
Inter-process Concolic Testing
of Full-stack JavaScript Web

Applications

Maarten Vandercammen

Dissertation submitted in fulfilment of the
requirement for the degree of Doctor of Sciences

October 13, 2023

Promotor:
Prof. Dr. Coen De Roover, Vrije Universiteit Brussel

Jury:
Prof. Dr. Viviane Jonckers, Vrije Universiteit Brussel, Belgium (chair)

Prof. Dr. Joeri De Koster, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Beat Signer, Vrije Universiteit Brussel, Belgium

Prof. Dr. Cristian Cadar, Imperial College London, United Kingdom
Prof. Dr. Kris Steenhaut, Vrije Universiteit Brussel, Belgium

Prof. Dr. Xavier Devroey, Université de Namur, Belgium

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering

Department of Computer Science
Software Languages Lab

Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm,
elektronisch of op welke andere wijze ook, zonder voorafgaande schriftelijke
toestemming van de auteur.

All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel : +32 2 629 33 44
crazycopy@vub.be
www.crazycopy.be

ISBN : 9789464443806
NUR CODE : 980
THEMA : UMZT

Abstract

Web applications are becoming increasingly prevalent. Example applications include col-
laborative text editors and drawing applications. We define full-stack JavaScript web
applications as web applications of which both the client and the server have been imple-
mented in JavaScript.

Several automated testing approaches have been proposed to verify the correctness of
sequential, non-distributed applications. Prominent among these is concolic testing, which
systematically explores all execution paths through the program by collecting symbolic
constraints over the program inputs.

We transpose concolic testing to the domain of full-stack JavaScript web applications,
which gives rise to several challenges unique to these systems. For example, both client
and server processes are event-driven, so concolic testers for these applications must craft
elaborate event sequences to explore some parts of the program. Furthermore, because
of the interconnected nature of these processes, the execution of one process may affect
that of another in unexpected ways.

We propose an approach to concolic testing for these types of applications that ad-
dresses these challenges. This approach relies on performing inter-process testing of the
application, which tests all instances of the client and server processes while observing
their communication. Inter-process testing hence preserves information flow between
processes, thereby increasing precision and preventing false positive errors. Inter-process
testers stand in contrast to intra-process testers, of which the execution paths do not cross
the boundary of a process. We implement inter-process testing in a novel concolic tester
called StackFul.

StackFul also considers the event-driven nature of full-stack JavaScript web applica-
tions. Event-driven code gives rise to the problem of state explosion, where an exponential
number of states are created while testing the application. To solve this problem, we in-
troduce a novel form of state merging for concolic testing of event-driven applications
that reduces the number of states by merging together similar states.

We evaluate StackFul on eight real-world applications. We measure to what extent
StackFul is capable of i) covering execution paths, ii) finding errors on the server of these
applications, and iii) discerning high-priority from low-priority server errors. Furthermore,
we evaluate the impact of incorporating state merging. We show that state merging almost
always requires fewer test runs to achieve higher code coverage.

i

Samenvatting

Webapplicaties worden steeds populairder. Voorbeelden van dit soort applicaties zijn onder an-
dere collaboratieve tekstverwerkingsprogramma’s en tekenapplicaties. Wij definiëren full-stack
JavaScript webapplicaties als webapplicaties waarvan zowel de client als de server gëımplemen-
teerd werden in JavaScript.

Er bestaan verschillende geautomatiseerde testtechnieken om de correctheid van sequentiële,
niet-gedistribueerde applicaties te verifiëren. Prominent hierin is concolic testing, welke systema-
tisch alle executiepaden doorheen een programma test door symbolische constraints te verzamelen
over diens programma-inputs.

We verplaatsen concolic testing naar het domein van full-stack JavaScript webapplicaties.
Hierbij duiken verschillende uitdagingen op die uniek zijn aan dit soort systemen. Aangezien
bijvoorbeeld zowel het client- als het server-proces event-driven zijn, moeten concolic testers
van deze applicaties ingewikkelde sequenties van events aanmaken om bepaalde delen van het
programma te testen. Bovendien kan, omwille van de sterk geconnecteerde aard van deze pro-
cessen, de uitvoering van het ene proces de uitvoering van een ander op onverwachte manieren
bëınvloeden.

We stellen een aanpak van concolic testing van deze applicaties voor die zich richt op deze uit-
dagingen. Deze aanpak maakt gebruik van inter-proces testing, waarbij alle instanties van client-
en server-processen getest worden en hun onderlinge communicatie tegelijkertijd geobserveerd
wordt. Inter-proces testing behoudt de informatiestroming tussen processen, waardoor precisie
wordt verbeterd en vals-positieve fouten worden vermeden. Inter-proces testers onderscheiden
zich van intra-proces testers, wiens executiepaden niet de grenzen van een proces overschrijden.
We implementeren inter-proces testing in een nieuwe concolic tester genaamd StackFul.

StackFul houdt ook rekening met de event-driven aard van full-stack JavaScript webap-
plicaties. Event-driven code geeft aanleiding tot het probleem van state explosion, waarbij een
exponentieel aantal staten wordt aangemaakt tijdens het testen van de applicatie. Om dit prob-
leem op te lossen, introduceren we een nieuwe vorm van state merging voor concolic testing van
event-driven applicaties, waarbij het aantal staten beperkt wordt door gelijkaardige staten samen
te voegen.

We evalueren StackFul op acht full-stack JavaScript webapplicaties. We meten in hoeverre
StackFul in staat is om i) hun executiepaden te verkennen, ii) fouten te vinden in de server van
deze applicaties, en iii) hoog-prioritaire fouten te onderscheiden van laag-prioritaire serverfouten.
Daarnaast evalueren we de impact van state merging. We tonen aan dat state merging bijna
altijd minder testiteraties vereist om een groter deel van de applicatie te verkennen.

iii

Acknowledgements

I would like to start these acknowledgements by expressing my gratitude to my
promotor, Coen De Roover, who supported me throughout my PhD and without
whom I would not have been able to complete it. Coen convinced me to start a
PhD and gave me the opportunity to keep working on my research, while devoting
a large part of his available time on helping me convert vague ideas into concrete
realisations. Coen, thank you for your help and encouragement over these past
years!

I would also like to thank the members of my jury, Beat Signer, Cristian Cadar,
Kris Steenhaut, Joeri De Koster, Viviane Jonckers, and Xavier Devroey, for tak-
ing the time to read this dissertation and for providing insightful comments and
feedback that have helped improve the quality of this text.

Although everyone at Soft deserves an elaborate thank-you in these acknow-
ledgements, I will have to keep it short. Some of the many people who deserve a
special shout-out, however, include: Tim, for your saintly patience and support,
both when we were still sharing an office and afterwards; Mathijs, for helping
to keep me (mostly) sane through the final stretches of my PhD; Christophe,
simply for being Christophe; Laurent, without whom there would be no Stack-
Ful; Jens, for your welcome distractions and for listening to my rants about
state merging; Sam, for your strong opinions on food and other things; Quentin,
for your thoughtful feedback on my work; Cindy and Johannes, for your help
with supervising students and managing projects while I was distracted writing
this dissertation; and the whole rest of Soft for turning 10F into a unique and
enjoyable work environment.

Ten slotte wil ik ook mijn ouders, grootouders en peetouders, Pieter, Leen en
de kinderen, en de hele rest van de familie bedanken om mij doorheen alle jaren
te steunen. Zonder jullie had ik hier niet kunnen staan!

v

Contents

1 Introduction 1
1.1 Full-stack JavaScript Web Applications 2

1.1.1 Concolic Testing of Full-stack JavaScript Web Applications 4
1.1.2 Problem Statement . 5

1.2 Overview of the Approach . 8
1.3 Contributions . 9
1.4 Publications . 10

1.4.1 Supporting Publications . 10
1.4.2 Other Publications . 11

1.5 Outline of the Dissertation . 13

2 Automated Testing of Full-stack JavaScript Web Applications 15
2.1 Full-stack JavaScript Web Applications 15

2.1.1 Characteristics . 16
2.1.2 Example Application . 17

2.2 Automated Testing Techniques . 23
2.2.1 Fuzz Testing . 24
2.2.2 Search-based Software Testing 25
2.2.3 Concolic Testing . 26

2.3 Challenges in Automated Testing of Full-stack JavaScript Web Ap-
plications . 30
2.3.1 Dynamic Nature of JavaScript 31
2.3.2 Event-driven Code . 32
2.3.3 Handling Different Multiplicities 33
2.3.4 Process Interplay . 33

2.4 Criteria for an Automated Tester for Full-stack JavaScript Web
Applications . 34
2.4.1 Overview of Testing Criteria 34
2.4.2 Summary of Testing Criteria 38

3 State of the Art in Concolic Testing 41
3.1 Concolic Testing of Distributed Systems 42

3.1.1 Actor-based Programs . 43

vii

Contents

3.1.2 Message-passing Applications 44
3.1.3 KleeNet . 45

3.2 Concolic Testing of Event-Driven Applications 48
3.2.1 Cosette & JaVerT.Click . 48
3.2.2 SymJS . 50
3.2.3 Mobile Applications . 52

3.3 Concolic Testing of JavaScript Applications 54
3.3.1 Jalangi . 54
3.3.2 Kudzu . 55
3.3.3 ArtForm . 57
3.3.4 ExpoSE . 57

3.4 Concolic Testing of Web Servers 58
3.4.1 CRAXWeb . 58
3.4.2 Apollo . 60

3.5 Optimisations for Concolic Testing 62
3.5.1 Heuristical Techniques . 63
3.5.2 Path Explosion Mitigation Techniques 64
3.5.3 Hybrid Techniques . 67

3.6 Conclusion . 69
3.6.1 Identifying Concolic Testers for Full-stack JavaScript Web

Applications . 70
3.6.2 Evaluating Concolic Testers for Full-stack JavaScript Web

Applications . 71
3.6.3 Overall Conclusion . 76

4 A Foundation of Intra-process Concolic Testing 77
4.1 Overview of StackFulINTRA . 77

4.1.1 Intra-process Concolic Testing with StackFulINTRA 78
4.1.2 Architecture of StackFulINTRA 78

4.2 The Test Executor . 80
4.2.1 Instrumenting JavaScript Code via Aran 80
4.2.2 Shadow Execution via Aran 81
4.2.3 Using Shadow Values for Concolic Testing 83

4.3 The Test Selector . 87
4.3.1 Maintaining the Symbolic Execution Tree 87
4.3.2 Suggesting Program Paths for Exploration 87
4.3.3 Computing Values for Program Inputs 88

4.4 Concolic Testing of Event-driven Applications 88
4.4.1 Supporting Events in the Test Selector 89
4.4.2 Supporting Events in the Test Executor 92

viii

Contents

4.5 Formalisation of Intra-process Concolic Testing 94
4.5.1 Overview of the Language 94
4.5.2 Evaluating Atomic Expressions 97
4.5.3 Evaluating Non-atomic Expressions 99

4.6 Conclusion . 101
4.6.1 Summary . 102
4.6.2 Concluding Remarks . 103

5 Inter-process Concolic Testing 107
5.1 Motivating the Need for Inter-process Concolic Testing 108

5.1.1 Revisiting the Calculator Application 108
5.2 Overview of Inter-process Concolic Testing 111

5.2.1 Requirements for Inter-process Concolic Testing 111
5.2.2 Architecture of StackFulINTER 113

5.3 Prioritising Server-side Reachability 115
5.3.1 Intra-process Testing Phase 116
5.3.2 Inter-process Testing Phase 117
5.3.3 Exploring the Client . 117
5.3.4 Considering the Message’s Payload 118
5.3.5 Replaying the Test Run . 119

5.4 Formal Description of Server-side Error Prioritisation 119
5.4.1 Extending the Syntax of the Minimal Language 120
5.4.2 Extending the Evaluation Rules for Non-atomic Expressions 121

5.5 Evaluation . 123
5.5.1 Overview of the Evaluation 123
5.5.2 RQ1: Correct Classification of High-Priority Errors 126
5.5.3 RQ2: Misclassifying Low-Priority Errors as High-Priority

Errors . 127
5.5.4 RQ3: Inter-process Test Runs 127
5.5.5 Threats to Validity . 128
5.5.6 Discussion of the Results 129

5.6 Conclusion . 131
5.6.1 Summary . 131
5.6.2 Concluding Remarks . 132

6 State Merging for Event-driven Programs 137
6.1 Overview of State Merging . 138

6.1.1 Revisiting the State Explosion Problem 141
6.1.2 Alleviating State Explosion through State Merging 143
6.1.3 A Formal Definition of State Merging 145

ix

Contents

6.1.4 State Merging for Online Symbolic Execution 146
6.2 State Merging for Concolic Testing 151

6.2.1 Complications for Applying State Merging 151
6.2.2 Mitigating the Path Determinacy Problem 153

6.3 State Merging for Event-driven Applications 158
6.3.1 State Explosion in Event-driven Applications 158
6.3.2 Considerations for State Merging in Event-driven Code . . 161
6.3.3 Result of State Merging in Event-driven Code 164

6.4 Implementation in StackFul . 166
6.4.1 Recomputing State Merging Tuples 166
6.4.2 Technical Limitations of the Prototype Implementation . . 169

6.5 Evaluation . 174
6.5.1 Overview of the Evaluation 174
6.5.2 RQ1: Code Coverage per Test Run 176
6.5.3 RQ2: Computational Overhead per Test Run 181
6.5.4 RQ3: Code Coverage per Unit of Execution Time 183

6.6 Conclusion . 184
6.6.1 Summary . 185
6.6.2 Concluding Remarks . 186

7 Conclusion 187
7.1 Summary . 187
7.2 Revisiting the Contributions . 188
7.3 Limitations and Future Work . 190

7.3.1 State Merging for Two-phase Inter-process Testing 190
7.3.2 Heuristical Search for Inter-process Testing 191
7.3.3 Automatic Exploration of Multiplicities 192
7.3.4 Scaling StackFul to Test Larger Applications 192

7.4 Closing Remarks . 193

Bibliography 195

x

List of Acronyms

API Application Programming Interface.
BSE Backwards Symbolic Execution.
CES Core Event Semantics.
CESK Control-Environment-Store-Continuation.
CSS Cascading Style Sheets.
DAG Directed Acyclic Graph.
DOM Document Object Model.
GUI Graphical User Interface.
HF HandlerFinished.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.
IO Input/Output.
ITE If-Then-Else.
JIT Just-In-Time.
JSON JavaScript Object Notation.
LAMP Linux, Apache, MySQL, PHP.
LOC Lines Of Code.
MEAN MongoDB, Express, Angular, Node.js.
MPI Message Passing Interface.
PC Path Constraint.
SDK Software Development Kit.
SMT Satisfiability Modulo Theories.
SPMD Single Program, Multiple Data.
SQL Structured Query Language.
UI User Interface.
WMC Weighted Methods per Class.
WR Write/Read.

xi

List of Tables

2.1 Summary of the three test runs performed during concolic testing
of the code in Listing 2.4. 27

3.1 The testers evaluated on the list of criteria identified in Section 2.4. 72
3.2 The criteria previously defined in Section 2.4. 72

4.1 The intra-process StackFulINTRA tester evaluated on the list of
criteria identified in Section 2.4. 103

5.1 Characteristics of the web applications considered in our study. . . 123
5.2 Classification in high-priority and low-priority errors for each variant.126
5.3 The number of inter-process test runs StackFulINTER required to

classify each of the high-priority errors it found. 128
5.4 The inter-process StackFulINTER tester evaluated on the list of

criteria identified in Section 2.4. 133

6.1 StackFul evaluated on the criteria identified in Section 2.4. . . . 186

xiii

List of Figures

1.1 A collaborative drawing application as an example of a full-stack
JavaScript web application. 3

2.1 The MEAN (MongoDB, Express, Angular, Node.js) technology stack. 17
2.2 A screenshot of the Calculator application’s frontend. 18
2.3 The technology stack of the Calculator application. 19
2.4 JavaScript program and its corresponding symbolic execution tree,

based on Figure 1 of [21]. 28

4.1 The architecture of StackFulINTRA. 79
4.2 Part of the (infinite) symbolic tree produced by systematically test-

ing the code of Listing 4.7. 90
4.3 The syntax of the minimalistic language. 96
4.4 The state space of StackFulINTRA. 96
4.5 The atomic evaluation function A. 98
4.5 Evaluating non-atomic expressions. 101

5.1 Intra-process testing of a client and a server in isolation from each
other . 110

5.2 Inter-process testing of a particular client-server configuration . . . 110
5.3 The architecture of StackFulINTER. 114
5.4 Syntax of a send expression. 120
5.5 Evaluating non-atomic expressions in StackFulINTER. 122

6.1 The symbolic execution tree for the code in Listing 6.1. 140
6.2 After merging two states together, the number of END states is halved.140
6.3 The symbolic execution tree for the code snippet in Listing 6.2. . . 142
6.4 The symbolic execution Directed Acyclic Graph. (DAG) for List-

ing 6.2 with state merging. 144
6.5 Online symbolic execution of the code in Listing 6.2, using state

merging to prune states with duplicate program points. 148
6.6 The complete symbolic execution DAG, produced after symbolic

execution of the program has finished. 150

xv

List of Figures

6.7 Concolic testing of the code in Listing 6.2, using state merging to
prune similar states. 158

6.8 A partial symbolic execution tree for Listing 6.4 160
6.9 An example of why it is necessary to include the current position

in the event sequence as part of the program point. 163
6.10 Creating symbolic ITE expression in event-driven code. 164
6.11 The symbolic execution DAG depicted in Figure 6.8 after applying

state merging. 165
6.12 An example of how updates to the symbolic store can be expressed

via edge annotations. 170
6.13 The VarAssign annotation along the then edge below the merged

state has been updated to reflect the changed value for y. 171
6.14 Line coverage achieved by the tester for eight input programs. . . . 178
6.15 Branch coverage achieved by the tester for eight input programs. . 179
6.16 Portion of event handlers explored at least once by the tester for

eight input programs. 180
6.17 Execution time required by the tester for eight input programs. . . 182
6.18 Line coverage attained by the tester in function of the execution

time for eight input programs . 184

xvi

List of Listings

2.1 Part of the JavaScript frontend code of the Calculator application. 20
2.2 Part of the HTML frontend code of the Calculator application. 21
2.3 Part of the backend code of the Calculator application. 22

4.1 The code that is to be instrumented by Aran (lines 19–22 from
Listing 2.3). 81

4.2 The corresponding instrumented code generated by Aran. 81
4.3 Shadow execution via the primitive and binary traps. 83
4.4 Part of the implementation of the apply trap. 84
4.5 An example demonstrating why symbolic expressions must be con-

structed. 85
4.6 Part of the implementation of the test trap. 86
4.7 An example of an event-driven program. 89

5.1 A simple full-stack JavaScript web application. 111
5.2 Client and server code of an event-driven full-stack JavaScript web

application. 118
5.3 Part of the server code for one of the two Calculator variants,

with an injected synthetic fault. 125

6.1 A simple program that gives rise to four program paths. 139
6.2 A small code snippet that results in an exponential increase in the

number of program paths. 141
6.3 An example code snippet where it does not suffice to define a pro-

gram point as just a code label. 152
6.4 An event-driven code snippet of which the execution gives rise to

a large number of program paths. 159
6.5 A code snippet that assigns four different values to x. 168
6.6 A code snippet which results in merging of heap pointers. 172
6.7 A program loop inside an event handler. 173

xvii

1 Introduction

In 1996, during the inaugural flight of the Ariane 5 rocket, a data conversion
error resulted in an unexpected out-of-range value which set off a sequence of
events that culminated in the rocket self-destructing less than 40 seconds after
launch [93]. The direct cost of the disaster was estimated at $370 million [41].
Other examples of expensive, and sometimes lethal, software defects are legion.
Between 1985 and 1987, a software bug caused a Therac-25 radiation therapy unit
to fatally overdose up to six patients [68]. A unit conversion error in the Mars
Climate Orbiter resulted in the loss of the $125 million spacecraft [94]. A glitch in
a new stock trading algorithm caused the computers of the Knight Capital Group
trading firm to go on a 45 minute buying spree that resulted in a loss of $440
million for the company [19].

In order to prevent these costly software defects, developers spend a significant
amount of their time, more than half of the total development time according to
some studies [54, 104], testing and debugging their software. An attractive option
for reducing the time spent manually testing code, while even improving the
test coverage of the tested code, is to rely on automated testing techniques such
as fuzz testers. Fuzz testers autonomously test code by executing the program
while generating, or fuzzing, user inputs and system inputs. By generating a
diverse set of inputs, fuzzers can explore how the program behaves under various
circumstances.

There are a wide variety of approaches for fuzzing program inputs, ranging from
black-box fuzzers, which generate inputs without analysing the source code of the
program under test [74], to white-box fuzzers, which employ sophisticated analyses
to generate inputs [85]. A prominent example of whitebox fuzzing is concolic
testing, which collects symbolic constraints over program inputs to construct path
conditions that precisely model which classes of input values steer execution along
specific program paths. Because of their systematic nature and their ability to
find bugs in even hard-to-reach parts of the program, concolic testers have been

1

CHAPTER 1. INTRODUCTION

employed in industry [52, 89, 64]. In addition to their succes in industry, the
application of concolic testing to sequential, single-process applications has been
well-studied in academic literature.

However, in recent years, application development has moved away from tradi-
tional, single-process desktop applications and shifted towards the development of
web applications. Advantages of this type of applications include increased access-
ibility, as they can be accessed from both desktop computers or mobile devices,
and improved ease of use, as these applications do not need to be installed or
updated by their users. Examples of such applications include collaborative text
editors, spreadsheets, and drawing applications. We define full-stack JavaScript
web applications as web applications where both the client and the server have
been implemented in JavaScript, and which communicate via technologies that
are accessed through JavaScript, such as Websockets or libraries for HTTP com-
munication.

Automated testing of such web applications is complicated by the unique set of
challenges that arise for these applications, including the event-driven and dis-
tributed nature of the client and server processes. In the face of these challenges,
creating a concolic tester for these applications that is capable of fully exploring
the program, even across process boundaries, while remaining precise and avoiding
false positive errors is non-trivial. This thesis investigates how a ‘precise’,
i.e., without reporting false positive errors, concolic tester for full-stack
JavaScript web applications can be built.

1.1 Full-stack JavaScript Web Applications

Consider the Whiteboard1 collaborative drawing application depicted in Fig-
ure 1.1, which is an example of a full-stack JavaScript web application. This
application allows multiple clients to connect to one common server to support
creating collaborative drawings. Each new line segment is sent to the server,
which in turn shares the drawing with the other clients. Users can pick a colour
from the palette.

This example highlights how full-stack JavaScript web applications combine an
interesting set of features. Like traditional web applications, they consist of a
client process and a server process that communicate with each other to serve

1Source code available at https://github.com/devansvd/whiteboard-socketio

2

https://github.com/devansvd/whiteboard-socketio

1.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

Figure 1.1: A collaborative drawing application as an example of a full-stack
JavaScript web application.

responses to a user’s interactions. Both processes are event-driven. The White-
board server registers a message handler to listen for incoming drawing messages
from its clients. A client registers event handlers for each of the coloured boxes so
that, when the user clicks one of them, new lines are drawn in the corresponding
colour. It registers event handlers for mouse actions on the canvas to construct
invidual line segments. A client also registers a message handler to listen for in-
coming messages from the server, which shares other clients’ drawings via these
messages. A large part of the code of both the clients and the server is hence
hidden behind event handlers and message handlers, to be executed only when
the corresponding event or message has been activated.

Execution of the client and server is heavily dependent on each other. Whenever
a client has finished drawing a new line, it serialises the line segments and sends
them to the server. The server receives the message and transmits the new line
segment information to the other clients. These other clients in turn receive this
information and invoke some functionality for visualising the line segments on
their canvas. The execution of one process, i.e., the first client drawing a new
line, hence affects the execution of not only the server process, but also the other
client processes of the application.

3

CHAPTER 1. INTRODUCTION

The number of processes is furthermore not necessarily fixed, as an application
may consist of a variable number of client and server instances. An essentially
unlimited number of clients can connect to the same server in the Whiteboard
application. The server may also scale up to multiple instances to reduce the load.

Note that this application does not make use of web workers, which allow for mul-
tithreading of JavaScript code on the same client process. The inclusion of web
workers stands orthogonal to our definition of full-stack JavaScript web applica-
tions. Web workers allow for executing code in parallel, but do not, by themselves,
make it possible to introduce new functionalities in the web application.

1.1.1 Concolic Testing of Full-stack JavaScript Web Applications

Like sequential, single-process applications, developers of full-stack JavaScript
web applications may wish to have automated testers, such as concolic testers,
test their code. However, the unique set of characteristics of these applications
makes it non-trivial to have a concolic tester validate their correctness, as these
characteristics give rise to several unique challenges:

1. The event-driven nature of the client and server processes forces a concolic
tester for these applications to craft elaborate event and message sequences
in order to fully cover the corresponding process’s event and message hand-
lers.

2. These applications consist of multiple communicating processes. Because of
the interconnected nature of these processes, the execution of one process
may affect that of another in unexpected ways. This forces the tester to
not only consider a process in isolation, but to also consider the interplay
between processes.

3. These applications often do not have a fixed number of instances of the
client and server. Some bugs may only manifest themselves when a specific
number of processes are connected. The concolic tester must therefore be
capable of spawning a variable number of client and server processes.

4. JavaScript is notoriously difficult to test because of its dynamic nature,
including dynamic code evaluation and a dynamic typing system, and its
permissive attitude towards program faults. A concolic tester for these ap-
plications must therefore be capable of handling JavaScript’s idiosyncrasies.

4

1.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

Apart from the difficulty involved in solving these individual challenges, some
challenges conspire to make concolic testing in general even more difficult. Con-
colic testers systematically explore programs by traversing the program’s input
space and observing how different sets of inputs affect the execution of the pro-
gram. For example, some inputs in the input space may cause the predicate of
an if statement to evaluate to true, while others may cause it to evaluate to
false. Increasing the size of the input space, by including events in the case of
event-driven programs, or by considering inputs from multiple processes, results
in an exponential increase in the time required by a concolic tester to exhaustively
test a program. This concept is referred to as the problem of state explosion.

Finally, concolic testers aim to be sound: every bug that they report should be
a bug that can actually manifest itself when executing the program [141]. This
necessitates that concolic testers precisely model the behaviour of the application
in function of the program inputs that are generated by the tester. A concolic
tester for full-stack JavaScript web applications must therefore remain capable of
maintaining precision in the face of these challenges.

1.1.2 Problem Statement

We categorise the various problems that concolic testers for full-stack JavaScript
web applications must overcome as: testing event-driven websites, performing
inter-process testing, and preventing state explosion.

Testing Event-driven Websites

Websites are no longer static pages consisting of just HTML. They are sophistic-
ated, event-driven programs, created via a mix of HTML, CSS, and JavaScript.
The JavaScript allows for dynamically updating the content of the website and
enables communication with the server by other means than just HTTP requests,
such as Websockets. The content of the page itself may affect the execution of the
JavaScript code of the website. Users may be able to enter values through input
fields on the page. If these values are read by the JavaScript code, they can in
turn affect the execution of the code.

As users interact with full-stack JavaScript web applications via a website running
on a specific client, a concolic tester for these applications must therefore necessar-
ily be capable of testing event-driven websites as well. A simplified view of these

5

CHAPTER 1. INTRODUCTION

websites is that they are essentially an event-driven JavaScript web application
that interacts with a website’s Document Object Model (DOM). Although many
concolic testers for such applications have been presented [111, 123, 106, 72], it
remains difficult to build a concolic tester that is capable of handling JavaScript’s
dynamic nature, can model user inputs that originate in the DOM, and is capable
of generating user and system events.

Inter-process Testing

We observe that existing concolic testers for JavaScript are insufficient to test full-
stack JavaScript web applications, because they are mostly intra-process testers:
they test only a single JavaScript process, and their execution paths do not cross
process boundaries. This approach does not suffice for full-stack JavaScript web
applications, as these applications consist of multiple, communicating processes.
Intra-process testers test individual processes in isolation. Although they may
be capable of fully covering the process under test, i.e., testing all of its possible
behaviours, testing a single, isolated process is much less precise than testing the
process in a composition with other processes.

Intra-process testers cannot distinguish between the parts of the code of the pro-
cess under test that are reachable in a given composition of processes, and the
parts of the code that are not reachable. For example, an intra-process tester for
a server process may aim to test the execution of a message handler, even to the
point where it significantly exhausts its test budget in attempting to completely
cover the handler, without realising that in the actual full-stack JavaScript web
application, no client will ever send this message in the first place.

Furthermore, when testing a handler in the server process that receives a message
from a client process with some message payload, an intra-process tester for the
server cannot determine how the client computed the values that were sent as
the message payload to the server. The intra-process tester therefore cannot
construct fully precise constraints over the execution of the message handler as
it does not know from where the payload originated, and hence which execution
paths through the handler are possible.

A solution to this problem involves inter-process testing, which we define in this
thesis as testing the composition of all processes in a full-stack JavaScript web ap-
plication as a whole, while observing their communication, and having their execu-

6

1.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

tion paths cross process boundaries. This then leaves the problem of constructing
a concolic tester that can spawn multiple processes, observe their communication,
and model cross-process execution paths.

Preventing State Explosion

The final problem concerns how concolic testing can avoid the state explosion
problem when testing full-stack JavaScript web applications. When testing an
application, the number of unique states that the application may assume gener-
ally grows exponentially in function of the number of branch conditions, such as
if statements, that are encountered while executing the program. Every branch
condition may lead the execution along a different program path, where e.g.,
program variables may be assigned values that slightly differ from those along
different paths. The amount of time required by a concolic tester that aims to ex-
haustively cover all possible states in an application therefore grows exponentially
in function of the complexity of the application.

This state explosion problem manifests itself already when testing relatively
simple, sequential, single-process applications. The problem grows even worse
when testing full-stack JavaScript web applications as these applications present
additional sources of complexity. Their event-driven nature forces a concolic
tester to also consider execution paths that flow along event handlers and message
handlers, thereby increasing the number of potential states. The distribution
of an application over multiple processes also increases the number of states
that the global application may assume, as the execution paths of the various
individual processes compose to create an even larger set of execution paths.

State merging [13], which merges similar program states together, presents itself
as a possible solution to this problem. However, state merging has not yet been
defined for concolic testing of full-stack JavaScript web applications. It is therefore
not clear how state merging can be incorporated into a concolic tester for these
applications.

7

CHAPTER 1. INTRODUCTION

1.2 Overview of the Approach

This dissertation presents StackFul, an inter-process concolic tester for full-stack
JavaScript web applications that applies state merging to event-driven programs in
order to prevent the state explosion problem from arising. We develop StackFul
through the following intermediate steps:

1. We identify challenges for performing automated testing on full-stack
JavaScript web applications (Section 2.3) and distil these challenges into
seven criteria (Section 2.4) that automated testers for these applications
should satisfy.

2. We build an intra-process concolic tester, named StackFulINTRA, that
is capable of testing single-process JavaScript programs. StackFulINTRA
uses shadow execution to execute a program while simultaneously collecting
symbolic constraints that precisely model the program path followed by the
execution (Sections 4.1–4.3).

3. We extend StackFulINTRA to make it capable of testing event-driven pro-
grams (Section 4.4). With the capability of testing event-driven, single-
process JavaScript applications, we evaluate StackFulINTRA on the set of
seven criteria (Section 4.6).

4. We build on StackFulINTRA to develop StackFulINTER, an inter-process
concolic tester for full-stack JavaScript web applications. StackFulINTER
tests the composition of all client and server processes in an application as
a whole, while observing their communication, so that it can construct pre-
cise constraints over the application’s execution paths (Sections 5.1–5.2).
We motivate the need for inter-process testing by using StackFulINTER
to distinguish between high-priority and low-priority server errors, where
we define a high-priority server-side error in a particular client-server con-
figuration as an error that is reachable from any client of this application.
Low-priority server-side errors are defined as server-side errors that are not
reachable from any of the clients in the client-server configuration of the
application (Section 5.3.1).

5. We formalise both StackFulINTRA and StackFulINTER to precisely cap-
ture the essential aspects of intra-process (Section 4.5.1) and inter-process
(Section 5.4) concolic testing.

8

1.3. CONTRIBUTIONS

6. Concolic testing for sequential, single-process applications gives rise to the
state explosion problem. This problem is exacerbated when concolic testing
is performed on event-driven code, and when execution paths are made
longer by having them cross process boundaries. We therefore incorporate
state merging into StackFulINTER, naming the resulting tester StackFul,
and investigate how it can be applied to concolic testing of event-driven code
(Section 6.3), so it can be used to test full-stack JavaScript web applications.

We have made the source code of StackFul publicly available at https://
github.com/softwarelanguageslab/StackFul

1.3 Contributions

This dissertation presents contributions along three main axes: i) identifying
the challenges in automated testing of full-stack JavaScript web ap-
plications, ii) the concept of inter-process concolic testing, and iii) state
merging.

Specifically, we contribute to the first axis:

• We identify four challenges in performing automated testing of full-stack
JavaScript web applications and distil these into seven criteria that auto-
mated testers for these applications should satisfy.

We present two contributions, supported by a publication in an international,
peer-reviewed journal [129], for the second axis:

• We define the concept of inter-process concolic testing as concolic testing
where a composition of multiple instances of the client and server processes
are tested as a whole, while observing their communication. Symbolic path
constraints are collected along execution paths that cross process bound-
aries. We implement inter-process testing in the StackFulINTER concolic
tester.

• We implement a use case in StackFulINTER, in which we employ the
increased precision offered by inter-process testing to distinguish between
high-priority and low-priority server errors in full-stack JavaScript web ap-
plications. We define a high-priority server error as a server error that is

9

https://github.com/softwarelanguageslab/StackFul
https://github.com/softwarelanguageslab/StackFul

CHAPTER 1. INTRODUCTION

reachable by a client in a specific composition of client-server processes,
whereas a low-priority server error is an error that is only theoretically
reachable.

For the third axis, we contribute:

• We present how state merging can be applied in concolic testing of event-
driven programs. We present StackFul, which was built on top of Stack-
FulINTER but incorporates this form of state merging.

1.4 Publications

In this section, we list work that has been conducted over the course of this PhD
and which has been published at several international, peer-reviewed venues. We
distinguish between publications that are directly related to the work presented
in this dissertation and publications that are related only indirectly.

1.4.1 Supporting Publications

We list and summarise the publications directly related to this thesis below:

• Vandercammen, Maarten, Christophe, Laurent, De Meuter, Wolfgang, and
De Roover, Coen. (2018). Concolic Testing of Full-stack JavaScript Applic-
ations. In Proceedings of the 17th Belgium-Netherlands Software Evolution
Workshop, Delft, the Netherlands, pages 38–42. (Workshop paper)

This workshop paper proposes the idea of performing concolic testing on all pro-
cesses of a full-stack JavaScript web applications. The paper motivates this idea
with potential improvements in the precision of such a tester compared to tradi-
tional testers which test processes in isolation from each other.

• Vandercammen, Maarten, Christophe, Laurent, Di Nucci, Dario, De Meu-
ter, Wolfgang, and De Roover, Coen (2020). Prioritising Server Bugs via
Inter-process Concolic Testing. The Art, Science, and Engineering of Pro-
gramming, 5(2), 5.

10

1.4. PUBLICATIONS

This paper builds on the idea of concolic testing for full-stack JavaScript web
applications by introducing the concept of inter-process concolic testing, and de-
scribing the implementation of StackFulINTRA and StackFulINTER. The paper
also presents a use case for employing inter-process testing to distinguish between
high-priority and low-priority server-side errors (cf. Chapter 5), and evaluates
this approach on a suite of full-stack JavaScript web applications.

• Vandercammen, Maarten and De Roover, Coen. State Merging for Con-
colic Testing of Event-driven Applications. Under review at the Journal of
Systems and Software.

This paper, under review at the time of the publication of this dissertation,
presents a novel approach for incorporating state merging into concolic testing
of event-driven applications (cf. Chapter 6).

This thesis also directly contributed to the successful completion of several master
and bachelor theses.

1.4.2 Other Publications

We also present publications that are not directly related to this thesis, with the
aim of describing our academic realisations outside of the subject of inter-process
concolic testing of full-stack JavaScript web applications. Although this work has
no direct relation with the topic of this thesis, it indirectly influenced the approach
taken in this thesis by its focus on static and dynamic analysis and automated
testing.

A large part of our work was focused on static analyses performed at run time,
i.e., online static analysis. A key benefit of online static analysis is that the
analysis can incorporate concrete information about the execution of the program
to improve the precision of the analysis. We first investigated whether online static
analyses could be applied to the domain of Just-In-Time (JIT) compilation of
dynamic languages, to improve the optimisations performed on the JIT-compiled
code. The idea was to perform an extremely lightweight online static analysis on
the entire program after collecting the code to be JIT-compiled. The increased
precision about the execution of the program outside the JIT code snippet would
enable the compiler to further optimise the JIT-compiled code, for example by

11

CHAPTER 1. INTRODUCTION

extending the scope of constant propagation optimisations or by eliminating code
that computes values which are not used outside of the JIT-compiled code. This
work resulted in the following publications:

• Vandercammen, Maarten, Nicolay, Jens, Marr, Stefan, De Koster, Joeri,
D’Hondt, Theo, and De Roover, Coen. (2015). A Formal Foundation for
Trace-Based JIT Compilers. In Proceedings of the 13th International Work-
shop on Dynamic Analysis, WODA, Pittsburgh, PA, USA, pages 25–30.
(Workshop paper)

• Vandercammen, Maarten, Marr, Stefan, and De Roover, Coen (2018). A
Flexible Framework for Studying Trace-based Just-In-Time Compilation.
Computer Languages, Systems & Structures. 51, pages 22–47.

• Vandercammen, Maarten, Stiévenart, Quentin, De Meuter, Wolfgang, and
De Roover, Coen. (2015). STRAF: A Scala Framework for Experiments
in Trace-based JIT compilation. In Grand Timely Topics in Software En-
gineering - International Summer School, GTTSE, Braga, Portugal, pages
223–234. (Workshop paper)

• Vandercammen, Maarten and De Roover, Coen. (2016). Improving Trace-
based JIT Optimisation Using Whole-Program Information. In Proceedings
of the 8th International Workshop on Virtual Machines and Intermediate
Languages, VMIL, Amsterdam, The Netherlands, pages 16–23. (Workshop
paper)

The first two publications present a formal model of trace-based JIT compila-
tion, which allows for easily lifting the concrete information observed by the JIT
compiler to the abstract domain employed abstract interpreters [37]. The third
publication presents a framework for implementing an extensible trace-based JIT
compiler, which served as the research vehicle in which this research was conduc-
ted. The fourth publication describes our investigation into online static analysis
for improving trace-based JIT optimisations, and presents some cases where op-
timisations involving constant propagation are improved because of the analysis.

