
This technique, even though promising, has not been implemented yet
as part of a Datalog system.

5.1.3 Reducing the Number of Strata

In parallel asynchronous evaluation, we noted that the presence of
(stratified) negation introduces a synchronization barrier that is un-
avoidable. In particular, the number of strata determines the number
of synchronization barriers a system needs to impose. A few techniques
have been proposed to rewrite the Datalog program so that it reduces
the number of strata while computing the same output (Rudolph and
Thomazo, 2016; Ketsman and Koch, 2020). The key idea is to combine
an “unrolling” of the recursion in the program with checks on whether
any subset of negated atoms can be safely removed without changing
the semantics. These techniques also remain theoretical and have not
yet been incorporated in a system.

5.1.4 Pushing Aggregation into Recursion

In the case of aggregation, rewritings can also help with accelerating the
recursive computation. This idea was first explored in the early 1990s

The version of record is available at: http://dx.doi.org/10.1561/1900000073

54 Optimizations

(Sudarshan and Ramakrishnan, 1991) with a focus on max, min, and &
largest values. A more recent line of work (Zaniolo et al., 2016; 2017) has
looked into how one can push certain types of aggregation (in particular
max and min) inside the recursion, in a similar way to how one can
push selection through recursion with the magic-set transformation. To
explain this idea, consider the following program, which computes the
shortest paths from a starting node a:

Path(x, d) : - Edge('a’, x, d).
Path(x, d) : - Path(y, d'), Edge(y, x, d"),d =d" + d".
SPath(x, min(d)) : - Path(x, d).

This program will compute all paths from node a, and then compute
the minimum. Instead, one can push the aggregation into the recursion
by replacing the head of the first two rules with Path(x, min(d)). This
introduces aggregation in the recursion, but improves the performance
because at every iteration only the shortest paths are stored (instead
of all paths). The authors in Zaniolo et al. (2016) specify a syntactic
property of the program, which they call the PREM property, under
which this transformation can be done correctly. We should remark
here that a very recent work by Wang et al. (2022) has shown how to
generalize the PREM transformation — and other rewritings — through
the use of program synthesis techniques.

5.2 Low-level Optimizations

In this section, we describe techniques for optimizing Datalog on the
logical /physical level.

5.2.1 Extending the Search Space for Plans

The combination of Relational Algebra and recursion can lead to novel
ways to optimize query plans. For instance, Jachiet et al. (2020) pro-
poses techniques that allow for new execution strategies for a subset of
Datalog that is equivalent to RA plus a fixpoint operator. Using this
algebraic formulation, the authors come up with novel rewriting rules
that generate new query execution plans. A rewrite rule can push a filter

The version of record is available at: http://dx.doi.org/10.1561/1900000073

5.2. Low-level Optimizations 55

inside a fixpoint computation (similar to a magic set transformation),
or combine two fixpoints in one single fixpoint computation. To give
a concrete example of these strategies, consider the following Datalog

program:
T(xy) :- R(x,y).
T(xy) :- T(x,2), R(z)y)
U(xy) :- T(x,2), S(z,y
U(xy) :- U(x,z), S(z,y

This program computes all pairs of nodes connected by a path that
consists of R-edges followed by S-edges. The standard plan here is
to first compute T', and then use T to compute U (since T does not
depend on U). A different strategy would be to first compute the
join 7, (R(x,2) > S(z,y)) as the base facts for U, and then add
new facts by expanding left using R or right using S. This strategy
cannot be captured by semi-naive evaluation. In Jachiet et al. (2020), a
simple optimizer with cost-based estimation determines which of the
generated plans performs the best and uses this to evaluate the program.
Although this idea has been verified experimentally, it has not been yet
incorporated to any general Datalog system.

5.2.2 Delta Stepping

Socialite uses the delta stepping technique (Meyer and Sanders, 1998) to
accelerate computation in the presence of recursive monotone aggregate
functions. This technique was originally applied to speed up parallel
shortest path computation, and it was generalized to linear Datalog
programs. To give an example, suppose the aggregate function is a min.
In this case, convergence will be faster if the execution algorithm operates
with the smallest values. However, since Socialite uses asynchronous
computation, making this choice will hurt parallelism. Delta stepping
overcomes this issue by appropriately choosing multiple smallest values
to update at once.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

6

Conclusion

In this monograph, we presented the recent advancements of Datalog
engines to handle large datasets and complex programs across various
domains. We particularly focused on the different language variants
of Datalog, on how Datalog evaluation can be parallelized, both in a
multicore and shared-nothing parallel setting, and how different design
choices are necessary for different domains and input data.