However, the number of scenarios in which online static analysis significantly
improves the performance of the compiled code are limited. We therefore invest-
igated whether online static analysis can be combined with concolic testing, to
steer the tester away from parts of the application that can be proven safe at run
time. This work resulted in the following publication:

12

1.5. OUTLINE OF THE DISSERTATION

• Vandercammen, Maarten and De Roover, Coen. (2017). Employing Run-
time Static Analysis to Improve Concolic Execution. In Proceedings of the
16th edition of the Belgian-Netherlands software evolution symposium, Ant-
werp, Belgium, pages 26–29. (Workshop paper)

1.5 Outline of the Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2: Automated Testing of Full-stack JavaScript Web Applic-
ations We provide background material on the problem and solution domains
of this dissertation: full-stack JavaScript web applications and concolic testing.
We describe the challenges that arise when applying concolic testing to full-stack
JavaScript web applications, and we distil these challenges into seven criteria that
testers for these applications should satisfy.

Chapter 3: State of the Art in Concolic Testing We contextualise our
tester by describing the current state of the art in automated testing of these ap-
plications. We focus on automated testers for distributed systems, event-driven
applications, JavaScript applications, and web servers. We also give an overview
of generic optimisation techniques that can be applied to these testers. We con-
clude by evaluating selected testers on the seven criteria identified in the previous
chapter.

Chapter 4: A Foundation of Intra-process Concolic Testing We
introduce StackFulINTRA, an intra-process concolic tester for single-process
JavaScript applications. We extend concolic testing of sequential JavaScript
code to testing of event-driven applications. We describe how StackFulINTRA
simultaneously executes a program concretely and symbolically through shadow
execution, and formally detail it.

Chapter 5: Inter-process Concolic Testing We build on the concolic tester
introduced in the previous chapter and introduce StackFulINTER, an inter-
process concolic tester. StackFulINTER tests the composition of all instances
of clients and servers in a full-stack JavaScript web application as a whole while
observing their communication in order to increase precision and avoid false pos-
itive errors. As a use case, we demonstrate how inter-process testing can be used

13

CHAPTER 1. INTRODUCTION

to distinguish between high-priority and low-priority server errors in a full-stack
JavaScript web application, based on whether a server-side error is reachable from
a client in a particular client-server configuration or not.

Chapter 6: State Merging for Event-driven Programs We outline the
state explosion problem that arises when performing concolic testing of sequential,
single-process applications, and explain how it is made worse by event-driven code.
We describe how state merging alleviates the state explosion problem, and we lift
this technique to the domain of concolic testing of event-driven applications. We
incorporate state merging into StackFulINTER and name the resulting tester
StackFul.

Chapter 7: Conclusion We conclude the dissertation by revisiting the problem
statement and listing potential avenues for future work.

14

2 Automated Testing of Full-stack
JavaScript Web Applications

In this chapter, we introduce the two main concepts that are the focus of this
dissertation: full-stack JavaScript web applications and techniques for automated
testing, specifically concolic testing. We start by defining characteristics that
distinguish full-stack JavaScript web applications from traditional applications
and present a working example of an application that will be used throughout the
chapter.

Section 2.2 introduces a variety of automated testing techniques, with emphasis on
concolic testing. Section 2.3 combines the previous two sections by outlining the
unique challenges that full-stack JavaScript web applications pose for automated
testers. Automated testing of full-stack JavaScript web applications faces unique
challenges that do not arise when testing non-distributed, sequential applications.
These challenges relate to the heterogeneous configuration of processes in full-
stack JavaScript web applications, the interconnected nature of these processes,
the event-driven code employed by the clients and servers of these applications,
as well as the dynamic nature of JavaScript and its permissive attitude towards
program faults. Finally, Section 2.4 distils these challenges into concrete criteria
that an automated tester for full-stack JavaScript web applications should adhere
to in order to effectively test such applications.

2.1 Full-stack JavaScript Web Applications

In this section, we introduce and define the term full-stack JavaScript web applic-
ation. We specify unique characteristics that distinguish these applications from
more traditional applications in Section 2.1.1 and present an example implement-
ation that highlights these characteristics in Section 2.1.2.

15

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

2.1.1 Characteristics

Traditionally, a web application is divided into two components: the frontend and
the backend [1]. The frontend consists of all parts through which a user interacts
with the application. These comprise the web pages with their graphical user
interface elements that are accessed directly by the user. The backend includes
the servers on which the application logic is running and the databases employed
in the application. These technologies, as well as the glue services that make it
possible for the technologies to communicate with each other, collectively form the
technology stack of the application [121]. Each layer of the technology stack gives
rise to one or more processes that are spawned, such as a server process, a web
client process, a database process etc. The constituent processes of the application
commonly run on entirely different machines: e.g., the frontend is executed on a
user’s machine, whereas the backend is executed on the organisation’s machines.

Technology stacks can be customised to specific applications or follow a standard
template. Examples of such templates are the LAMP stack (Linux, Apache,
MySQL, PHP), the MEAN stack (MongoDB, Express, Angular, Node.js) which
supports the development of JavaScript applications or the Ruby stack (relying
on the Ruby-on-Rails framework1) [121]. As an example of such a technology
stack, Figure 2.1 depicts the MEAN stack. Users interact with the application
via the frontend, which consists of one or multiple web pages developed in the
Angular2 framework. The user’s actions may cause the page to communicate
with the backend, for example to request loading of certain data or to update the
state of the application. The backend consists of the server (written in Express3

and Node.js4) and the database (MongoDB5). The Express framework, running
on Node.js, is a middleware framework. It enables specifying which actions the
server must undertake when it receives an HTTP request [45]. Lastly, the server
uses the MongoDB database framework for persistence.

The term “full-stack development” is only informally defined in current literat-
ure, but is generally taken to refer to “[technologies across] the entire depth of the
application’s technology stack” [24, 70, 84, 121, 79]. Full-stack development thus
takes place along all layers of these technology stacks: in components situated
along both the frontend and the backend, as well as the infrastructure through

1https://rubyonrails.org/
2https://angular.io/
3https://expressjs.com/
4https://nodejs.org/en
5https://www.mongodb.com/

16

https://rubyonrails.org/
https://angular.io/
https://expressjs.com/
https://nodejs.org/en
https://www.mongodb.com/

2.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

Web page

Server

Database

Back-end

Front-end
Interacts

User

Figure 2.1: The MEAN (MongoDB, Express, Angular, Node.js) technology stack.

which these technologies communicate with each other. Full-stack developers
are expected to contribute to the development of all layers of the application’s
technology stack and therefore require the skill sets necessary for working with
these technologies. Full-stack JavaScript web applications are the applications
built by combining several of these technologies, where the frontend consists of
one or more web pages that communicate with a backend which possibly runs on
another machine, and where both the frontend and the backend have been imple-
mented in JavaScript. In short, we define full-stack JavaScript web applications
as web applications where both the client and the server have been implemented
in JavaScript, and which communicate via technologies that are accessed through
JavaScript, such as Websockets or libraries for HTTP communication.

2.1.2 Example Application

We present an example of a full-stack JavaScript web application, Calculator,
which exhibits the characteristics of these types of applications that were outlined

17

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

in the previous section. This application, of which the client-side user-interface is
depicted in Figure 2.2, is an online calculator that allows users to write arithmetic
expressions by entering numbers into the input field or by clicking the buttons.
When the user clicks the button labelled with the equality sign, the expression
is sent to the server. The server receives this expression, parses it, performs the
arithmetic computation, and sends the result back to the client so it can be shown
to the user.

Figure 2.2: A screenshot of the Calculator application’s frontend.

The technology stack of Calculator is depicted in Figure 2.3. Like other full-
stack JavaScript web applications, it consists of a frontend and a backend. The
frontend consists of a web page, used to give the user access to the application via
the user-interface depicted in Figure 2.2, which is implemented in plain HTML
and JavaScript, without the use of any additional frameworks. The backend con-
sists of a server, which runs Node.js and uses Express to serve the frontend web
page when a user connects to the application. As with other full-stack JavaScript
web applications, the frontend and backend can run on different machines. Fur-
thermore, several instances of the frontend may be spawned, with all of them
connected to the same backend instance. Since the application has no need for
persisting data, Calculator does not use a database.

Bidirectional sockets, provided through the Socket.IO library6, serve as the glue
between the frontend and backend. These sockets enable frontend and backend
processes to communicate with each other, by allowing for the transfer of primitive
JavaScript values (e.g., strings, numbers, and booleans) and serialisable objects.

6https://socket.io/

18

https://socket.io/

2.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

The remainder of this section provides an overview of the frontend and backend
of Calculator, demonstrating the characteristics of full-stack JavaScript web
applications.

Web page

Server Back-end

Front-end
Interacts

User
socket.io

Figure 2.3: The technology stack of the Calculator application.

Application Frontend

Listing 2.1 depicts an extract of the frontend implementation. The client calls
function io (line 1) for a connection to the server through a bidirectional channel
from the Socket.IO library. Rather than defining event handlers that dictate
the appropriate action for clicking each button in the HTML document of the
web page, these handlers are registered dynamically via JavaScript. The client
registers a separate handler for a mouse click on each individual button (lines 2
to 8). Note that the event handlers for most buttons have been elided from
the listing. Importantly, the event handler for the button labelled “=” calls the
compute function (line 7). The client also registers an event handler for key presses
on the text input field (line 9). When the user enters numbers or text into this
field, the user input is parsed by the elided function keyPressed.

The client represents the arithmetic expression as an object input (line 12) con-
taining three fields left, op, and right. Function compute checks whether the
expression that was entered is a valid arithmetic expression with a recognised
arithmetic operator (line 14). If the check fails, the function shows an appro-
priate error message to the user (line 16). Otherwise, the function sends input
to the server through the socket (line 18). Socket.IO’s emit method automatic-

19

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

ally serialises the input object as a JSON string. Finally, the client registers a
callback for messages from the server (line 22). After the server completes the
computation, it sends the result to the client through the result parameter of
the callback. Upon receiving such a message, the client shows the result to the
user (line 24).

1 const socket = io(); // Connect socket with the server
2 const buttonZero = document.getElementById("Button0");
3 const buttonPlus = document.getElementById("Button+");
4 const buttonEquals = document.getElementById("Button=");
5 buttonZero.addEventListener("click", (evt) => clickDigit(0));
6 buttonPlus.addEventListener("click", (evt) => clickOperator("+"));
7 buttonEquals.addEventListener("click", (evt) => compute());
8 ... // Register event handlers for other buttons
9 const inputField = document.getElementById("input");
10 inputField.addEventListener("keypress", (evt) => keyPressed(evt););
11

12 const input = {left: 0, op: "", right: 0}; // Arithmetic exp
13 function compute() {
14 if (! isValidExpression(input)) {
15 // Warn user of invalid expression
16 resultElement.innerHTML = "Expression is invalid";
17 } else {
18 // Send the expression to the server
19 socket.emit("compute", input);
20 }
21 }
22 socket.on("result", function (result) {
23 // Receive computation result from server
24 resultElement.innerHTML = result; // Show the result
25 });

Listing 2.1: Part of the JavaScript frontend code of the Calculator application.

The frontend furthermore uses HTML to define the domain object model (DOM)
of the web page. An extract of the HTML code is depicted in Listing 2.2. The
HTML extract specifies a paragraph element where the evaluated result of the
arithmetic expression will be shown (line 8), the text input field where the user
can enter a number (line 9), and three of the buttons that users may click to form
the arithmetic expression (lines 13–16).

20

2.1. FULL-STACK JAVASCRIPT WEB APPLICATIONS

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Calculator</title>
5 </head>
6

7 <body>
8 <p id="Result"></p>
9 <input type="text" id="input"></input>
10 <table>
11 <tr>
12 ...
13 <th> <button type="button" id="Button1">1</button> </th>
14 <th> <button type="button" id="Button2">2</button> </th>
15 <th> <button type="button" id="Button3">3</button> </th>
16 <th> <button type="button" id="Button-">-</button> </th>
17 </tr>
18 ...

Listing 2.2: Part of the HTML frontend code of the Calculator application.

Application Backend

Listing 2.3 depicts an extract of Calculator’s backend’s code. The code first
creates an Express application (lines 1–2), and then sets up an http server while
instructing the server to use the Express application as a middleware stack (line 3).
The Express application is configured to serve the static HTML page (cf. List-
ing 2.2) that is located in the public folder of the server’s file system (line 5).
The server is furthermore configured to open port 3000, although no action is
taken when a client connects to this port (line 29).

Orthogonal to this server setup, the code also configures (line 4) a Socket.IO
channel that listens for incoming connections from clients (line 6). When a new
client connects, the corresponding callback is triggered (lines 6–28) with the socket
through which the client is connected as an argument. The server registers a
message handler (line 8) on each socket to listen for compute messages coming from
the corresponding client. When the client sends such a message, the arithmetic
expression is automatically deserialised from a JSON string into a JavaScript
object. The server retrieves from this object the left and right operand, as well

21

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

as the operator (lines 10–12). The result is computed from these three elements
(lines 14–24) and sent back to the client via its socket (line 26). Importantly, the
server throws an error when it detects a division by zero (line 20) or when it does
not recognise the operator to be applied (line 23).

1 const express = require("express");
2 const app = express();
3 const http = require("http").createServer(app);
4 const io = require("socket.io")(http);
5 app.use(express.static(__dirname + "/public"));
6 io.on("connection", function(socket) {
7 // A new client has connected
8 socket.on("compute", function (input) {
9 // Receive input from client
10 const left = input.left;
11 const right = input.right;
12 const op = input.op;
13 let result;
14 switch (op) {
15 case "+": result = left + right; break;
16 case "-": result = left - right; break;
17 case "*": result = left * right; break;
18 case "/": result =
19 if (right === 0) {
20 throw new Error("Dividing by zero");
21 }
22 result = left / right; break;
23 default: throw new Error("Unknown operator");
24 }
25 // Send the result to the client
26 socket.emit("result", result);
27 }
28 });
29 http.listen(3000, function () {});

Listing 2.3: Part of the backend code of the Calculator application.

22

2.2. AUTOMATED TESTING TECHNIQUES

2.2 Automated Testing Techniques

The previous section introduced full-stack JavaScript web applications. In
this section, we introduce various techniques for automated testing. Later, in
Chapter 3, we give a more detailed overview of the state of the art on these
automated testing techniques. In Section 2.3, we discuss the unique challenges
brought about by full-stack JavaScript web applications for automated testing.

As a matter of terminology, we distinguish between “test automation” and “auto-
mated testing”. We define “test automation” as technologies that help automate
the execution of tests that were specified manually. Examples of test automation
technologies include frameworks such as JUnit7 or Jest8, which enable developers
to write unit tests that can be executed repeatedly and automatically by the
framework. Test automation may also use capture-replay techniques to e.g., test
the program’s GUI. Apart from unit testing, test automation can also be used
to perform end-to-end testing, performance testing, regression testing, functional
requirement testing, integration testing, etc. [44]. Benefits to test automation,
as perceived by industry practitioners, include reduced developers’ time spent on
testing, improved test coverage, reusability of tests, and increased quality and
reliability of the final software product [100].

We use “automated testing” to refer to using software tools, called “automated
testers”, that autonomously execute a program, or parts thereof, under controlled
circumstances while reporting erroneous behaviour. Automated testers do not
follow manually specified tests, but automatically generate test inputs to drive
the execution of the program under test. In this section, we focus on automated
testing where an application is autonomously executed with algorithmically gen-
erated test inputs and its behaviour or outputs monitored. These inputs may take
the form of e.g., user inputs which would otherwise be provided by a user manu-
ally interacting with the application, message inputs representing communication
data received by the system, inputs read from a file by the application, program
inputs etc.

We introduce the following types of automated testers: fuzz testing, search-based
testing, and concolic testing.

7https://junit.org/junit5/
8https://jestjs.io/

23

https://junit.org/junit5/
https://jestjs.io/

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

2.2.1 Fuzz Testing

In general, fuzzing refers to the practice of repeatedly executing a program while
producing input that is (intentionally) malformed in order to trigger unexpec-
ted behaviour [85]. Fuzzing can be used by malicious actors to exploit security
vulnerabilities in a program or to penetrate its defences [29]. Conversely, the de-
velopers of these systems have taken up fuzzing in order to pro-actively discover
weaknesses and deny attackers these vulnerabilities.

Fuzzing can also be used to detect forms of erroneous behaviour other than security
violations. Fuzz testing hence refers to the practice of using fuzzing to test the
correctness of programs. It has been successfully applied in various contexts and
has been used by e.g., Google [58], Facebook [4], and Microsoft [18, 51] to validate
their applications.

Fuzz testing techniques can be divided into the following categories, based broadly
on the amount of program analysis they leverage to test the system [29, 85]: black-
box fuzzing, white-box fuzzing, or grey-box fuzzing.

Black-box Fuzzing

Black-box fuzzers do not employ any program analysis at all. The fuzzer continu-
ously executes the program with randomly generated inputs, without considera-
tion for how these inputs affect the execution of the system, while monitoring the
outputs produced by the system. Some black-box fuzzers use an input grammar
that specifies an appropriate format or structure for the input, in order to pass
superficial program checks on the input [85].

Methods for generating new inputs for these fuzzers are either mutation-based
or generation-based [88]. Mutation-based methods start from a suite of prepared
input seeds and create new inputs by iteratively performing random mutations
on these inputs. Generation-based methods employ a formal specification of the
structure of the input, such as a grammar, to produce new inputs from scratch.

The main advantage of black-box fuzzing lies in its simplicity [76]. However,
because these fuzzers are ignorant of the code they are executing, they may find
it difficult to cover branches that expect inputs to assume very specific values. As
such, black-box fuzzers often achieve only a low code coverage [52].

24

2.2. AUTOMATED TESTING TECHNIQUES

White-box Fuzzing

White-box fuzzers stand on the opposite side of this spectrum, as they have the
entire code base of the program available for analysis. Such fuzzers may employ
symbolic execution [21] to construct precise constraints of the program paths that
were executed. By manipulating these paths and feeding them to a constraint
solver, the fuzzer can compute inputs which will cause the execution to follow a
different, unexplored path in the next fuzzing run.

In theory, this allows the tester to systematically enumerate all possible program
paths and therefore to uncover all bugs that are present in the system. In practice,
however, the set of potential program paths may grow infeasibly large. To manage
this search space, the fuzzer has to rely on sophisticated search heuristics to select
appropriate paths to explore [26]. One form of white-box fuzzing, concolic testing,
will be described in more detail in Section 2.2.3.

Examples of white-box fuzzers include KLEE [23], SAGE [51, 52], and PEX [128].

Grey-box Fuzzing

Situated between these two extremes are grey-box fuzzers, which partially instru-
ment the system in order to collect coverage information. The collected feedback
helps the fuzzer increase code coverage by making it possible to select for program
inputs that increase coverage. Other parts of the program may then be uncovered
by further mutating those selected inputs.

Algorithms from the machine learning community have been leveraged to improve
the selection process of new inputs. For example, Directed Greybox Fuzzing [16]
uses a form of simulated annealing in which the fuzzer first launches an explora-
tion phase in which it aims to maximize code coverage, followed by an exploitation
phase in which it further manipulates successful program inputs to discover bugs.
Yet other grey-box fuzzers use a Markov chain approach [17]. A prominent ex-
ample of grey-box fuzzing is search-based software testing.

2.2.2 Search-based Software Testing

In general, search-based software engineering aims to solve computational prob-
lems related to the field of software engineering via various search techniques, such

25

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

as genetic search algorithms [119], simulated annealing [134], or hill climbing [56].
Search-based software testing therefore represents the application of such search
techniques to the domain of software testing [87, 57, 63]. Search-based software
testing has been used to find errors in a program under test [3], to reproduce
crashes [40], and to automatically fix simple errors [86].

As an example of grey-box fuzzing, search-based software testers employ a light-
weight form of program instrumentation to e.g., measure code coverage while
autonomously executing an application with generated program inputs. The
choice of which inputs to execute the program with is made by the search tech-
nique, which, informed by run-time data collected by the instrumentation, at-
tempts to select inputs that cause the test run to accomplish certain test object-
ives, such as maximising code coverage, covering a specific target, or verifying
non-functional properties [2].

Search-based testers rely on a fitness function which expresses how close a par-
ticular test run under a given set of program inputs came to satisfying the test
objective. The choice of which fitness function should be used therefore naturally
depends on the type of test objective that the search-based tester must accom-
plish. Examples of fitness functions range from a branch coverage metric [48],
which will direct the tester to maximise test coverage, or approach level and
branch distance functions, which express how close the test run came to covering
a target statement [87].

2.2.3 Concolic Testing

Concolic testing (the term being a combination of “concrete and symbolic execu-
tion”) is a form of white-box fuzzing that tests a program over multiple test runs.
Concolic testing uses symbolic execution to collect so-called path conditions or
path constraints. A path constraint describes the program conditions, expressed
in the form of symbolic expressions, that must hold in order to follow a particular
path through the program or code snippet under test.

By systematically negating these path constraints and using a satisfiability-
modulo-theories (SMT) solver to compute solutions for program inputs that cause
the negated constraint to become satisfied, the concolic tester can systematically
exercise a new program path in each test run [13, 30]. In order to collect these
path constraints, the concolic tester performs concrete and symbolic execution
simultaneously. On the one hand the tester steers the concrete execution of

26

2.2. AUTOMATED TESTING TECHNIQUES

Table 2.1: Summary of the three test runs performed during concolic testing of
the code in Listing 2.4.

Test run Path constraint x y
1 2y0 6= x0 3 5
2 2y0 = x0 ∧ x0 ≤ y0 + 10 2 1
3 2y0 = x0 ∧ x0 > y0 + 10 30 15

the program along an extension of a previously-explored path and reports
newly-encountered errors. On the other hand the symbolic execution gathers
symbolic constraints over existing and newly-encountered non-deterministic
variables (e.g., random values), user inputs, and program inputs that steer the
program’s execution so that subsequent test runs may explore different program
paths.

We illustrate the workings of a concolic tester via the JavaScript example depicted
in Figure 2.4. Lines 14 and 15 assign random values to the variables x and
y. In general, an expression that may evaluate to different concrete values over
multiple test runs of the program, such as an expression producing a random value,
reading a user or program input, performing an IO read, etc., is deemed a non-
deterministic expression. A non-deterministic expression symbolically evaluates
to a new symbolic input variable. The tester therefore symbolically represents
the results of the calls to randomInt as the symbolic input variables x0 and y0
respectively, which are then assigned to variables x and y.

Suppose that in the first test run, the concolic tester randomly assigns the values 3
to x and 5 to y. These values cause the branch condition on line 7 to be false, and
the program terminates without errors. Simultaneously to this concrete execution,
the tester also collects the symbolic representation of the conditional expression
that was encountered on line 7 in the form of a so-called path constraint, i.e.,
2y 6= x0. After completing this run, the tester attempts to explore another path,
such as the path leading to the if statement on line 8. To this end, the tester
negates the path constraint and feeds the resulting constraint 2y0 = x0 to an
SMT solver, which finds a solution that assigns e.g., 2 to x0 and 1 to y0. The
concolic tester re-executes the program and assigns the values 2 to x and 1 to
y. Concrete execution reaches the if statement on line 8, then takes the else
branch, and the program terminates again without errors. In the meantime, the
symbolic execution gathered the path constraint 2y0 = x0 ∧ x0 ≤ y0 + 10. The
tester negates the last element of this path constraint and feeds the resulting path
constraint 2y0 = x0 ∧ x0 > y0 + 10 into the SMT solver, which finds e.g., the

27

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

1 function twice(v){
2 return v * 2;
3 }
4

5 function f(x, y){
6 let z = twice(y);
7 if(z === x) {
8 if(x > y + 10) {
9 throw new Error();
10 }
11 }
12 }
13

14 let x = randomInt();
15 let y = randomInt();
16 f(x, y);

2y0 = x0

No error x0 > y0 + 10

No error Error

false true

truefalse

2y0 ≠ x0 2y0 = x0

 2y0 = x0 ∧
x0 ≤ y0 + 10

2y0 = x0 ∧
x0 > y0 + 10

Figure 2.4: JavaScript program and its corresponding symbolic execution tree,
based on Figure 1 of [21].

28

2.2. AUTOMATED TESTING TECHNIQUES

values 30 and 15 for x and y as a solution. A new test run is started with these
values and the concrete execution reaches the error on line 9, which is reported
by the concolic tester. As no new branches were encountered by the tester during
this last run, the tester deduces that it has explored all feasible program paths
and terminates. In practice, for realistic programs with a (near-)infinite number of
program paths, the testing phase is terminated either upon exceeding a given time
or search budget or when the desired level of code coverage has been reached. The
three path constraints that were found can be collected in a symbolic execution
tree that represents all possible executions of the program, as shown in Figure 2.4.
A summary of the three concolic execution runs is presented in Table 2.1.

A concolic tester is often divided into a test executor and a test selector [62]. The
test executor is the component that executes the program concretely and symbol-
ically and that collects the path constraint over the course of a test run. The test
selector constructs the symbolic execution tree from these path constraints over
multiple test runs. Between test runs, it selects which path should be explored
by the test executor in the subsequent run.

An important advantage of concolic testing when compared to other types of auto-
mated testers is the fact that concolic testing explores a program systematically.
On the conditions that i) the entire code base of the application is available for
symbolic analysis, ii) the concolic tester can employ an SMT solver that is capable
of reasoning about the symbolic constraints with which it is presented, and iii)
the tester is given a sufficiently large time budget, a concolic tester is guaranteed
to explore a given, finite, satisfiable program path in a finite amount of time.
For this reason, Chapter 3 details a number of state-of-the-art concolic testers for
various types of applications and presents an overview of techniques for rendering
concolic testing of these applications more effective.

The second constraint listed here deserves particular consideration, as SMT solvers
may be incapable of computing solutions for constraints that feature complex
operations, such as string comparisons or regex checks [21]. Additionally, if a value
was produced in a part of the application of which the source code is not available,
such as a binary library, the concolic tester will be wholly incapable of providing
a symbolic representation for this value. In those cases, the concolic tester can
use concretisation: the complex or missing symbolic expression is replaced by the
concrete value that was observed during the program’s execution. Although this
necessarily loses accuracy, as the tester is no longer capable of precisely modelling

29

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

the constraints on program inputs that cause execution to flow along a path
featuring these obstacles, it does allow the concolic tester to continue making
progress.

2.3 Challenges in Automated Testing of Full-stack
JavaScript Web Applications

Having introduced both full-stack JavaScript web applications and automated test
input generation techniques, this section describes the unique challenges posed
by full-stack JavaScript web applications to automated testers. In Section 2.4,
we distil these challenges into a set of seven criteria that an automated testing
technique must satisfy in order to effectively test full-stack JavaScript web applic-
ations.

We identify the following main challenges:

Dynamic nature of JavaScript (Section 2.3.1) JavaScript is not only almost
universally used to implement frontends of web applications, but it is also
a popular implementation language for the backends of these applications.
However, the highly dynamic nature of this language, including dynamic
code loading, dynamic typing, reflection, higher-order functions etc.,
poses challenges to automated testers. Furthermore, the behaviour of an
individual code snippet, such as a source code file or an individual function,
may be affected by its composition with other snippets. For example, one
code snippet might add extra properties to the prototype of an object
defined in another snippet.

Event-driven code (Section 2.3.2) Event-driven code can be found throughout
many layers of a full-stack JavaScript web application’s technology stack,
ranging from event-driven code in the frontend that handles user interaction
to message handlers in the backend that handle communication coming from
one of the other processes. Automated testers must not only be able to
execute code that is hidden behind an event or message handler, but must
also be capable of detecting bugs that only arise when a specific sequence
of events is triggered.

Handling different multiplicities (Section 2.3.3) A full-stack JavaScript web
application may spawn several processes belonging to the same layers, e.g.,

30

2.3. CHALLENGES IN AUTOMATED TESTING OF FULL-STACK JAVASCRIPT
WEB APPLICATIONS

multiple web clients may be spawned, with all of them connected to the
same server. Certain bugs only arise in specific compositions, which poses
problems to automated testers that are not equipped to handle different
multiplicities.

Process interplay (Section 2.3.4) When testing a full-stack JavaScript web ap-
plication, an automated tester may explore each process of the application
in isolation from each other while mocking inputs from other processes.
However, this ignores the specifics of the interplay between these processes,
which may result in a loss of precision for the tester.

2.3.1 Dynamic Nature of JavaScript

Websites almost universally rely on JavaScript, or one of its derivatives such as
TypeScript or CoffeeScript, to render a web page interactive for users, to perform
various computations on the page and possibly visualise the results thereof, or to
communicate data to a backend [132]. Because of its prevalence, an automated
tester for full-stack JavaScript web applications should therefore be capable of
executing JavaScript code and detecting faults that arose during the execution.

However, JavaScript’s highly dynamic nature, featuring e.g., dynamic typing, run-
time code loading via require, object prototyping and dynamic code evaluation
via the eval construct, render static analysis of this language difficult [9]. Rather
than statically reasoning about the program’s behaviour, automated testing tech-
niques can directly observe the program’s execution. Even so, these idiosyncrasies
pose several problems for automated testers.

For example, JavaScript takes a permissive stance towards nonsensical operations,
such as allowing arithmetic comparators to be used on string representations of
numbers. Since actual program crashes are hence relatively rare, it is difficult for
automated testers to gauge whether a seemingly erroneous operation was or was
not intended by the developer.

As another example, JavaScript’s dynamic typing system forces automated test-
ers to generate multiple types per program input, as the type of the input may
affect the behaviour of the program. This in turn increases the number of test
generations required to explore the application.

As a last example, testing code snippets in isolation from each other is complic-
ated by the fact that properties may be dynamically added to or removed from

31

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

object instances. Behaviour of a code snippet may depend on which properties
are present in an object used in the snippet, which forces automated testers to
consider additional, often implicit, constraints on the object’s layout while testing
individual snippets.

2.3.2 Event-driven Code

As evidenced by the Calculator application presented in Section 2.1.2, full-
stack JavaScript web applications commonly rely on event-driven code to process
various sources of user and system events. For example, to realise highly in-
teractive web pages, developers often include JavaScript event handlers in the
application frontend to capture and process user events. Developers may also rely
on message handlers to process communication between the various layers of the
application’s technology stack. For example, the Socket.IO framework used by
the Calculator application allows for the creation of message handlers that are
automatically invoked when the process receives a message of a certain type.

When a program is explored by an automated tester, the tester must account for
these events in order to execute and explore the code hidden behind these event
handlers. This means that the tester must be able to automatically generate ap-
propriate events in order to invoke their corresponding event handlers and execute
the code accessible from within the handler. As the order in which these events
occur at run time is generally non-deterministic, the scheduling of these events
may give rise to unforeseen data races.

Additionally, certain parts of the application may only be reachable by a following
a specific sequence of events. For example, many functionalities of an application
may only be accessible to a user that is logged in. In order to validate these
features, the tester therefore has to generate events for e.g., loading the login
screen, entering a user’s credentials, and clicking the login button.

Furthermore, developers may opt to register or deregister event handlers dynamic-
ally, dependent on whether certain conditions are met. This dynamic registration
and deregistration of event handlers can even take place inside other event hand-
lers. In order to explore a registered handler, the tester would therefore first have
to ensure that the necessary conditions for registering the handler have been met,
only then to actually trigger the corresponding event.

32

2.3. CHALLENGES IN AUTOMATED TESTING OF FULL-STACK JAVASCRIPT
WEB APPLICATIONS

In short, testers are forced to not only explore the application’s input space, but
also its event space, leading to an exponential increase in the number of test runs
required to fully explore the application.

2.3.3 Handling Different Multiplicities

A full-stack JavaScript web application consists of various processes, each cor-
responding to a layer in the application’s technology stack. However, several
instances of a process corresponding to the same stack layer may be spawned. For
example, users may be able to access the full-stack JavaScript web application via
multiple web clients, all connected to the same backend, and exchange information
with each other through this backend. As an example, consider a collaborative
drawing application such as the one introduced in Section 1.1 where the drawing
canvas is stored on a server. Multiple clients may connect to the server to view
and draw on this shared canvas. In such an application, certain behaviour may
only be triggered when a specific number of clients connects to the server. This
may give rise to composition-specific program faults in the application, as certain
bugs on the client or the server may only manifest themselves when a minimum
number of clients have connected. Automated testers should therefore be capable
of considering various multiplicities of the application, e.g., by spawning several
instances of the application’s constituent processes.

2.3.4 Process Interplay

The processes constituting a full-stack JavaScript web application communicate
with each other and hence affect each other’s behaviour. These processes may
be tested in isolation from each other, e.g., by mocking communications from
other processes when testing a particular process. However, such a practice may
introduce imprecision, leading to false positive error reports.

As an example, consider the Calculator application again. When testing the
server code in isolation, while mocking Socket.IO inputs from the client, an auto-
mated tester might report the uncaught unknown-operator exception which can
be thrown on line 23 in Listing 2.3. However, reporting this as a possible error in
the Calculator application would not be precise, since it ignores the fact that
the client processes filters out all expressions involving an unrecognised operator

33

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

(line 14 in Listing 2.1), rather than communicating these to the server. In other
words, the interplay between the frontend and the backend prevents this error
from occurring in the Calculator application.

When testing this application, an automated tester would therefore have to either
consider the interplay between the processes or resort to reporting errors that may
not actually be triggered when the application is run by a user.

2.4 Criteria for an Automated Tester for Full-stack
JavaScript Web Applications

In the previous sections, we introduced full-stack JavaScript web applications,
presented various types of automated testers, and outlined the challenges faced
by automated testers for full-stack JavaScript web applications. We conclude
this chapter by distilling from these four challenges a total of seven criteria that
automated testers for full-stack JavaScript web applications should satisfy in order
to be capable of successfully testing these applications.

2.4.1 Overview of Testing Criteria

We identify seven criteria based on the challenges for automated testing of full-
stack JavaScript web applications described in the previous section. As a mo-
tivated reasoning for why we identify exactly these criteria, we again use the
example of the Calculator application as a representative full-stack JavaScript
web application, and we argue why each criterion is necessary to automatically
test Calculator.

Automated testers for full-stack JavaScript web applications should satisfy the
following criteria:

Criterion 1: Capable of Testing Web Clients

An automated tester for full-stack JavaScript web applications must necessarily
be able to test a web client (i.e., the frontend) process and a server (i.e., the

34

2.4. CRITERIA FOR AN AUTOMATED TESTER FOR FULL-STACK
JAVASCRIPT WEB APPLICATIONS

backend) process of a full-stack JavaScript web application. Because of the unique
challenges faced by a tester in this context, we divide this main criterion into two
subcriteria.

Criterion 1.A: Capable of Testing Sequential JavaScript Code

As outlined in Section 2.3.1, the wide prevalence of JavaScript in the develop-
ment of web clients of full-stack JavaScript web applications force automated
testers to be capable of testing JavaScript code. That is, the tester should be
able to automatically execute JavaScript code and detect and report erroneous
behaviour, while taking into account the various idiosyncrasies of the language,
e.g., dynamic code evaluation, a dynamic type system, higher-order functions etc.
(cf. Section 2.3.1), that render testing more difficult.

The frontend and backend of Calculator are implemented in JavaScript. In
order to test both components, an automated tester has to respect the semantics
of the language.

Criterion 1.B: Models Inputs from the DOM

We require that automated testers for full-stack JavaScript web applications con-
sider the DOM as a source of program inputs. Concretely, this means that the
tester should be capable of recognising how user or system inputs may originate
from DOM elements, from the user’s interaction with the web page, or from other
sources of environment or system inputs, such as readings of external sensors or
internal clocks.

Consider for example the web page of the Calculator application depicted
in Figure 2.2. User inputs in this application originate either from the buttons
clicked on the page (cf. Criterion 2) or from the text input field. Criterion 1.B
stipulates that any input through which the user, system, or environment may
affect the behaviour of the application should be considered a program input.
This includes the contents of input fields on web pages, selection of radio buttons
or checkboxes, exact coordinates of a mouse click, external API calls that return
non-deterministic values etc.

35

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

The frontend of Calculator relies on a DOM featuring e.g., buttons which,
when clicked, invoke the associated event handler. An automated tester for this
frontend can only execute a handler by quering the DOM and simulating a click
on the corresponding button.

Criterion 2: Capable of Testing Event-driven Code

Event-driven code is omnipresent in the development of full-stack JavaScript web
applications, ranging from event handlers used for rendering web pages interactive
to message handlers used for intercepting communication between the processes
of the full-stack JavaScript web application. An automated tester for these ap-
plications should therefore be capable of executing event-driven code.

In the example of the Calculator application, two types of handlers were
defined: user event handlers that were invoked when a button on the web page was
clicked, and message handlers from the Socket.IO framework which were executed
when a Socket.IO message arrived at the client or server.

We decompose this main criterion into two subcriteria:

Criterion 2.A: Allows for Dynamic (De)registration of Event Handlers

In the case of an application’s frontend, event handlers may be defined statically,
in the HTML document describing the DOM of the web page, or dynamically via
JavaScript. Dynamic registration of event handlers is more flexible, as it allows
for registering or deregistering a handler when certain conditions are met. In
order to explore all event handlers of an application, the tester should therefore
take into account the dynamic registration and deregistration of event handlers. If
registration or deregistration of an event handler is conditional, the tester should
strive to satisfy the necessary conditions so that it can trigger the corresponding
event and start exploring the event handler.

Consider lines 5 to 7 of Listing 2.1. In this snippet, several event handlers are
registered dynamically by invoking the addEventListener method: clicking the
corresponding button only has an effect after this method has been invoked.

36

2.4. CRITERIA FOR AN AUTOMATED TESTER FOR FULL-STACK
JAVASCRIPT WEB APPLICATIONS

Criterion 2.B: Explores Event Space

Events can generally be triggered in any arbitrary order. In some cases, this may
lead to race conditions. For example, if event handler A writes to a variable that
is read by event handler B, then the behaviour of the application likely depends
on whether event A was scheduled before or after event B. It is therefore necessary
for automated testers to fully explore the event space (cf. Section 2.3.2) of the
application, by considering all appropriate orderings in which events can take
place.

In the case of the Calculator application, the frontend only sends a compu-
tation request to the backend if a specific sequence of events has been followed:
i.e., creating the arithmetic expression by clicking number buttons and operator
buttons, concluded by a click on the button labelled with the equality sign.

Criterion 3: Capable of Finding Composition-specific Faults

Section 2.3.3 discussed how some failures may only arise in certain compositions
of the full-stack JavaScript web application. For example, consider a collaborative
drawing application where multiple clients connect to a server in order to share a
drawing canvas. The server may only expect a maximum of n clients to connect,
and might fail when an (n+1)st client connects. In order to find all program faults
in a full-stack JavaScript web application, an automated tester should therefore
be capable of executing the same application with a different number of instances
for client and server processes.

Criterion 4: Handles Process Interplay Precisely

The last main criterion concerns the interplay between all processes in a full-stack
JavaScript web application. Rather than only testing the individual processes of
the application in isolation from each other and mocking communication between
them, we require the tester to be capable of verifying the interplay between the
processes as well. This increases precision of the tester and prevents the tester
from over-approximating the behaviour of other processes when testing one pro-
cess in isolation. The usefulness of this increased precision was demonstrated in
Section 2.3.4, which highlighted how testing the backend of the Calculator ap-

37

CHAPTER 2. AUTOMATED TESTING OF FULL-STACK JAVASCRIPT WEB
APPLICATIONS

plication in isolation, while mocking messages from the frontend, would cause the
tester to mistakenly report the uncaught unknown-operator exception on line 23
in Listing 2.3, even though the client filters out inputs leading to such a result.

We decompose this criterion into two subcriteria:

Criterion 4.A: Whole-Program Monitoring

In order to test the interplay between processes and consider how the actions of
one process affect the behaviour of another, an automated tester should be capable
of monitoring and driving the execution of all processes of the application, rather
than just one single process.

Criterion 4.B: Observes Communication between Distributed Processes

To test the interplay between processes and reason about the impact of one process
on the behaviour of another, the tester should be able to observe the communica-
tion between processes. As the communication directly represents the interplay
between distributed processes, it is important for an automated tester to under-
stand when these processes communicate and which data is sent from one party
to another.

2.4.2 Summary of Testing Criteria

We identified four main criteria, three of which we decomposed into two subcriteria
each, for a total of seven criteria. We repeat the complete list of criteria below:

1. Capable of testing web clients:

A. Capable of testing sequential JavaScript code

B. Models inputs from the DOM

2. Capable of testing event-driven code

A. Allows for dynamic (de)registration of event handlers

38

2.4. CRITERIA FOR AN AUTOMATED TESTER FOR FULL-STACK
JAVASCRIPT WEB APPLICATIONS

B. Explores event space

3. Capable of finding composition-specific faults

4. Handles process interplay precisely

A. Whole-program monitoring

B. Observes communication between distributed processes

In the next chapter, we provide an overview of existing, state-of-the-art concolic
testers and evaluate them on these testing criteria in order to study to what
extent existing automated testers are capable of testing full-stack JavaScript web
applications.

39

3 State of the Art in Concolic Testing

Chapter 2 defined testing of full-stack JavaScript web applications as lying on the
intersection between testing of distributed systems, of event-driven applications,
and of web clients and servers. In this chapter, we contextualise StackFul, the
concolic tester for full-stack JavaScript web applications introduced in this disser-
tation, by giving an overview of past and ongoing research into concolic testing of
these types of applications, and we sketch the wider problem and solution space
in which StackFul is embedded.

We will discuss related work spanning the following domains:

Concolic testing of distributed systems (Section 3.1) Full-stack JavaScript
web applications are distributed systems, where the client and server
processes communicate with each other. It is therefore natural to consider
the state of the art in concolic testing of distributed systems.

Concolic testing of event-driven applications (Section 3.2) As previously dis-
cussed in Chapter 2, both the client and the server side of a full-stack
JavaScript web application make intensive use of event handlers for pro-
cessing user and system events. Understanding how to perform concolic
testing on event-driven applications efficiently is therefore essential for de-
veloping a concolic tester for full-stack JavaScript web applications.

Concolic testing of JavaScript applications (Section 3.3) Both the client and
the server process in the full-stack JavaScript web applications targeted by
StackFul primarily employ JavaScript, which poses a unique set of chal-
lenges to automated testing (cf. Section 2.4). StackFul must therefore
draw inspiration from JavaScript-specific concolic testers.

Concolic testing of web servers (Section 3.4) Although the challenges that a-
rise when performing concolic testing of web servers overlap with the chal-
lenges posed by testing distributed systems, testing the web server of an
application introduces additional challenges. We therefore also cover state-
of-the-art that is specific to concolic testing of server-side code.

41

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

Additionally, in Section 3.5 we discuss some generic optimisations to render con-
colic testing more effective. These optimisations are not specific to any type of
application but can rather be applied to any concolic tester.

Naturally, the categories described in Sections 3.1 to 3.4 may overlap to some
extent: a concolic tester for a web client may need to be capable of testing event-
driven JavaScript code, and could hence be described in Section 3.2 or Section 3.3.
When describing a state-of-the-art concolic tester in this chapter, we use our best
judgement to decide which section most adequately describes the contributions
provided by the tester. Nevertheless, in Section 3.6, we identify the concolic test-
ers which are most suited to testing full-stack JavaScript web applications. We
evaluate these testers on the list of criteria defined in Section 2.4 and summar-
ise to what extent these testers are capable of testing full-stack JavaScript web
applications, and in which aspects they are still lacking.

3.1 Concolic Testing of Distributed Systems

Regarding concolic testing of distributed systems, we consider actor-based applic-
ations and applications using the Message Passing Interface (MPI) [36]. Full-stack
JavaScript web applications, distributed actor applications, and MPI applications
have many commonalities. They consist of a set of processes where each process
evaluates their own, unique sequence of branch conditions, resulting in per-process
path constraints (cf. Section 2.2.3), and can send messages to and receive mes-
sages from other processes. Because the scheduling of message sends and receives
is non-deterministic and prone to result in subtle data races, testers for distrib-
uted applications should consider various message schedules. This is similar to
the non-deterministic event sequences which have to be controlled for in a concolic
tester of full-stack JavaScript web applications.

Another important similarity between full-stack JavaScript web applications and
these distributed systems arises from the payload of the messages sent between
processes. The values extracted from within the payload of a received message
are likely to affect the outcomes of the branch conditions evaluated by the re-
ceiving process. As these values encode symbolic expressions that originate from
computations spanning one or more processes, it is important for the precision
of the concolic tester that these symbolic expressions are included into the path
constraints of the receiving process.

42

3.1. CONCOLIC TESTING OF DISTRIBUTED SYSTEMS

3.1.1 Actor-based Programs

Some concolic testers for actor-based languages have been developed in recent
years. Vidal presents a concolic tester for a subset of the Erlang language, fea-
turing message sending and receiving, pattern matching, and higher-order func-
tions [130]. However, their description of the tester is limited. For example, there
is no description of how different message schedules are explored. There is also
no indication that the concrete values sent via messages to other actors corres-
pond to some symbolic expression. It is possible that each value received by an
actor is associated with an unconstrained symbolic input, and that all symbolic
information on a value is therefore lost when it is sent to another actor.

TAP [75] is a symbolic execution engine for applications that use the Java API
of the Akka framework1, which enables stream-based and actor-based program-
ming. Rather than performing traditional concolic testing on the actor applica-
tion, TAP performs targeted backwards symbolic execution. Backwards Symbolic
Execution. (BSE) was previously introduced by Ma et al. in testing of tradi-
tional, non-distributed applications [82]. In this setting, symbolic execution is
targeted to a specific line or statement in the application. Backwards symbolic
execution starts from the beginning of the function that contains the targeted line
or statement and searches for a path constraint within the function that reaches
the target. Upon finding the target, BSE iteratively jumps backwards in the call-
chain, using a statically computed call-graph, concatenating the function-specific
path constraints, until it reaches the start of the application with a satisfiable
path constraint for the entire application.

TAP employs an actor-specific variant of BSE. Rather than operating on the
call-graph, TAP first creates a message flow graph that captures the interactions
between actors. It then uses this graph to perform backwards symbolic execution
from a target line to an entry point of the actor system. TAP has to consider
spawning new actors, which may lead to an exponential number of program paths
being generated. To mitigate this exponential blow-up, TAP employs two optim-
isations related to finding the appropriate message type to be received in order to
reach the target. This helps minimise the number of possible actors involved in
an interaction.

Since backwards symbolic execution is a form of static symbolic execution and
cannot be applied to concolic testing, TAP cannot be classified as a concolic
tester.

1https://akka.io/

43

https://akka.io/

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

Symbolic execution for the Erlang language was also previously proposed
by Earle [42], but this was also limited to static symbolic execution.

3.1.2 Message-passing Applications

Sen and Agha [114] presented an algorithm for concolic testing of message-passing
applications, with the aim of covering reachable code and detecting deadlocks.
Their algorithm is implemented in the jCUTE tester [115] for Java applications.
Aside from exploring the value space for program inputs of the application, their
technique must also account for non-determinism caused by both the scheduling
of processes and the scheduling of message deliveries.

Sen and Agha use symbolic execution to generate data inputs that cover branch
conditions that depend on these inputs, and use concrete execution to observe
the order of execution events along the executed program path. This order cor-
responds to a happens-before relation, which defines causal connections between
execution events, such as the sending of a message in one actor resulting in the
message being received by another. Although many orderings of execution events
are possible, this happens-before relation enables Sen and Agha to perform a par-
tial order reduction to filter out equivalent orderings in an attempt to limit the
number of schedules to explore.

Despite the similarities between the exploration of non-deterministic message
schedules and event sequences, Sen and Agha’s technique cannot easily be lif-
ted to the exploration of event-driven code. In message passing applications, a
message handler is invoked only after a corresponding message sent has been ob-
served while executing the code. In event-driven applications, there is no explicit
event loop which drives the instantiation of new events. The tester itself must
rather construct and trigger event sequences based on which event handlers are
available.

COMPI [73] is another concolic tester for SPMD (single program, multiple data)
message-passing applications, implemented on top of the CREST tester [20] for C
applications. It tackles two problems specific to MPI applications: solving for the
rank of an application, and solving for the number of processes in the applications.
An MPI rank is a unique identifier for a process of the application. This rank is
a first-class value that may affect the process’s execution. The total number of

44

3.1. CONCOLIC TESTING OF DISTRIBUTED SYSTEMS

processes may also be queried by a process, which may influence its execution.
By rendering the rank and number of processes as symbolic variables, they can
be solved for, allowing for an increased code coverage.

COMPI performs symbolic execution on and generates inputs for only a single
process, called the focus, of the system, but records branch coverage across all
processes. The symbolic representations of the number of processes and the pro-
cess rank may appear in the path constraint. COMPI can hence choose a different
number of processes to be launched and a different process to serve as a focus be-
fore the start of each test run.

COMPI applies three optimisations for rendering concolic testing of an MPI ap-
plication more scalable: it limits the size of generated inputs, it filters out re-
dundant constraints generated inside loops, and it reduces performance overhead
via two-way instrumentation. This last optimisation involves running the heavy-
weight instrumentation necessary for performing symbolic execution only on the
focus, while having the non-focus processes run only the lightweight instrumenta-
tion that is necessary to record branch coverage.

The decision to perform symbolic execution on a single process only per test run
renders COMPI capable of quickly covering a large part of an MPI application.
However, this comes at the cost of precision, as COMPI cannot build a path
constraint that spans multiple processes. Likewise, when a value is sent from one
process to another, all symbolic information about the value is lost. This makes
COMPI unsuited for precise testing of full-stack JavaScript web applications.

3.1.3 KleeNet

KleeNet [109, 110] is a dynamic symbolic execution engine for testing wireless
sensor network applications, built on the KLEE symbolic execution engine [23].
KleeNet exhaustively explores an application by rendering environment inputs
such as sensor data or packets’ payloads as symbolic inputs. Furthermore, it
injects non-deterministic failures, such as node reboots or dropped or duplicated
messages, into the system to find errors in the program that occur due to node
or network failures. Developers can furthermore check the correctness of the
distributed system by formulating distributed assertions over the state of the
entire system.

45

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

KleeNet employs node models and network models to express non-deterministic
system failures [109]. The node model is used to represent failures of individual
nodes such as node outages and node reboots. The network model describes the
interaction between nodes.

Executing JavaScript Code

KleeNet is built on the KLEE symbolic execution engine and hence operates on
LLVM bytecode. The ability of KleeNet to test JavaScript code hence depends
on the possibility of compiling JavaScript to LLVM bytecode. Note, however,
that KleeNet also requires models of the system’s nodes and network to exhaust-
ively explore the application’s search space. This information may get lost when
compiling high-level JavaScript source code to low-level LLVM bytecode.

Event Space Exploration

Although KleeNet has a notion of the application’s event space, this space is
defined only by the non-deterministic node and network failures that may occur
in the program. KleeNet does not focus on event-driven applications where de-
velopers register an event handler or message handler that is invoked when the
corresponding event or message is triggered (cf. Listing 2.1). This is an important
distinction, as full-stack JavaScript web applications allow for dynamically regis-
tering or deregistering handlers both conditionally and within other handlers. In
order to fully explore the search space of even a single handler in these applica-
tions, an automated tester must hence first ensure that the necessary conditions
for registering and invoking the handler have been satisfied.

This requirement does not exist for non-deterministic failure events, such as those
considered by KleeNet, as these failures may occur at any time. Nevertheless,
within the scope of non-deterministic failure events, KleeNet is capable of ex-
haustively exploring the event space of an application. In order to model program
paths that depend on these failures, KleeNet inserts nodes corresponding to the
failures into the application’s symbolic execution tree.

46

3.1. CONCOLIC TESTING OF DISTRIBUTED SYSTEMS

Client-Server Interaction

KleeNet is designed to test distributed systems in the form of wireless sensor net-
work applications, and is capable of observing the interaction between processes.
Users may configure the number and type of processes to be tested in the sys-
tem, as the tool is not restricted to just one configuration of a client and a server
process.

KleeNet builds a separate symbolic execution tree for each of these processes.
However, in a distributed system where processes communicate with each other,
a process A may affect the execution of a process B by sending B a message. The
causal link between both processes must be reflected in their symbolic execution
trees. For example, if process A conditionally sends a message to process B, the
execution path of A should fork to reflect this decision. Likewise, one or more
nodes in the symbolic execution tree of B may be duplicated to model the scenarios
where the message was or was not received.

Because this quickly explodes the number of nodes in all symbolic execution trees,
KleeNet provides three ad-hoc approaches for reducing the number of duplicated
nodes across all symbolic execution trees [110]:

1. Brute-force Copy-on-Branch collects all nodes across the processes’ sym-
bolic execution trees in distributed scenarios, where a scenario is a set con-
sisting of one node per process. Whenever a node in a distributed scenario
is forked, for even a local branch, the remaining nodes in the scenario are
forked as well. The number of nodes duplicated in even simple applications
is hence extremely high.

2. Delayed Copy-on-Write broadens the concept of distributed scenarios to
distributed state, which may include more than one node of a process, as long
as the communication history of these nodes is consistent. Delayed Copy-
on-Write allows for eliminating some redundant forking of nodes, but may
still inadvertently fork the nodes of a bystander process C that is included
in the same distributed state as the nodes of two communicating processes
A and B.

3. Super Distributed States eliminates the redundant forking of these
bystander nodes as well by allowing states to be in several distributed
states and forking only target states, i.e., the states that receive a package
from the sender.

47

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

3.2 Concolic Testing of Event-Driven Applications

We consider concolic testers for event-driven applications because of the central
importance of event handlers in full-stack JavaScript web applications. A large
part of the code of both the client and the server is only accessible by triggering
specific events. Additionally, a tester must often not only generate an appropriate
individual event, but it must also generate a specific sequence of events: i.e., it
must, efficiently, explore the event space of the application.

Since event-driven code is ubiquitous in a large variety of different applications, we
consider concolic testers for both event-driven web clients as well as event-driven
mobile applications.

3.2.1 Cosette & JaVerT.Click

Santos et al. developed Cosette [108], a symbolic execution engine for plain
JavaScript applications. JaVerT.Click [106] builds upon this work by adding
support for event handlers and modelling the DOM, enabling symbolic execution
of web clients.

Executing JavaScript Code

Cosette first compiles JavaScript to JSIL bytecode via JS-2-JSIL [107]. Santos
et al. offer semantics for the concrete and symbolic execution of this bytecode,
as well as a reference implementation for executing these semantics. Although
Cosette by itself cannot perform concolic testing, the combination of the concrete
and symbolic semantics opens up the possibility of building a concolic tester by ex-
tending the reference implementation. Santos et al. prove the bounded soundness
of their symbolic semantics. To validate their implementation, they identified the
relevant test cases of the official Test262 suite2, and pass 100% of these selected
tests.

As it is, Cosette can be used to verify developer-specified assertions in JavaScript
programs by symbolically executing the application. For each assertion that is

2https://github.com/tc39/test262

48

https://github.com/tc39/test262

3.2. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

executed by the engine, Cosette attempts to generate a concrete model of inputs
that would cause the assertion to fail. Loops and recursive function applications
are unfolded up to a certain bound to ensure that symbolic execution terminates.

Cosette supports symbolic strings, numbers, booleans, and heap locations.
JavaScript libraries are compiled to JSIL as well, but are not separately mod-
elled. Calls to library functions are therefore supported in a precise manner by
Cosette, but they may result in a loss of performance.

Event Space Exploration

Cosette does not support triggering events and executing a sequence of event
handlers. It is therefore unable to test web clients or any other event-driven
applications. However, its extension, JaVerT.Click [106], provides concrete and
symbolic semantics for a generic event model, called the Core Event Semantics.
(CES).

The CES is parametrised with semantics for an underlying language model and
by itself does not completely describe how an event-driven application can be ex-
ecuted. The semantics instead describes registration and deregistration of event
handlers as well as synchronous and asynchronous dispatching of these handlers,
while relying on the underlying language semantics to recognise when the appro-
priate event handler operation must be invoked. The CES assumes a synchronous
event model with atomic event handlers. This is nevertheless sufficiently express-
ive to model Dom UI Events [131], JavaScript Promises [43] and JavaScript’s
async/await API [43].

Sampaio et al. [106] created a reference implementation in JaVerT.Click for
these three instantiations, which remains faithful to the standard in which they
are defined. This implementation also includes a complete model of the DOM
Core Level 1 [28] to enable reasoning about web clients that interact with their
DOM. Combining this infrastructure with the existing Cosette engine results
in Javert.Click, which is capable of static symbolic execution of JavaScript
applications that employ any of the three aforementioned event-driven APIs.

Like Cosette, JaVerT.Click by itself cannot be used to perform concolic testing.
However, since Sampaio et al. define both concrete and symbolic semantics for
the three instantiations of CES, extending JaVerT.Click to also perform concolic
testing should be feasible. On the other hand, neither the CES itself nor its refer-

49

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

ence implementation in the form of JaVerT.Click describes how event-driven code
should be executed. In order to efficiently test event-driven code while minimising
the number of test runs required by the tester, it is necessary to generate appro-
priate event sequences. Without a means to generate these sequences efficiently,
testing highly dynamic web applications, such as most full-stack JavaScript web
applications, remains infeasible.

Client-server Interaction

Both Cosette and JaVerT.Click test only single, individual JavaScript processes,
rather than a distributed application consisting of multiple communicating
JavaScript processes. Several changes would therefore have to be made to enable
either symbolic execution engine to perform testing of a full-stack JavaScript web
application.

For one, although JaVerT.Click is capable of symbolically executing plain
JavaScript applications, such as Node.js server processes, it does not yet support
modelling communication received or sent by the server. JaVerT.Click would
therefore have to instantiate the CES to support e.g., Socket.IO-style message
handlers. Since the CES has been proven to be sufficiently powerful to model a
range of different event models, it should be feasible to extend JaVerT.Click with
the ability to do so.

The inability of both Cosette and JaVerT.Click to test two processes simulta-
neously constitutes a larger obstacle, however. None of the proposed semantics
includes a mechanism for performing symbolic execution across more than one pro-
cess. It is unclear how either engine could be extended to support testing distrib-
uted applications. We therefore conclude that neither Cosette nor JaVerT.Click
is suitable for concolic testing of full-stack JavaScript web applications.

3.2.2 SymJS

SymJS [72] performs automated testing of dynamic web clients and explores both
the client’s value space and event space.

50

3.2. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

Executing JavaScript Code

SymJS performs concrete and symbolic execution of both standalone JavaScript
applications as well as client-side web scripts. JavaScript programs are first com-
piled into Rhino bytecode3 and then executed via a virtual machine. Li et al. [72]
present semantics for the symbolic execution of this bytecode. The semantics are
implemented in the virtual machine, along with a symbolic DOM model, so that
it may perform concrete and symbolic execution of the application. The engine
has also been extended with the ability to perform dynamic taint analysis.

SymJS employs the PASS solver [71] for solving constraints involving integers,
floating point numbers, strings, and regular expressions. Although string con-
straints have traditionally been challenging to solve, the use of PASS makes SymJS
capable of supporting the majority of JavaScript’s string operations.

SymJS uses HTMLUnit’s4 DOM and browser API model for modelling concrete
interactions with these respective APIs and extends it with support for symbolic
reasoning. This makes it possible to include some UI elements, e.g., form fields,
as input values.

Furthermore, SymJS provides a symbolic model of some commonly used JavaS-
cript libraries for computations and data structures, such as Number, Array, and
Math.

Event Space Exploration

SymJS explores the event space in addition to an application’s value space. To this
end, SymJS offers several strategies for exploring the event space. The simplest
of these strategies amounts to generating and executing random sequences of
events. The other strategies generate new event sequences from existing ones
by concatenating individual events to the sequence. The strategies prioritise the
exploration of event sequences that maximise the number of conflicting write-
read dependencies on program variables that are shared between the events in
the sequence. Li et al. present three different ways for measuring the dependency
information:

3http://mozilla.github.io/rhino/
4https://htmlunit.sourceforge.io/

51

http://mozilla.github.io/rhino/
https://htmlunit.sourceforge.io/

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

1. Named WR simply counts the number of variables that are written to by
at least one event handler in the entire event sequence, and read from by
the last event handler.

2. Valued WR is similar to Named WR, but only considers a write-read
dependency on a variable v if the value written to v is different from any
other value ever read from v.

3. Taint Named WR filters out redundant write-read conflicts by taint-
ing variables to determine whether the variables are relevant to unvisited
branches in the last event handler.

Client-Server Interaction

SymJS is capable of performing concolic testing on standalone JavaScript ap-
plications, in addition to client-side web scripts. However, SymJS only targets
individual applications and does not tackle a distributed configuration of multiple
JavaScript processes.

Although SymJS would therefore be capable of testing both the Node.js server
side as well as the JavaScript client side, it cannot test both processes at the same
time, nor monitor the interaction between the two. We therefore conclude that
although the search strategies proposed by SymJS are useful to efficiently test a
client’s event space, SymJS itself lacks the ability to perform inter-process testing
of a full-stack JavaScript web application.

3.2.3 Mobile Applications

Like web clients, many mobile applications are heavily driven by user interactions:
e.g., pressing a button or performing an action may result in the mobile application
loading a new context where a new code snippet will be executed. These mobile
applications are equally challenging to test as event-driven applications.

However, mobile applications do not form a distributed system on their own. Con-
colic testers for mobile applications therefore do not have to address all challenges
posed by a distributed system. The testers described in this section are therefore
not suited for testing full-stack JavaScript web applications.

52

3.2. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

Contest [7] is a concolic tester for Android applications that considers both
how to generate single events as well as how to construct entire event sequences.
The former goal is complicated by the fact that the GUI of an Android app
organises its graphical elements in the form of a DOM-like tree structure called
the view hierarchy, which may consist of both standard and app-specific widgets.
Existing approaches for interacting with these widgets are either model-based or
use capture-replay. Model-based approaches require developers to provide a model
describing each widget and are hence difficult to use. Capture-replay approaches
may not distinguish between a user interaction targeting a widget in the view
hierarchy or any of its children, even though the app itself distinguishes between
both interactions. Contest therefore opts to instrument the Android SDK so
that it can observe how user events, such as a tap on a target location, are handled
by the system. As the SDK compares the tap’s target coordinate with the location
of the widgets in the view hierarchy to determine the innermost widget to dispatch
the tap event on, Contest constructs path constraints that characterise how an
individual event can be generated for each widget in the view hierarchy.

To achieve its second goal of constructing event sequences that efficiently cover
the entire application, Contest prunes redundant event sequences by using sub-
sumption checking. Contest states that an event sequence ending with event e
is subsumed by the same sequence without this final e if the handler for e does
not write to any variables used by other event handlers in the sequence. An event
sequence that is subsumed by another sequence that has already been explored
does not need to be tested again.

Collider [60] performs targeted concolic testing of Android applications. Given
a target statement in the application, Collider attempts to build an event se-
quence that will reach this statement. To this end, Collider employs a two-phase
technique. In the first phase, Collider uses concolic testing to build symbolic sum-
maries of all individual events in the application. In the second phase, Collider
uses a form of backwards symbolic execution to construct an event sequence that
will result in execution reaching this target. Specifically, Collider combines the
symbolic event summaries from the first phase with a UI model that defines event
transitions and specifies the read-write dependencies between any two event hand-
lers of the application. Collider can then construct an appropriate event sequence
by starting from the target and chaining together individual paths in each sum-
mary until it reaches the initial state of the application. Once a feasible sequence
has been generated, Collider executes the sequence concretely to verify that the
sequence indeed reaches the target.

53

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

3.3 Concolic Testing of JavaScript Applications

JavaScript employs many language features that make it difficult to test (cf. Sec-
tion 2.3.1), such as dynamic typing, object prototyping, and dynamic code gen-
eration [9]. Automated testers for JavaScript furthermore have to contend with
JavaScript’s permissive handling of what would be considered erroneous behaviour
in other languages. For example, when JavaScript finds an unexpected type, it
attempts to implicitly convert the value to another type, rather than throwing
a type error. We therefore consider concolic testers for this language in detail.
There have been several surveys on automated testers and dynamic analyses for
JavaScript [9, 126].

3.3.1 Jalangi

Jalangi [116] is an instrumentation framework for implementing dynamic analyses
in JavaScript. Jalangi operates in two phases: in the record phase, an execution
of user-specified parts of the application (e.g., excluding third-party libraries) is
recorded. In the subsequent replay phase, the dynamic analysis is performed by
running a shadow execution on the recorded program trace. As a demonstration
of the expressiveness of Jalangi, Sen et al. implemented several dynamic analyses,
including concolic testing.

The shadow execution operates on shadow values: wrappers for regular JavaScript
values which carry extra, analysis-dependent information to enable the analysis to
collect and compute the required information. In the case of the concolic testing
implemented in Jalangi, this extra information comes in the form of symbolic
expressions describing the computations which resulted in these concrete values.

Since Jalangi’s concolic tester was developed only to demonstrate the usability
of the Jalangi instrumentation platform, the tester is less feature-complete than
others described in this chapter. For example, the tester cannot explore the event
space of the web application. It is limited to executing only the program trace
that was observed in the recording phase. Any event handler that was not invoked
during this phase will hence be left unexplored.

Jalangi furthermore only observes the execution of a single, individual JavaScript
process. It cannot perform concolic testing over an entire distributed system, as
is required to perform concolic testing of a full-stack JavaScript web application.

54

3.3. CONCOLIC TESTING OF JAVASCRIPT APPLICATIONS

3.3.2 Kudzu

Saxena et al. developed Kudzu [111], to find client-side code injection vulnerabilit-
ies in web applications. It uses concolic testing to explore the client while looking
for program paths on which improperly sanitised inputs flow into critical sinks
such as document.write. To this end, Kudzu first records a concrete execution
of the client and afterwards re-executes this recording symbolically, in order to
explore more program paths.

While exploring a program path, Kudzu identifies several sources of inputs: user
data (originating from DOM elements such as input fields), HTTP channels
(through which the client communicates with a web server), and locations where
different windows or frames of the page communicate with each other. Although
the client may attempt to sanitise this data before having it flow into a sink,
Kudzu still has to verify whether this sanitisation was complete. When Kudzu
observes an input string flowing into a sink, it therefore matches the (potentially
transformed) input string against a sink-dependent regular expression which de-
scribes possible formats a successful attack string may take. If Kudzu’s solver
determines that a concrete string could be generated which, after passing through
the client’s input transformation can still be matched against the regular expres-
sion, Kudzu replays the execution, has the solver-crafted input string flow into
the sink and reports the vulnerability if the attack is successful.

Kudzu was built on FLAX [112], which also performs taint tracking of inputs.
However, FLAX was restricted to taint analysis in manually-written test har-
nesses. The main contribution of Kudzu is therefore the automatic exploration of
the client, making it possible to find code injection vulnerabilities without requir-
ing the developer to intervene.

Executing JavaScript Code

Kudzu is implemented as an extension to the WebKit browser’s JavaScript execu-
tion engine. At first, it only records a concrete execution of the web application.
This recording is later re-executed symbolically, in order to explore more pro-
gram paths. Kudzu supports symbolic booleans, integers, strings, and regular
expressions. Kudzu employs a custom constraint language to describe the most
commonly used JavaScript operations on these values. As at the time of Kudzu’s

55

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

development no off-the-shelf solver was sufficiently powerful to tackle all of these
constraints, especially those describing string operations, Saxena et al. created
their own solver.

Like Cosette and JaVerT.Click, Kudzu does not model third-party JavaScript
libraries. Performance slowdowns may therefore be expected when using Kudzu
to test JavaScript applications that employ such libraries.

Event Space Exploration

Since many clients include event-driven code, Kudzu recognises the need to tra-
verse both the client’s event space in addition to its value space. Kudzu generates
random orderings of currently enabled events. Although this makes it trivial to
take into account dynamic registration of event handlers, the exploration of the
event space becomes suboptimal. For instance, Kudzu does not actively attempt
to invoke event handlers that have not yet been activated. Some event handlers
may hence remain unexplored for a long time.

Client-Server Interaction

Kudzu only performs concolic testing on the client side of the web application.
It is hence not capable of performing testing of a distributed system, such as a
full-stack JavaScript web application.

Kudzu considers HTTP channels through which the client sends data to or re-
ceives data from the server, as respectively sources and sinks of the JavaScript
application. Kudzu does not monitor how data is sent across the client-server
boundary, so it does not have a complete picture of which data will be sent in
the application in practice. As Saxena et al. acknowledge, false positive alerts
may be raised for client-side code injection vulnerabilities, since the server may
perform its own sanitisation of its data before sending it to the client. We there-
fore conclude that Kudzu is not sufficiently precise to perform concolic testing of
full-stack JavaScript web applications.

56

3.3. CONCOLIC TESTING OF JAVASCRIPT APPLICATIONS

3.3.3 ArtForm

ArtForm [123] is a tool for performing dynamic analysis on websites where user
interaction is heavily reliant on the user entering data via text fields on the website.

ArtForm includes three exploration modes for analysing such websites. Each of
these modes represents a different way in which data is entered into a text field
of the website. In basic mode, the user manually fills in the field, while ArtForm
generates a trace and coverage report. ArtForm employs symbolic execution to
detail how the user inputs affected the control flow and data flow of the website.

In concolic mode, ArtForm explores the website fully automatically by recording
the path constraint of the execution, negating and solving the path constraint to
obtain appropriate string values for the text fields, and re-executing the website.

The advise mode forms a middle-ground between the fully manual basic mode
and the fully automatic concolic mode. Users manually enter data into text fields
but can ask ArtForm for an appropriate value which would force execution along
a previously unexplored program path.

ArtForm is built on Artemis [11], and hence re-uses many of its features for
generating event sequences. This enables ArtForm to fully explore websites where
event handlers are (dynamically) registered for user interactions performed on text
fields.

However, ArtForm suffers from the same deficiencies as e.g., SymJS and Jalangi
in that ArtForm only considers testing the client side of the web application.
Since ArtForm only provides an overview of how execution flows through the
client, it cannot provide a global overview of the entire full-stack JavaScript web
application.

3.3.4 ExpoSE

ExpoSE [80, 81] is a concolic tester for Node.js with a complete model of
ECMAScript 2015’s regular expression language. This language is strictly more
powerful than a regular expression language that can be encoded by finite-state
automata, as ECMA regular expressions also allow for defining capture groups
and backreferences.

57

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

ExpoSE mostly focuses on supporting JavaScript regular expressions to the fullest
extent possible, and does not seem to offer support for any other aspect of the
language not already covered by one of the JavaScript concolic testers mentioned
in this section.

3.4 Concolic Testing of Web Servers

Since full-stack JavaScript web application testing covers the client and the server,
we also consider concolic testers for web servers. Traditionally, testers for web
servers do not focus specifically on testing servers in a full-stack setting. Nev-
ertheless, they face challenges that are also relevant in the context of full-stack
JavaScript web applications, such as how to explore message handlers that are
invoked upon receiving a message from the client.

This section discusses CRAXWeb [120] and Apollo [10], which are both specifically
designed to test web servers. However, there are many other testers that, although
not specifically designed to test web servers, have nevertheless been applied to
this setting. Examples include SymbexNet [122], which is used to test network
protocol implementations, and EXE [22].

3.4.1 CRAXWeb

CRAXWeb [120] finds security violations, in the form of cross-side scripting at-
tacks and SQL injections, in the server side of web applications.

Although CRAXWeb does not explore the client side of these applications, it
uses the Acutenix5 web crawler to find client-side code points where the client
communicates with the server by sending an HTTP request.

After finding these request sites, CRAXWeb tests the server by automatically gen-
erating the corresponding requests, with symbolic data embedded inside them. To
mitigate the path explosion problem, where the number of paths to be explored
by the tester is exponential in function of the number of branching points en-
countered, CRAXWeb by default does not apply full-scale concolic testing on the
server, but employs single-path concolic mode.

5https://www.acunetix.com/

58

https://www.acunetix.com/

3.4. CONCOLIC TESTING OF WEB SERVERS

This mode follows execution along one particular path only, which is determ-
ined by the message’s concrete payload: a string filled with garbage. Symbolic
constraints encountered during the execution of the path are collected, but are
generally not used to explore alternative paths in later test runs. Rather, when an
endpoint is reached where the server is observed to either send an HTTP response
to the client or perform a database query, the symbolic constraints are passed to
a solver which attempts to formulate an attack string. Such a string represents
respectively a cross-site scripting attack performed on the client, or a SQL injec-
tion attack on the database. If an attack string can be formulated by the solver, it
is possible for an attacker to send a payload to the server containing appropriate
values that bypasses all of the server’s checks and results in an attack.

Executing JavaScript Code

CRAXWeb is built on the S2E [31] symbolic execution framework, which oper-
ates on native machine code and is capable of modelling even parts of the host’s
operating system environment. The ability of CRAXWeb to test JavaScript code
therefore hinges on whether the code may be compiled to a format that is execut-
able by S2E.

Event Space Exploration

As mentioned before, the Acutenix web crawler is used to crawl the client-side
code to look for HTTP requests that are sent to the server. CRAXWeb itself does
not explore the client at all. There is hence also no need to generate appropriate
event sequences to test the client.

Client-Server Interaction

Interaction is modelled solely through the HTTP requests found by the web
crawler. Any HTTP request later mocked by CRAXWeb therefore represents
a request that may actually be sent by the client. However, CRAXWeb does not
monitor the interaction between the client and the server. Client-side constraints
that would be observed along the path in which a request is found, can there-
fore not be joined with the server-side constraints that would be observed upon
receiving a request. False positive attacks may therefore be reported, since the

59

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

client could filter out inappropriate strings before passing them to the server. We
therefore conclude that CRAXWeb is not capable of precisely testing a full-stack
JavaScript web application.

3.4.2 Apollo

Apollo [10] uses concolic testing to test PHP server-side code with the aim of
detecting malformed HTML pages being generated, as well as other, PHP-specific
run-time errors.

Apollo is implemented as a PHP engine extension and uses shadow execution to
associate concrete values with symbolic input variables. Symbolic inputs to the
server-side code may originate from the following sources:

• Values retrieved from the web application’s database.

• Parameters passed from the client to the server via HTTP GET and POST
requests.

Unlike other symbolic execution engines, Apollo does not collect sophisticated
constraints on the values appearing in branch conditions.

Rather, each concrete value is either associated with a symbolic variable as is
or it is not. For example, if a branch condition relies on a substring of a sym-
bolic variable, rather than the entire string, then Apollo cannot track from which
symbolic input the substring was computed. This makes Apollo incomplete, as
it cannot force execution along one of both branches of such a branch condition.
This problem is partly mitigated by having Apollo mine the application’s code
base for literal values. When an unconstrained value is instantiated, it receives
either a random value or a literal value appearing somewhere in the code base.

After completing testing and producing a bug report, Apollo attempts to minimise
the path constraints that led to each reported fault. This may help developers
understand how the fault can be triggered. This minimisation is achieved by
first taking the intersection of all path constraints that expose a particular fault,
and then iteratively removing individual constraints from this intersection and
re-running the application until the fault is no longer triggered.

60

3.4. CONCOLIC TESTING OF WEB SERVERS

Executing JavaScript Code

Apollo only targets server-side PHP code. It cannot execute or monitor the exe-
cution of any JavaScript code, including the JavaScript code contained inside the
HTML snippets generated by the server. Since these JavaScript snippets might
pass values to the server, certain interactions between the client and the server
which affect the execution of the server-side code go unnoticed.

Event Space Exploration

Support for modelling user events in the web application is very rudimentary. As
the client side of the web application is not modelled at all, Apollo cannot trigger
client-side user events or system events. Message handlers on the server side of
the application are also not automatically invoked.

Artzi et al. discuss the possibility of manipulating Apollo into considering a limited
form of user interaction. Users of Apollo can manually change locations in the
PHP code where web pages containing buttons linking to other web pages are
generated so that, instead of generating the HTML page, a switch statement on
a symbolic input is executed. Every branch in the switch statement should result
in the loading of one web page which was linked to by a button in the original
HTML page.

Although this effort-intensive method allows Apollo to explore a larger fraction
of the web application than it could otherwise, it is still a poor substitute for
an actual exploration of the application’s event space. Furthermore, it remains
impossible to trigger user events that do not result in a new web page being loaded
but that have some other effect, such as a change in the state of the client.

Client-Server Interaction

Apollo only targets individual server-side processes and as such is incapable of
testing an entire distributed system. However, its ability to represent HTTP
communication from the client as symbolic input makes it at least able to over-
approximate messages and values sent by the client, which in turn allows Apollo
to explore behaviours of the server that rely on certain messages or values being
sent by the client. Apollo still completely neglects the client side of the web

61

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

application, however, and is therefore incapable of finding bugs on the client side
of the application, leaving Apollo unsuited to perform concolic testing of full-stack
JavaScript web applications.

3.5 Optimisations for Concolic Testing

Several techniques have been proposed to render concolic testing more effective,
that is, to have concolic testing achieve a greater code or program fault coverage
in equal or fewer test runs. In this section, we list generic optimisation techniques
that could be applied to any concolic tester, regardless of the type of application
that is targeted by the tester. These techniques are therefore orthogonal to any
language-specific or application-specific algorithms that may be employed by a
concolic tester described in the previous sections. We categorise these generic
optimisation techniques in function of how they attempt to improve the concolic
tester:

Heuristical techniques (Section 3.5.1) These techniques employ heuristics to se-
lect new, unexplored program paths. These heuristics assign a greater pri-
ority to certain program paths which exhibit particular characteristics. For
example, new heuristics may prioritise program paths that lead to newly
added or updated parts of the code.

Path explosion mitigation techniques (Section 3.5.2) These techniques reduce
the search space of the program by mitigating the path explosion problem.
This can be achieved by e.g., merging similar program paths together or
reusing symbolic summaries for parts of the application, rather than re-
executing these parts.