Although there has been a lot of progress and success both in the
academic and commercial world, there are several exciting research
directions, both from a theoretical and practical viewpoint. We discuss
next some of these directions.

Approximate Computation. Most Datalog engines compute the result
of the program exactly. However, in some applications it would be
interesting to trade off accuracy for performance. For example, a user
may not be interested in all the output results but only a subset of
them (e.g., the user only wants to obtain some of the pairs of nodes that
are connected). In the case of aggregate functions (recursive or not), a
user may want to see an approximate value of a count, sum, or average.
Socialite (Seo et al., 2013b) supports some form of approximation

56

The version of record is available at: http://dx.doi.org/10.1561/1900000073

57

(by terminating the program before it reaches the fixpoint). A natural
question is whether one can obtain approximate answers fast with formal
guarantees of accuracy, and whether one can obtain tight trade-offs
between runtime and accuracy.

Incremental Computation. Supporting incremental computation is
a desirable feature when the input data changes often. For example,
consider the case of maintaining the reachable nodes from some start-
ing node in a dynamic graph. DDLog (Ryzhyk and Budiu, 2019) and
LogicBlox are the only engines that support some form of incremental
computation. However, in the case of DDLog, there is a huge memory
cost on creating the necessary data structures to maintain the output
efficiently. Is it possible to design data structures and algorithms with
better trade-offs between memory consumption and update time?

Asynchronous Computation with Low Communication. Recent theo-
retical advancements (Ameloot et al., 2013; 2016) characterize which
Datalog programs can be correctly computed using asynchronous par-
allel computation. However, they tell us nothing on whether we can
achieve this computation with small communication cost and small
computational redundancy. Moreover, as we discussed in Section 3, for
some programs it is not clear that an asynchronous strategy is more
efficient than the corresponding synchronous one. It is even possible
that a mixed strategy of asynchronous and synchronous computation
may provide to be the optimal one. Hence, it is natural to pinpoint the
classes of Datalog programs that are amenable to fast asynchronous
versus synchronous versus mixed strategies, both from a theoretical and
practical point of view.

Improved Optimization Techniques. As we have discussed in this
monograph, most Datalog engines opt for little to no optimization to
find a good query plan. The reasons are multiple: (i) Datalog programs
can grow to become very complex with many rules, (i7) the data is
dynamic (since the IDBs are incremented after every iteration), and (7i7)
the interaction of recursion with relational operators makes rewriting

The version of record is available at: http://dx.doi.org/10.1561/1900000073

58 Conclusion

methods complex to handle. Some progress on this front has been
made (Jachiet et al., 2020), but it remains an interesting direction to see
how much performance can be improved by better Datalog optimizers
that make more aggressive decisions regarding which plan to choose. In
particular, it is possible that the iterative nature of Datalog can allow
for some form of learning of the input data, which can be used to make
better optimization decisions.

Datalog Synthesis. Since Datalog is a high-level declarative language,
it provides an excellent opportunity to explore the automatic synthe-
sis of a Datalog program from input/output examples. Some recent
efforts (Albarghouthi et al., 2017; Si et al., 2018; Raghothaman et al.,
2020) have proposed program synthesis techniques to learn a large set of
Datalog programs from examples. Datalog is particularly promising for
synthesis since it operates under set semantics (in contrast to SQL). An
open question in this area is whether the proposed synthesis techniques
can scale to larger and more complex Datalog programs, and whether
they can be incorporated in a modern Datalog engine to facilitate user
interaction.

New Applications. Recent progress in Consistent Query Answering
(CQA) has shown that certain answers for join queries over inconsistent
data can be computed through linear Datalog programs (Koutris and
Wijsen, 2021). An interesting direction is to explore how current Datalog
engines can handle these programs and how they can be optimized to
run efficiently.

Another application concerns how Datalog can be extended to
support tasks related to Machine Learning (ML). Such a formulation
could use the techniques used to speed up and parallelize Datalog to
also optimize ML pipelines. In particular, the support for recursive
aggregation is a natural fit to how many ML algorithms work, for
example, see Gu et al. (2019). The challenging task in this case is how
one can define the semantics of Datalog such that there is a well-defined
output and optimization techniques can be applied without losing the
correctness of the computation.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

References

ns-3. “Network Simulator 3”. URL: http://www.nsnam.org/.