Hybrid techniques (Section 3.5.3) Hybrid techniques combine concolic testing
with other forms of program verification, e.g., static analyses or other types
of fuzzing. These techniques attempt to achieve a mix where the benefits of
one type of verification (e.g., fast generation of random inputs) are combined
with the benefits of concolic testing (e.g., complete exploration of program
paths).

Some approaches may use elements from more than one of these categories, e.g.,
an optimisation that describes a novel heuristic may depend on a static analysis
to collect information for the heuristic, and could hence be placed in more than
one category. We use our best judgement to decide how to categorise a technique.

62

3.5. OPTIMISATIONS FOR CONCOLIC TESTING

3.5.1 Heuristical Techniques

Heuristical techniques generally direct the concolic tester to prioritise testing of
certain inputs. The heuristic may deem that these inputs will lead the tester to
more quickly reach parts of the program that are considered important, such as
as-yet uncovered code, newly introduced parts of the code base or code modules
that are known to be error-prone. Alternatively, the developer may decide to
target a particular statement and the heuristic may have to consider how to reach
this target in the least number of test test runs.

Several such search strategy heuristics have been developed in recent years [78].
We distinguish between target-driven heuristics, which guide the tester towards
execution of a certain location in the code, and coverage-driven heuristics which
direct the tester to maximise code coverage without specifying a particular target.

Target-driven Heuristics

Burnim and Sen [20] describe a heuristic which uses the control flow graph of the
program to direct testing towards unspecified targets in the code that have not
yet been uncovered. This heuristic uses a distance metric, based on the number
of branch conditions that must be traversed, to compute the minimal distance
between a part of the application that has not yet been covered and the nearest
covered branch condition. This metric is then used to inform the concolic tester
about which branch conditions must be negated in order to explore the closest
uncovered part of the application. Similar techniques have been proposed that
use an inter-procedural control flow graph to direct a concolic tester along the
shortest path, according to some distance metric, to some target statement [82,
103]. Finex [137], implemented in PEX [128], likewise computes a fitness value
that describes how close an already explored program path is to a particular
statement, in order to guide the tester towards reaching that statement.

Coverage-driven Heuristics

SAGE [51] uses a heuristic that keeps track of the incremental code coverage
obtained by a set of inputs and prioritises expanding on those inputs. Car-
Fast [98] attempts to maximise coverage by exploring the uncovered branch on
which the highest number of statements are control-dependent. Seo and Kim de-

63

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

scribe context-guided search, in which the tester considers the context of a branch:
the branch conditions immediately preceding which had to be traversed in order
to reach the first branch [118]. Their technique then prioritises exploring paths
that lead to different contexts.

ParaDySE [26] considers 40 boolean features of a branch (e.g., whether the branch
is located inside a loop, whether it has been explored in the last 10 test runs, and
whether it appears in the main function of the program). These features are given
a weight so that branches can be scored and the tester can select the branch with
the highest score. Weights are specifically tailored to the target program and
are automatically computed by an optimisation strategy which maximises branch
coverage. This work was later expanded upon so that the tester can learn new
heuristics and switch between existing ones while the program is being tested [25].

3.5.2 Path Explosion Mitigation Techniques

In general, the number of paths that should be explored by the tester is exponen-
tial in function of the number of branching points encountered during the pro-
gram’s execution. This problem is referred to as the path explosion problem. Path
explosion mitigation techniques reduce the number of paths that are generated
or stored in the symbolic execution tree. This can be achieved by reusing results
produced during symbolic execution of parts of the application (i.e., compositional
symbolic execution), or by explicitly merging paths in the symbolic execution tree
together (i.e., state merging) [140].

Compositional Symbolic Execution

Godefroid presented compositional symbolic execution for producing symbolic
summaries of individual components of a program [49, 6]. In the first applic-
ation of this approach, these components corresponded to function definitions.
With compositional symbolic execution of function, the tester prioritises fully
exploring each function that is called in the application, rather than exploring
any particular part of the code base. While exploring a function, the tester con-
structs a symbolic summary that describes the behaviour of the function. This
function summary consists of a disjunction of the individual paths through the
function, mapping specific pre-conditions on the function’s inputs to the corres-
ponding post-conditions on the function’s outputs. When the function is later
called again in the application, the tester can reuse this summary rather than

64

3.5. OPTIMISATIONS FOR CONCOLIC TESTING

performing symbolic execution on the function anew, which would result in more
branching of program paths. Similar symbolic summaries can also be created for
loops, with pre-conditions and post-conditions on the variables read from and
written to inside the loop [50, 125, 138, 139].

Lin et al. propose to go even further than summarising functions or loops, by
constructing summaries at the level of basic blocks [77]. Symbolic summaries at
such a fine-grained level of control would allow for more reuse of these summaries,
and prevent a large amount of calls to the SMT solver, which would be especially
beneficial if some of the paths in a summary are actually infeasible.

Compositional symbolic execution can be combined with forms of target-driven
testing (possibly using heuristics, cf. Section 3.5.1) to efficiently find feasible
program paths leading to a particular target statement [95, 6, 102]. Some target-
driven compositional testers use backwards symbolic execution. These testers
usually operate in two phases: in the first phase, the tester constructs symbolic
summaries, while in the second phase, the tester performs symbolic execution
backwards on the program, starting from the target statement and continuing
until the tester reaches an entry point into the program (cf. the TAP tester,
Section 3.1.1) [96, 75].

Although all of the previously mentioned work attempt to infer these summaries
automatically, symbolic specifications could also be defined manually [8].

State Merging

State merging is another method to limit path explosion [140]. State merging will
be the main focus of Chapter 6, where we will discuss in detail how this technique
can be applied to concolic testing of both sequential and event-driven code. In
short, state merging addresses the path explosion problem by merging different
program states which are sufficiently “similar”, according to some similarity met-
ric, together. A program state can be broadly thought of as being a node in the
symbolic execution tree (cf. Section 2.2.3). In effect, this transforms the symbolic
execution tree into a directed acyclic graph.

Program states are created alongside paths and represent a snapshot of the current
point in the symbolic execution. Among other components (cf. Section 6.1), states
include path constraints. An exponential increase in the number of paths therefore

65

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

corresponds to a likewise exponential increase in the number of states and vice
versa. Reducing the number of states by merging similar states together hence
also mitigates the path explosion problem.

A downside to this approach is that the merged paths become harder to reason
about. The symbolic execution engine must remain capable of precisely modelling
how conditions on program inputs lead expressions and variables to evaluate to
particular symbolic values. Expressions whose value depends on the path that
was followed to reach the expression are usually represented as if-then-else (ITE)
expressions. The ITE expression ITE(cond,X,Y) represents an expression that
evaluates to the symbolic value X if cond is true, and to Y otherwise. However,
these ITE expressions increase the burden on the queried SMT solver, and, when
applied naively, may even lead to an overall performance loss [66].

Another problem is the fact that state merging may interfere with other optim-
isation techniques applied by the tester. State merging works best when similar
states are merged as soon as possible, as this prevents the highest number of du-
plicate descendant states from being created. Ideally, if a state similar to one the
tester has just explored is available, the tester would select that similar state so
that it can be merged if found similar enough. However, the tester may employ
a search strategy which prioritises exploration of a completely different state, for
example because that state would lead the tester closer to a particular target.
The tester therefore has to choose which optimisation technique to follow.

Kuznetsov et al. demonstrated two techniques for addressing these problems [66]:

• Query count estimation mitigates the burden placed on the SMT solver by
taking into account the number of variables with differing values between
two states when looking for similar states. Query count estimation attempts
to minimise the number of ITE expressions that are created, as these ex-
pressions are computationally intensive to solve for the SMT solver. It does
so by only merging states whose same variables with different values are
expected to appear infrequently in future solver queries.

• Dynamic state merging does not interfere with existing search strategies but
identifies opportune moments for merging dynamically. The tester’s search
strategy generally retains the privilege of selecting which state to explore
next. However, if the dynamic state merging algorithm detects that a state
scheduled for exploration at some future point will be sufficiently similar to
an already explored state, the state merging algorithm overrides the decision
of the search strategy and schedules the first state for immediate exploration.

66

3.5. OPTIMISATIONS FOR CONCOLIC TESTING

MergePoint [12] alternates between static symbolic execution and concolic testing
to take advantage of both approaches. It starts testing the program by performing
concolic testing. When a branch condition is encountered, rather than forking
the execution, MergePoint may switch to using static symbolic execution, since
state merging can be applied more easily in static symbolic execution. While in
static mode, MergePoint merges states together until performing static symbolic
execution becomes too difficult, for example because of a system call or an indirect
jump. At that point, MergePoint reverts to concolic testing and continues testing
the program.

Jaffar et al. [59] use interpolation to prune program paths by terminating the
exploration of certain paths early, before they can spawn new paths. With in-
terpolation, the symbolic execution engine creates interpolants, which describe
conditions necessary to trigger a particular bug. If during exploration of a path
the engine can infer that the interpolant is not satisfied, it terminates exploration
of the path.

As mentioned previously, using ITE expressions to represent merged symbolic
values allows the tester to precisely model which values an expression evaluates
to given a set of conditions, but this also increases the burden for the SMT solver.
Rather than relying on ITE expressions, Scheurer et al. take inspiration from
abstract interpretation to define a general lattice model [113]. When merging
two values together, they perform a join operation on the values in the lattice
and represent the merged value through this joined value. Although this loses
precision, Scheurer et al. deem this an acceptable loss since queries to the SMT
solver become easier to process.

MultiSE [117] takes the idea of merging program states even further, by using
one shared, incrementally constructed representation for all execution states that
have been explored by the tester. In this shared state, all variables, including
the program counter, are described using value summaries. A value summary is
a mapping of a set of conditions to the value that the variable will take if these
conditions are true. In effect, MultiSE corresponds to merging program states at
every assignment, rather than only when two states happen to collude.

3.5.3 Hybrid Techniques

Concolic testing can be combined with other forms of program verification to
either traverse the search space of the application more quickly, or to reduce the

67

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

size of the search space altogether. We distinguish between hybrid techniques
where the tester is combined with a dynamic form of program verification, such
as some different form of automated testing, and static techniques, where the
tester employs a static analysis.

Dynamic Program Verification

Section 2.2 listed several types of automated testing techniques, including ran-
dom input fuzzing and search-based techniques. As mentioned previously, a main
advantage of concolic testing is its ability to systematically test all feasible paths
through an application, whereas its disadvantage lies in the fact that it will take
a long time to do so. Other forms of automated testing generally take the inverse
approach, by prioritising the exploration of a large part of the program as quickly
as possible, without having any guarantees that all reachable parts of the program
have been covered. Both approaches can be combined into a hybrid approach in
an attempt to combine the benefits of both techniques.

Majumdar and Sen propose to interleave concolic and random testing [83]. Their
hybrid tester starts by generating random inputs for the program, but switches to
concolic testing once the random tester is unable to cover new unexplored parts
of the code. When the concolic tester reaches a previously uncovered part, the
tester resumes random testing.

Wang et al. propose a strategy for alternating between concolic and random test-
ing [135]. This strategy weighs the cost that a concolic tester incurs by constraint
solving with the probability that a path will be explored by a random tester. This
hybrid approach therefore uses random testing to cover paths that are likely to
be explored with random inputs, and uses concolic testing to cover paths that are
hard to reach.

Driller [124] distinguishes between general inputs, which have a wide range of
valid values, and specific inputs, which are limited in the values they may take.
With this distinction, execution of a program may be divided into compartments.
Within a compartment, behaviour of the program mostly depends on general in-
puts. Compartments are separated from each other by complex checks on specific
inputs. Random testing is therefore ideally suited to quickly test a wide variety
of values for general inputs within compartments. On the other hand, Driller
uses concolic testing to switch between compartments, by computing appropriate
values for the specific inputs to satisfy the complex checks that separate them.

68

3.6. CONCLUSION

Static Program Verification

Concolic testing can also be combined with static program verification techniques,
such as static analyses. Combining both techniques can help reduce the search
space the tester has to traverse. For example, the static technique may prune
many program paths that can statically be proven to be free of bugs [32].

Trimmer [47] is a hybrid concolic tester which employs static analysis for this exact
purpose. Their static analysis infers a safety condition for bugs in the program: if
a safety condition holds, the corresponding bug cannot be triggered. Trimmer then
uses these safety conditions to instrument the program with assertions specifying
these conditions. When the concolic tester executes the instrumented program,
the conditions direct the tester towards bugs while helping prune paths in which
bugs are known not to arise.

Wüstholz and Christakis [136] describe an approach for combining fuzzing with
online static analysis to create a targeted hybrid fuzzer. Before the fuzzer adds a
new input to its worklist, it launches a static analysis from this input to compute
a path prefix for which all path suffixes will not pass through a target statement.
The fuzzer can then use this prefix to avoid generating inputs which will follow
this prefix.

3.6 Conclusion

We have presented an overview of the state of the art in concolic testing of dis-
tributed systems (Section 3.1), event-driven applications (Section 3.2), JavaScript
applications (Section 3.3), and web servers (Section 3.4). We now conclude by
presenting a list of concolic testers that were described in this chapter and which
we deem most suitable for testing full-stack JavaScript web applications or most
related to StackFul, and we motivate our selection. Afterwards, we evaluate
these testers on the list of criteria for testing full-stack JavaScript web applica-
tions that were introduced in Section 2.4.

69

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

3.6.1 Identifying Concolic Testers for Full-stack JavaScript Web
Applications

When identifying suitable testers, we are informed by the criteria for automatically
testing full-stack JavaScript web applications outlined in section 2.4. Although
the concolic testers described in this list may not meet all of these criteria, they
should satisfy at least some of these. We therefore only consider testers which are,
at minimum, capable of testing at least one side (client or server) of the full-stack
JavaScript web application.

Our selection of most relevant testers consists of the following:

Apollo (Section 3.4.2) Apollo tests PHP server-side code with the aim of finding
malformed HTML pages or other, generic PHP run-time errors. It does
not explore the client, but simulates input received from the client to a
limited degree, by modelling HTTP request parameters as symbolic inputs,
thus giving it a limited degree of capability to reason over the client-server
interaction.

ArtForm (Section 3.3.3) ArtForm focuses on testing form-based web applica-
tions. It can explore the behaviour of the client side of these applications,
but does not explore the server side.

Cosette & JaVerT.Click (Section 3.2.1) Cosette is a powerful symbolic execu-
tion engine for JavaScript, capable of modelling a large part of the lan-
guage. Its extension, JaVerT.Click, is even more powerful because of its
modelling of event-driven code. Their extensive ability to test event-driven
JavaScript code makes them a powerful tester for the client side of a full-
stack JavaScript web application. Since JaVerT.Click is strictly more power-
ful than Cosette, we select JaVerT.Click to represent both tools.

CRAXWeb (Section 3.4.1) CRAXWeb finds security violations in server-side
applications that can arise as a result of an HTTP request received from
the client. Although it does not explore client-side code, it uses a web
crawler on the client to find points where the client sends an HTTP request
to the server. CRAXWeb is built on top of the S2E framework. It therefore
cannot analyse JavaScript code at the source level, but operates on compiled
code.

Jalangi (Section 3.3.1) Jalangi is a record-replay tester for JavaScript: it first
records an execution of the client by a user, and then replays this execution,

70

3.6. CONCLUSION

using concolic testing to exercise alternate behaviours. Jalangi cannot by
itself explore the event space of a client, but it can be used to explore a
previously recorded event sequence.

KleeNet (Section 3.1.3) KleeNet is a dynamic symbolic execution engine for
distributed systems, specifically, wireless sensor network applications. Al-
though it is not designed to test web applications, its focus on modelling
how the execution of one process may affect the execution of another process
in a distributed system, while mitigating the state explosion problem in the
system, is also relevant when testing a web application consisting of clients
and servers.

Kudzu (Section 3.3.2) Kudzu tests JavaScript clients with the aim of detect-
ing security vulnerabilities. It has limited capability for exploring a client’s
event space. Like the previous JavaScript testing tools, it does not simul-
taneously explore the server side of the web application, but still partially
models communication between the two, by representing messages received
via HTTP as symbolic inputs.

SymJS (Section 3.2.2) SymJS is capable of testing both standalone JavaScript
applications and web clients. It places a particular emphasis on testing
event-driven applications, by employing a read-write-conflict heuristic to
direct the tester to generate sequences that are likely to expose different
program behaviours. Although SymJS cannot be used to test the client and
the server simultaneously, it is well equipped to explore the client side of
such an application.

3.6.2 Evaluating Concolic Testers for Full-stack JavaScript Web
Applications

We now evaluate these testers on the list of criteria for testing full-stack JavaScript
web applications defined in Section 2.4. Our findings are listed in Table 3.1.
For reference, the list of criteria on which we evaluate the testers is repeated in
Table 3.2.

71

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

Table 3.1: The testers evaluated on the list of criteria identified in Section 2.4.
1 2 3 4

A B A B A B
Apollo 7 7 7 7 ±1 ±2 ±3

ArtForm 3 3 3 3 7 7 7

CRAXWeb ±4 7 7 7 ±1 ±2 ±3,5
Jalangi 3 3 3 7 7 7 7

Javert.Click 3 3 3 ±6 7 7 7

KleeNet 7 7 7 ±7 3 3 3

Kudzu 3 3 3 ±6 ±1 ±2 ±3
SymJS 3 3 3 3 7 7 7

1 If only depending on HTTP communication
2 One process explored, other processes simulated
3 Simulates communication
4 If compiled to supported bytecode
5 Crawls client events
6 No strategy for exploring event space
7 Considers non-deterministic failure events

Apollo

Apollo is only capable of executing server-side PHP code and is therefore unsuited
for testing client-side code: it cannot execute JavaScript code, is incapable of
monitoring static or dynamic registration of events, it cannot explore the event
space of a program and, although it can detect malformed HTML generated by
the server, does not interact with the DOM at all.

Table 3.2: The criteria previously defined in Section 2.4.

1 A Capable of testing sequential JavaScript code
B Models inputs from the DOM

2 A Allows for dynamic (de)registration of event handlers
B Explores event space

3 Capable of finding composition-specific faults

4 A Whole-program monitoring
B Observes communication between distributed processes

72

3.6. CONCLUSION

With regards to criteria 4.A and 4.B, Apollo is incapable of precisely modelling
the interplay between frontend and backend in a full-stack JavaScript web applic-
ation, since it can only observe the execution of the server and ignores the client.
However, its ability to represent any HTTP communication received from the cli-
ent as symbolic input lends it some capacity to model this interplay. Although
it cannot observe or direct the behaviour of the client, it can over-approximate
any outputs that are produced by the client, under any behaviour, by assuming
all communication received from the client may take any value. This is possible
even if the server is supposedly connected with multiple clients. However, this
mocking of the execution of the client only serves to test the server process more
completely, and Apollo remains incapable of actually finding any faults in the
client.

We also give Apollo a partial score for criterion 3. On the one hand, it cannot infer
the composition of processes necessary to exercise certain behaviour. However, if
this composition would only have an effect on the values sent to the server over
HTTP, then the appropriate composition may still be over-approximated, similar
to criteria 4.A and 4.B.

ArtForm

ArtForm has adequate support for testing the client of a full-stack JavaScript
web application and hence satisfies criteria 1-2. With regards to criterion 2.B,
ArtForm inherits the strategies for exploring the event space for the Artemis tool,
in which it is implemented.

The focus of ArtForm on testing only a single process leaves it incapable of reas-
oning over the interplay between frontend and backend of these applications. Fur-
thermore, it does not have any ability to reason over the interplay between pro-
cesses of a full-stack JavaScript web application: it cannot test any composition
consisting of multiple processes. It only explores behaviour on the client and does
not observe any communication received from the server. In fact, communication
from the server is also not modelled, leaving ArtForm incapable of even simulating
the behaviour of the entire web application.

73

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

CRAXWeb

CRAXWeb focuses on the testing of web servers and therefore does not aim to
satisfy criteria 1-2. Because it uses the S2E framework, which enables concolic
testing of bytecode, it may satisfy criterion 1.A on the condition that JavaScript
can be compiled to the appropriate bytecode format.

Since CRAXWeb only tests one individual process, it cannot reason over the
interplay between processes of a full-stack JavaScript web application. However,
much like Apollo, its ability to model HTTP communication received by the server
from the client as symbolic inputs enables it to partially satisfy criteria 3-4. Like
Apollo, mocking the execution of the client means that CRAXWeb cannot find
client-side errors.

The imprecision caused by the over-approximation on the values sent by the client
is partially mitigated by the fact that CRAXWeb also employs a web crawler to
look for HTTP requests sent by the client and tests program paths on the server
that start from the corresponding HTTP handler.

Jalangi

Jalangi’s reliance on the record-replay technique limits its ability to test a full-
stack JavaScript web client. It can execute JavaScript concretely and symbolically
and can observe the dynamic registration of event handlers, but cannot by itself
explore the event space of the client as it is limited to re-executing the event
sequence that was recorded.

Like ArtForm, Jalangi only executes the client and ignores the server. Since it
also does not model any communication received from the server, we conclude
that Jalangi does not satisfy criteria 3-4.

JaVerT.Click

JaVerT.Click is a powerful symbolic execution engine for event-driven JavaScript.
Since it is also capable of modelling the DOM, it satisfies criteria 1.A, 1.B, and
2.A. Regarding criterion 2.B, however, although JaVerT.Click describes semantics
for (sequentially) executing individual event handlers, it does not specify a method
for generating event sequences that efficiently explore the event space of the cli-

74

3.6. CONCLUSION

ent. Furthermore, JaVerT.Click only executes the client and does not model or
intercept communication from the server, leaving it incapable of satisfying criteria
3-4.

KleeNet

KleeNet tests wireless sensor network applications, and is capable of reasoning
over the interplay between processes while observing their communication. Fur-
thermore, KleeNet is not restricted to testing just one composition of processes,
as users may configure the number and type of processes in the application to
be tested. Hence, KleeNet can find composition-specific faults, if the appropriate
composition is specified by the user.

Since KleeNet does not focus on testing web applications, it does not satisfy
criteria 1-2.A. KleeNet is capable of traversing the event space of wireless sensor
network applications by systematically injecting non-deterministic failure events,
while reducing the size of the search space by preventing redundant forking of
the nodes in the processes’ symbolic execution trees. However, KleeNet does not
address the criterion of dynamically registering or deregistering event handlers,
as this challenge does not arise for non-deterministic failure events.

Kudzu

Kudzu is well-equipped to test full-stack JavaScript web clients: it can execute
JavaScript code, draw symbolic input values from the DOM, and observe and
trigger dynamically registered events. However, its strategy of generating ran-
dom event sequences leaves it incapable of exploring the event space of the client
efficiently.

Like many of the aforementioned JavaScript testing tools, Kudzu focuses on test-
ing only a single, individual process, without reasoning over the behaviour of the
entire distributed system. However, since Kudzu represents messages and values
that are sent by the server via HTTP to the client as symbolic inputs, it is capable
of over-approximating this behaviour in a manner similar to Apollo and CRAX-
Web. Kudzu’s mocking of the server’s execution is only used to test a larger
fraction of the client, however. Kudzu remains incapable of testing the server and
reporting any bugs that may be present there.

75

CHAPTER 3. STATE OF THE ART IN CONCOLIC TESTING

SymJS

SymJS is a concolic tester that focuses on exploring the client of the full-stack
JavaScript web application: it executes JavaScript code, handles dynamic re-
gistration of event handlers, uses a heuristic to intelligently explore the client’s
event space, and is capable of interacting with the DOM. However, like ArtForm,
Jalangi and JaVerT.Click, it tests only the client and neglects the server process
of the full-stack JavaScript web application. It furthermore does not model com-
munication received from the server, so we conclude that it fails to satisfy criteria
3-4.

3.6.3 Overall Conclusion

After identifying several concolic testing tools described in this chapter and eval-
uating them on the criteria defined for testing full-stack JavaScript web applica-
tions, we conclude that no concolic tester yet exists which is fully equipped to test
a full-stack JavaScript web application. In general, we can categorise the testers
described here as testing either the client side (ArtForm, Jalangi, JaVerT.Click,
Kudzu, and SymJS) or the server side (Apollo, KleeNet, and CRAXWeb), but
there is no tool that tests both sides simultaneously.

Kudzu comes closest, because of its ability to test the client of such a system while
modelling HTTP communication from the server as symbolic inputs, as this allows
it to also test behaviours of the client that depend on the server communication
specific messages or values. Even so, Kudzu merely models messages produced by
the server, i.e., it mocks the execution of the server, without actually exploring
the server. Hence, there is no concolic tester capable of exploring both the client
and the server simultaneously.

76

4 A Foundation of Intra-process
Concolic Testing

Having introduced the concept of concolic testing in Section 2.2, and having
presented state-of-the-art concolic testers for various types of applications in
Chapter 3, we now present StackFulINTRA

1. StackFulINTRA is a concolic
tester for single-proces, event-driven JavaScript applications that access a Do-
main Object Model (DOM), such as web clients. This concolic tester will serve
as a starting point for the development of a concolic tester capable of testing
full-stack JavaScript web applications in Chapter 5 and Chapter 6.

Section 4.1 gives a high-level overview of the architecture of StackFulINTRA,
necessary for testing sequential JavaScript code. Sections 4.2 and 4.3 provide
more detail on the individual components of StackFulINTRA. Section 4.4 dis-
cusses how the procedure for concolic testing of sequential JavaScript code can
be generalised to event-driven applications, by extending the concept of a sym-
bolic execution tree to these types of applications. Section 4.5 provides a formal
description of how StackFulINTRA performs concolic testing of single-process
event-driven JavaScript applications. Section 4.6 concludes the chapter by evalu-
ating StackFulINTRA on the criteria outlined in Section 2.4 for testing full-stack
JavaScript web applications.

4.1 Overview of StackFulINTRA

StackFulINTRA performs concolic testing on individual JavaScript applications,
rather than full-stack JavaScript web applications. We coin this form of concolic
testing on single JavaScript processes intra-process concolic testing, as testing
takes place within a single process and execution does not cross process bound-

1https://github.com/softwarelanguageslab/StackFul

77

https://github.com/softwarelanguageslab/StackFul

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

aries. Before discussing the technical details that enable StackFulINTRA to
perform intra-process concolic testing, we give a broad overview of how Stack-
FulINTRA tests sequential JavaScript programs.

4.1.1 Intra-process Concolic Testing with StackFulINTRA

Concolic testing of any type of application necessitates the ability to monitor the
execution of the application, since the tester must be able to construct symbolic
constraints describing a path through he program, intervene in the program’s
execution, and generate appropriate values for program inputs arising through the
program’s execution. Broadly speaking, a concolic tester can use two approaches
to accomplish these goals:

Modifying the execution engine The tester can be implemented as part of the
engine that executes the JavaScript application, so that the tester can dir-
ectly observe or intervene in the application’s execution.

Instrumenting the code The source code or compiled bytecode of the applica-
tion can be automatically instrumented, with the newly introduced code
monitoring the execution of the program.

StackFulINTRA opts for using instrumentation to perform concolic testing on
the application, as this has the advantage of not tying StackFulINTRA to a
particular execution engine for running the code. This makes it possible to use
StackFulINTRA both for testing standalone JavaScript code as well as JavaScript
code that is embedded in an HTML web page. Depending on the type of applica-
tion, StackFulINTRA will either spawn a Node.js2 process to execute the instru-
mented standalone code, or an instance of jsdom3 to execute the instrumented
script. Node.js is a JavaScript runtime that can be used to execute event-driven
JavaScript code. jsdom is a headless browser, i.e., a browser without a graphical
user interface which nonetheless faithfully models the DOM of the web page.

4.1.2 Architecture of StackFulINTRA

Figure 4.1 depicts the high-level architecture of StackFulINTRA.

2https://nodejs.org/en/about
3https://github.com/jsdom/jsdom

78

https://nodejs.org/en/about
https://github.com/jsdom/jsdom

4.1. OVERVIEW OF STACKFULINTRA

Instrument

JavaScript
Execution Engine

Test Executor

[ARAN]

Test Selector

Z3

2*y == x

x > y + 10

Symbolic Execution Tree

Path
Selector

Select path

Feed
constraints

Computed
inputs

Path constraint

Computed inputs
and events

Figure 4.1: The architecture of StackFulINTRA.

Broadly, StackFulINTRA consists of the following major architectural compon-
ents (cf. Section 2.2.3):

Test Executor (Section 4.2) The test executor is responsible for performing con-
crete and symbolic execution on the JavaScript application under test while
collecting the path constraint that represents the traversed program path.
The test executor is further divided into different components for instru-
menting the application, performing concrete and symbolic execution, and
collecting the path constraint.

Test Selector (Section 4.3) The test selector is responsible for maintaining the
symbolic execution tree (cf. Section 2.2.3), suggesting new program paths
to explore in subsequent test runs, and computing appropriate values for
the program inputs appearing in these paths.

The test executor and the test selector communicate with each other between
test runs. The executor sends the path constraint of the program path that was
explored in the most recent run to the test selector. Once the test selector has
selected which program path to explore next, it computes values for the program
inputs that feature in the selected paths, and sends these values to the test ex-
ecutor. When testing event-driven code, the test selector also sends the events
that feature in the selected path to the test executor (cf. Section 4.4).

The text executor and test selector will be discussed in more detail in the following
two sections.

79

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

4.2 The Test Executor

The test executor is responsible for executing the program under test, while in-
tervening in its execution to generate appropriate values for the various program
inputs and while observing the execution to collect the path constraint. To this
end, the test executor employs the Aran [34] framework for performing fine-
grained instrumentation of the JavaScript source code to enable dynamic analysis
of the application. In this section, we introduce Aran and discuss how the ex-
ecutor uses it to monitor and intervene in the execution of the program under
test.

4.2.1 Instrumenting JavaScript Code via Aran

Aran [33] enables its users to specify program points, named join points, in selec-
ted source code files, that are then wrapped in calls to custom-defined functions,
named traps. Join points include program expressions and statements, such as
branch conditions in the control flow, function calls, dereferencing program vari-
ables etc. Aran provides a total of 26 different traps that are executed when their
corresponding join points are reached. Collectively, the set of traps is named the
advice.

To illustrate, Listing 4.2 shows the result of using Aran to instrument the code
of Listing 4.1 (corresponding to lines 19–22 from Listing 2.3). Aran transforms
the if statement if (right === 0) into a series of calls to the read, primitive,
binary, and test traps. These functions are used to inspect and possibly modify
the default behaviour when respectively reading the variable right, accessing the
literal value 0, evaluating the binary expression right === 0, and handling the
evaluated predicate expression of the if statement.

Aran allows for instrumenting both the source code under test as well as code that
is loaded dynamically, e.g., via eval, require, or 〈src〉 tags. StackFulINTRA
can therefore also perform concolic testing of dynamically loaded, yet fixed, code
strings. StackFulINTRA expects the code strings to remain the same between
test runs. Testing non-deterministic strings, such as user input, is therefore not
supported Note that this is insufficient for evaluating non-deterministic strings
such as user input, because StackFulINTRA expects the code string to remain
the same between test runs. Evaluating arbitrary code strings may affect the
execution of the program in entirely unpredictable ways, and hence result in the

80

4.2. THE TEST EXECUTOR

creation of symbolic execution subtrees that can take any shape. However, an
empirical study has demonstrated that in the majority of cases, dynamic code
execution is applied to constant strings [61], where StackFulINTRA’s approach
suffices.

1 if (right === 0) {
2 throw new Error("Dividing by zero");
3 }

Listing 4.1: The code that is to be instrumented by Aran (lines 19–22 from List-
ing 2.3).

1 if (_.test(_.binary("===",
2 _.read($right, "right"),
3 _.primitive(0)))) {
4 throw _.throw(_.construct(global.Error,
5 [_.primitive("Dividing by zero")]));
6 }
7 $result = _.write(_.binary("/",
8 _.read($left, "left"),
9 _.read($right, "right")),
10 "result");

Listing 4.2: The corresponding instrumented code generated by Aran.

Users of Aran can provide a custom implementation for each of the 26 traps,
thereby allowing for fine-grained, dynamic analysis of a JavaScript application.
More concretely, by overriding the implementation of these traps, Aran users
can deploy a form of shadow execution4 on the program.

4.2.2 Shadow Execution via Aran

Shadow execution [91] takes place alongside concrete execution but produces
shadow values, values that describe the concrete values produced by the con-

4The term “shadow execution” is somewhat overloaded. In the context of this dissertation,
we use this term to refer to the approach where a program is instrumented in order to
compute a corresponding shadow value for every concrete value [34, 116]. The term should
not be confused with the concept of shadow symbolic execution [65, 92], which can be used
to compare two different versions of the same program.

81

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

crete execution. Shadow execution can be used to implement dynamic analyses,
with the exact form taken by the shadow value dependent on the type of analysis
that is to be implemented. In the case of StackFulINTRA, these shadow values
take the form of symbolic values that describe their associated concrete value.

To bind shadow values to their corresponding concrete values, StackFulINTRA
overrides Aran’s traps so that each expression in the program evaluates to a tuple
of a concrete value and its associated symbolic value, rather than just to a concrete
value. To illustrate, Listing 4.3 depicts a simple binary expression (Listing 4.3a),
the instrumented version of this expression produced by Aran (Listing 4.3b), and
a simplified representation of the implementation of the primitive and binary
traps that appear in the instrumentation (Listing 4.3c).

Aran wraps each literal value, such as numbers, strings, booleans etc. in a call
to the primitive trap. Binary expressions are instrumented so that the binary
trap is called with the values for the left and right operands, as well as a string
representation of the operator that is applied. As demonstrated in Listing 4.3c, the
primitive trap ensures that each literal value evaluates to a tuple of a concrete
and symbolic value, rather than just a concrete value alone. In the case of literal
primitive values, the symbolic value either simply represents the concrete value
lifted to the symbolic domain, or an empty symbolic value for those value types
that are not supported by the symbolic execution, such as closures.

The binary trap expects the left and right operand to be instances of such tuples,
with a concrete and symbolic part. This trap then itself returns a new tuple, where
the concrete part equals the result of applying the operator on the left and right
concrete operands and the symbolic part refers to a symbolic representation of
the binary expression. Many other traps are similar to binary in that they take
these tuples as arguments and produce new tuples.

82

4.2. THE TEST EXECUTOR

1 + 2;
(a) A simple binary

expression.

.binary(.primitive(1), "+", _.primitive(2))
(b) The expression instrumented with primitive and

binary traps.

1 _.primitive = (primitive) => {
2 concrete: primitive,
3 symbolic: switch (typeof primitive) {
4 case "number": new SymInt(primitive);
5 case "boolean": new SymBool(primitive);
6 case "string": new SymString(primitive);
7 default: new SymEmpty();
8 }
9 };
10

11 _.binary = (operator, left, right) => {
12 concrete: applyBinary(operator, left.concrete, right.concrete),
13 symbolic: new SymBinaryExp(left.symbolic, operator, right.symbolic)
14 };

(c) The primitive and binary traps of Aran, as implemented by StackFulINTRA.

Listing 4.3: Shadow execution via the primitive and binary traps.

4.2.3 Using Shadow Values for Concolic Testing

Apart from producing shadow values, shadow execution must accomplish the fol-
lowing goals in order to perform concolic testing:

• Intercepting and generating program inputs

• Constructing symbolic expressions

• Updating the path constraint

We briefly discuss how Aran’s traps and shadow values enable StackFulINTRA
to accomplish these goals.

83

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

Intercepting and Generating Program Inputs

Sources of non-deterministic program inputs, such as user inputs, environment
inputs, system inputs, random values, or calls to external non-deterministic func-
tions, must be identified. Identifying these sources is non-trivial, since they may
arise from a variety of locations, such as retrieving user input, reading values from
a file, command-line arguments etc. Apart from identifying these program inputs,
StackFulINTRA must also symbolically mark such a value as a symbolic input
value. Finally, StackFulINTRA must determine the appropriate concrete value
for that program input. If the test selector computed a specific value for that
input at the end of the previous test run, StackFulINTRA must use this value
as the concrete value for the input. If no value was specified by the test selector,
StackFulINTRA generates a random value of the appropriate type, with the type
dependent on the source of the program input.

For one specific example of how program inputs are identified and processed, we
turn to calls to a randomInt5 function. Aran provides the apply trap, which
fully replaces calls to functions. Thus, rather than calling the function directly,
apply is called instead with as arguments the function to be applied, the list
of arguments, and the context of the function, which specifies the object that is
referred to when the this keyword is used. Listing 4.4 depicts a partial imple-
mentation of the apply trap to demonstrate how this trap can be used to identify
and intercept program inputs. For the sake of brevity, the implementation of
nextProgramInput, which returns either a concrete value precomputed by the
test selector or a random value, has been elided.

1

2 _.apply = (func, context, arguments) => {
3 if (func.concrete === randomInt) {
4 return { concrete: nextProgramInput(),
5 symbolic: new SymInputInt() };
6 }
7 ...
8 };

Listing 4.4: Part of the implementation of the apply trap.

5JavaScript does not have a built-in function that returns a random integer value. For the
purpose of this dissertation, we therefore consider randomInt to be a hypothetical built-in
function that returns a random integer value between 0 and Number.MAX SAFE INTEGER.

84

4.2. THE TEST EXECUTOR

Constructing Symbolic Expressions

For concolic testing of applications, symbolically marking only the program inputs
is insufficient to explore the entire program. Rather, every value that appears in
the program should have a corresponding symbolic value so that the concolic
tester is aware of the exact constraints that are placed on program inputs when
a particular path is followed.

As a demonstration, consider Listing 4.5, where the branch condition depends
on the inverse of the program input generated by randomInt(). Suppose that
StackFulINTRA randomly produced the value 42 for this input. The expression
-1 * x then evaluates to -42 and execution flows along the else branch of the
if statement. The symbolic expression corresponding to -42 should indicate that
the value was produced as a result of taking the inverse of the program input, so
that, when the test selector must compute an appropriate value for the program
input to cause execution to flow along the then branch, it knows to compute a
negative number.

1 let x = randomInt();
2 if (-1 * x > 1) {
3 ... // elided
4 } else {
5 ... // elided
6 }

Listing 4.5: An example demonstrating why symbolic expressions must be con-
structed.

Hence, every concrete value that is produced throughout the program’s execution
must be lifted to the symbolic domain by constructing symbolic expressions that
capture the computations that were applied by the program in order to attain
that value. StackFulINTRA accomplishes this by relying on several Aran traps.
An example of the implementation for some of these traps was shown in List-
ing 4.3c, which demonstrated how literal values and binary expressions are given
an appropriate symbolic value.

The test executor fully supports the integer and boolean symbolic domains. It
also models strings and supports some frequently used string operations, such as
string indexing, checking for string equality, string concatenation, or checking for
substrings. StackFulINTRA does not employ an explicit memory model and is

85

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

therefore incapable of reasoning over object constraints and arrays. Arrays hence
only have a concrete representation. Indexing in an array always results in the
executor concretising both the array index and the array element that is queried.

Updating the Path Constraint

Whenever a branch condition is encountered in the program’s execution, the path
constraint must be updated. In essence, this path constrained is formed by taking
the logical conjunction of the symbolic expressions representing the predicate
values of these conditions.

Aran provides the test trap, which wraps around the evaluated predicate of
branch conditions, such as if statements and while loops. An example of this trap
was included in Listing 4.2. StackFulINTRA therefore uses this trap to update
the path constraint whenever a new branch condition is encountered. Listing 4.6
depicts a partial implementation of this trap.

1 let pathConstraint = new SymBool(true);
2

3 _.test = (predicate) => {
4 pathConstraint = new SymBooleanConjunction(predicate.symbolic,
5 pathConstraint);
6 return predicate.concrete;
7 };

Listing 4.6: Part of the implementation of the test trap.

Modelling Library Functions

By default, StackFulINTRA does not instrument libraries as this would incur an
additional overhead on the execution time of the program. Performing symbolic
execution through the code of the library would also further increase the number
of paths that should be explored by the tester. However, StackFulINTRA allows
for constructing ad-hoc models of libraries that are consulted whenever a function
of the library is called. For example, StackFulINTRA provides ad-hoc models
of several jQuery6 functions that are used to register event handlers, as well as
functions for querying the content of a text input field.

6https://jquery.com/

86

https://jquery.com/

4.3. THE TEST SELECTOR

4.3 The Test Selector

Whereas the test executor is mostly responsible for enabling individual test runs
by monitoring and intervening in the execution of the program under test, the
test selector (cf. Section 2.2.3) ensures that all paths through the program are
explored systematically, over the course of multiple test runs.

To this end, the test selector must perform the following tasks:

• Maintain the symbolic execution tree

• Suggest new program paths for exploration

• Compute appropriate values for program inputs

We briefly elaborate on these tasks and discuss how they are accomplished by the
test selector.

4.3.1 Maintaining the Symbolic Execution Tree

The test selector maintains the collection of program paths that have been ex-
plored through previous test runs. This collection takes the form of the symbolic
execution tree, similar to the one depicted in Figure 2.4. At the end of each
test run, the test executor sends the path constraint of the program path that
was followed over the course of this run to the test selector, which adds it to the
symbolic execution tree.

4.3.2 Suggesting Program Paths for Exploration

After having received the path constraint of the previous test run, the test selector
must suggest a new program path to explore in the next test run. StackFulINTRA
supports two exploration strategies for finding new program paths: a brute-force
strategy and a more refined one. The former finds new program paths by travers-
ing the tree in a breadth-first manner and by negating components of an existing
path to create new paths. The latter exploration strategy is based on the one
employed by the SymJS tester [72] (cf. Section 3.2.2) and keeps track of which
variables are read from and written to by individual event handlers.

87

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

4.3.3 Computing Values for Program Inputs

When a new path has been selected, it is provided to an SMT solver that, if
the path constraint is satisfiable, computes appropriate values for the symbolic
input variables appearing in the constraint describing that path. If the path is
unsatisfiable, a new path is selected. The test selector then forwards these results
to the test executor, which will use them in the next test run.

StackFulINTRA employs the Z3 SMT solver [38, 15] for solving symbolic con-
straints. Specifically, StackFulINTRA uses Z3’s theory of non-linear integer arith-
metic and its theory of strings and sequences [142] to solve integer, boolean, and
string formulae. As mentioned in Section 4.2.3, StackFulINTRA does not employ
a memory model. It hence cannot create object constraints or reason symbolically
over array operations.

4.4 Concolic Testing of Event-driven Applications

Sections 4.2 and 4.3 gave an overview of how StackFulINTRA performs concolic
testing of sequential JavaScript programs that are not event-driven. However, as
discussed in Section 2.3.2, both regular web applications and full-stack JavaScript
web applications make heavy use of event-driven code. Consider the code snippet
in Listing 4.7. Any automated tester that aims to systematically explore all pos-
sible paths through this program must not only consider the conditional branches
in the program but also the sequences of events that may arise in the program’s
execution.

The exact behaviour of this code snippet depends on the order in which and the
number of times both buttons are clicked, as well as the value of the random
number that is generated each time button1 is clicked. In fact, apart from the
registration of these event handlers, no code is executed at all until a click event
is triggered for either button. A naive, but complete, exploration of all possible
program paths must therefore consider both the values of symbolic program in-
puts, such as the randomly generated number on line 3, as well as the sequence
of events to be followed.

We will give a brief overview of how the test selector and the test executor have
to be adapted to enable StackFulINTRA to test event-driven programs.

88

4.4. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

1 let counter = 0;
2 button1.addEventHandler("click", function (e) {
3 if (randomInt() % 2 === 0) {
4 console.log(counter);
5 } else {
6 counter = 0;
7 }
8 }
9 button2.addEventHandler("click", function (e) {
10 counter++;
11 }

Listing 4.7: An example of an event-driven program.

4.4.1 Supporting Events in the Test Selector

To systematically explore all paths through an event-driven program, it is neces-
sary to add to the symbolic execution tree the paths through the various event
handlers and to encode the decisions of which event was triggered at a point
in the program’s execution. One possible extension to the symbolic execution
tree is shown in Figure 4.2, which depicts part of the symbolic execution tree for
Listing 4.7.

Extending the Symbolic Execution Tree

In this extended symbolic execution tree, we distinguish between two differ-
ent kinds of branching nodes. Conditional branching nodes, depicted as blue
ii % 2 = 0 nodes in the figure, represent a point where control flow splits be-
cause of a branching condition such as an if statement or while loop. Event
branching nodes, depicted as orange Ei nodes, represent a point in the execu-
tion where a new event can be triggered. These nodes determine which of the
currently active event handlers should be executed next, i.e., for which currently
active event handler the corresponding event should be triggered. The green End
nodes indicate that program execution has ended.

In the case of JavaScript, event handlers are atomic, i.e., no two event hand-
lers can be executed simultaneously: a new event handler can only be executed
when the previous handler has been completed [133]. This implies that Stack-
FulINTRA should only consider triggering a new event when no event handler is

89

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

E0

Endi0 % 2 = 0 E1

E1 E1 i0 % 2 = 0 End E2

i0 % 2 = 0 End E2

Button1 Button2
None

Button2Button1
Nonefalsetrue

Button1 Button2

None

Figure 4.2: Part of the (infinite) symbolic tree produced by systematically testing
the code of Listing 4.7.

currently being executed, thus conforming to the atomic execution of JavaScript
event handlers. Event branching nodes are therefore only added at a point in the
path in the symbolic tree where execution has already left an event handler.

Example of an Extended Symbolic Execution Tree

Consider again Listing 4.7. In this program, no code is executed outside of the
event handlers, apart from registering these handlers via calls to
button.addEventHandler, which does not involve branching of either kind. The
first branching point of the program, i.e., the root node of the tree depicted as
event E0 in Figure 4.2, is therefore an event branching node representing the
following choices:

• Invoking the first registered event handler (i.e., clicking button1).

• Invoking the second registered event handler (i.e., clicking button2).

• Not invoking any event handler at all, in which case the program terminates
immediately.

90

4.4. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

If button1 is clicked, the execution splits again into two possible paths:

• The expression randomInt() % 2 === 0 evaluates to true and the then
branch on line 4 is followed.

• The expression evaluates to false and the else branch on line 6 is followed.

Whatever button is clicked, once its corresponding event handler completes its
execution, the previous three-fold choice is presented again for a potential second
event E1. In general, every event branching node is followed by n+ 1 child nodes,
where n is the number of event handlers that are active at the corresponding point
in the program’s execution. An additional child node is included to account for the
case where no event handler is invoked and execution of the program stops there.
This number of child nodes hence increases or decreases depending on whether
new event handlers are registered or existing event handlers are deregistered.

Note that this extension implies that the size of the tree in an event-driven pro-
gram is infinite, as the choice of which event handler to execute next can be
repeated indefinitely. Indeed, every possible event sequence corresponds to a
unique path through the tree. Since an event sequence may in theory grow to
an infinite length, there are an infinite number of unique paths through the tree,
even if many of these program paths do not reveal any “new” program behaviour.
Dashed arrows in the figure therefore indicate that the symbolic execution tree
continues below these arrows but that subsequent nodes have been elided from
the figure.

Concluding Notes on the Test Selector

Extending the symbolic execution tree with these event branching nodes largely
allows the test selector to accomplish the first of its three tasks, to maintain
the symbolic execution tree, in the context of event-driven programs as well.
However, the test selector relies on the test executor to mark in its transmitted
path constraints when an event handler was started and when execution left the
handler. The test executor must additionally include the number of event handlers
that are active when it starts executing a new event handler, so that the test
selector is aware of how many alternative event handlers are available per event
branching node.

The path exploration strategy of the test selector determines which program path
of an event-driven program should be explored in subsequent runs. Some explor-

91

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

ation strategies, such as the one employed by the SymJS tester wield soph-
isticated heuristics that select paths featuring specific event sequences. Other
strategies, such as a breadth-first search strategy also implemented in Stack-
FulINTRA, mostly disregard the distinction between conditional and event branch-
ing nodes. Their decision to select a particular path is hence not affected by
whether or not the JavaScript program under test features event-driven code.
Regardless of the exploration strategy, the test selector must communicate the
event sequence necessary for following a particular path through the symbolic
execution tree to the test executor. This sequence simply corresponds to the
sequence of events encoded by the event branching nodes appearing in the tree
path.

The test selector does not need to be changed at all to complete its final task,
computing values for program inputs, since these event branching nodes only rep-
resent a choice of which event handler to execute at which point in the execution.
They are not associated with any specific program inputs.

4.4.2 Supporting Events in the Test Executor

As outlined in Section 4.2, the test executor must perform the following tasks:
intercepting and generating program inputs, constructing symbolic expressions,
and updating the path constraint. Adding support for event-driven programs
to the executor does not require changes to the way in which it performs those
existing tasks. However, it does necessitate two additional tasks: to intercept
the registration and deregistration of new event handlers, and to follow the event
sequence specified by the test selector for the current test run.

Intercepting the Registration and Deregistration of Event Handlers

Similar to how the test executor must identify and intercept in the generation
of program inputs or the evaluation of non-deterministic expressions, the test
executor must also intercept the registration and deregistration of event handlers.
This information enables the test selector to understand which event handlers are
available when an event branching node must be added to the symbolic execution
tree.

Since event handlers can be registered and deregistered dynamically in JavaScript
(cf. Section 2.3.2), the test executor must intercept these actions wherever they

92

4.4. CONCOLIC TESTING OF EVENT-DRIVEN APPLICATIONS

take place in the code. To this end, the test executor again relies on Aran
traps. Specifically, the apply trap (cf. Section 4.2.3), which is executed whenever
a function is called from instrumented code, consults a model enumerating the
JavaScript functions known to register or deregister event handlers.

For example, when apply realises that the function to be called is the
addEventListener method from the EventTarget interface7, it performs the
necessary steps to account for this event handler registration. As mentioned
before, libraries are not instrumented by StackFulINTRA by default. Event
handlers that are registered through library functions are missed by the test
executor, unless a model for the library function has been provided. For example,
StackFulINTRA defines an ad-hoc model of e.g., the click and keypress
functions of jQuery, through which event handlers for these types of events can
be registered. When a library function is called from instrumented code, the test
executor may consult the model to determine whether an event handler has been
registered.

Following Event Sequences

As mentioned before, when suggesting to the test executor a program path to
follow, the test selector communicates both the values for the program inputs
appearing in that path, as well as the sequence of events encoded in that path.
The test executor follows the selected event sequence. As the test executor ob-
served each event handler being registered along that path, it also understands
which event should be generated in order to trigger the corresponding handler.
In JavaScript, events, including user events such as button clicks or key presses,
can be created and triggered programmatically. When an event is triggered, an
event instance is created and passed as an argument to the registered event hand-
ler. These event instances typically include additional information, accessible via
object fields, about the event, such as the pressed key code of a KeyboardEvent.
As this information is considered a form of user input, reading these fields pro-
duces a symbolic input. For example, when a MouseEvent is triggered for a mouse
click, the exact coordinates of the click are treated as symbolic inputs by the test
executor as these coordinates may appear in conditional expressions in the event
handler and affect the control flow of the program execution.

The most important invariant for the executor to uphold is the principle of atom-
icity for event handlers: the executor should not attempt to trigger the next event

7https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

93

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

while the previous handler is still being executed. To that end, the executor only
creates and triggers the next event from the event sequence when no event handler
is currently active.

The executor triggers the first event from the event sequence when all top-level
code of the program, i.e., all code in the program that is located outside of event
handlers, has been executed. Subsequent events are only triggered when execution
has returned from the previous event handler. A test run terminates when all event
handlers in the event sequence have been completed.

4.5 Formalisation of Intra-process Concolic Testing

To detail intra-process concolic testing in StackFulINTRA and facilitate replica-
tion, we provide a formal model of intra-process concolic testing for a minimalistic
language that includes language features relevant to full-stack JavaScript web ap-
plications, such as event handlers and branching conditions. This model illustrates
the workings of the test executor: the simultaneous concrete and symbolic execu-
tion process, the creation of path constraints, registration of event handlers, and
creation and triggering of events while following a specified event sequence.

4.5.1 Overview of the Language

Figure 4.3 describes the syntax of the language. Its primitive values consist of
integers, booleans, and closures. Atomic expressions are evaluated in a single
evaluation step. They consist of constants (integers and booleans), lambdas, vari-
ables, input expressions which generate a non-deterministic number when evalu-
ated, binary expressions, and register expressions for registering a closure as the
handler for a given event or message type. The full set of expressions also includes
let expressions and if expressions and function applications. register expres-
sions correspond to calls to e.g., the EventTarget.addEventListener method
from Section 4.4.2 and can be used to bind a closure to a given event type.

In the remainder of this section, we define a set of small-step evaluation rules that
stipulate how StackFulINTRA would perform a single test run of an application
written in this language. These evaluation rules operate on a CESK-machine-
like [46] representation of the state of StackFulINTRA’s test executor. Figure 4.4

94

4.5. FORMALISATION OF INTRA-PROCESS CONCOLIC TESTING

defines the state space. Overlines in this figure denote sequences of elements.
We use the : operator to conjoin individual elements to the head or the tail of
sequences, and we use ε to represent an empty sequence.

A value in the language consists of a concrete and a symbolic component. The
concrete component vc is either an integer, a boolean, or a closure. The symbolic
component vs can either be a literal integer or boolean, a unique input variable
labelled with an identifier (i.e., a symbol), the empty symbol (in case the concrete
value cannot be represented symbolically), or a symbolic representation of a binary
expression.

A state ς consists of: the current expression being evaluated, the current lexical
environment which maps variables to addresses, the store which maps addresses
to values, the continuation stack consisting entirely of continuation frames for
let expressions, a path constraint, a (possibly empty) sequence of precomputed
inputs, and a (possibly empty) sequence of preselected events. Note that the
store maps to pairs of a concrete and a symbolic value, rather than just either a
concrete or a symbolic value.

As explained in Section 4.4, in an event-driven program, the path constraint
includes both conditional expressions and event handler selection nodes. The
sequence of inputs represents the precomputed concrete values that will be as-
signed to the symbolic input variables, i.e., program inputs or sources of non-
determinism, encountered during the test run. The event sequence represents
the event handlers selected by StackFulINTRA to be executed consecutively.
Whenever a particular handler has been completely executed, StackFulINTRA
moves on to the next handler until all handlers have been executed.

We do not model how StackFulINTRA moves from one test run to the other.
This involves the test selector choosing the sequence of inputs and of handlers to
be invoked in the next run. Both sequences are computed by observing the path
constraints that were collected during previous test runs. The exact mechanism for
selecting them depends on the exploration strategy employed by the test selector.
Instead of modelling this mechanism, we assume the existence of an external driver
that provides both sequences.

The evaluation rules for StackFulINTRA are split in evaluation rules for atomic
expressions and for the other expressions.

95

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

c ∈ Constants ::= i | b
lam ∈ Lam ::= λx. e

f, ae ∈ Atom ::= c | lam | x | input |
ae ⊕ ae | register m lam

x ∈ V ar ::= (a set of identifiers)
m ∈ HandlerType ::= (a set of identifiers)

e ∈ Exp ::= let x = e in e
| f ae
| ae
| if ae then e else e

Figure 4.3: The syntax of the minimalistic language.

clo ∈ Closure ::= clo(lam, ρ)
h ∈ Handler ::= handler(clo,m)

id ∈ N ::= (an infinite set of identifiers)
a ∈ Addr ::= (an infinite set of addresses)
vc ∈ Vc ::= i | b | clo
vs ∈ Vs ::= int(i) | bool(b) | inid | empty | vs ⊕ vs

v ∈ V ⊆ Vc × Vs ::= 〈vc, vs〉
ρ ∈ Env = Var → Addr
σ ∈ Store = Addr → V
κ ∈ Kont ::= letk(a, e, ρ)
κ ∈ KStack = Kont

ctrt ∈ Constraint ::= vs | h
pc ∈ PC = Constraint

ι ∈ Inputs = Vc

h ∈ Handlers = Handler
ς ∈ Σ = Exp × Env × Store ×KStack ×

PC × Inputs ×Handlers

Figure 4.4: The state space of StackFulINTRA.

96

4.5. FORMALISATION OF INTRA-PROCESS CONCOLIC TESTING

4.5.2 Evaluating Atomic Expressions

Atomic expressions are evaluated via the atomic evaluation function A, defined as:

A = Atom × Env × Store × PC × Inputs → V × PC × Inputs

This evaluation function is listed in Figure 4.5. This function takes as input an
atomic expression, an environment and a store, a path constraint and a sequence
of precomputed inputs. It returns a value, the possibly updated path constraint,
and the possibly updated input sequence.

When evaluating a constant, the atomic evaluation function produces a value of
which the concrete component consists of the constant itself and the symbolic
component corresponds to a lifting of the concrete value to the symbolic domain
according to the lift function ↑. Lifting an integer i produces the symbolic value
int(i), lifting a boolean produces bool(b). Evaluating a lambda produces a value
of which the concrete component is a closure and the symbolic component is
empty as closures are not represented symbolically. A variable is evaluated by
retrieving its address from the environment and looking up this address in the
store.

input expressions represent sources of non-determinism and program inputs, such
as a call to randomInt or the key code of a KeyboardEvent event. An input
expression evaluates to an input value. The concrete component of an input value
may differ between test runs, while its symbolic component is a new symbolic
input variable inid , with id an identifier that uniquely represents this input in
the current test run. The concrete component is either the first value vc in the
sequence of precomputed input values, or it is a purely random number if this
sequence is empty. In case of the former, A returns the remainder ῑ of the sequence
alongside the non-deterministic value. In case of the latter, it returns the empty
sequence ε.

A register expression is evaluated by wrapping the closure and the event type
into a handler and appending this handler to the path constraint. The boolean
true is returned to signal the closure successfully being registered. The registra-
tion is included as part of the path constraint because a handler might only be
registered conditionally. Before the start of a new test run, the external driver
must therefore consider the path constraint when determining which sequence of
handlers to select. For the sake of rendering the evaluation rules simpler, the
language assumes that a closure registered as an event handler that features ex-
actly one parameter. When the handler is executed, it is passed an input value

97

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

as argument. This argument represents non-deterministic inputs generated as a
result of the handler being executed, similar to how StackFulINTRA treats e.g.,
the coordinates of a MouseEvent event or the key code of a KeyboardEvent as
symbolic program inputs.

The atomic evaluation rule A-Binary stipulates that a binary expression is evalu-
ated by successively applying A to the left and to the right operand. The concrete
component of the resulting value is computed by simply applying the operator.
In most cases, the symbolic component is simply a literal representation of this
operator being applied to the symbolic values of the operands. Depending on the
SMT solver that is used, however, some expressions involving non-linear binary
operators (e.g., the modulo operator) cannot be represented symbolically as they
cannot be solved by the SMT solver [21]. Concolic testers mitigate this problem
via concretisation (cf. Section 2.2.3): the concrete result is lifted directly to the
symbolic domain.

A(c, ρ, σ, pc, ι) = 〈〈c, ↑c〉, pc, ι〉
A(λx. e, ρ, σ, pc, ι) = 〈〈clo(λx. e, ρ), empty〉, pc, ι〉
A(x, ρ, σ, pc, ι) = 〈σ(ρ(x)), pc, ι〉

A(input, ρ, σ, pc, vc : ι) = 〈〈vc, inid〉, pc, ι〉
With id a new, unique identifier

A(input, ρ, σ, pc, ε) = 〈〈ir, inid〉, pc, ε〉
With ir a random number and
id a new, unique identifier

A(register e lam, ρ, σ, pc, ι) = 〈〈true,bool(true)〉, pc : handler(clo(lam, ρ), e), ι〉

A-Binary
A(ae1, ρ, σ, pc, ι) = 〈〈vc1, vs1〉, pc′, ι′〉 A((ae2, ρ, σ, pc′, ι′) = 〈〈vc2, vs2〉, pc′′, ι′′〉

A(ae1 ⊕ ae2), ρ, σ, ι) = 〈〈vc1 ⊕ vc2, vs〉, pc′′, ι′′〉

With vs equal to vs1 ⊕ vs2 if vs1 ⊕ vs2 can be modelled symbolically,

or equal to ↑ (vc1 ⊕ vc2) if it cannot.

Figure 4.5: The atomic evaluation function A.

98

4.5. FORMALISATION OF INTRA-PROCESS CONCOLIC TESTING

4.5.3 Evaluating Non-atomic Expressions

Figure 4.5 lists the evaluation rules for non-atomic expressions. These evaluation
rules take a state ς as input and return either a next if the test run can pro-
ceed with a new state, a fail if the test run terminated because an error was
encountered, or a stop if the test run was stopped because StackFulINTRA ex-
ecuted all preselected handlers. In case of a fail, evaluation stops and the current
path constraint is returned to indicate under which circumstances an error arises
in the program.

Rule E-Let stipulates that let expressions are evaluated by allocating a new,
unique address and creating a new environment ρ′ where the variable is bound to
this address. StackFulINTRA pushes a new letk continuation frame to evaluate
the body once the value to be bound has been evaluated. The evaluation rule
employs the auxiliary function alloc, not modelled here, to generate a unique
address. Note that let expressions are the only type of expressions that result in
a frame being pushed onto the continuation stack.

E-PopContinuation concerns atomic expressions. It uses the evaluation func-
tion A to evaluate this expression to a value v, and it considers the continuation
stack to determine where this value must flow to. Since the stack consists entirely
of letk frames, StackFulINTRA proceeds by assigning a, saved in the frame, to
v in the store and continuing with the let body expression.

E-Application describes how function applications of the form fae are evalu-
ated. As both the function and the argument expression are atomic expressions,
they are evaluated with the atomic evaluation function A, with the function ex-
pression required to evaluate to a closure. The closure’s environment is extended
with a binding from the parameter to a new, unique address a, and the store is
extended with a binding from a to the argument value. Evaluation then proceeds
with the function’s body.

E-IfTrue demonstrates how the path constraint is updated when a branch condi-
tion is encountered. It specifies that if the predicate of an if expression evaluates
to true, the path constraint is updated by appending the symbolic component of
the predicate value to the path constraint.

E-IfFalse is similar to E-IfTrue. This rule describes the case where the pre-
dicate expression evaluates to false. Like E-IfTrue, the path constraint is ex-
tended, but with the negation of the symbolic component of the predicate value.

99

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

E-Let

a = alloc() ρ′ = ρ[x 7→ a]
〈let x = e1 in e2, ρ, σ, κ, pc, ι, h〉 → next(〈e1, ρ, σ, letk(a, e2, ρ

′) : κ〉, pc, ι, h〉)

E-PopContinuation

A(ae, ρ, σ, pc, ι) = 〈v, pc′, ι′〉
〈ae, ρ, σ, letk(a, e′, ρ′) : κ, pc, ι, h〉 → next(〈e′, ρ′, σ[a 7→ v], κ, pc′, ι′, h〉)

E-Application

A(f, ρ, σ, pc, ι) = 〈〈clo(λx. e′, ρ′), empty〉, pc′, ι′〉
A(ae, ρ, σ, pc′, ι′) = 〈v, pc′′, ι′′〉 a = alloc()

〈f ae, ρ, σ, κ, pc, ι, h〉 → next(〈e′, ρ′[x 7→ a], σ[a 7→ v], κ, pc′′, ι′′, h〉)

E-IfTrue

A(ae, ρ, σ, pc, ι) = 〈〈true, vs〉, pc′, ι′〉
〈if ae then e1 else e2, ρ, σ, κ, pc, ι, h〉 → next(〈e1, ρ, σ, κ, pc′ : vs, ι

′, h〉)

E-IfFalse

A(ae, ρ, σ, pc, ι) = 〈〈false, vs〉, pc′, ι′〉
〈if ae then e1 else e2, ρ, σ, κ, pc, ι, h〉 → next(〈e2, ρ, σ, κ, pc′ : ¬vs, ι

′, h〉)

E-HandlerWithInput

a = alloc() ρ′′ = ρ′[x 7→ a] σ′ = σ[a 7→ 〈vc, inid〉]
〈ae, ρ, σ, ε, pc, vc : ι,handler(clo(λx. e′, ρ′),m′) : h〉 → next(〈e′, ρ′′, σ, ε, pc, ι, h〉)

With id a new, unique identifier.

E-HandlerNoInput

a = alloc() ρ′′ = ρ′[x 7→ a] σ′ = σ[a 7→ 〈ir, inid〉]
〈ae, ρ, σ, ε, pc, ε,handler(clo(λx. e′, ρ′),m′) : h〉 → next(〈e′, ρ′′, σ, ε, pc, ι, h〉)

With id a new, unique identifier and ir a random number

100

4.6. CONCLUSION

E-Error

A(ae, ρ, σ, pc, ι) =
〈ae, ρ, σ, κ, pc, ι, h〉 → fail(pc)

E-NoMoreHandlers

A(ae, ρ, σ, pc, ι) = 〈v, pc′, ι′〉
〈ae, ρ, σ, ε, pc, ι, ε〉 → stop

Figure 4.5: Evaluating non-atomic expressions.

E-HandlerWithInput describes that a preselected handler is invoked when
StackFulINTRA has reached an atomic expression with an empty continuation
stack. As this indicates that no code is now being executed, StackFulINTRA
can start executing the next event handler from its event sequence. It does so
by popping the first handler from the sequence and proceeding to evaluate the
body of the closure. Since the parameter of the closure is a non-deterministic
input variable, it is assigned the first value vc from the sequence of precomputed
inputs, if this sequence is non-empty, similar to how the atomic evaluation function
evaluated input expressions.

E-HandlerNoInput is similar to E-HandlerWithInput but describes the
case where a new handler is mocked and no precomputed input is available. Sim-
ilar to how input-expressions are evaluated when no precomputed inputs are
available, a value-pair is generated where the concrete component is ir a random
value, and the symbolic component is a new, unique symbolic input variable.

E-Error describes how StackFulINTRA handles the case where atomic evalu-
ation results in an error, represented here as the symbol , e.g., because an un-
defined variable was read or a binary operator was applied to incompatible types.
StackFulINTRA wraps the current path constraint in a fail and terminates the
test run.

E-NoMoreHandlers stipulates that a test run terminates when Stack-
FulINTRA reaches an atomic expression with an empty continuation stack and
an empty event sequence. Assuming the evaluation of this atomic expression
does not result in an error (cf. E-Error), the test run terminates with a stop.

4.6 Conclusion

In this chapter, we presented how StackFulINTRA performs intra-process con-
colic testing of JavaScript applications, i.e., concolic testing applied to individual

101

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

JavaScript processes. We summarise the topics discussed in this chapter and con-
clude by evaluating this intra-process tester on the criteria outlined in Section 2.4
for testing full-stack JavaScript web applications.

4.6.1 Summary

We gave an overview of the architecture of StackFulINTRA, with a test executor
and a test selector.

The test executor uses the Aran framework to instrument a program’s source
code. This program instrumentation allows for performing shadow execution, so
that symbolic execution can take place alongside concrete execution. Specifically,
the executor intercepts and generates program inputs, constructs symbolic expres-
sions, and updates the path constraint. In the case of an event-driven JavaScript
application, it also intercepts the dynamic registration and deregistration of event
handlers, and ensures that a prescribed event sequence is followed without violat-
ing the atomicity of JavaScript event handlers. At the end of each test run, the
test executor communicates the path constraint observed for this run to the test
selector and receives from the selector the set of program inputs and the event
sequence to follow in the next run.

The test selector maintains the symbolic execution tree, selects from the tree a
new program path to be explored in the next test run, and computes appropriate
values for the program inputs appearing in this path. Event-driven programs can
be supported by extending the representation of a symbolic execution tree with
event branching nodes.

To facilitate replication, we presented a formal model of how StackFulINTRA
performs single test runs on programs, driven by an external driver which suggests
program inputs and event sequences to be followed by the model. These programs
are written in a small language featuring numbers, booleans, and closures, and
which further allows for the generation of non-deterministic program inputs, and
for registering and invoking event handlers. This language, although minimalistic,
therefore features all elements that are essential to model the concolic testing of
event-driven JavaScript programs.

102

4.6. CONCLUSION

4.6.2 Concluding Remarks

The intra-process tester described in this chapter allows for concolic testing of
individual JavaScript processes. Although it is therefore by design insufficient
to enable testing of full-stack JavaScript web applications, Table 4.1 nonetheless
evaluates the intra-process StackFulINTRA tester on the set of criteria identified
for testing full-stack JavaScript web applications outlined in Section 2.4.

Table 4.1: The intra-process StackFulINTRA tester evaluated on the list of cri-
teria identified in Section 2.4.

Criterion Description Satisfied?

1 A Capable of testing sequential JavaScript
code

3

B Models inputs from the DOM 3

2 A Allows for dynamic (de)registration of
event handlers

3

B Explores event space ±

3 Capable of finding composition-specific
faults

7

4 A Whole-program monitoring 7

B Observes communication between dis-
tributed processes

7

Criterion 1

Criterion 1 relates to whether the tester is capable of testing web clients. This
criterion is subdivided into criteria 1.A, which requires the tester to be capable of
testing web clients, and 1.B, which requires the tester to consider a web applica-
tion’s domain object model (DOM) for program inputs.

Criterion 1.A is satisfied by construction. StackFulINTRA’s test executor, which
is responsible for executing the JavaScript program under test, relies on the Aran
framework for instrumenting the program. Aran’s traps enable implementing
shadow execution of the program, which in turn allows for monitoring of and
intervening in the execution of the program at a fine-grained level, without the
tester itself having to model the various intricacies of JavaScript’s semantics.
StackFulINTRA is therefore capable of executing JavaScript code.

103

CHAPTER 4. A FOUNDATION OF INTRA-PROCESS CONCOLIC TESTING

Criterion 1.B requires the tester to consider the DOM as a source of non-
deterministic program inputs so that all possible user interactions on a web page
may be tested automatically. For example, DOM elements associated with user
inputs, such as clicking a button, writing content into a text field, interacting
with an HTML canvas etc. should all be considered as a form of program input,
as these actions may affect the execution of the web application.

This criterion is also satisfied by means of StackFulINTRA’s test executor. When
the JavaScript code queries the state of an HTML element, this query is inter-
cepted by one of the corresponding Aran traps, which in turn enables the test
executor to intervene and generate an appropriate value for the resulting program
input. Of course, the test executor must rely on an extensive model of which
JavaScript queries should result in which kinds of program inputs. However, the
construction of such a model is an engineering challenge rather than a fundamental
obstacle.

Criterion 2

Criterion 2 relates to testing event-driven programs. It requires the tester to be
capable of exploring the event space of the program and to allow for the dynamic,
i.e., conditional, registration and deregistration of event handlers. Section 4.4
discussed how our test executor and test selector support testing of event-driven
programs. StackFulINTRA’s test executor is capable of intercepting dynamic
registration and deregistration of event handlers by leveraging the appropriate
Aran traps, e.g., the apply trap, and by building a model of JavaScript librar-
ies and standard functions describing which methods perform a registration or
deregistration. The first subcriterion is therefore satisfied.

The second subcriterion, whether the event space of the program can be ex-
plored efficiently, depends on the exploration strategy used by the test selector.
StackFulINTRA’s test selector implements two search strategies: a brute-force
breadth-first strategy and another strategy based on the one employed by the
SymJS tester [72]. Although both strategies enable exploration of a program’s
event space, the efficiency of the exploration, i.e., how quickly the tester is capable
of traversing this space, strongly depends on the strategy.

104

4.6. CONCLUSION

Criteria 3-4

Criterion 3 and subcriteria 4.A and 4.B all relate to how a full-stack JavaScript
web application is composed of the interconnected server process and one or more
client processes. Criterion 3 demands that the tester is capable of finding program
errors which may only arise in a specific composition of processes. Criteria 4.A
and 4.B require the tester to be capable of monitoring the execution of all pro-
cesses simultaneously, while taking into account the communication and interplay
between the various processes. Since the tester described in this chapter only
tests individual JavaScript processes, without taking into consideration how this
process may be part of a larger application, none of these criteria are satisfied.

Overall Conclusion

The intra-process StackFulINTRA tester satisfies three of the seven criteria. One
criterion, questioning whether the event space of the application can be explored
efficiently, is only partially satisfied for now, as it relies on the test selector em-
ploying an efficient exploration strategy. The remaining three criteria relate to
how a concolic tester can be constructed which tests a collection of interconnected
JavaScript processes. In Chapter 5, we will show how StackFulINTRA can be
extended so that it is able to satisfy these criteria as well.

105

5 Inter-process Concolic Testing

The previous chapter introduced StackFulINTRA, a concolic tester for event-
driven, but single-process, JavaScript. As demonstrated in Section 4.6, Stack-
FulINTRA satisfies three of our seven criteria for performing automated testing
on full-stack JavaScript web applications: i) it is capable of testing sequential
JavaScript code, ii) it can access the DOM and is therefore capable of modelling
user inputs, as well as system inputs and environment inputs, iii) and its ability to
observe the dynamic registration and deregistration of event handlers, combined
with the possibility of creating and dispatching events, allows StackFulINTRA
to explore an application’s event space.

One criterion, regarding the exploration of a web application’s event space, was
partially satisfied. Although StackFulINTRA is capable of traversing the event
space, the efficiency at which it does so is strongly dependent on the exploration
strategy employed by the test selector. The extent to which this criterion is
satisfied will be reconsidered in Chapter 6.

The remaining three criteria relate to how a full-stack JavaScript web application
is composed of multiple communicating processes. These criteria consist of: i)
whether the tester is capable of finding composition-specific faults, ii) whether
the tester can monitor the execution of the constituent processes of the full-stack
JavaScript web application simultaneously, and iii) whether the tester can observe
the communication between these processes. As StackFulINTRA observes only
the execution of one individual process, it trivially fails to meet these criteria.

In this chapter, we describe an extension of the previous tester, named
StackFulINTER

1 because of its ability to perform inter-process concolic testing,
that satisfies these last three criteria. We define inter-process concolic testing as
concolic testing that takes place over multiple communicating processes simul-
taneously, with the tester observing the communication between all processes,
and having execution paths cross process boundaries. We introduce inter-process
testing by means of a use case in which we revisit the Calculator full-stack

1https://github.com/softwarelanguageslab/StackFul

107

https://github.com/softwarelanguageslab/StackFul

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

JavaScript web application presented in Section 2.1.2. In this use case, we show
how inter-process testers such as StackFulINTER enable differentiating between
server errors that are of high or low importance, based on whether the error
is reachable from a given client in a specific client-server configuration or not.
We hypothesise that developers may prioritise fixing server-side errors that are
reachable from the client over server-side errors that are unreachable from the
client. It should be noted that server-side errors that are unreachable from a
given client may still occur when an end-user accesses the server via a different
client, or when they bypass the client altogether. We therefore do not intend
for this use-case to distinguish between server-side errors that should be fixed
and server-side errors that may remain unpatched. However, we believe that
developers may find this a useful categorisation to decide which bugs should be
patched first.

After introducing the use case, Section 5.2 gives an overview of inter-process test-
ing and describes the architecture of StackFulINTER. Section 5.3 then describes
how this use case is tackled by StackFulINTER. To further detail this use case,
Section 5.4 extends the formal description of intra-process concolic testing (cf. Sec-
tion 4.5) to the domain of inter-process testing. Section 5.5 evaluates the use case
on a suite of full-stack JavaScript web applications. Section 5.6 concludes the
chapter by evaluating StackFulINTER on the set of seven criteria for performing
automated testing of full-stack JavaScript web applications.

5.1 Motivating the Need for Inter-process Concolic
Testing

In this section, we present a use case for an inter-process concolic tester and
describe how StackFulINTER realises this scenario, as opposed to how intra-
process testers such as StackFulINTRA would handle it. This use case focuses
on differentiating server-side errors in full-stack JavaScript web applications based
on whether or not an error is reachable from a client in a specific client-server
configuration.

5.1.1 Revisiting the Calculator Application

Consider again the full-stack Calculator application presented in Section 2.1.2.
Before sending the arithmetic expression to the server, the client checks whether

108

5.1. MOTIVATING THE NEED FOR INTER-PROCESS CONCOLIC TESTING

the expression is a valid arithmetic expression with a recognised operator (line 14
of Listing 2.1). If it is not, the client instead displays a warning to the user. The
server performs an identical check on the payload of the messages that it receives
(line 23 of Listing 2.3) and throws an error if the expression’s operator cannot be
resolved to a known arithmetic operator. The server also performs an additional
check on whether the expression corresponds to a division by zero (line 20). For
this last check, there is no equivalent client-side validation.

Traditional, intra-process concolic-testers such as StackFulINTRA would have to
test both sides of the application in isolation from each other, since these test-
ers only test individual processes. When applied to the client, StackFulINTRA
should exercise the event handlers of all buttons and the callback for receiv-
ing the server message containing the result of the computation (lines 22–25 of
Listing 2.1). This callback could be exercised either by mocking the server and
generating messages containing random result values, or by actually requiring the
testing setup to run a server separate from the client process under test, in which
case the client may send concrete messages to the server and expect real mes-
sages back. In either case, StackFulINTRA should be able to achieve 100 % line
coverage for the client.

When testing the server, StackFulINTRA could again opt to exercise the com-
putation request callback (lines 8–28 of Listing 2.3) by mocking client messages.
However, as the server is being tested in isolation from the client, StackFulINTRA
does not have any information on the contents of the message and can therefore
only assume that the message may contain any operand and operator. In practice,
when combining this server code with the previously described client code, it is
clear that the error on line 23 is unreachable, as this particular client ensures that
only messages using any of the four valid operators are sent to the server. On the
other hand, the division-by-zero error on line 20 is still reachable on the server,
as this client does not check for this error. We therefore say that the division-by-
zero error is a high-priority error, while the invalid operator error is a low-priority
error. Providing such a classification might increase developers’ confidence in the
testing tool, as evidenced for static bug detectors [105, 97, 69].

However, in the case of intra-process testing, the tester only considers one of
either the client or the server processes. To test these processes, it must mock
user-triggered events and inter-process messages. In the case of the latter though,
no constraint can be placed on these messages as the tester does not know where
these messages would come from nor how they would be produced. It is therefore
unable to distinguish between the importance of both errors.