Abadi, M. and B. T. Loo. (2007). “Towards a Declarative Language and
System for Secure Networking”. In: NetDB. USENIX Association.

Abiteboul, S., M. Bienvenu, A. Galland, and E. Antoine. (2011). “A
rule-based language for web data management”. In: PODS. ACM.
293-304.

Abiteboul, S., R. Hull, and V. Vianu. (1995). Foundations of Databases.
Addison-Wesley.

Afrati, F. N., V. R. Borkar, M. J. Carey, N. Polyzotis, and J. D. Ullman.
(2011). “Map-reduce extensions and recursive queries”. In: EDBT.
ACM. 1-8.

Afrati, F. N., S. S. Cosmadakis, and M. Yannakakis. (1995). “On Datalog
vs. Polynomial Time”. J. Comput. Syst. Sci. 51(2): 177-196.

Afrati, F. N. and C. H. Papadimitriou. (1987). “The Parallel Complexity
of Simple Chain Queries”. In: PODS. ACM. 210-213.

Afrati, F. N. and J. D. Ullman. (2010). “Optimizing joins in a map-
reduce environment”. In: EDBT. Vol. 426. ACM. 99-110.

Afrati, F. N. and J. D. Ullman. (2012). “Transitive closure and recursive
Datalog implemented on clusters”. In: EDBT. ACM. 132-143.
Agrawal, S.; S. Chaudhuri, and V. R. Narasayya. (2000). “Automated
Selection of Materialized Views and Indexes in SQL Databases”. In:

VLDB. Morgan Kaufmann. 496-505.

59

http://www.nsnam.org/

The version of record is available at: http://dx.doi.org/10.1561/1900000073

60 References

Albarghouthi, A., P. Koutris, M. Naik, and C. Smith. (2017). “Con-
straint-Based Synthesis of Datalog Programs”. In: CP. Vol. 10416.
Lecture Notes in Computer Science. Springer. 689-706.

Alvaro, P., N. Conway, J. M. Hellerstein, and W. R. Marczak. (2011).
“Consistency Analysis in Bloom: a CALM and Collected Approach”.
In: CIDR. 249-260.

Alvaro, P., W. R. Marczak, N. Conway, J. M. Hellerstein, D. Malier,
and R. Sears. (2010). “Dedalus: Datalog in Time and Space”. In:
Datalog. Vol. 6702. Lecture Notes in Computer Science. Springer.
262-281.

Ameloot, T. J., B. Ketsman, F. Neven, and D. Zinn. (2016). “Weaker
Forms of Monotonicity for Declarative Networking: A More Fine-
Grained Answer to the CALM-Conjecture”. ACM Trans. Database
Syst. 40(4): 21:1-21:45.

Ameloot, T. J., F. Neven, and J. V. den Bussche. (2013). “Relational
transducers for declarative networking”. J. ACM. 60(2): 15:1-15:38.

Aref, M., B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn. (2015). “Design and Implemen-
tation of the LogicBlox System”. In: SIGMOD Conference. ACM.
1371-1382.

Bancilhon, F. and R. Ramakrishnan. (1986). “An Amateur’s Intro-
duction to Recursive Query Processing Strategies”. In: SIGMOD
Conference. ACM Press. 16-52.

Beame, P., P. Koutris, and D. Suciu. (2017). “Communication Steps for
Parallel Query Processing”. J. ACM. 64(6): 40:1-40:58.

Beeri, C. and R. Ramakrishnan. (1987). “On the Power of Magic”. In:
PODS. ACM. 269-284.

Bellomarini, L., E. Sallinger, and G. Gottlob. (2018). “The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs”. Proc.
VLDB Endow. 11(9): 975-987.

Bembenek, A., S. Chong, and M. Gaboardi. “AbcDatalog”. URL: http:
//abcdatalog.seas.harvard.edu/.

Bollig, B. and I. Wegener. (1996). “Improving the Variable Ordering
of OBDDs Is NP-Complete”. IEEE Trans. Computers. 45(9): 993~
1002.

http://abcdatalog.seas.harvard.edu/
http://abcdatalog.seas.harvard.edu/

The version of record is available at: http://dx.doi.org/10.1561/1900000073

References 61

Bravenboer, M. and Y. Smaragdakis. (2009). “Strictly declarative spec-
ification of sophisticated points-to analyses”. In: OOPSLA. ACM.
243-262.

Brin, S. and L. Page. (1998). “The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine”. Comput. Networks. 30(1-7): 107-117.
Cabibbo, L. (1995). “On the Power of Stratified Logic Programs with
Value Invention for Expressing Database Transformations”. In:
ICDT. Vol. 893. Lecture Notes in Computer Science. Springer. 208—

221.

Cali, A., G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. (2010).
“Datalog+/-: A Family of Logical Knowledge Representation and
Query Languages for New Applications”. In: LICS. IEEE Computer
Society. 228-242.

Ceri, S., G. Gottlob, and L. Tanca. (1989). “What you Always Wanted
to Know About Datalog (And Never Dared to Ask)”. IEEE Trans.
Knowl. Data Eng. 1(1): 146-166.

Chimenti, D., R. Gamboa, R. Krishnamurthy, S. A. Naqvi, S. Tsur,
and C. Zaniolo. (1990). “The LDL System Prototype”. IEEE Trans.
Knowl. Data Eng. 2(1): 76-90.

Conway, N., W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
(2012). “Logic and lattices for distributed programming”. In: SoCC.
ACM. 1.

Cosmadakis, S. S. and P. C. Kanellakis. (1986). “Parallel Evaluation of
Recursive Rule Queries”. In: PODS. ACM. 280-293.

Dean, J. and S. Ghemawat. (2004). “MapReduce: Simplified Data
Processing on Large Clusters”. In: OSDI. USENIX Association. 137—
150.

Derr, M. A., S. Morishita, and G. Phipps. (1994). “The Glue-Nail De-
ductive Database System: Design, Implementation, and Evaluation”.
VLDB J. 3(2): 123-160.

DeWitt, D. J. and J. Gray. (1992). “Parallel Database Systems: The
Future of High Performance Database Systems”. Commun. ACM.
35(6): 85-98.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

62 References

Eisner, J. and N. W. Filardo. (2011). “Dyna: Extending Datalog For
Modern AI”. In: Datalog Reloaded. Ed. by O. de Moor, G. Gottlob,
T. Furche, and A. Sellers. Vol. 6702. Lecture Notes in Computer
Science. Springer. 181-220.

Fagin, R., P. G. Kolaitis, R. J. Miller, and L. Popa. (2003). “Data
Exchange: Semantics and Query Answering”. In: ICDT. Vol. 2572.
Lecture Notes in Computer Science. Springer. 207-224.

Fan, Z., J. Zhu, Z. Zhang, A. Albarghouthi, P. Koutris, and J. M. Patel.
(2019). “Scaling-Up In-Memory Datalog Processing: Observations
and Techniques”. Proc. VLDB Endow. 12(6): 695-708.

Ganguly, S., A. Silberschatz, and S. Tsur. (1990). “A Framework for the
Parallel Processing of Datalog Queries”. In: SIGMOD Conference.
ACM Press. 143-152.

Ganguly, S., A. Silberschatz, and S. Tsur. (1992). “Parallel Bottom-Up
Processing of Datalog Queries”. J. Log. Program. 14(1&2): 101-126.

Graefe, G. (2010). “A survey of B-tree locking techniques”. ACM Trans.
Database Syst. 35(3): 16:1-16:26.

Greco, S., C. Zaniolo, and S. Ganguly. (1992). “Greedy by Choice”. In:
PODS. ACM Press. 105-113.

Green, T. J., S. S. Huang, B. T. Loo, and W. Zhou. (2013). “Datalog
and Recursive Query Processing”. Found. Trends Databases. 5(2):
105-195.

Gu, J., Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang, L. Ding,
and C. Zaniolo. (2019). “RaSQL: Greater Power and Performance
for Big Data Analytics with Recursive-aggregate-SQL on Spark”.
In: SIGMOD Conference. ACM. 467-484.

Halperin, D., V. T. de Almeida, L. L. Choo, S. Chu, P. Koutris, D.
Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu,
M. Balazinska, B. Howe, and D. Suciu. (2014). “Demonstration of
the Myria big data management service”. In: SIGMOD Conference.
ACM. 881-884.

Hellerstein, J. M. (2010). “The declarative imperative: experiences and
conjectures in distributed logic”. SIGMOD Rec. 39(1): 5-19.