109

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Client Server

?

?

?

??

?

Incoming message ?
Click button

Click button

Incoming message

Incoming message

Figure 5.1: Intra-process testing of a client and a server in isolation from each
other

Client Server

Click button

Click button

Figure 5.2: Inter-process testing of a particular client-server configuration

Differentiating between both kinds of errors is only possible by using an inter-
process tester such as StackFulINTER which can simultaneously consider the
server-side constraints that result in a high-priority error from a message handler,
and the client-side constraint that cause the client to send this message in the first
place. As an inter-process tester, StackFulINTER observes messages that are sent
by this particular client as a result of user-triggered events and can track these
messages as they reach the server, making StackFulINTER aware of how these
messages were produced. In the case of this Calculator application, messages
with an invalid operator would never be sent to the server but would be halted by
the client on line 14 of Listing 2.1. When combined with traditional, intra-process
testing of the server in isolation, StackFulINTER can realise that the division-
by-zero is a high-priority error, as it can be triggered by any user exercising this
client. The error involving the unknown operator is a low-priority error as it can
only be triggered in combination with a different client, or by circumventing the
client altogether. This issue is visualised for a generic full-stack JavaScript web
application in Figure 5.1 and Figure 5.2.

110

5.2. OVERVIEW OF INTER-PROCESS CONCOLIC TESTING

5.2 Overview of Inter-process Concolic Testing

In order to perform inter-process concolic testing of a full-stack JavaScript web
application, the concolic testing procedure must be extended to span across all
constituent processes of the application. As an example of how an inter-process
concolic tester would test a full-stack JavaScript web application, consider List-
ing 5.1. This application consists of a client and a server process which com-

1 // Client side
2 const socket = io();
3 let x = randomInt();
4 if (x > 10) {
5 socket.emit("msg", x + 1);
6 }
7 // Server side
8 ... // Create and connect socket
9 socket.on("msg", function (data) {
10 let y = randomInt();
11 if (y === 42 && data < 15) {
12 throw new Error();
13 }
14 });

Listing 5.1: A simple full-stack JavaScript web application.

municate with each other via websockets (lines 2 and 9). The client generates a
symbolic input, in the form of a random value, that is assigned to the variable
x (line 3). The client conditionally sends a message with name msg and with
payload x + 1 to the server (line 5). Upon receiving the message (line 9), the
server generates a symbolic input of its own (line 10) and conditionally throws
an uncaught error (line 12). An inter-process concolic tester should be capable of
finding and reporting this server-side error.

5.2.1 Requirements for Inter-process Concolic Testing

We identify three requirements that must be satisfied in order to enable inter-
process concolic testing of the code presented in Listing 5.1 and, more generally,
to distinguish between high-priority and low-priority errors in the Calculator
application:

111

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Concolic testing on the process composition as a whole An inter-process con-
colic tester must perform simultaneous concrete and symbolic execution on
every process in the application.

Global path constraint The tester must construct a global path constraint that
includes constraints that were observed in an arbitrary application process.

Modelling message payload The tester must observe and model communication
between processes, and provide a symbolic representation of the payload of
the messages sent.

Concolic Testing on Both Processes

The server-side error is only triggered if both the client-side condition guarding
the message send operation and the server-side condition guarding the uncaught
error evaluate to true. In order to explore both consequent branches, the random
value assigned to x on the client side and the random value assigned to y on
the server side must attain specific values. It is therefore necessary to collect
symbolic constraints on these conditions in both processes of the application, so
that appropriate values can be computed by feeding these constraints to the test
selector.

Constructing a Global Path Constraint

Performing concolic testing on both processes would lead the tester to con-
struct the symbolic constraint x0 > 10 for the condition on line 4 and
y0 = 42 ∧ x0 + 1 < 15 for the condition on line 11, where x0 and y0 refer to
the symbolic inputs assigned to x and y respectively. As both constraints
place restrictions on the concrete values that x0 can assume in order to reach
their respective consequent branches, the concolic tester cannot consider these
constraints in isolation from each other. If the tester were to ignore the server-side
constraint, it might compute a concrete value for x0 that is larger than 15,
and execution would hence not reach the error on line 12. Likewise, if the first
constraint were to be disregarded, the tester might compute a value smaller than
10, which would result in the message not being sent in the first place so that
the error likewise would not be reached.

112

5.2. OVERVIEW OF INTER-PROCESS CONCOLIC TESTING

A concolic tester executing the client-server composition as a whole would there-
fore have to construct the global path constraint x0 > 10 ∧ y0 = 42 ∧ x0+1 < 15,
which is formed by taking the conjunction of the client-side constraints and server-
side constraints. Using this global path constraint, the tester can trivially find
solutions for x0 and y0 that steer the execution towards the error.

Modelling Message Payload

In order to construct the global path constraint, when sending the message from
the client to the server, the symbolic representation of data, i.e., x0 + 1, must
be sent along with its concrete value. If this symbolic expression is not sent,
concolic testing on the server side would be forced to fall back to either concret-
isation or representing data’s symbolic expression as a symbolic input variable.
In both cases, server-side constraints that involve data would then incorrectly
reflect which constraints must be placed on the client-side input x0.

5.2.2 Architecture of StackFulINTER

In order to satisfy these three requirements, StackFulINTER employs a dynamic
analysis that spans all constituent processes of the full-stack JavaScript web ap-
plication. To this end, StackFulINTER uses Aran-Remote [35], an analysis
platform that enables deploying a single instance of a dynamic analysis across
several processes. Aran-Remote inserts the same traps around join points in
the source code of the processes as those inserted by Aran (cf. Section 4.2.1).
However, the trap functions introduced into the instrumented code only contain
a stub implementation. When a trap is called, the stub serialises the trap argu-
ments and sends a synchronous request to the central analysis process, which in
turn executes the actual trap. This central analysis process is shared between all
instrumented processes and atomically handles all advice requests in the order
in which they are received. When the trap has finished executing on the central
analysis process, the return value is serialised and sent back to the requesting
process, which then resumes its execution. Because of the frequent synchronous
communication, an unfortunate side-effect is that the central analysis process may
introduce a rather large performance overhead.

The specification of which client and server processes should be launched to test
the full-stack JavaScript web application is configured by the user of Stack-
FulINTER. This user specifies the types of the processes (i.e., their source code)

113

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

and the number of instances (i.e., their multiplicity) that should be created of
this process type. At startup time, StackFulINTER follows this specification and
sequentially launches each process.

Instrument

JavaScript
Execution Engine

Test Executor

[ARAN]
Test Selector

Z3

2*y == x

x > y + 10

Symbolic Execution Tree

Path
Selector

Select path

Feed
constraints

Compute
inputs

FS Process 1

Instrument

JavaScript
Execution Engine

[ARAN]

FS Process 2

Central Analysis Process

NodeJS

Advice

Call Call

Path constraint

Computed inputs
and events

Figure 5.3: The architecture of StackFulINTER.

Figure 5.3 illustrates the architecture of StackFulINTER. A full-stack JavaScript
web application consists of one or more JavaScript processes. The source code
for each of these processes is first instrumented via Aran, after which the instru-
mented code is executed by a JavaScript engine, such as a browser or the Node.js
runtime. The central analysis process itself is executed as a Node.js process. It
sets up a proxy to listen for incoming requests from one of the traps in the instru-
mented full-stack processes and processes each request atomically. The central
analysis process and the full-stack JavaScript web application processes together
form the test executor (cf. Section 4.2).

Similar to the test executor described for StackFulINTRA, the executor is
responsible for constructing symbolic expressions and collecting symbolic con-
straints across all full-stack processes. This makes it possible for the central
analysis process to construct the global path constraint, as it can store one
central instance of a path constraint and concatenate it whenever it observes a
new, individual constraint. Note that the central analysis process does not take
race conditions between processes into account. However, race conditions only
affect the order in which constraints are added to the global path constraint.

The test selector for StackFulINTER is identical to the one employed in Stack-
FulINTRA (cf. Section 4.3), although the symbolic variable inputs that appear in
the global path constraint may originate from several different full-stack processes.

114

5.3. PRIORITISING SERVER-SIDE REACHABILITY

By having the central analysis process observe the concrete and symbolic execution
of the full-stack processes via the advice API, as well as having the central analysis
process construct a global path constraint, the first and second requirements for
performing inter-process concolic testing are met by StackFulINTER.

The third requirement, modelling the messages’ payload, is achieved by having
the test executor intercept all websocket traffic. When the test executor observes
that a message is sent via a websocket, e.g., via socket.emit, to another process
that is part of the full-stack JavaScript web application, the executor intercepts
the message send operation. It then ensures that for each value in the payload
of the message, both a concrete and a symbolic representation of this payload is
transmitted.

The test executor likewise intercepts the registration of message handlers, via e.g.,
socket.on, and registers a separate handler instead. This handler unpacks the
message, and for each value in the payload, binds the symbolic representation
of this value to the concrete representation. Afterwards, the original message
handler is called and execution resumes as normal.

5.3 Prioritising Server-side Reachability

As described in Section 5.1, inter-process testing would enable distinguishing
between high-priority and low-priority server-side errors, because of its ability
to simultaneously consider which server-side constraints lead a message handler
to trigger an error, and which client-side constraints result in the client sending
this message in the first place. StackFulINTER allows for distinguishing between
both kinds of errors. Rather than performing inter-process testing from the start,
which would quickly run into the state explosion problem due to the increased
lengths of the path constraints, StackFulINTER operates in two phases. In the
first phase StackFulINTER automatically tests the server side of the web applica-
tion in isolation over the course of several test runs, i.e., it performs intra-process
testing of the server process. In the second phase, StackFulINTER performs
inter-process testing of a particular client-server configuration to attempt to ex-
ercise the client in such a way that the previously discovered server errors are
triggered. Once testing terminates, any error that was reproduced via this partic-
ular client-server configuration is labelled a high-priority error, while errors that
could not be reproduced are labelled low-priority.

We proceed by describing both phases.

115

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

5.3.1 Intra-process Testing Phase

In both the intra-process and inter-process testing phases, StackFulINTER em-
ploys the architecture outlined in Section 5.2.2. StackFulINTER therefore has
a central analysis process available during the intra-process phase as well, even
though during this phase the central analysis only observes the execution of the
server process.

The central analysis process continuously monitors all information that is relevant
for determining which program paths are available on the process under test. This
includes information about the symbolic conditions the analysis observes and the
various message listeners that are registered.

During the intra-process testing phase on the server, incoming messages must be
mocked to test the server’s message handling code. StackFulINTER hence treats
the server as an event-driven application, where the reception of a mocked message
is considered an ordinary event, so intra-process testing of the server proceeds in
a manner similar to that described in Section 4.4. To avoid any race conditions,
the analysis triggers the reception of a newly mocked message only when it has
determined that the message handler for the previous message has terminated.
The payload of these messages is treated as consisting entirely of symbolic input
variables.

The collected path constraints hence consist of a sequence of incoming, mocked
messages as well as the true or false outcomes of conditional branches which may
or may not depend on the values of the message’s symbolic input variables. As
the central analysis process has information available on the symbolic branch
conditions as well as which message listeners have been registered, the analysis
knows which paths are available and can communicate this information to the
test selector. Similar to StackFulINTRA, StackFulINTER steers the execution
of the server so it follows the path that was prescribed by the test selector by
controlling the sources of non-deterministic execution, such as e.g., randomInt
and the sequence and payload of the messages that must be mocked. Whenever
StackFulINTER encounters an error during the execution of the application, it
stores the full path constraint that led to this error, including the message handlers
for which a message was mocked.

116

5.3. PRIORITISING SERVER-SIDE REACHABILITY

5.3.2 Inter-process Testing Phase

Initially, the inter-process testing phase is similar to the first phase in that the
central analysis process and the test selector work in tandem to explore the client
process of the web application over the course of multiple test runs. As the
client is generally event-driven, the path constraints collected by the analysis
are once again a combination of symbolic branch conditions and triggered event
sequences. As in the first phase, the analysis process intervenes in the execution
of the client both when a non-deterministic value is generated, and to ensure that
the prescribed event sequence is followed. The inter-process phase can be divided
in three stages: exploring the client-side code until StackFulINTER observes a
message being sent to the server, determining whether this message could carry
a payload that triggers a server error, and starting a new test run in which the
previous run is replayed but the payload of the message is changed.

We describe these stages using Listing 5.2 as an example. In this program, a
client generates two random integers (lines 4–5) and sends a message msg to the
server if the first number is greater than 10. The server performs an additional
check. If the x field in the message’s payload is greater than 15 and the y field
equals 1, an error is thrown. Suppose that this error was discovered during the
intra-process testing phase. The path constraint leading to this error would be
data.y = 1 ∧ data.x > 15, with the additional information that a msg message
was mocked to exercise the msg handler.

5.3.3 Exploring the Client

This stage of the inter-process phase is similar to the exploration of the server
during the intra-process phase. The main goal of this stage is to discover, over the
course of several test runs, a program path that results in a message being sent.
Whenever this happens, the central analysis process checks whether this message
can result in a previously discovered error to be reached on the server side. If any
such errors are found, StackFulINTER proceeds to the next stage. If a test run
finishes without a message being sent, StackFulINTER starts a new test run and
explores a different path.

In the case of Listing 5.2, one branch of the event handler results in a message
being sent. Suppose that at some point a test run generates the random integers

117

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

1 // Client side
2 const socket = io();
3 document.addEventHandler("click", function (e) {
4 let x = randomInt();
5 let y = randomInt();
6 if (x > 10) {
7 socket.emit("msg", {x: x + 1, y: y });
8 }
9 });
10 // Server side
11 ... // Create and connect socket
12 socket.on("msg", function (data) {
13 if (data.y === 1 && data.x > 15) {
14 throw new Error();
15 }
16 });

Listing 5.2: Client and server code of an event-driven full-stack JavaScript web
application.

11 and 3 for x and y respectively so that the message on line 7 is sent, with a
payload of 12 for data.x and 3 for data.y. StackFulINTER remembers the path
constraint for the current test run, x > 10, and proceeds to the next stage.

5.3.4 Considering the Message’s Payload

The goal of this stage is to determine whether the message being sent can carry a
concrete payload such that both the current, client-side path constraint is satisfied
(so that the message will indeed be sent) and the server-side path constraint
corresponding to that error is also satisfied (so that this payload will lead to
the expected error). If this is not possible, the current test run proceeds, but
StackFulINTER returns to the previous stage until it observes another message
being sent. If it is possible, StackFulINTER continues with this stage.

Returning to our example, StackFulINTER has observed a message msg being
sent to the server. A message of this type could result in the error on line 14 being
triggered. At this point, StackFulINTER must employ the message payload to
synchronise the client-side path constraint with the server-side path constraint
that led to the error. The server path, data.y = 1 ∧ data.x > 15 employed two

118

5.4. FORMAL DESCRIPTION OF SERVER-SIDE ERROR PRIORITISATION

symbolic input variables, data.x and data.y, to mock the message payload. The
client path defines its own constraints on parts of the payload, namely x > 10.
Both paths must be joined together by explicitly including constraints that equate
all mocking symbolic inputs with their actual symbolic values: x+ 1 = data.x ∧
y = data.y. The full, synchronised path constraint is therefore x > 10 ∧ x+ 1 =
data.x ∧ y = data.y ∧ data.y = 1 ∧ data.x > 15. Although the current,
concrete values for x and y, 11 and 3 respectively, will not result in the server
error being thrown, StackFulINTER feeds the full path constraint to an SMT
solver to find values for x and y, e.g., 18 and 1, so that the full constraint is
satisfied. StackFulINTER then proceeds to the final stage.

5.3.5 Replaying the Test Run

StackFulINTER starts a new test run in which it uses the values that were com-
puted for the appropriate symbolic variables in the last stage to verify whether this
new run succeeds in reproducing the expected error. If it does, the error is marked
as a high-priority error, since it has been proven that the client can be exercised
in such a way that an error is produced on the server side. StackFulINTER after-
wards returns to the first stage to resume exploring the client, until its test budget
is exhausted. Any remaining unmarked errors are then automatically classified as
low-priority errors.

In the case of Listing 5.2, it can be observed that the previously computed values
for x and y indeed result in the server error being re-triggered.

Note that it is generally impossible to prove that an error is of only low prior-
ity. Given an infinite number of program paths available on the client, Stack-
FulINTER can only ascertain that none of the program paths that were explored
within a particular budget led to the rediscovery of a previously discovered error.

5.4 Formal Description of Server-side Error Prioritisation

We extend the formal model of intra-process concolic testing previously presen-
ted in Section 4.5 to the domain of inter-process testing in order to detail how
StackFulINTER distinguishes between high-priority and low-priority server-side
errors. In this section, we only describe the changes that have to be made to this
previous model.

119

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

e ∈ Exp ::= ...

| send m ae

Figure 5.4: Syntax of a send expression.

The formal model previously presented in Section 4.5 detailed how concrete and
symbolic execution were performed over the course of a single test run. It did
not describe a mechanism for selecting a sequence of inputs or event or message
handlers were to be triggered in a specific test run, as such a mechanism relies
on the exploration strategy employed by the test selector. Instead of modelling
such a mechanism, the model assumed the existence of an external driver which
provides both sequences.

We likewise assume the existence of such a driver for StackFulINTER, which
also decides when to switch between the intra-process and the inter-process test-
ing phases. The state space of StackFulINTER is identical to that of Stack-
FulINTRA (cf. Figure 4.4). However, we assume that the external driver holds a
collection of errors θ defined as a map from handler types to a collection of path
constraints.

5.4.1 Extending the Syntax of the Minimal Language

We extend the minimal language which served as the basis for this formal model
(cf. Figure 4.3) with the ability to send messages with payloads from one process
to another. We assume that full-stack JavaScript web applications in this lan-
guage consist of just two processes. There is hence no need to specify to which
process a message should be sent. The syntax for these send expressions is shown
in Figure 5.4. A send expression is used to send a message of type m to the other
process in the full-stack JavaScript web application. The message is received by
the corresponding message handler that was registered via the previously intro-
duced register expression. The payload of the message is the value that the
atomic expression ae evaluates to.

120

5.4. FORMAL DESCRIPTION OF SERVER-SIDE ERROR PRIORITISATION

5.4.2 Extending the Evaluation Rules for Non-atomic Expressions

Recall that each evaluation rule for a non-atomic expression resulted in three
distinct types of values:

• stop, indicating that a test run should be stopped because all preselected
event or message handlers have been executed.

• fail(pc), indicating that the tester detected an error in the application, and
that the path constraint pc leads to this error.

• next(ς), indicating that evaluation of the expression was successful, and
that evaluation should proceed with the state ς.

We update the fail so it also includes the type of the message handler that was
being executed. A fail hence becomes fail(pc,m), where pc is the path constraint
that leads to an error in an application and m is the type of the message handler
whose execution led to the error being triggered.

The evaluation rules for atomic expressions in StackFulINTER do not have to
be changed. The evaluation rules for non-atomic expressions in StackFulINTER
are also almost identical to those in StackFulINTRA. Only two changes have to
be made to the evaluation rules for atomic expressions. These changes are listed
in Figure 5.5.

E-ErrorInter replaces evaluation rule E-Error (cf. Figure 4.5). Recall that
E-Error described how StackFulINTRA handled detection of an error during
evaluation of atomic expressions. E-ErrorInter is largely similar to this rule,
but employs the auxiliary function GetCurrentHandlerType, not modelled
here, to find the type of the preselected handler currently being executed. Stack-
FulINTER wraps the current path constraint as well as the handler type m of the
handler currently being mocked in a fail. The external driver holds an error col-
lection θserver for the server, which is a map from handler types to a set of path
constraints leading to server errors. The external driver then extends the set of
path constraints for the handler type m with the path constraint pc.

E-SendSatisfiable models the second stage of inter-process testing (5.3.4) and
describes the evaluation of a send expression on the client side. We assume that
the external driver provides the error collection θserver that was gathered after
intra-process testing of the server was completed.

121

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

E-ErrorInter

A(ae, ρ, σ, pc, ι) = m = GetCurrentHandlerType()
〈ae, ρ, σ, κ, pc, ι, h〉 → fail(pc,m)

E-SendSatisfiable

A(ae, ρ, σ, pc, ι) = 〈〈vc, vs〉, pc′, ι′〉
∃pc′′ ∈ θserver(m) : pc′ : (inid = vs) : pc′′ is satisfiable

〈send m ae, ρ, σ, κ, pc, ι, h〉 → stop

Where inid is the symbolic input variable assigned to

the mocked message handler that caused the error.

Figure 5.5: Evaluating non-atomic expressions in StackFulINTER.

The goal is to find a server error, previously reported via the E-ErrorInter
rule during intra-process testing, which would become reachable because of the
message send. The error can only be reachable if both the current path constraint
pc′ is true (so that this message is sent in the first place) and the server-side
path constraint pc′′ is also true (so that upon arriving, the message leads to
the error). Furthermore, messages carry payloads, represented as the atomic
expression ae in this rule. While this payload was mocked with a symbolic input
variable during the intra-process testing phase, it now receives an actual value by
applying the atomic evaluation function on the payload. This value must explicitly
be bound in the path constraint to the original input variable2 of the mocked
message handler whose execution led to the error during the intra-process phase.
Any check performed by the server on the mocked input would have appeared
as a constraint in pc′′, while any check that appeared on the message payload
would have appeared in pc′. By explicitly equating the mocked input with the
actual value, any check applied by one side also becomes applicable to the other.
StackFulINTER therefore joins pc′ and pc′′ together via the equality inid = vs.
If the concatenation of both path constraints is satisfiable, the server error can be
reproduced via this message send, so the test run stops.

2We do not model how the original input variable inid is found, but it appears in the path
constraint pc′′.

122

5.5. EVALUATION

Table 5.1: Characteristics of the web applications considered in our study.

Benchmark LOC # of Branches WMC # of Message
and Event Handlers

Calculator 126 16 18 16
Chat 288 39 27 9
Game of Life 214 64 32 10
Simple Chat 45 4 6 2
Slack Mockup 662 75 20 13
TOHacks 144 22 20 5
Totems 145 9 14 5
Whiteboard 126 16 14 3

5.5 Evaluation

In this section, we evaluate the inter-process testing approach. We perform this
evaluation in the context of the inter-process testing use case, where we employed
inter-process testing to distinguish between high-priority and low-priority server
errors (cf. Section 5.3). We measure the extent to which inter-process testing
improves precision, by comparing the inter-process and intra-process (baseline)
approaches to concolic testing of full-stack JavaScript web applications. Specific-
ally, we measure how capable the two-phase approach to inter-process testing is
at discerning low-priority from high-priority errors.

5.5.1 Overview of the Evaluation

We define the following research questions:

• RQ1: How many high-priority server errors are correctly classified
by StackFulINTER as being of high priority?

• RQ2: Are there any instances of StackFulINTER incorrectly classi-
fying low-priority server errors as being of high priority?

• RQ3: How many test runs of inter-process testing does Stack-
FulINTER require to reproduce a high-priority error?

123

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

The context of the study consists of eight different programs (Calculator,
Chat, Game of Life, Slack Mockup, Simple Chat, TOHacks, Totems, and
Whiteboard). The source code of these applications has been made available
at https://github.com/softwarelanguageslab/StackFul. The Calculator
program is the example full-stack JavaScript application introduced in Sec-
tion 2.1.2. Whiteboard and Chat are demo applications3 for the Socket.IO
library. Game of Life, TOHacks, Totems, and Simple Chat were retrieved
from a software gallery4 featuring applications built with the Socket.IO library.
Slack Mockup is a project that mimics some of the functionalities of the
Slack communication platform. Apart from the Calculator and Simple Chat
applications, which only feature a client state, all programs maintain both a client
and a server state, which is manipulated by the event and message handlers.
Table 5.1 reports the main characteristics of each web application: the number
of lines of code, the number of branches in the code, the Weighted Methods
per Class (WMC) metric, and the number of message and event handlers that
are registered in the application. During our evaluation, we spawn for every
benchmark one instance of the server process and one instance of a client process
that connects with this server.

To evaluate the inter-process approach, we introduced additional synthetic pairs
of equivalent checks in both the client and server for the Game of Life, Simple
Chat, Totems, and Whiteboard programs. These equivalent checks, similar to
the client and server checks featured in the Calculator example, conform to the
following pattern: the client checks whether a condition on a value holds, and, if
it does, sends a message pertaining to this value to the server. The server then
checks a condition that is equivalent to the one performed by the client. Examples
of such checks include whether or not the coordinates of a mouse click fall within
or outside a certain frame, or whether certain words in a chat application should
be censored instead of being broadcasted. These checks effectively create regions
of dead code on the server as, given this particular client-server configuration,
these conditions should never be false. Note that, since these checks depend on
the value of the payload, static dead code checks do not suffice for discovering
these regions.

Having introduced these checks, we automatically and randomly inject synthetic
"ERROR: INJECTED SERVER ERROR" faults in the server of the resulting programs.
This because the collected benchmark programs contain few faults by themselves.
Every if branch or case branch in the program has the same probability of being

3https://github.com/socketio/socket.io/tree/master/examples
4https://devpost.com/software/built-with/socket-io

124

https://github.com/softwarelanguageslab/StackFul
https://github.com/socketio/socket.io/tree/master/examples
https://devpost.com/software/built-with/socket-io

5.5. EVALUATION

injected by the fault injection process. Faults injected in the server that fall
within the aforementioned dead code region are considered low-priority errors,
while faults injected outside of these regions are high-priority errors. Listing 5.3,
which corresponds to lines 15–16 of Listing 2.3, depicts an "ERROR: INJECTED
SERVER ERROR" fault being injected on line 2.

1 case "+": {
2 "ERROR: INJECTED SERVER ERROR";
3 {
4 result = left + right;
5 break;
6 }
7 case "-": result = left - right; break;

Listing 5.3: Part of the server code for one of the two Calculator variants, with
an injected synthetic fault.

To increase the generalisability of our study, we applied the fault injection pro-
cess twice on each benchmark application, except for the Simple Chat application
because of the application’s small size. This fault injection thus resulted in two
variants being produced for most applications. Both variants of a particular ap-
plication differ only in the number and location of the injected faults.

To answer the research questions, we ran StackFulINTER on all 15 resulting
variants. For the first phase, StackFulINTER was allocated a test budget of 250
test runs to ensure most server errors (both high-priority and low-priority errors)
were found. In the second phase, a test budget of 500 test runs was allocated to
rediscover these errors.

Table 5.2 reports on the classification of high-priority and low-priority errors for
each application. For both categories, the table specifies the total number of
errors of that category that were injected into the server of that application (# of
Faults), and the number of these errors that StackFulINTER correctly labelled as
belonging to that category (Correctly Classified). We manually verified for each
application whether the classification generated by StackFulINTER was correct.

Specifications

The test executor, implemented in TypeScript, uses Node.js v18.7.0, while
the test selector, implemented in Scala, uses Java SE Runtime Environment

125

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Table 5.2: Classification in high-priority and low-priority errors for each variant.
Application High-Priority Low-Priority

of Faults Correctly Classified # of Faults Correctly Classified

Calculator I 5 3 2 2
Calculator II 6 6 1 1
Chat I 0 0 1 1
Chat II 1 0 2 2
Game of Life I 1 1 1 1
Game of Life II 2 1 2 1
Simple Chat 0 0 1 1
Slack Mockup I 3 0 3 2
Slack Mockup II 4 1 1 1
TOHacks I 3 3 0 0
TOHacks II 2 2 0 0
Totems I 2 2 0 0
Totems II 0 0 2 2
Whiteboard I 2 2 2 2
Whiteboard II 5 5 3 3

build 19.0.1+10-21, configured to run with a maximum heap size of 4GB.
StackFulINTER was executed on a 2.8 GHz Quad-Core Intel Core i7 CPU, with
16GB of 2133 MHz LPDDR3 RAM, running macOS 13.2. As an SMT solver,
StackFulINTER uses Z3, version 4.8.5 - 64bit.

We answer the three research questions over the following sections. In Sec-
tion 5.5.6, we go into more details on the answers that are offered here.

5.5.2 RQ1: Correct Classification of High-Priority Errors

The first research question asks how many high-priority server errors are correctly
classified by StackFulINTER as being of high priority. All of the applications
combined contain a total of 36 high-priority server errors. StackFulINTER is able
to correctly classify 26 of these. Calculator I, Chat II, Game of Life II and
both versions of Slack Mockup contain misclassified high-priority errors. For the
first three applications, these errors were uncovered during the intra-process phase
but were not reproduced during the inter-process phase, even though they were

126

5.5. EVALUATION

reachable from the client. In effect, StackFulINTER incorrectly labelled these
high-priority errors as being of low priority. For the Slack Mockup variants,
these errors were also not uncovered during the intra-process phase.

In all cases, these errors are located along program paths that can only be reached
from the client when several events are triggered in a particular order, and when
additional client-side conditions are met. This phenomenon was particularly out-
spoken in Slack Mockup, as some of the event handlers involved are not registered
upfront, but only dynamically under certain conditions. StackFulINTER there-
fore first needs to discover a program path where the appropriate handlers are
registered before this path can be explored further by triggering the correspond-
ing sequence of events. In general, it is conceivable that StackFulINTER would
have correctly classified the errors for all of these applications given a larger test
budget. Practical concerns, such as the long (up to five hours for the budget of
250 + 500 = 750 combined test runs) running time of each benchmark and the
memory footprint of Aran-Remote’s approach to dynamic analysis of distrib-
uted applications, necessitate a limit on the test budget.

We conclude that, for the given applications, StackFulINTER is able to classify
the majority of high-priority errors correctly without exhausting its test budget.

5.5.3 RQ2: Misclassifying Low-Priority Errors as High-Priority Errors

The second research question asks whether there are any instances of Stack-
FulINTER incorrectly classifying low-priority server errors as being of high priority.
As can be observed from Table 5.2, the applications total 21 low-priority server er-
rors. StackFulINTER misclassifies only two of these, one for the Game of Life II
application and one for the Slack Mockup I application. In both cases, these
errors were only misclassified because they were not discovered during the intra-
process testing phase in the first place. However, StackFulINTER did not repro-
duce any of the low-priority errors during its inter-process testing phase. There
were hence no instances of low-priority errors being misclassified as being of high
priority.

5.5.4 RQ3: Inter-process Test Runs

The third research question asks how many test runs of inter-process testing
StackFulINTER requires to reproduce a high-priority error. Table 5.3 specifies for

127

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Table 5.3: The number of inter-process test runs StackFulINTER required to
classify each of the high-priority errors it found.

Error # of Test Runs

Calculator I: Error 1 33
Calculator I: Error 2 33
Calculator I: Error 3 449
Calculator I: Error 4 >500
Calculator I: Error 5 >500

Calculator II: Error 1 33
Calculator II: Error 2 33
Calculator II: Error 3 33
Calculator II: Error 4 33
Calculator II: Error 5 33
Calculator II: Error 6 341

Chat II: Error 1 >500

Game of Life I: Error 1 7

Game of Life II: Error 1 8
Game of Life II: Error 2 >500

Slack Mockup I: Error 1 >500
Slack Mockup I: Error 2 >500
Slack Mockup I: Error 3 >500

Error # of Test Runs

Slack Mockup II: Error 1 240
Slack Mockup II: Error 2 >500
Slack Mockup II: Error 3 >500
Slack Mockup II: Error 4 >500

TOHacks I: Error 1 1
TOHacks I: Error 2 1
TOHacks I: Error 3 12

TOHacks II: Error 1 1
TOHacks II: Error 2 1

Totems I: Error 1 1
Totems I: Error 2 1

Whiteboard I: Error 1 4
Whiteboard I: Error 2 9

Whiteboard II: Error 1 3
Whiteboard II: Error 2 3
Whiteboard II: Error 3 9
Whiteboard II: Error 4 15
Whiteboard II: Error 5 15

each high-priority error that was injected into an application how many test runs
StackFulINTER required to reproduce this error, if at all, during its inter-process
testing phase. Errors that were misclassified, e.g., the errors in Calculator I and
Chat II, must have required at least 500 test runs before they are reached. Note
that we assume that StackFulINTER would eventually reproduce a high-priority
error in its inter-process testing phase, given an infinite test budget.

It can be observed that these errors fall into two categories: those errors which
StackFulINTER can reproduce in a rather small number of test runs (i.e., 33 runs
or less), and those for which it requires many more test runs. In Section 5.5.6, we
hypothesise a likely explanation for this stark contrast.

5.5.5 Threats to Validity

We identify the threats to construct and external validity of our empirical evalu-
ation.

128

5.5. EVALUATION

Construct Validity

We have developed StackFulINTER to investigate the strengths and weaknesses
of inter-process testing. It is worth noting that StackFulINTER lacks some optim-
isations that are generally included in automated testers such as state-of-the-art
concolic testers. These optimisations would certainly have impacted the efficiency
of both the intra-process and the inter-process testing phase with regards to the
number of test runs required respectively to discover any server error, and to clas-
sify an error as a high-priority error. In the particular set of applications that we
investigated, StackFulINTER discovered most injected server errors during the
intra-process phase but was unable to reproduce some of these errors during the
inter-process phase. We assert that additional optimisations to StackFulINTER
would have prevented high-priority errors from being misclassified. We come back
to this statement in Section 5.5.6.

External Validity

The main threat to the external validity of our evaluation is the limited number of
programs on which we conducted it. We partially mitigated this threat by creating
variants of the original programs in which we automatically and systematically
inject faults to avoid possible bias.

5.5.6 Discussion of the Results

The results of Section 5.5.2 and 5.5.3 indicate that StackFulINTER is generally
able to correctly categorise discovered errors. However, the results also highlight
two related weaknesses in StackFulINTER’s approach. First, if StackFulINTER
requires more inter-process test runs than its test budget allows to reproduce a
server error, the error is automatically classified as a low-priority error, even if the
error is reachable in the given client-server configuration. All of the misclassified
high-priority errors that were described in Section 5.5.2 and 5.5.4 suffer from this
effect. Second, StackFulINTER can only assume that an error is of low priority in
a particular client-server configuration if the error cannot be reproduced over the
span of the inter-process testing phase. Therefore, StackFulINTER must always
exhaust its entire test budget to classify a collection of low-priority errors. We
discuss these weaknesses separately.

129

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Misclassification of High-Priority Errors

The first weakness can be mitigated by employing more sophisticated search
strategies during the inter-process testing phase. Investigating the number of
required test runs as described in Section 5.5.4 more closely, it becomes apparent
that the inter-process phase performs at its worst when attempting to reproduce
server errors that are only reachable from the client by following a specific sequence
of client-side events, while satisfying additional client-side branch conditions. This
effect is particularly pronounced in the case of Slack Mockup, which is not only
the largest benchmark but which also features the most intricate configuration
of event handlers. StackFulINTER features two strategies for exploring event-
driven applications: a simple brute-force strategy and another strategy that aims
to maximise read-write conflicts between event handlers [72]. However, neither
strategy is able to overcome this issue.

More efficient exploration strategies might help reduce the time StackFulINTER
needs to reproduce an error, and therefore prevent StackFulINTER from mis-
classifying high-priority errors. Strategies that are better suited for testing highly
event-driven applications might yield improved results. Several such exploration
strategies for event-driven and message-driven applications have been described,
such as dCute [114], which generates event sequences based on a partial ordering of
the events, or Contest [7], which identifies subsuming event sequences. Another
technique for prioritising event sequences or program paths that lead the client to
communicate with the server is to initialise the test selector with program-specific
path prefixes [101, 14]. These are programmer-defined sequences of events that
are guaranteed to lead the tester to exercise a desired part of the application. All
event sequences that are generated by the test selector must start with one of
these prefixes. Another option consists of reducing the number of program paths
that must be explored in order to cover the application, for example by applying
state merging. This technique will be discussed in detail in Chapter 6.

Efficiency of Classifying Low-Priority Errors

The efficiency of StackFulINTER’s inter-process testing phase would be improved
if StackFulINTER could prove that a low-priority error is indeed unreachable in
a given client-server configuration. This would prevent StackFulINTER from
having to exhaust its entire inter-process test budget in order to classify low-
priority errors. However, to prove that a server error is unreachable from a given
client, it must be demonstrated that no program path in the entire web application

130

5.6. CONCLUSION

starts from an entry point in the client (such as an event handler) and reaches
the given error. In practice, even just the client side of the application is likely to
have an infinite number of program paths, so exploring all of these to determine
non-reachability is not possible.

5.6 Conclusion

We summarise the topics discussed in this chapter and conclude by evaluating
the inter-process StackFulINTER tester on the criteria outlined in Section 2.4
for testing full-stack JavaScript web applications.

5.6.1 Summary

This chapter presented inter-process testing, which we defined as testing the com-
position of all processes in a full-stack JavaScript web application as a whole, while
observing their communication, and having their execution paths cross process
boundaries. We presented three concrete requirements for implementing inter-
process concolic testing:

• Concolic testing must simultaneously take place on all processes of the ap-
plication.

• The tester must construct a global path constraint that crosses the bound-
aries of the processes.

• The tester must be capable of modelling message payloads sent between the
processes.

We implemented inter-process testing in StackFulINTER, which is built on top
of StackFulINTRA. StackFulINTER can launch a variable number of instances
of client and server processes, with the multiplicity of the processes configured by
StackFulINTER’s user at startup time. StackFulINTER uses Aran-Remote to
deploy a single instance of a dynamic analysis across all of these processes. This in
turn enables the tester to construct a global path constraint over the application
across process boundaries. StackFulINTER furthermore detects registrations of
Socket.IO message handlers and message sends, which allows it to inspect the
message payloads transmitted between instrumented processes.

131

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

Inter-process testing realises an increase in precision when testing the program,
as it maintains a global overview of the execution of the entire application. We
motivated this increased precision by implementing a use case in StackFulINTER
that allows for distinguishing between high-priority and low-priority server errors,
based on whether the server error is reachable from a client in the full-stack
JavaScript web application. We believe this distinction may prove useful for
developers in that they may choose to prioritise patching high-priority errors over
low-priority errors, as the first type of errors may be triggered on the server
by any end user interacting with the application via a client. However, low-
priority server side errors may still be triggered in theory, for example by having
a malicious user bypass the client altogether. It may prove insightful to conduct
a survey among developers of full-stack web applications into how they view the
distinction between these errors, and how it conforms to their best practices.

In this use case, StackFulINTER is configured to test the application in a two-
phase approach. In a first phase, StackFulINTER employs intra-process testing
on just the server. In the second phase, StackFulINTER employs inter-process
testing to test the entire application. StackFulINTER attempts to reach the
previously discovered server errors from the application’s clients. Any server error
reproduced in the second phase is marked as a high-priority error, as this error
can be triggered by an end-user interacting with the application. Errors that are
only reached in the first phase, are marked as low-priority errors since they cannot
be reproduced in this particular configuration of client and server processes.

We formalised this approach to inter-process testing in order to facilitate its replic-
ation, and we evaluated our use case with regards to its precision. Our evaluation
on eight full-stack JavaScript web applications shows that StackFulINTER is cap-
able of correctly classifying a majority of the high-priority server errors, without
misclassifying any of the server’s low-priority server errors.