Hoder, K., N. Bjgrner, and L. M. de Moura. (2011). “uZ- An Efficient
Engine for Fixed Points with Constraints”. In: CAV. Vol. 6806.
Lecture Notes in Computer Science. Springer. 457-462.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

References 63

Jachiet, L., P. Geneves, N. Gesbert, and N. Layaida. (2020). “On the
Optimization of Recursive Relational Queries: Application to Graph
Queries”. In: SIGMOD Conference. ACM. 681-697.

Jordan, H., P. Subotic, D. Zhao, and B. Scholz. (2019a). “A specialized
B-tree for concurrent datalog evaluation”. In: PPoPP. ACM. 327-
339.

Jordan, H., P. Subotic, D. Zhao, and B. Scholz. (2019b). “Brie: A
Specialized Trie for Concurrent Datalog”. In: PMAM@PPoPP. ACM.
31-40.

Kanellakis, P. C. (1986). “Logic Programming and Parallel Complexity”.
In: ICDT. Vol. 243. Lecture Notes in Computer Science. Springer.
1-30.

Ketsman, B., A. Albarghouthi, and P. Koutris. (2020). “Distribution
Policies for Datalog”. Theory Comput. Syst. 64(5): 965-998.

Ketsman, B. and C. Koch. (2020). “Datalog with Negation and Mono-
tonicity”. In: ICDT. Vol. 155. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik. 19:1-19:18.

Kifer, M. (1998). “On the Decidability and Axiomatization of Query
Finiteness in Deductive Databases”. J. ACM. 45(4): 588-633.

Kossmann, D. (2000). “The State of the art in distributed query pro-
cessing”. ACM Comput. Surv. 32(4): 422-469.

Koutris, P. and J. Wijsen. (2021). “Consistent Query Answering for
Primary Keys in Datalog”. Theory Comput. Syst. 65(1): 122-178.

Lam, M. S., J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M.
Carbin, and C. Unkel. (2005). “Context-sensitive program analysis
as database queries”. In: PODS. ACM. 1-12.

Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. (2006). “The DLV system for knowledge representation
and reasoning”. ACM Trans. Comput. Log. 7(3): 499-562.

Loo, B. T., T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. (2006).
“Declarative networking: language, execution and optimization”. In:
SIGMOD Conference. ACM. 97-108.

Loo, B. T., T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. (2009).
“Declarative networking”. Commun. ACM. 52(11): 87-95.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

64 References

Madsen, M., M. Yee, and O. Lhotak. (2016). “From Datalog to flix: a
declarative language for fixed points on lattices”. In: PLDI. ACM.
194-208.

Malewicz, G., M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski. (2010). “Pregel: a system for large-scale
graph processing”. In: SIGMOD Conference. ACM. 135-146.

Marczak, W. R., S. S. Huang, M. Bravenboer, M. Sherr, B. T. Loo, and
M. Aref. (2010). “SecureBlox: customizable secure distributed data
processing”. In: SIGMOD Conference. ACM. 723-734.

Martinez-Angeles, C. A., 1. de Castro Dutra, V. S. Costa, and J.
Buenabad-Chavez. (2013). “A Datalog Engine for GPUs”. In: KDPD.
Vol. 8439. Lecture Notes in Computer Science. Springer. 152—-168.

Mazuran, M., E. Serra, and C. Zaniolo. (2013). “Extending the power
of datalog recursion”. VLDB J. 22(4): 471-493.

Meyer, U. and P. Sanders. (1998). “Delta-Stepping: A Parallel Single
Source Shortest Path Algorithm”. In: ESA. Vol. 1461. Lecture Notes
in Computer Science. Springer. 393-404.

Moffitt, V. Z., J. Stoyanovich, S. Abiteboul, and G. Miklau. (2015). “Col-
laborative Access Control in WebdamLog”. In: SIGMOD Conference.
ACM. 197-211.

Murray, D. G., F. McSherry, R. Isaacs, M. Isard, P. Barham, and M.
Abadi. (2013). “Naiad: a timely dataflow system”. In: SOSP. ACM.
439-455.

Patel, J. M., H. Deshmukh, J. Zhu, N. Potti, Z. Zhang, M. Spehlmann,
H. Memisoglu, and S. Saurabh. (2018). “Quickstep: A Data Platform
Based on the Scaling-Up Approach”. Proc. VLDB Endow. 11(6):
663-676.

Piatetsky-Shapiro, G. (1983). “The Optimal Selection of Secondary
Indices is NP-Complete”. SIGMOD Rec. 13(2): 72-75.

Raghothaman, M., J. Mendelson, D. Zhao, M. Naik, and B. Scholz.
(2020). “Provenance-guided synthesis of Datalog programs”. Proc.
ACM Program. Lang. 4(POPL): 62:1-62:27.

Ramakrishnan, R., F. Bancilhon, and A. Silberschatz. (1987). “Safety of
Recursive Horn Clauses With Infinite Relations”. In: PODS. ACM.
328-339.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

References 65

Ramakrishnan, R., W. G. Roth, P. Seshadri, D. Srivastava, and S.
Sudarshan. (1993). “The CORAL Deductive Database System”. In:
SIGMOD Conference. ACM Press. 544-545.

Ramakrishnan, R. and J. D. Ullman. (1995). “A survey of deductive
database systems”. The Journal of Logic Programming. 23(2): 125—
149.

RapidNet. “RapidNet Declarative Networking Engine”. URL: http://
netdb.cis.upenn.edu/rapidnet /.

Reps, T. W. (1993). “Demand Interprocedural Program Analysis Us-
ing Logic Databases”. In: Workshop on Programming with Logic
Databases (Book), ILPS. The Kluwer International Series in Engi-
neering and Computer Science 296. Kluwer. 163—196.

Ross, K. A. and Y. Sagiv. (1992). “Monotonic Aggregation in Deductive
Databases”. In: PODS. ACM Press. 114-126.

Rudolph, S. and M. Thomazo. (2016). “Expressivity of Datalog Variants
- Completing the Picture”. In: IJCAIL IJCAI/AAAI Press. 1230
1236.

Ryzhyk, L. and M. Budiu. (2019). “Differential Datalog”. In: Datalog.
Vol. 2368. CEUR Workshop Proceedings. CEUR-WS.org. 56—67.
Scholz, B., H. Jordan, P. Subotic, and T. Westmann. (2016). “On fast

large-scale program analysis in Datalog”. In: CC. ACM. 196-206.

Seib, J. and G. Lausen. (1991). “Parallelizing Datalog Programs by
Generalized Pivoting”. In: PODS. ACM Press. 241-251.

Seo, J., S. Guo, and M. S. Lam. (2013a). “SociaLite: Datalog extensions
for efficient social network analysis”. In: ICDE. IEEE Computer
Society. 278-289.

Seo, J., S. Guo, and M. S. Lam. (2015). “Socialiite: An Efficient Graph
Query Language Based on Datalog”. IEEE Trans. Knowl. Data Eng.
27(7): 1824-1837.

Seo, J., J. Park, J. Shin, and M. S. Lam. (2013b). “Distributed Social.ite:
A Datalog-Based Language for Large-Scale Graph Analysis”. Proc.
VLDB Endow. 6(14): 1906-1917.

Seshadri, P., H. Pirahesh, and T. Y. C. Leung. (1996). “Complex Query
Decorrelation”. In: ICDE. IEEE Computer Society. 450-458.

http://netdb.cis.upenn.edu/rapidnet/
http://netdb.cis.upenn.edu/rapidnet/

The version of record is available at: http://dx.doi.org/10.1561/1900000073

66 References

Sewall, J., J. Chhugani, C. Kim, N. Satish, and P. Dubey. (2011).
“PALM: Parallel Architecture-Friendly Latch-Free Modifications to
B+ Trees on Many-Core Processors”. Proc. VLDB Endow. 4(11):
795-806.

Shaw, M., P. Koutris, B. Howe, and D. Suciu. (2012). “Optimizing
Large-Scale Semi-Naive Datalog Evaluation in Hadoop”. In: Datalog.
Vol. 7494. Lecture Notes in Computer Science. Springer. 165-176.

Shkapsky, A., M. Yang, M. Interlandi, H. Chiu, T. Condie, and C.
Zaniolo. (2016). “Big Data Analytics with Datalog Queries on Spark”.
In: SIGMOD Conference. ACM. 1135-1149.

Shkapsky, A., M. Yang, and C. Zaniolo. (2015). “Optimizing recursive
queries with monotonic aggregates in DeALS”. In: ICDE. IEEE
Computer Society. 867-878.

Si, X., W. Lee, R. Zhang, A. Albarghouthi, P. Koutris, and M. Naik.
(2018). “Syntax-guided synthesis of Datalog programs”. In: ESEC/
SIGSOFT FSE. ACM. 515-527.