5.6.2 Concluding Remarks

We conclude by evaluating the inter-process StackFulINTER concolic tester on
the seven criteria for performing automated testing on full-stack JavaScript web
applications. Table 5.4 illustrates which of these criteria have been satisfied.

132

5.6. CONCLUSION

Table 5.4: The inter-process StackFulINTER tester evaluated on the list of cri-
teria identified in Section 2.4.

Criterion Description Satisfied?

1 A Capable of testing sequential JavaScript
code

3

B Models inputs from the DOM 3

2 A Allows for dynamic (de)registration of
event handlers

3

B Explores event space ±

3 Capable of finding composition-specific
faults

3

4 A Whole-program monitoring 3

B Observes communication between dis-
tributed processes

3

Criteria 1-2

These criteria concern the testing of single-process, event-driven JavaScript applic-
ations which have access to a DOM (e.g., websites). Recall that StackFulINTRA
satisfies three of these criteria. It only partially satisfies criterion 2.B, as the
efficiency with which the tester is capable of exploring the event space strongly
depends on the search strategy that it employs.

StackFulINTER is built directly on top of StackFulINTRA and neither extends
nor changes the characteristics that made StackFulINTRA capable of satisfying
these four criteria. StackFulINTER hence inherits StackFulINTRA’s classicica-
tion for these criteria.

Criterion 3

Criterion 3 relates to whether a tester is capable of finding bugs that only manifest
themselves in specific compositions of processes, such as errors that only appear
when a fixed number of clients have connected to the server.

StackFulINTER can launch a variable number of instances of client and server
processes in a full-stack JavaScript web application. It does not limit the number
or type of processes that are launched, nor does it restrict the composition of

133

CHAPTER 5. INTER-PROCESS CONCOLIC TESTING

these processes. Rather, when StackFulINTER starts testing an application, it
follows a user configuration that specifies which processes should be launched, and
in what order. This composition is fixed at startup time and cannot be changed
dynamically.

Given a user configuration for a composition of processes in which a bug may mani-
fest itself, StackFulINTER can follow this configuration and detect the bug. We
conclude that StackFulINTER is capable of finding composition-specific faults,
and hence mark criterion 3 as satisfied.

Criterion 4

Criterion 4 concerns the multi-process nature of a full-stack JavaScript web ap-
plication. It consists of two subcriteria.

Subcriterion 4.A requires the tester to monitor the execution of all processes simul-
taneously. StackFulINTER employs a combination of Aran and Aran-Remote
to deploy a single instance of a dynamic analysis over multiple processes. Like
StackFulINTRA, this analysis enables shadow execution of each process, which in
turn allows for performing symbolic execution and collecting symbolic constraints
alongside the concrete execution of the process. Because the shadow execution
is performed across all processes, StackFulINTER can construct a global path
constraint that crosses process boundaries for the entire application. The first
subcriterion is hence satisfied.

Subcriterion 4.B requires the tester to observe the communication between the
distributed processes. StackFulINTER observes and intervenes in the communic-
ation between processes that takes place over Socket.IO websockets. When the
application’s code registers a message handler, StackFulINTER intervenes and
registers a replacement callback instead so that it can observe and inspect the
messages received by a process. It likewise intervenes in the sending of Socket.IO
messages. This enables the tester to model the symbolic expressions correspond-
ing to the concrete values in the message’s payload precisely. We therefore mark
subcriterion 4.B as satisfied.

134

5.6. CONCLUSION

Overall Conclusion

StackFulINTER fully satisfies six of the seven criteria for automated testing of
full-stack JavaScript web applications. Criterion 2.B still remains only partially
satisfied, as the extent to which the tester is capable of efficiently exploring the
application’s event space strongly depends on the search strategy that it employs.
A simple brute-force exploration of the event space is insufficient for non-trivial
applications, as the number of execution paths through an application grows ex-
ponentially in function of the number of event handlers that are registered and
their complexity. Chapter 6 describes an approach to state merging which ad-
dresses this exponential blowup and which will allow our tester to fully satisfy the
last remaining criterion.

135

6 State Merging for Event-driven
Programs

The previous chapter introduced StackFulINTER, an inter-process concolic tester
for full-stack JavaScript web applications. As described in Section 5.6, this tester
satisfies six of the seven criteria for testing these types of applications. The
last criterion that remains unsatisfied concerns the efficient exploration of the
application’s search space. Satisfying this criterion is complicated by the nature
of full-stack JavaScript web applications, as a tester for these applications must
not explore just one process, but several processes simultaneously, as well as their
interplay.

A traditional concolic tester explores each unique path through the program separ-
ately, requiring a separate test run to do so. For a given path constraint consisting
of n branch constraints, the number of variations that this path constraint gives
rise to is generally exponential in n. A longer path constraint, spanning several
processes, therefore results in an exponential increase in the number of additional
program paths that must be explored by the tester. It is therefore important to
consider how StackFulINTER can manage these large search spaces.

This chapter describes how the search space of full-stack JavaScript web applic-
ations can be reduced by merging program states that are sufficiently similar
together, without sacrificing precision of the symbolic constraints. We present
a novel approach for transposing this known state merging technique [99] to the
domain of offline symbolic execution (i.e., concolic testing) of event-driven applic-
ations. By rendering state merging possible for the concolic testing of event-driven
applications, we can also apply it to full-stack JavaScript web applications. We
outline how StackFulINTER is extended with an implementation of this novel
technique, and we name the version of StackFulINTER that incorporates this
form of state merging StackFul1.

1https://github.com/softwarelanguageslab/StackFul

137

https://github.com/softwarelanguageslab/StackFul

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

Section 6.1 gives an overview of state merging for online symbolic execution of
sequential applications that are not event-driven. Section 6.2 continues by trans-
posing state merging to the setting of concolic testing. Section 6.3 takes this a
step further by describing how state merging can be applied by concolic testers
to event-driven applications. In Section 6.4, we give an overview of the imple-
mentation of this approach in StackFul. Section 6.5 evaluates the impact of
state merging on the same suite of input programs that was used to evaluate
inter-process testing (cf. Section 5.5). We conclude in Section 6.6 by discuss-
ing the effectiveness of state merging on the testing of full-stack JavaScript web
applications.

6.1 Overview of State Merging

Section 3.5 listed several generic techniques for rendering concolic testing more
effective when testing applications with a large search space. These techniques
were categorised either as using heuristics to steer the tester towards desired
parts of the application (Section 3.5.1), as mitigating the path explosion problem
(Section 3.5.2), or as combining various approaches to automated testing (Sec-
tion 3.5.3). Of these solutions, only the path explosion mitigation techniques aim
to prevent or alleviate an exponential blow-up of program paths.

Path Explosion Mitigation Techniques

The idea behind these techniques is to make it possible for a tester to fully explore
a program without having to test each unique path through this program.

One example of a path explosion mitigation technique is compositional symbolic
execution, which is based on the idea that once all paths through a particular
code fragment (such as a function, loop, or block) have been explored, a sym-
bolic summary for this fragment can be generated. This summary details which
symbolic outputs (e.g., return values, assignments to global variables, etc.) can
be expected for the symbolic inputs (e.g., arguments) to the fragment. Whenever
execution again passes through this snippet, the tester pauses symbolic execution
and appends the previously generated summary to the current path constraint.
Thus, rather than spawning new program paths wile executing the code, the tester
can reuse the summary, thereby reducing path explosion.

138

6.1. OVERVIEW OF STATE MERGING

1 if (randomInt() === 0) { }
2 else { }
3

4 if (randomInt() === 1) { }
5 else { }
6 // program ends

Listing 6.1: A simple program that gives rise to four program paths.

State merging is another example of path explosion mitigation. Broadly speaking,
states correspond to the nodes in the symbolic execution trees presented through-
out this dissertation, although we revisit this definition of states in Section 6.1.3.
States are created alongside paths and encode a snapshot of the current point
in the symbolic execution. States include path constraints, so an exponential
increase in the number of paths (“path explosion”) corresponds to a likewise ex-
ponential increase in the number of states (“state explosion”) and vice versa [66].
The two terms are hence interchangeable. State merging alleviates the state ex-
plosion problem by merging program states that are sufficiently similar together.
Instead of having states in the symbolic execution tree split whenever a branch
condition is encountered, two or more states can be merged together, thereby also
halving the total number of states that descend from these two states.

To illustrate this, consider the simple example program in Listing 6.1 which gives
rise to four program paths, i.e., four END states, when executed symbolically. Its
corresponing symbolic execution tree is shown in Figure 6.1. The figure includes
the program’s four END states, along with their path constraints.

Figure 6.2 depicts the result of merging the two states that feature the constraint
i1 = 1 together. Note that after applying the state merge operation, the symbolic
execution tree has transformed into a symbolic execution Directed Acyclic Graph.
(DAG). By performing one merge operation, the number of END states is halved.
Furthermore, although the number of states has been reduced, no information on
the path constraints through the DAG has been lost: the path constraints for the
two END states now feature a logical disjunction that includes both branches of
the root i0 = 0 state. These two path constraints hence still precisely encode the
information that was contained in the four path constraints for the END nodes of
the unmerged symbolic execution tree. Note that, although the number of END
states has been reduced as a result of the merge operation, the complexity of their
path constraints has increased.

139

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

i0 = 0

i1 = 1

ENDEND

i1 = 1

ENDEND

false true

false true false true

i0 = 0 ∧ i1 = 1i0 = 0 ∧ i1 ≠ 1i0 ≠ 0 ∧ i1 = 1i0 ≠ 0 ∧ i1 ≠ 1

Figure 6.1: The symbolic execution tree for the code in Listing 6.1.

i0 = 0

i1 = 1

false true

false true

(i0 ≠ 0 ∨ i0 = 0) ∧ i1 ≠ 1

END END

(i0 ≠ 0 ∨ i0 = 0) ∧ i1 = 1

Figure 6.2: After merging two states together, the number of END states is halved.

An essential difference between compositional symbolic execution and state mer-
ging lies in their granularity. Compositional symbolic execution summarises the
execution of whole code fragments (e.g., functions, loop, blocks). In order to
create these summaries, the tester has to explore all paths through the targeted
scope, even if these paths are unlikely to occur in practice. Compositional ex-
ecution furthermore does not prevent state explosion from occurring within the
targeted scope.

State merging on the other hand can be much more fine-grained as it is capable of
merging different states at an individual level together. Its granularity is depend-
ent on the similarity metrics employed by the technique: if the tester employs
a similarity metric that finds a large set of states to be similar, many of these
states will be merged together. A more narrow similarity metric will result in the
merging of fewer states.

140

6.1. OVERVIEW OF STATE MERGING

6.1.1 Revisiting the State Explosion Problem

As an example of the utility of state merging, consider Listing 6.2. This code
snippet consists of five sequential, non-nested if statements. The predicates of
the first four if statements are all independent from each other. On the other
hand, the last if statement depends entirely on the first four if statements: its
predicate depends on the values of the variables a, b, c, and d. Execution can
hence only follow its then branch if all four previous then branches were followed.

1 let a, b, c, d;
2 if (randomInt() === 0) {
3 a = 1;
4 } else {
5 a = 0;
6 }
7 if (randomInt() === 1) {
8 b = 1;
9 } else {
10 b = 0;
11 }
12 if (randomInt() === 2) {
13 c = 1;
14 } else {
15 c = 0;
16 }
17 if (randomInt() === 3) {
18 d = 1;
19 } else {
20 d = 0;
21 }
22 if (a + b + c + d === 4) {
23 // program ends, via then branch
24 } else {
25 // program ends, via else branch
26 }

Listing 6.2: A small code snippet that results in an exponential increase in the
number of program paths.

The number of unique program paths that can be followed through this snippet,
corresponding to the set of unique values that variables a, b, c, and d can as-

141

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

sume, equals 24 = 16 paths. Figure 6.3 depicts the symbolic execution tree for
Listing 6.2, with unreachable nodes coloured black. In this figure, the left child
edge of a node always corresponds to the else branch of the node’s associated
if statement, and the right edge corresponds to its then branch. In this tree,
the symbolic predicate for the first if statement occurs only once, the symbolic
predicate for the second if statement occurs twice, the third predicate is listed
four times, the fourth predicate eight times, and the last node, with predicate
a & b & c & d, is repeated sixteen times. For clarity, we also include the leaf
nodes END T and END F which indicate that program execution terminated either
on line 23 or at 25. As traditional concolic testing explores each path separately,
a traditional concolic tester hence requires sixteen test runs to explore all feasible
paths through the snippet.

For the leftmost fifteen occurrences of the a + b + c + d = 4 node, the child
node that corresponds to their then branch (coloured black in the figure) is un-
reachable, as these occurrences correspond to program paths where at least one of
the variables a through d is assigned 0. For these fifteen nodes, execution can only
reach their else branch. This situation is reversed for the rightmost occurrence
of the a + b + c + d = 4 node, where execution is forced along the then branch
and the else branch is unreachable.

i0 = 0

i1 = 1

i2 = 2

i3 = 3 i3 = 3

a +
b +
c +
d =
4

a +
b +
c +
d =
4

END
T

END
F

i2 = 2

i3 = 3 i3 = 3

a +
b +
c +
d =
4

a +
b +
c +
d =
4

END
F

END
F

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

END
F

END
F

END
F

END
F

END
F

END
F

END
F

END
F

END
F

END
F

END
F

END
F

i1 = 1

i2 = 2

i3 = 3 i3 = 3

a +
b +
c +
d =
4

a +
b +
c +
d =
4

i2 = 2

i3 = 3 i3 = 3

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

a +
b +
c +
d =
4

false true

false true

false true

false true

false true false true false true

Figure 6.3: The symbolic execution tree for the code snippet in Listing 6.2.

The path explosion arises from the fact that execution splits immediately after
reaching the first if statement (i.e., the root node with symbolic predicate i0 = 0)
into two new paths: one that is created by following the then branch and another
that is created by following the else branch. Not only do these two paths stay

142

6.1. OVERVIEW OF STATE MERGING

separate for the remainder of the program’s execution, but they each subsequently
split several times into sub-paths upon encountering each next if statement. Had
these two initial paths been rejoined after their split at the i0 = 0 node but
before their next split at the i1 = 1 node, the symbolic execution tree would have
remained fairly small, instead of exploding into sixteen different END leaf nodes
and an additional sixteen unreachable nodes.

6.1.2 Alleviating State Explosion through State Merging

Every node in the symbolic execution tree depicted in Figure 6.3 represents a
specific state that was observed while executing the program. For example, an
occurrence of a node i2 = 2 in the tree corresponds to a particular state that
was created when execution reached the third if statement along a particular
program path.

Recall that the path explosion problem can be cast as a state explosion problem,
which in turn can be solved by merging similar states together, i.e., states that
correspond to the same if statement in the tree, rather than duplicating a state
for each program path that reaches this statement. Figure 6.4 depicts what the
symbolic execution DAG for Listing 6.2 would be if all states that correspond to
the same if statement in the code were merged together.

Each program path gives rise to a unique combination of values assigned to the
variables a through d. The difference in values for these variables is significant
when the tester explores both branches of the last if statement on line 22 of
Listing 6.2. Of the sixteen program paths that encounter this if statement, only
one path visits the then branch, since only one path sets the value of all four
variables to 1. When joining states together into one merged state, the tester
must hence be capable of precisely modelling the different values that each of the
four variables assumes depending on whether the then branch or else branch was
taken when assigning the variable.

State merging therefore employs symbolic if-then-else (ITE) expressions to model
symbolic values that depend on some condition. For example, the value of the
variable a can be represented as ITE(i0 = 0, 1, 0): this value evaluates to 1 if
the predicate i0 = 0 is true, and evaluates to 0 otherwise. Using these ITE
expressions, the tester can represent the predicate of the last if statement as
ITE(i0 = 0, 1, 0) + ITE(i1 = 1, 1, 0) + ITE(i2 = 2, 1, 0) + ITE(i3 = 3, 1, 0) = 4.

143

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

i0 = 0

i1 = 1

i2 = 2

i3 = 3

ITE(i0 = 0, 1, 0) +
ITE(i1 = 1, 1, 0) +
ITE(i2 = 2, 1, 0) +
ITE(i3 = 3, 1, 0) =

4

END
T

END
F

false true

false true

false true

false true

false true

Figure 6.4: The symbolic execution DAG for Listing 6.2 with state merging.

Note that these ITE expressions may be computationally expensive to solve for an
SMT solver, especially when they are included into path constraints that already
feature long chains of logical disjunctions (as depicted in Figure 6.2). The in-
creased complexity of these path constraints increases the burden on the SMT
solver that must compute appropriate values for the symbolic input variables
that are featured in these paths. In effect, state merging reduces the time that
the tester spends exploring duplicate states, but increases the solving time of the
SMT solver. However, for concolic testing, state merging is still beneficial in itself
as the tester incurs an additional overhead in executing the program. By ensuring
that no duplicate states are executed, this execution overhead is reduced.

144

6.1. OVERVIEW OF STATE MERGING

6.1.3 A Formal Definition of State Merging

State merging can be defined formally in terms of state triples 〈P,PC, σ〉, where
PC represents the path constraint that leads to this state in the tree, σ the
symbolic store mapping program variables to symbolic values, and P the program
point. The program point encodes the current point in the program, e.g., a specific
if statement, that was being executed when the state was created.

The State Merge Operation

The state merge operation ∼ is then defined on two states 〈P,PC1, σ1〉 ∼
〈P,PC2, σ2〉 = 〈P,PC1 ∨ PC2, σm〉, where σm is defined as ∀v ∈ σ1 : σm[v] =
ITE(PC1, σ1[v], σ2[v]).

In effect, this merged triple defines a state which can be reached by following either
path constraint PC1 or PC2. Its symbolic store σm maps every program variable
to an ITE expression. If the path constraint PC1 of the first state evaluates to
true, this ITE expression itself evaluates to the symbolic value observed by the
first state and kept in its symbolic store σ1. Note that this definition assumes
that both symbolic stores include the exact same variables, though their values
may be different.

If this merged state is merged again with another state 〈P,PC3, σ3〉, we apply the
same merge operation. The merge operation then produces the state 〈P,PC3 ∨
PC1∨PC2, σm′〉, where σm′ is defined as ∀v ∈ σ3 : σm′ [v] = ITE(PC3, σ3[v], σm[v]),
which is equivalent to ∀v ∈ σ3 : σm′ [v] = ITE(PC3, σ3[v], ITE(PC1, σ1[v], σ2[v]))
Note that the three path constraints PC1, PC2, and PC3 do not necessarily ex-
haustively cover all possible execution paths through a program. The negation of
PC3 and PC1 therefore does not generally imply that PC2 is true, and hence that
any program variable x should receive the value σ2[x] along a path that differs
from PC3 and PC1. However, with respect to the merged state’s path constraint
PC3∨PC1∨PC2, the symbolic store σm′ represents all three possibilities. As new
states featuring the same program point are produced while testing the program,
these states may also be joined together with this merged state. Both the merged
state’s path constraint and its store will then cover all feasible program paths
more and more exhaustively.

145

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

Defining the Program Point

The merge operation is only applied to two states that share an identical program
point P. This program point is defined only opaquely, but it is taken to refer
to a specific point in the program’s execution. In sequential programs without
recursion or loops, such as the code snippet in Listing 6.2, it could be defined as
just the code label (e.g., the line number) that was reached by the tester when the
state was created. This makes it reasonable to assume that both stores include
the same set of variables, as this definition of program points ensures that states
that are merged together were created in the same lexical environment. We revisit
the definition for program points in Sections 6.2.1 and 6.3.2.

Example of a State Merge Operation

As an example, consider the formal representation of both occurrences of the
state i1 = 1. Defining program points as line numbers, the leftmost (as depicted
in Figure 6.3) of these two states can be represented by the triple 〈L7, i0 6= 0, σ1〉,
where σ1 is defined as a singleton map of the variable a to the symbolic value 0.
The rightmost of these states is represented as the triple 〈L7, i0 = 0, σ2〉, with σ2
mapping the variable a to the symbolic value 1. The result of the merge operation
would then be defined as the triple 〈L7, i0 = 0 ∨ i0 6= 0, σm〉, with σm mapping the
variable a to the symbolic value ITE(i0 = 0, 1, 0).

6.1.4 State Merging for Online Symbolic Execution

The formal definition of state merging can be used by any type of symbolic ex-
ecutor to merge two given states together. However, this definition is insufficient
for understanding how state merging can be incorporated into the symbolic ex-
ecution procedure at large, or how it affects the exploration of a program. We
therefore give an overview of how state merging can be integrated with symbolic
execution. As an introduction, we first detail how state merging can be incorpor-
ated into online symbolic execution of sequential applications, before describing
how the state merging algorithm can be transposed to the setting of concolic
testing (Section 6.2), and afterwards concolic testing of event-driven applications
(Section 6.3).

146

6.1. OVERVIEW OF STATE MERGING

Online symbolic executors are symbolic executors that can fork their execution
when reaching a branching point [13, 27]. These stand in contrast to offline
symbolic executors, like concolic testers, which test an application by exploring
one program path at a time. Online symbolic executors can select which state
in the symbolic execution DAG to expand. Whenever the online executor has
expanded a previously unexplored state in the symbolic execution DAG, it can
compare its program point with that of all other explored states in the DAG. If it
finds a previous state with an identical program point, the symbolic executor may
opt to merge the two together before continuing its exploration of the remainder
of the symbolic execution DAG.

Figure 6.5 illustrates an example of how an online symbolic executor can incor-
porate state merging while testing the code from Listing 6.2. As execution in
this code snippet does not jump back to an earlier point in the program, via e.g.,
recursion or iteration, it is sufficient to represent program points as just the line
number of the code statement being executed. For each new state that is added
to the symbolic DAG, we list the triple representing that state.

Apart from a true and false label, we also annotate the edges in the DAG with
the assignments to program variables that were observed to have taken place when
following the branch. We also annotate merged states where program variables
have received a symbolic ITE expression as a result of the merge. An example
of such a state annotation can be seen in e.g., Figure 6.5d, where the state an-
notation (highlighted in bold), indicates that the value of a is replaced by an ITE
expression. The symbolic store for any state S can hence be constructed via the
annotations along both the edges and the states on the path to S.

147

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

i0 = 0

S1 = <L2, true, {}>

S1

(a) After evaluating the branch condition
on line 2, the root state is created.

i0 = 0

S2 = <L7, true ∧ i0 ≠ 0, {a → 0}>

i1 = 1

false

a → 0

S2

(b) The symbolic executor expands the
else branch of the previous condition
and adds a state corresponding to the
branch condition on line 7.

i0 = 0

S3 = <L7, true ∧ i0 = 0, {a → 1}>

i1 = 1 i1 = 1

truefalse

a → 0 a → 1

S3

(c) The symbolic executor expands the
then branch of the previous condition
and adds a state corresponding to the
branch condition on line 7.

i0 = 0

a → ITE(i0 ≠ 0, 0, 1)

i1 = 1

false true

S2&3 = <L7, PC2&3, {a → ITE(i0 ≠ 0, 0, 1)}>
with PC2&3 = true ∧ (i0 ≠ 0 ∨ i0 = 0)

a → 0 a → 1

S2&3

(d) Having expanded both child states, the
symbolic executor immediately merges
them.

i0 = 0
false true

S4 = <L12, PC4, σ4>
with σ4 = {a → ITE(i0 ≠ 0, 0, 1), b → 0}
and PC4 = true ∧ (i0 ≠ 0 ∨ i0 = 0) ∧ i1 ≠ 1

i2 = 2

false

a → 0 a → 1

b → 0

a → ITE(i0 ≠ 0, 0, 1)

i1 = 1

S4

(e) The symbolic executor continues testing
the program by executing the if state-
ment on line 12.

Figure 6.5: Online symbolic execution of the code in Listing 6.2, using state mer-
ging to prune states with duplicate program points.

148

6.1. OVERVIEW OF STATE MERGING

The symbolic executor first adds a state S1 for the first if statement of the code
snippet (Figure 6.5a). As the root state in the symbolic DAG, the state features
a path constraint with the default value true and an empty symbolic store.

It continues along the else branch of this if statement, injects the mapping from
variable a to the symbolic value 0 into the symbolic store when observing the
assignment to this variable, and then adds a new state S2 〈L7, true∧ i0 6= 0, {a→
0}〉 to the symbolic DAG upon reaching the next if statement (Figure 6.5b).
Before continuing to the child states of this if statement, the executor returns to
the root state and explores the then branch of the first if statement. As before,
the tester adds the mapping a → 1 to its store and adds a duplicate state S3
〈L7, true ∧ i0 = 0, {a→ 1}〉 as the then child to the root (Figure 6.5c).

Since both states share the same program point, the symbolic executor merges
them together into state S1&2 . The path constraint of the merged state features
the disjunction of both original states: (true ∧ i0 6= 0) ∨ (true ∧ i0 = 0) ≡
true ∧ (i0 6= 0 ∨ i0 = 0). The variable a in the merged symbolic store is mapped
to the symbolic value ITE(i0 6= 0, 0, 1).

Upon completing the merge operation, the symbolic executor resumes normal
symbolic execution of the program by exploring the else branch of the merged
state. The constraint i1 6= 1 is added to the path constraint of the merged state,
while the mapping b → 0 is added to the symbolic store alongside the mapping
for a.

Figure 6.6 depicts the final symbolic execution DAG that is produced once sym-
bolic execution of the whole program finishes. The bottom state corresponds to
the merged state for the if statement on line 22. The four variables that were
used in this if statement have been replaced by a corresponding ITE expression.
For clarity, we subscript ITE expressions that were produced as a result of reading
a variable with the name of the variable that was inlined.

149

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

i0 = 0
false true

Sfinal = <L22, PCfinal, σfinal>
with σfinal = {a → ITE(i0 ≠ 0, 0, 1),
 b → ITE(i1 ≠ 1, 0, 1),
 c → ITE(i2 ≠ 1, 0, 1),
 d → ITE(i3 ≠ 1, 0, 1)}
and PCfinal = true
 ∧ (i0 ≠ 0 ∨ i0 = 0)
 ∧ (i1 ≠ 1 ∨ i1 = 1)
 ∧ (i2 ≠ 2 ∨ i2 = 2)
 ∧ (i3 ≠ 3 ∨ i3 = 3)

a → 0 a → 1

a → ITE(i0 ≠ 0,0,1)

i1 = 1

b → ITE(i1 ≠ 1,0,1)

i2 = 2

c → ITE(i2 ≠ 2,0,1)

i3 = 3

d → ITE(i3 ≠ 3,0,1)

ITE(i0 = 0, 1, 0)a +
ITE(i1 = 1, 1, 0)b +
ITE(i2 = 2, 1, 0)c +
ITE(i3 = 3, 1, 0)d =

4

false true

b → 0 b → 1

false true

c → 0 c → 1

false true

d → 0 d → 1

Sfinal

Figure 6.6: The complete symbolic execution DAG, produced after symbolic exe-
cution of the program has finished.

Practical Considerations

Note that it may not always be beneficial to merge states together. The introduc-
tion of symbolic ITE expressions increases the burden on the SMT solver, as it
becomes more computationally intensive to solve queries containing these expres-
sions [55, 113], especially since these ITE expressions may be nested. If merging
introduces too many ITE expressions, the computational cost of solving quer-
ies may outweigh the cost of exploring duplicated program paths. Section 3.5.2
describes several techniques for finding a balance between the computational over-
head introduced by state merging and the effort saved by the tester in exploring
redundant paths. Of note is that it may be possible to heuristically predict the

150

6.2. STATE MERGING FOR CONCOLIC TESTING

computational cost of replacing “concrete” symbolic values, such as 1 and 2, with
more abstract symbolic values such as ITE(i0 = 0, 1, 2) [66]. Merging then only
takes place when the heuristic determines that the cost of replacing these values
with an ITE expression is outweighed by the reduction in available program paths.

6.2 State Merging for Concolic Testing

The previous section gave an overview of how state merging is traditionally real-
ised for online symbolic execution, where multiple program paths are explored
simultaneously and where execution can be forked at every state. In this section,
we give an overview of how state merging can be realised in the setting of an offline
executor, such as a concolic tester, which is restricted to exploring a program one
path per time.

6.2.1 Complications for Applying State Merging

The previous overview of state merging for online symbolic execution was aided
by two factors:

• The program point could be represented as just a code label (e.g., the line
number). In real-world applications, a code label does not suffice to precisely
define the execution point of the state.

• The symbolic executor was able to backtrack to any previous state in the
symbolic DAG, which in turn allowed for interleaving state merging and
symbolic execution.

Defining Program Points

The code in Listing 6.3 demonstrates why the program point of a state cannot
be modelled as just the code label of the corresponding branching point. The
if statement on line 3 is reached via two different paths, namely the paths from
functions f and g. Two different states would therefore be created in the symbolic
execution tree to represent this branching point. If program points were to be
defined as just the line number of the corresponding branching point, both states
would be merged together. However, execution after this statement proceeds

151

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

differently along both paths immediately upon returning from the print function.
As the if statements encountered along both branches differ from each other, the
structure of the subtrees of both states is also different. It may therefore be better
to keep them separate and extend our definition of program points to reflect the
different nature of both states.

We solve this problem by including the function stack in the program point.
The program point for the state on line 3 that was reached via the function f
is represented as the pair 〈L3, [f]〉, whereas the program point for the same line
reached via the function g is represented as 〈L3, [g]〉. Since these program points
are not identical, the symbolic executor does not consider the corresponding states
as candidates for merging.

Note that including function stacks in program points is still insufficient in the
general case. Section 6.3.2 discusses how program points should be redefined again
when testing event-driven code, and Section 6.4.2 presents a suitable definition of
program points for code featuring program loops.

1 let x, y;
2 function print(s) {
3 if (...) {
4 console.log(s);
5 }
6 }
7 function f() {
8 ... // elided
9 print("f");
10 if (x + y > 42) { ... } else { ... }
11 }
12 function g() {
13 ... // elided
14 print("g");
15 if (randomInt() === 0) { ...} else { ... }
16 }

Listing 6.3: An example code snippet where it does not suffice to define a program
point as just a code label.

152

6.2. STATE MERGING FOR CONCOLIC TESTING

Interweaving Symbolic Execution and State Merging

Recall from the demonstration of state merging in the online symbolic execution
of Listing 6.2 that the symbolic executor, after having explored the else branch
of the root state (Figure 6.5b), backtracked to the root state to first explore the
then branch of the root (Figure 6.5c), and then immediately joined both child
states together (Figure 6.5d) before continuing the execution by exploring the
else branch of the merged state (Figure 6.5e).

The symbolic executor was hence able to choose which states to explore in function
of which states can be merged. This feature allows the executor to merge suitable
child states as soon as they emerge, rather than first exploring an entire subtree
for each state and having to merge these subtrees together. Backtracking hence
enables the symbolic executor to avoid having to merge entire subtrees. However,
this backtracking is not possible for offline symbolic executors, such as concolic
testers, as we will discuss below.

6.2.2 Mitigating the Path Determinacy Problem

In the context of offline symbolic execution, i.e., concolic testing, it is not possible
to strictly interleave exploration of the symbolic execution DAG and merging of
duplicated states. Conceptually, the problem is that the program is executed both
concretely and symbolically, but symbolic execution is forced to follow alongside
the concrete execution. Unlike online symbolic executors, concolic testers cannot
halt exploration of a particular path, backtrack to an earlier state, and resume
exploration from its alternative branch.

Recall from Section 4.3 that before each test run the test selector specifies a
particular path to be explored in the run. The test selector then employs an SMT
solver to compute appropriate concrete values for the program inputs appearing in
the constraints along that path. When the test run commences, the concolic tester
is forced to proceed along this exact path, without opportunities to deviate from it
or to temporarily explore a different branch. We name this the path determinacy
problem, as the path, and hence the states that it will encounter along the path,
is selected before a test run is started and must be followed until completion.

In practical terms, this means that the tester is limited to merging the states that
it will find along the preselected path. To partially mitigate this problem, our
state merging algorithm mimics that of merging in online symbolic execution as

153

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

closely as possible, by incrementally adding a new path to the DAG in segments,
rather than adding the whole path in one operation as described in Section 2.2.3.
Whenever a partial path has been added to the DAG, the algorithm attempts to
find a duplicate state.

The test selector still determines which path must be explored in the next test
run, but the test executor attempts to perform a merge every time a new state
is created, i.e., whenever it observes a branching condition. The mergeState
function, which gives a pseudocode overview of the merging algorithm, is defined
in Algorithm 3. Conceptually, the test executor invokes the mergeState function
whenever a merge should be attempted.

An Algorithmic Description of State Merging for Concolic Testing

mergeState receives as input the root state of the symbolic execution DAG, which
is of type State. The definition of a State structure is provided by Algorithm 2,
which follows the previously described tuple definition of a state. A State in-
cludes a ProgramPoint, defined in Algorithm 1, which follows the extended
definition of a program point described in Section 6.2.1.

ALGORITHM 1: Definition of a ProgramPoint struct.
struct ProgramPoint

lineNumber : number
functionState : A list of function labels.

end struct

ALGORITHM 2: Definition of a State struct.
struct State

programPoint : A ProgramPoint
PC : The path constraint.
store : A mapping of program variables to symbolic expressions.

end struct

mergeState receives as a second input the partial path that has been explored
by the test executor in the current test run. mergeState first adds this partial
path to the symbolic execution DAG (line 2) by calling the auxiliary function
addPathToDAG. It then attempts to find a state previously inserted into the exe-
cution DAG with a program point that is identical to that of the last state of the
partial path (line 3). If no duplicate program point can be found (line 4), the merge

154

6.2. STATE MERGING FOR CONCOLIC TESTING

operation is aborted. If a suitable candidate state. named duplicateState, ex-
ists, the merge operation continues by constructing the merged symbolic store by
calling the auxiliary function mergeStores (line 5).

mergeStores creates a new store by traversing all variables in both stores and
comparing their values. If their values are different, the function inserts into
the new store an ITE expression which uses as predicate the path constraint of
lastState, and which has as then and else values the values from respectively
the lastState’s store and duplicate state’s store. If the values are the same,
the function simply inserts this value into the new store. We elide the definition
of mergeStores, but it aligns with the definition of the state merge operation
presented in Section 6.1.3: ∀v ∈ σ1 : σm[v] = ITE(PC1, σ1[v], σ2[v]), where σm is
the store produced by the mergeStores function, and σ1 and σ2 are the symbolic
stores of respectively lastState and duplicateState.

The merged state itself is then constructed (line 7) by creating a new State that
consists of the unchanged programPoint of the duplicate state, the disjuncted path
constraints of the two original states (created by calling the auxiliary function
disjunct on line 6), and the merged store.

As a consequence of the path determinacy problem, duplicateState likely had
a subtree. The symbolic stores of all states in this subtree have to be updated
to reflect the new values of the program variables in mergedStore. Note that
lastState does not have a subtree, as it was the most recent node to be added to
the symbolic execution tree. The symbolic stores of all the states in the duplicate’s
subtree are updated via the auxiliary function applyStoreToChildren (line 8),
returning a new subtree. This subtree is then added to mergedState (line 9).

Lastly, the original duplicate state and last state of the newly added path are
replaced by having their parents (lines 10-11) replace these children with the
newly merged state (lines 12-13).

Figure 6.7 illustrates how the state merging algorithm for concolic testing is ap-
plied to the code depicted in Listing 6.2 over the course of three test runs. As
before, when a variable is read, the inlined ITE expression is subscripted with the
name of the variable.

155

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

ALGORITHM 3: A pseudo-code implementation of the state merging
procedure for concolic testing.

input : The root State that forms the root of the current symbolic
execution tree.

input : The partial path constraint path that has been observed by the
test executor.

output: A boolean indicating whether the merge operation was
successful.

1 Function mergeState(root, partialPath)
2 lastState ← addPathToDAG(root, partialPath)
3 duplicateState ← getDuplicate(root, lastState.ProgramPoint)
4 if duplicateState 6= null then
5 mergedStore ← mergeStores (lastState.PC, lastState.store,

duplicateState.store)
6 disjunctedPC ← disjunct(duplicateState.PC, lastState.PC)
7 mergedState ← new State(lastState.ProgramPoint, disjunctedPC,

mergedStore)
8 newSubtree ← applyStoreToChildren(mergedStore,

duplicateState)
9 setSubtree(mergedState, newSubtree)

10 lastStateParent ← getParent(lastState)
11 duplicateStateParent ← getParent(duplicateState)
12 replaceChildWith(lastStateParent, lastState, mergedState)
13 replaceChildWith(duplicateStateParent, duplicateState,

mergedState)
14 return true
15 else
16 return false
17 end
18 end

156

6.2. STATE MERGING FOR CONCOLIC TESTING

i0 = 0

i1 = 1

0a + 0b + 0c + 0d = 4

END
F

i2 = 2

i3 = 3

false

false

a → 0

b → 0

false

false

c → 0

d → 0

false

(a) Test run 1: The symbolic execution
tree after adding the first program
path.

i0 = 0

i1 = 1

true

a → 1

S1 = <L7, PC1, {a → 0}>

with PC1 = true
 ∧ i0 ≠ 0

S2 = <L7, PC2, {a → 1}>

with PC2 = true
 ∧ i0 = 0

i1 = 1

0a + 0b + 0c + 0d = 4

false

false

a → 0

b → 0

END
F

false

i2 = 2

i3 = 3

false

c → 0

d → 0

false

(b) Test run 2: The symbolic execution tree
after adding part of the second pro-
gram path, with the candidate states for
drawn with a dotted line.

i0 = 0

a → ITE(i0 = 0, 1, 0)
i1 = 1

false

a → 0

true

a → 1

ITE(i0 = 0, 1, 0)a + 0b + 0c + 0d = 4

b → 0

END
F

false

i2 = 2

i3 = 3

false

c → 0

d → 0

false

false

(c) Test run 2: The symbolic execu-
tion DAG after merging the candidate
states from the previous step together.

i0 = 0

a → ITE(i0 = 0, 1, 0)
i1 = 1

i2 = 2
b → 1

true
S1 = <L12, PC1, σ1>
with σ1 = {a → ITE(i0 = 0, 1, 0),
 b → 0}
and PC1 = true
 ∧ (i0 ≠ 0 ∨ i0 = 0)
 ∧ i1 ≠ 1

S2 = <L12, PC2, σ2>
with σ2 = {a → ITE(i0 = 0, 1, 0),
 b → 1}
and PC2 = true
 ∧ (i0 ≠ 0 ∨ i0 = 0) ∧
 ∧ i1 = 1

false

a → 0

true

a → 1

ITE(i0 = 0, 1, 0)a + 0b + 0c + 0d = 4

END
F

false

i2 = 2

i3 = 3

c → 0

d → 0

false

false

b → 0

false

(d) Test run 3: The symbolic execution
DAG after adding part of the third pro-
gram path.