Smaragdakis, Y. and G. Balatsouras. (2015). “Pointer Analysis”. Found.
Trends Program. Lang. 2(1): 1-69.

Stonebraker, M. (1985). “The Case for Shared Nothing”. In: HPTS.

Subotié¢, P., H. Jordan, L. Chang, A. Fekete, and B. Scholz. (2018).
“Automatic Index Selection for Large-Scale Datalog Computation”.
Proc. VLDB Endow. 12(2): 141-153.

Sudarshan, S. and R. Ramakrishnan. (1991). “Aggregation and Rel-
evance in Deductive Databases”. In: VLDB. Morgan Kaufmann.
501-511.

Ullman, J. D. (1989). Principles of Database and Knowledge-Base Sys-
tems, Volume II. Computer Science Press.

Ullman, J. D. and A. V. Gelder. (1988). “Parallel Complexity of Logical
Query Programs”. Algorithmica. 3: 5—42.

Veldhuizen, T. L. (2014). “Triejoin: A Simple, Worst-Case Optimal Join
Algorithm”. In: ICDT. OpenProceedings.org. 96-106.

Wang, J., M. Balazinska, and D. Halperin. (2015). “Asynchronous and
Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing
Engines”. Proc. VLDB Endow. 8(12): 1542-1553.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

References 67

Wang, K., A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani. (2017).
“Graspan: A Single-Machine Disk-Based Graph System for Interpro-
cedural Static Analyses of Large-Scale Systems Code”. SIGARCH
Comput. Archit. News. 45(1): 389-404.

Wang, Y. R., M. A. Khamis, H. Q. Ngo, R. Pichler, and D. Suciu.
(2022). “Optimizing Recursive Queries with Program Synthesis”.
CoRR. abs/2202.10390.

Whaley, J. and M. S. Lam. (2004). “Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams”. In: PLDI.
ACM. 131-144.

Wolfson, O. (1989). “Sharing the Load of Logic-Program Evaluation”.
IEEE Data Eng. Bull. 12(1): 58-64.

Wolfson, O. and A. Ozeri. (1990). “A New Paradigm for Parallel and
Distributed Rule-Processing”. In: SIGMOD Conference. ACM Press.
133-142.

Wolfson, O. and A. Ozeri. (1993). “Parallel and Distributed Processing
of Rules by Data Reduction”. IEEE Trans. Knowl. Data Eng. 5(3):
523-530.

Wolfson, O. and A. Silberschatz. (1988). “Distributed Processing of
Logic Programs”. In: SIGMOD Conference. ACM Press. 329-336.

Yang, M., A. Shkapsky, and C. Zaniolo. (2017). “Scaling up the perfor-
mance of more powerful Datalog systems on multicore machines”.
VLDB J. 26(2): 229-248.

Zaharia, M., R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. (2016). “Apache Spark: a
unified engine for big data processing”. Commun. ACM. 59(11):
56-65.

Zaniolo, C., M. Yang, A. Das, and M. Interlandi. (2016). “The Magic
of Pushing Extrema into Recursion: Simple, Powerful Datalog Pro-
grams”. In: AMW. Vol. 1644. CEUR Workshop Proceedings. CEUR-
WS.org.

Zaniolo, C., M. Yang, A. Das, A. Shkapsky, T. Condie, and M. Interlandi.
(2017). “Fixpoint semantics and optimization of recursive Datalog
programs with aggregates”. Theory Pract. Log. Program. 17(5-6):
1048-1065.

The version of record is available at: http://dx.doi.org/10.1561/1900000073

68 References

Zhang, W.; K. Wang, and S. Chau. (1995). “Data Partition and Parallel
Evaluation of Datalog Programs”. IEEE Trans. Knowl. Data Eng.
7(1): 163-176.

	Introduction
	An Overview of Datalog Systems
	Commercial Impact
	Relationship with Prior Work
	Organization

	The Datalog Language
	Datalog Basics
	Negation
	Aggregation
	Other Language Extensions
	Distributed Datalog

	Evaluation
	Semi-naïve Evaluation
	Parallel Evaluation
	Compilation vs Interpretation
	Other Evaluation Methods

	Data Layouts and Indices
	Data Layouts for Datalog
	Indexes

	Optimizations
	Language-level Optimizations
	Low-level Optimizations

	Conclusion
	References