157

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

ITE(i0 = 0, 1, 0)a + 0b + 0c + 0d = 4

b → 0

END
F

false

i3 = 3

false

c → 0

d → 0

false

b → 1

b → ITE(i1 = 1, 1, 0)
i2 = 2

i0 = 0

a → ITE(i0 = 0, 1, 0)
i1 = 1

true

false

a → 0

true

a → 1

false

(e) Test run 3: The symbolic execution
DAG after merging the candidate states
from the previous step together.

Figure 6.7: Concolic testing of the code in Listing 6.2, using state merging to
prune similar states.

6.3 State Merging for Event-driven Applications

The previous section described how state merging can be incorporated into con-
colic testing of sequential applications. However, in order to support state merging
for full-stack JavaScript web applications, it is necessary to define state merging
for event-driven applications too. In sequential code, the state explosion prob-
lem is caused only by conditional branching nodes, which are created for branch
conditions such as if statements. Testing of event-driven code, however, also
introduces event branching nodes (cf. Section 4.4.1) that increase the number of
program paths.

6.3.1 State Explosion in Event-driven Applications

Listing 6.4 presents a code snippet that registers three event handlers b0, b1, and
b2 with the click event. A partial symbolic execution tree for this snippet is
depicted in Figure 6.8.

158

6.3. STATE MERGING FOR EVENT-DRIVEN APPLICATIONS

1 let b0Flag = false, b1Flag = false;
2 function b0() {
3 b0Flag = true;
4 }
5 function b1() {
6 b1Flag = true;
7 }
8 function b2() {
9 if (b0Flag) {
10 if (b1Flag) {
11 foo();
12 } else { ... }
13 } else { ... }
14 ...
15 }
16 document.getElementById("Button0").addEventListener("click", b0);
17 document.getElementById("Button1").addEventListener("click", b1);
18 document.getElementById("Button2").addEventListener("click", b2);

Listing 6.4: An event-driven code snippet of which the execution gives rise to a
large number of program paths.

Event branching nodes of the form Ei appear in a path whenever the tester can
decide to invoke a new event handler, the i-th handler in the event sequence, by
triggering its corresponding event. Since event handlers in JavaScript are atomic,
this decision mostly arises whenever the test executor has finished executing the
previous handler. The very first event branching node is created when the test
executor has finished executing all code outside of event handlers. In the case
of Listing 6.4, no code is executed outside of any event handler apart from the
code for registering these event handlers, so the root state of the tree is the event
branching node E0.

Every event branching node in this tree has four child states, as the tester can
choose to execute any of the three registered event handlers, or it can decide to
stop the test run by not executing any event handler. Even without accounting
for conditional branching inside the event handlers themselves, the number of
reachable program paths grows exponentially in function of the length of the event
sequence. If state merging would be restricted to merging duplicate branching

159

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

E0

End E1 E1 b0Flag

None

Button0 Button1

Button2

b0Flag→true b1Flag → true

true

E1

false

E2 b0Flag

b0Flag → true b1Flag → true

E2

Button0 Button1

Button2

End

None

b1Flag

true

true

false

E2

false

Figure 6.8: A partial symbolic execution tree for the code snippet in Listing 6.4.
For brevity, the figure includes only one subtree for an E1 event
branching node, while the subtrees for all E2 states are omitted en-
tirely.

nodes together, state explosion within event handlers would be prevented, but
the total number of states in the DAG would still remain exponential as the event
branching nodes, along with their subtrees, would still be duplicated.

Consider for example line 14 in the snippet. For every invocation of event handler
b2, the state corresponding to this line will be duplicated in the tree, as an instance
of this state may be encountered after having executed the else branch of the
if statement on line 9, or after having executed first the then branch on line 10
and then either the then branch or the else branch. The mergeState function
of Algorithm 3 can be used to merge these three duplicate states together, but
this would only reduce the number of states within one particular invocation of
the event handler.

State merging should therefore not be limited to merging duplicate states within
event handlers together. Many of these event branching nodes can be considered
duplicates of each other: for every i, every event branching node of the form Ei

is a duplicate of another. Duplicate occurrences of the event branching node E1
are coloured orange in Figure 6.8, while duplicates of E2 are coloured blue.

160

6.3. STATE MERGING FOR EVENT-DRIVEN APPLICATIONS

6.3.2 Considerations for State Merging in Event-driven Code

To apply state merging to event-driven code, we must solve the following problems:

• The program point must be redefined to include the event handler that was
executed when the state was created.

• The event branching nodes encountered along the path towards a state must
be translated into symbolic expressions, so that these expressions may ap-
pear in the predicate of ITE expressions. This enables constructing ITE
expressions for variables whose value depends on the chosen event handler.

Redefining Program Points

Recall that the definition of a program point determines which states should be
considered duplicates of each other, and which hence should be considered as
candidate states for merging. Program points were defined in Section 6.2.1 as
tuples of a code label, specifically the line number, and the function stack that
was active when the state was observed.

There are two reasons for extending this definition to include event handlers.
First, as a technical complication, because of the inclusion of the code label, the
program point is tied to a particular location in the code. It is therefore not
possible to express a program point for event branching nodes, as these states
are created whenever the tester has finished executing an event handler and is
preparing to invoke the next handler. Furthermore, because event handlers are
atomic in JavaScript, the function stack for such a state would always be empty,
as the JavaScript process cannot invoke a new event handler while another is
still being executed. Since no code label can be included and the state’s function
stack would always be empty, we instead define a new type of program point
HandlerFinished(i), which we abbreviate to HF(i). This state is used exclus-
ively for event branching nodes, and expresses the point where the test executor
has finished executing the i-th handler in the event sequence. A state of the form
Ei receives the program point HF(i - 1).

Second, it is necessary to distinguish between similar states of different invocations
of the same event handler. Consider Figure 6.9a, which depicts a partial symbolic
execution tree for Listing 6.4 without any merged states. The tree includes two in-
stances of a b0Flag conditional branching node. One of these instances is created

161

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

when handler b2 is invoked a first time, the other is created when it is invoked
the second time. The program point for both states is defined as 〈L9, [b2]〉. As
both states share the same program point, they could be merged together, which
would result in the symbolic execution DAG in Figure 6.9b. However, doing so
would introduce a loop in the symbolic execution DAG. DAGs are acyclic, so by
introducing a loop, the resulting graph would no longer be a DAG. Not only does
this complicate the traversal of the symbolic execution graph, but it also renders
it possible for states to feature path constraints that have an infinite length.

At the same time, however, we do not want to make the program point overly
restrictive. For example, including in the program point the entire stack of event
handlers that have been called so far would make the program point far too spe-
cific, as it would become impossible to ever merge states from the subtrees of
different handlers. These problems can be avoided by distinguishing between dif-
ferent invocations of the same handler, i.e., by including in the program point
tuple the global index in the event sequence of the current event handler invoca-
tion. This index does not refer to the specific event handler being invoked, but
rather describes its position in the event sequence. It hence does not keep track
of a history of which event handlers were invoked previously, thereby avoiding
the problem of the program point being too restrictive. The program point for
the top b0Flag state of Figure 6.9a therefore becomes 〈L9, [b2], 1〉, while that of
the bottom one becomes 〈L9, [b2], 2〉. Since the states now have different program
points, the merging algorithm does not merge them together and the problem is
avoided. If no event handler is currently being executed, we replace this index
with the value null.

We therefore define a program point for event branching nodes as a HF(i) con-
struct, and for conditional branching nodes as a triple consisting of the code label,
the function stack, and either the index of the current event handler invocation
or the value null.

Event Branching Nodes as Symbolic Expressions

As with sequential applications, the values of program variables may depend on
the specific path that was followed. For example, the values of variables b0Flag
and b1Flag depend on whether respectively the event handlers b0 or b1 have been
executed at least once.

162

6.3. STATE MERGING FOR EVENT-DRIVEN APPLICATIONS

E0

b0Flag

Button2

true

. . .

E1

false

b0Flag

Button2

true

. . .

E2

false

<L9,[b2]>

<L9,[b2]>

.

(a) A partial symbolic execution tree for
Listing 6.4 with subtrees for handler b0
expanded.

E0

b0Flag

Button2

true

. . .

E1

false

. . .

Button2

HF(-1)

HF(0)

<L9,[b2]>

(b) Merging the duplicate states of the DAG
together results in a loop.

Figure 6.9: An example of why it is necessary to include the current position in
the event sequence as part of the program point. The program points
are emphasised in bold.

Recall that when merging two separate states S1 and S2, the symbolic value for
a program variable x in the merged state is replaced by an ITE expression of the
form ITE(PC1, σ1[x], σ2[x]), where PC1 is the path constraint for S1, and σ1 and
σ2 are the symbolic stores for S1 and S2 respectively. The predicate values of such
an ITE expression hence consist of the path constraint that lead to the merged
states.

For sequential applications, a path constraint consists of the concatenation of
the symbolic constraints corresponding to the conditional branching nodes en-
countered along that path. In the case of event-driven applications, however, the
path is also determined by the event handlers that were executed. The path con-
straint must hence also encode the decision of which event handler was invoked
when, which in turn means that the decision of which edge to take from an event
branching node must be translated to a symbolic constraint.

163

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

This is possible by assigning a unique id to every event handler, named the target
id, and to express event branching nodes of the form Ei as a constraint over a
unique symbolic input variable ei, named the event input. By following a branch
from an event branching node, an event input is constrained to a specific target
id. Event handlers b0, b1, and b2 can be assigned respectively the target ids 0, 1,
and 2, based on the order in which they were registered. Following the Button1
edge for event branching node E0, which corresponds to clicking on Button1 and
invoking event handler b1 as the first event handler, is represented as the symbolic
constraint e0 = 1. As another example of this translation, the path constraint for
the b0Flag state on the third row of Figure 6.8, which can be reached by first
clicking Button0 and then Button2, is e0 = 0 ∧ e1 = 2.

E0
Button0 Button1

b0Flag → true b1Flag → true

b0Flag → ITE(e0 = 0, true, false)
b1Flag → ITE(e0 = 1, true, false)

E1

E0
Button0 Button1

b0Flag → true b1Flag → true

E1 E1

HF(-1) HF(-1)

HF(0)HF(0)
HF(0)

Figure 6.10: An example of how the program variables b0Flag and b1Flag are
assigned different values along different paths in the unmerged sym-
bolic execution tree (left) and the merged DAG (right). The program
points are emphasised in bold.

Having this symbolic representation of decisions on event branching nodes makes
it possible to construct ITE expressions for program variables whose value depends
on the chosen event handler. Consider Figure 6.10, which depicts a small part
of both the unmerged symbolic execution tree for Listing 6.4 and the merged
DAG. In the merged DAG, the symbolic value for b0Flag can be expressed
as ITE(e0 = 0, true, false). If this symbolic value were to appear in another
constraint, then the SMT solver can compute a mapping of event inputs to target
ids to create an event sequence.

6.3.3 Result of State Merging in Event-driven Code

After taking these considerations into account, the symbolic execution DAG gen-
erated by a concolic tester that incorporates state merging for the event-driven
code of Listing 6.4 is depicted in Figure 6.11.

164

6.3. STATE MERGING FOR EVENT-DRIVEN APPLICATIONS

E0

End

b0Flag

None

Button0 Button1

Button2

b0Flag → true b1Flag → true

true

false

b0Flag → ITE(e0 = 0, true, false)
b1Flag → ITE(e0 = 1, true, false)

E1

End

ITE(e0 = 0, true, false)b0Flag

None

Button0 Button1

Button2

b0Flag → true b1Flag → true

false

b0Flag → ITE(e0 = 0 ∨ e1 = 0, true, false)
b1Flag → ITE(e0 = 1 ∨ e1 = 1, true, false)

E2

true

ITE(e0 = 1, true, false)b1Flag

true

false

End

ITE(e0 = 0 ∨ e1 = 0, true, false)b0Flag

None

Button0 Button1
Button2

b0Flag → true b1Flag → true

false

b0Flag → ITE(e0 = 0 ∨ e1 = 0 ∨ e2 = 0, true, false)
b1Flag → ITE(e0 = 1 ∨ e1 = 1 ∨ e2 = 1, true, false)

E3

true

ITE(e0 = 1 ∨ e1 = 1, true, false)b1Flag
false

true

HF(-1)

HF(0)

<L9,[b2],0>

<L9,[b2],1>

<L10,[b2],1>

<L9,[b2],2>

<L10,[b2],2>

HF(1)

HF(2)

Figure 6.11: The symbolic execution DAG depicted in Figure 6.8 after applying
state merging, with the states’ program points emphasised in bold.

The DAG includes only one instance of an event branching node for every invoc-
ation of an event handler. Decisions over which event handler to invoke when,
which affects the values of variables b0Flag and b1Flag, have been translated to
symbolic constraints so that the symbolic value of these variables can be defined
as ITE expressions.

Note that in the first two invocations of the event handler b2, the call to foo on
line 11 is not reachable. In the first invocation of that event handler, the then
branch of the conditional branching node b0Flag is unreachable, as this variable
can only receive the value true if handler b0 had been invoked first. In the
second invocation, the then branch of the equivalent conditional branching node
ITE(e0 = 0, true, false)b0Flag is reachable, but the then branch of ITE(e0 =
1, true, false)b1Flag is not reachable, since both ITE expressions cannot evaluate
to true in the program execution.

165

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

The true branch of the if statement on line 10 at last becomes reachable in the
third invocation of event handler b2, since a satisfiable mapping of event inputs
to target ids (either e0 → 0 and e1 → 1 or vice versa) can be found so that
both ITE expressions ITE(e0 = 0 ∨ e1 = 0, true, false) and ITE(e0 = 1 ∨ e1 =
1, true, false) can evaluate to true.

6.4 Implementation in StackFul

In this section, we describe how the state merging algorithm for event-driven pro-
grams presented in the previous sections has been implemented for StackFul.
Although the implementation broadly follows the mergeState function defined in
Algorithm 3, it does not keep a symbolic store for states in the symbolic execu-
tion DAG, nor does it explicitly model states as triples of the program point, path
constraint, and symbolic store. StackFul instead lazily computes all required
components of a state when necessary (i.e., when performing a new merge oper-
ation). We also describe some technical limitations in StackFul’s approach to
state merging.

6.4.1 Recomputing State Merging Tuples

The general outline for performing state merging (cf. Section 6.1) called for
modelling each state of the symbolic execution tree as a tuple consisting of the
program point, path constraint, and symbolic store. A merge of two states
〈P,PC1, σ1〉 ∼ 〈P,PC2, σ2〉 produces the merged state 〈P,PC1 ∨ PC2, σm〉, with
σm defined as σm[v] = ITE(PC1, σ1[v], σ2[v]) for each variable v in σ1. Recall that
a suitable definition for program points ensures that states with identical program
points also share the same lexical environment, so that their symbolic stores in-
clude the same set of variables. Although this definition of a merge operation
allows for a conceptually simple approach to state merging, explicitly represent-
ing every state in the symbolic execution DAG as such a tuple is not practical
because of the associated memory overhead.

However, it is not necessary to store each of these three elements for every state
in the symbolic execution DAG. Of these three elements, StackFul only stores
the program point for each state. Both the path constraint and the state’s sym-

166

6.4. IMPLEMENTATION IN STACKFUL

bolic store are computed when necessary, as explained below. Additionally, the
predicates of ITE expressions do not consist of the entire path constraint of a
state.

Computing the Path Constraint

As conditional and event branching nodes can be translated into symbolic con-
straints, the path constraint of a state can be reconstructed by descending from
the root to this state while concatenating the constraints of the states observed
along this path. Recall that in the conceptual overview of state merging on state
tuples (cf. Section 6.1.3), the path constraint of a merged state is the disjunction
PC1 ∨ PC2 of the path constraints of the two original states. These disjuncted
path constraints also appear implicitly in the implementation because of the fact
that in a merged symbolic execution DAG there may be several paths from the
root to a state. The complete path constraint for a state can then be computed
by taking the disjunction of all paths from the root to that state.

Creating ITE Expressions

Section 6.1.3 explained how ITE expressions are created when merging program
variables with different values. If the variable x is assigned the values 1, 2, and
3 along the path constraints PC1, PC2, and PC3 respectively, then its associ-
ated ITE expression might be ITE(PC1, 1, ITE(PC2, 2, 3)). In practice, however,
the increased length and complexity of these three path constraints also increase
the memory required to store each ITE expression, resulting in an unacceptable
memory footprint for the tester. StackFul therefore does not include entire path
constraints in the predicates of ITE expressions, but it differentiates between val-
ues of the ITE based on their common ancestor constraint.

Consider the code in Listing 6.5.

The complete path constraint leading to the value 1 being assigned to x on line 4
is i0 = 0 ∧ i1 = 1, and that for the value 2 on line 6 is i0 = 0 ∧ i1 6= 1. The
state merging approach described in Section 6.1.3 might represent the complete
ITE expression for x as ITE(i0 = 0 ∧ i1 = 1, 1, ITE(i0 = 0 ∧ i1 6= 1, 2, ITE(i0 6=
0∧ i2 = 2, 3, 4))). However, as the path constraints to the values 1 and 2 share the
i0 = 0 conjunct, we can distinguish between these based only on their common

167

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

1 let x;
2 if (randomInt() === 0) {
3 if (randomInt() === 1) {
4 x = 1;
5 } else {
6 x = 2;
7 }
8 } else {
9 if (randomInt() === 2) {
10 x = 3;
11 } else {
12 x = 4;
13 }
14 }

Listing 6.5: A code snippet that assigns four different values to x.

ancestor constraint i1 = 1 (corresponding to the if statement at line 3). The
ITE expression that distinguishes between 1 and 2 can then be expressed as
ITE(i1 = 1, 1, 2).

We hence minimise the predicates of ITE expressions by articulating these only
in terms of common ancestor constraints. The complete ITE expression for x is
represented as ITE(i0 = 0, ITE(i1 = 1, 1, 2), ITE(i2 = 2, 3, 4)).

Computing the Symbolic Store

Storing an explicit snapshot of the symbolic store for every state in the symbolic
execution DAG results in a large memory overhead. Furthermore, the symbolic
store for a state only becomes relevant when the state is involved in a merge
operation. Rather than having the symbolic store for every state in the DAG
remain in memory it is preferable to recompute the symbolic store for a state
when necessary.

StackFul makes it possible to recompute a state’s symbolic store by annotating
the edges in the symbolic execution DAG with store updates. These annotations
describe which store operations were observed by the test executor in the program
between two constraints. The symbolic stores in StackFul that are recomputed
in this manner are represented as a stack of frames, with each frame mapping a

168

6.4. IMPLEMENTATION IN STACKFUL

set of variables to their symbolic values. When execution enters a new scope, a
new frame is pushed onto the stack. When execution leaves a scope, the topmost
frame is popped.

StackFul employs the following types of store annotations:

Assignment updates take the form VarAssign(varName, symExp). They spe-
cify that the program variable varName has been assigned the symbolic
expression symExp.

Scope entry updates take the form EnterScope(varNames), where varNames is
a set of names of program variables. They model a push on the stack of
frames and are generated when program execution enters a new scope in
which the given identifiers enter in scope.

Scope exit updates take the form ExitScope and are generated when execution
exits a scope.

An edge annotation consists of a, possibly empty, sequence of these updates.
Figure 6.12 illustrates how the test executor annotates an edge in the symbolic
execution tree with store updates when observing changes to the store.

When merging two states together, it is no longer necessary to construct a sym-
bolic store for the merged state. Instead, the store annotations for the subtree
below the merged state must be updated to account for this merge. The merge
operation requires the symbolic values of assignment expressions in VarAssign
annotations to be updated. This is illustrated in Figure 6.13, which depicts
the symbolic execution tree of Figure 6.12 after merging the states 3 = 3 and
4 = 3 together. The VarAssign annotation in the then child of the merged
state which before the merger mapped variable y to 3 now maps this variable to
ITE(i0 = 1, 3, 4).

6.4.2 Technical Limitations of the Prototype Implementation

Having presented an overview of how state merging is implemented in StackFul,
we now list two technical limitations that limit the scope of state merging, namely
the merging of heap locations and merging that takes place inside a loop. Apart
from specifying the technical challenge raised by these issues, we also describe
potential solutions to these problems.

169

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

1 let x = randomInt(), y = 0, z = 0;
2 if (x === 1) {
3 let x = 2;
4 y = 3;
5 } else {
6 y = 4;
7 }
8 if (y === 3) {
9 z = x + y;
10 }

i0 = 1

true

EnterScope({“x”})
VarAssign(“x”, 2)
VarAssign(“y”, 3)

ExitScope

3y = 3

true

EnterScope({})
VarAssign(“z”, i0x + 3y)

ExitScope

4y = 3

false

EnterScope({})
VarAssign(“y”, 4)
ExitScope

Figure 6.12: An example of how updates to the symbolic store can be expressed
via edge annotations.

Heap Locations

One main limitation to the current implementation of state merging in StackFul
lies in how state merging handles the merging of heap locations. Heap locations
are used in symbolic execution when e.g., creating an object, or reading from or
writing to a field of an object [5, 39]. In symbolic execution, objects are stored
in a symbolic heap H, where they can be accessed via a heap location (i.e., an
address). The symbolic heap is defined as a mapping of locations to objects,
where an object is defined as a mapping of fields to values. When a new object is
created, a new, unique heap location is created and the symbolic heap is extended
with an entry that maps the location to the object.

170

6.4. IMPLEMENTATION IN STACKFUL

i0 = 1

true

EnterScope({“x”})
VarAssign(“x”, 2)
VarAssign(“y”, 3)

ExitScope

y → ITE(i0 = 1, 3, 4)

ITE(i0 = 1, 3, 4)y = 3

true

EnterScope({})
VarAssign(“z”, i0x + ITE(i0 = 1,3,4)y)

ExitScope

EnterScope({})
VarAssign(“y”, 4)
ExitScope

false

Figure 6.13: The VarAssign annotation along the then edge below the merged
state has been updated to reflect the changed value for y.

For example, after executing the definition statement let o = {x:1, y:2}, a
new symbolic heap location ` is created, the symbolic heap is extended with the
entry `→ {x→ 1, y→ 2}, and the program variable o receives the symbolic heap
location `. Performing a read operation on an object’s field, e.g., o.x, can then
be performed symbolically by looking up the heap location to which o is bound in
the symbolic heap, and then reading the field x from the resulting object. A write
operation, e.g., o.x = 42, can be performed by first applying a similar lookup
procedure and then overwriting the value for the field x of the object.

Consider now the code snippet in Listing 6.6. After merging both program paths
after the first if statement, the program variable o3 is conditionally aliased with
either the heap location of o1 or that of o2, and should hence be represented
symbolically as an ITE expression over these two locations. However, when read-
ing the field x on line 7, the aforementioned lookup procedure can no longer be
applied, as o3 does not point to a unique location.

StackFul currently does not offer a solution to this problem. Applying state
merging as described in Section 6.2 on two states where a program variable is

171

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

1 let o1 = {x: 1}, o2 = {x: 2}, o3;
2 if (randomInt() === 1) {
3 o3 = o1;
4 } else {
5 o3 = o2;
6 }
7 if (o3.x === 1) { ... } else { ... }

Listing 6.6: A code snippet which results in merging of heap pointers.

conditionally bound with separate objects is hence unsound. However, we sketch
a, currently unimplemented, solution in which we define a read operation from or
a write operation to an object field of an ITE expression.

We represent a read operation on a field f via a symbolic expression X as H[X][f],
which is defined as follows:

H[X][f] =

ITE(c,H[`t][f],H[`e][f]) if X evaluates to ITE(c, `t, `e)
o[f] if X evaluates to a heap location ` and

H contains the mapping `→ o

For simplicity, we do not model the case where H does not contain an entry for
`. Note, however, that such a scenario would result in an exception being thrown
at run time.

A write operation of the value v on a field f via a symbolic expression X is
represented as H[X][f] := v, and updates the heap in the following way when
executed:

H[`t][f] := ITE(c, v, vt old) and
H[`e][f] := ITE(c, ve old, v)

if X evaluates to ITE(c, `t, `e), with vt old

and ve old defined as the previous value
for respectively H[`t][f] and H[`e][f]

H[`][f] := v if X evaluates to `

As before, we do not model the case where H does not contain an entry for `.

Apart from redefining the read operation and write operation, incorporating this
solution into StackFul would also require the edges of the symbolic execution
DAG to be annotated with heap updates. These updates are analogous to the store
updates described in Section 6.4.1. Furthermore, it will be necessary to support
object constraints (cf. Section 4.2.3) to reason over conditional pointer aliasing.

172

6.4. IMPLEMENTATION IN STACKFUL

Merging inside Loops

Another limitation of the state merging algorithm described in this chapter relates
to the unrolling of loops. Recall that in the context of event-driven applications,
a program point is defined as a triple of the code label currently being executed,
i.e., the line number, the function stack, and the index in the event sequence of the
current event handler invocation. However, this does not account for code that is
executed inside a program loop, where the same code label is observed multiple
times using the same function stack and event handler invocation. Note that this
is not a problem for recursive functions as, without tail recursion optimisation,
recursive calls to a function are saved in the function stack of the program point.
Different invocations of a recursive function hence correspond to different stacks.

Consider the code in Listing 6.7, where a loop with a fixed number of iterations is
executed as part of the event handler for a button click. Without state merging,
this loop gives rise to the creation of 1024 new paths in every invocation of the
event handler. State merging is therefore necessary to prevent the number of
states from exploding.

However, as the program point for the if statement on line 4 is identical across
the ten loop iterations, our state merging algorithm would, in each loop iteration,
attempt to merge the conditional branching node that was created in the current
iteration with that of the previous iteration. This would introduce a cycle into
the symbolic execution DAG, as the state now features a back-edge to itself.

1 document.getElementById("button")
2 .addEventListener("click", function () {
3 for (let i = 0; i < 10; i++) {
4 if (randomInt() === 0) { ... } else { ... }
5 }
6 });

Listing 6.7: A program loop inside an event handler.

Although currently not implemented, the problem can be avoided entirely by
including the concrete loop iteration in the program point. Merging may then
still take place across the same iteration, i.e., the then branch and else branch
of the conditional branching node point to the same state, thereby avoiding the
state explosion problem. In effect, this corresponds to unrolling the loop before
state merging, similar to existing approaches [12, 66].

173

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

6.5 Evaluation

In this section, we evaluate the state merging approach on the set of eight in-
put programs previously presented in Section 5.5. The incorporation of state
merging into StackFulINTER stands orthogonal to the two-phase approach for
distinguishing between high priority and low priority server-side errors described
in Chapter 5. This evaluation therefore focuses on measuring the effect of state
merging on inter-process testing of full-stack JavaScript web applications. That
is, we run two versions of StackFulINTER, a baseline version that does not in-
corporate state merging and another that does which we name StackFul, on the
eight input programs. Rather than first running an intra-process phase followed
by an inter-process phase, both testers are configured to test the entire application
in only a single inter-process phase. When testing the applications, both testers
instantiate a single client process and a single server process. In all applications,
the client process serves as the entry point into the application for the tester.

6.5.1 Overview of the Evaluation

We evaluate StackFulINTER and StackFul on the eight input programs pre-
viously presented in Section 5.5. We compare StackFulINTER with StackFul,
which is identical to StackFulINTER except for the fact that it incorporates the
state merging algorithm as described in Section 6.4.

We evaluate the effectiveness of state merging through the following research
questions:

RQ1 Does state merging improve the code coverage of the tester per test
run?

RQ2 Does state merging increase the computational overhead per test run?

RQ3 Does state merging offer an increase in coverage over the same unit
of execution time? That is, does state merging make it possible to
cover a larger part of the application in less time?

State merging promises to reduce the number of unexplored program states in
an application’s symbolic execution tree, thereby increasing code coverage more
quickly as there are fewer states to explore that correspond with the same lexical

174

6.5. EVALUATION

position in the code. However, state merging also greatly increases the burden on
the SMT solver, thereby leading to longer solve times compared to the baseline
approach. The aim of research question 1 is hence to verify whether state merging
achieves a higher code coverage per test run, when leaving aside the increased
execution times per test run. Research question 2 investigates to what extent the
increased burden on the SMT solver increases execution time per test run. As
a hypothetical example, even a tenfold increase in solving time may constitute
only a fraction of the total execution time per test run. Research question 3
combines both investigations by directly asking the question of whether state
merging achieves a higher code coverage over the same span of execution time.

We answer these three research questions through the following metrics:

Line coverage We measure the number of lines of code that were executed at
least once in any test run, expressed as a fraction of the total lines of code
in the application.

Branch coverage We measure the total number of branch conditions of which
both the then branch and the else branch were explored at least once [90].

Event handler coverage As a last coverage metric, we also measure how many
registered event handlers were invoked at least once.

Execution time We measure the overhead induced by state merging when testing
an application by observing the execution time required by StackFul and
StackFulINTER to complete the same number of test runs.

Specifications

The test executor of both testers, implemented in TypeScript, uses Node.js
v18.7.0, while the test selector, implemented in Scala, uses Java SE Runtime
Environment build 19.0.1+10-21, configured to run with a maximum heap size
of 4GB. Both testers were executed on a 2.8 GHz Quad-Core Intel Core i7 CPU,
with 16GB of 2133 MHz LPDDR3 RAM, running macOS 13.2. As an SMT
solver, both testers use Z3, version 4.8.5 - 64bit.

175

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

6.5.2 RQ1: Code Coverage per Test Run

The first research question asks whether, and to what extent, state merging im-
proves the code coverage achieved by the tester per test run. To answer this
question, StackFul and StackFulINTER are allocated the same test run budget,
and we measure the coverage they achieve within this budget. The number of test
runs to be completed is not fixed across all applications because the duration of
a single test run heavily depends on the application itself. Using the same, fixed
number of test runs would therefore result in testing of some applications finish-
ing quickly, whereas other applications would not be finished in any reasonable
timespan. We therefore find a test run per application by having StackFul test
an application for 3600 seconds and observing both the coverage level it obtains
and the number of test runs it completes. StackFulINTER is then allocated the
same test run budget. StackFul and StackFulINTER test an application in a
deterministic manner. The code coverage that they achieve over a series of test
runs is therefore also deterministic. Hence, it suffices to have both testers test
each application only once.

To inspect the code coverage obtained by both testers, we employ the line coverage
and branch coverage metrics. Because of the event-driven nature of the full-stack
JavaScript web applications, we also use an event handler coverage which measures
the fraction of registered event handlers which have been invoked at least once.

Line Coverage

The results of the line coverage metric are shown in Figure 6.14. The X axis
specifies how many test runs have been completed, and the Y axis specifies the
fraction (presented as a percentage value) of the total lines of code in the applic-
ation that have been executed at least once. StackFulINTER is represented by
the orange line with triangles, and StackFul is represented by the blue line with
circles.

The results indicate that the line coverage achieved by StackFul is generally
higher than or equal to that of StackFulINTER: it achieves a higher coverage for
four out of eight applications and an ultimately equal coverage for the other four.
We observe that for some applications, StackFul slightly lags behind Stack-
FulINTER, although, for the eight applications that we evaluated, StackFul

176

6.5. EVALUATION

eventually catches up with StackFulINTER. Across all applications, StackFul
shows an increase in line coverage of -0.8% to 8.2% over StackFulINTER at the
end of the testing session.

Line coverage is generally high, especially considering some parts of the server
are unreachable from that client of the application. After manual inspection of
the covered lines, we determined that the remaining uncovered lines for Simple
Chat were unreachable from the client. TOHacks also includes a fairly large
number of unreachable lines, with many overlapping branch conditions.

In the case of the Chat application, the uncovered lines relies on an operation
that is unsupported by the symbolic executor. The concolic tester may therefore
not be able to steer execution towards both branches of the branch condition
that features the unsupported operation. State merging also does not achieve
an improvement in line coverage for Game of Life. This application features
several nested loops. As mentioned in Section 6.4.2, StackFul currently does
not allow for merging inside program loops.

The highest increase in line coverage is attained for the Calculator application
(cf. Section 2.1.2), which notably registers a large number of event handlers. In
order to reach the server’s compute message handler (cf. Section 2.1.2), a relatively
complex sequence of events must be triggered on the client. State merging not only
reduces the number of test runs required by StackFul to explore the individual
event handlers, it also allows for finding the appropriate sequence of events to
access the server’s message handler more quickly. The Slack Mockup similarly
requires triggering a somewhat complex sequence of client-side events in order to
reach certain parts of the server.

The Totems and Whiteboard applications both feature relatively intricate con-
straints on user input, where malformed user inputs lead to early termination of
the program. State merging manages to explore both branches of the user input
validation more quickly than the baseline version. However, because the branches
that reject user input feature relatively few lines of code, this results in only a
modest improvement in line coverage.

177

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
Test Runs

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71
Test Runs

Lin
e C

ov
er

ag
e (

%
)

Calculator Chat Game of Life

Simple Chat Slack Mockup TOHacks

Totems Whiteboard

Figure 6.14: Line coverage achieved by the tester for eight input programs, with
(blue, with circles) and without (orange, with triangles) state mer-
ging applied.

Branch Coverage

As an alternative measure of coverage for sequential applications, we also observe
branch coverage obtained by both testers on the eight applications. The results
are depicted in Figure 6.15. As expected, these results mostly align with the line
coverage results. StackFul achieves a higher or equal branch coverage, though it
again sometimes slightly lags behind StackFulINTER for a few intermediate test
runs. Across all applications, StackFul shows an increase in branch coverage of
-6.7% to 28.6% over StackFulINTER at the end of the testing session.

178

6.5. EVALUATION

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71
Test Runs

Br
an

ch
 C

ov
er

ag
e (

%
)

Calculator Chat Game of Life

Simple Chat Slack Mockup TOHacks

Totems Whiteboard

Figure 6.15: Branch coverage achieved by the tester for eight input programs,
with (blue, with circles) and without (orange, with triangles) state
merging applied.

Event Handler Coverage

As full-stack JavaScript web applications are event-driven, we include an addi-
tional coverage metric which measures the fraction of event handlers that were
invoked at least once. The results are depicted in Figure 6.16.

Event handler coverage is generally very high: both testers eventually achieve
100% for most applications. StackFulINTER does not achieve full event handler
coverage in Calculator, however, whereas StackFul achieves 100% coverage
in relatively few test runs. By default, StackFul and StackFulINTER use a

179

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

breadth-first search strategy for exploring event handlers, which tends to favour
event handlers that are registered early in the application over handlers that are
registered later. This proves detrimental to event handler coverage when testing
applications that feature many event handlers, such as Calculator. StackFul,
however, overcomes this obstacle via the use of state merging.

Across all applications, StackFul shows an increase in event handler coverage
of 0.0% to 66.7% over StackFulINTER at the end of the testing session.

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

0

25

50

75

100

1 11 21 31 41 51 61 71
Test Runs

Ev
en

t H
an

dle
r C

ov
er

ag
e (

%
)

Calculator Chat Game of Life

Simple Chat Slack Mockup TOHacks

Totems Whiteboard

Figure 6.16: Portion of event handlers explored at least once by the tester for eight
input programs, with (blue, with circles) and without (orange, with
triangles) state merging applied.

180

6.5. EVALUATION

Conclusion

The three coverage metrics indicate that StackFul attains a higher or equal level
of code coverage in fewer test runs. We conclude that state merging improves the
code coverage achieved by the tester per test run, and we hence answer the first
research question in the affirmative.

6.5.3 RQ2: Computational Overhead per Test Run

The second research question concerns the computational overhead of employing
state merging. It asks whether incorporating state merging increases the dura-
tion required to complete a test run. We answer this question by observing the
execution time required to complete a number of test runs. As before, due to the
large variations in execution time across all applications, we do not employ a fixed
number of test runs. We run StackFul for 5400 seconds (1.5 hours) and record
the number of test runs it has completed. Afterwards, we allocate the same test
run budget to StackFulINTER.

Since we answer this research question by investigating the execution time of
both testers, which is inherently non-deterministic, we let both StackFul and
StackFulINTER test each application five times, and we take the median of their
execution times. In practice, the differences in execution times per iteration are
very small, relative to the total time budget of 5400 seconds.

Execution Time

Figure 6.17 depicts the execution times required by both testers to complete their
test run budget. We observe for all applications that state merging increases the
execution time required to complete the same number of test runs. We also ob-
serve that the gap in execution time between both variants increases over time.
We attribute this to the SMT solver requiring progressively more time to solve
path constraints that grow increasingly complex. Furthermore, as more merge
operations have taken place, the number of ITE expressions in these path con-
straints also grows. Solving these ITE expressions is known to be particularly
computationally intensive for SMT solvers [66].

181

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

0

1000

2000

3000

4000

5000

1 11 21 31 41 51 61 71 81 91
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

500

1000

1500

2000

1 11 21 31 41 51 61
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

2000

4000

1 11 21 31 41 51 61 71 81 91
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

1000

2000

3000

4000

1 11 21 31 41
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

1000

2000

3000

4000

5000

1 11 21 31 41 51 61 71 81 91 101111
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

2000

4000

1 11 21 31 41 51 61 71
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

2000

4000

1 11 21 31 41 51 61 71 81 91 101111121131141151161171181191201211221231241

Test Runs

Ex
ec

uti
on

 T
im

e (
s)

0

500

1000

1500

1 11 21 31 41 51 61 71
Test Runs

Ex
ec

uti
on

 T
im

e (
s)

Calculator Chat Game of Life

Simple Chat Slack Mockup TOHacks

Totems Whiteboard

Figure 6.17: Execution time (in seconds) required by the tester for eight input pro-
grams, with (blue, with circles) and without (orange, with triangles)
state merging applied.

Across all applications, StackFul shows an increase in execution time of 27.1%
to 440.5% over StackFulINTER at the end of the testing session. We conclude
that state merging has a detrimental effect on the execution time per test run
because it increases the computational overhead of the tester per test run. We
hence answer the second research question in the affirmative.

182

6.5. EVALUATION

6.5.4 RQ3: Code Coverage per Unit of Execution Time

We have concluded that state merging generally increases the code coverage at-
tained by StackFul (RQ1), but also increases the execution time of each test run
(RQ2). Our third research question combines both elements by asking directly
whether state merging increases the code coverage attained by the tester over a
unit of execution time, or whether a baseline tester achieves a higher coverage by
virtue of the fact that it completes more test runs over the same time interval.

We answer this research question by measuring code coverage in function of the
execution time. Rather than allocating a budget of test runs to both testers,
we run both for 5400 seconds (1.5 hours) while recording the code coverage that
they attain. As the most general of the three coverage types previously employed,
we measure only line coverage. As with the second research question, we let
StackFulINTER and StackFul test each application five times and then take
the median of the execution times.

Line Coverage over Execution Time

Figure 6.18 depicts the line coverage attained by both testers in function of their
execution times. Note that execution times are expressed on a log scale, as line
coverage generally increases more quickly towards the beginning of a test execu-
tion than towards the end. As before, we find that the line coverage attained by
StackFul is generally higher than or equal to that of StackFulINTER. Des-
pite the higher number of test runs completed by StackFulINTER (cf. RQ2),
StackFul is still generally superior with regards to code coverage. Across all
applications, StackFul shows an increase in line coverage over execution time of
-0.8% to 4.7% over StackFulINTER at the end of the testing session.

We conclude that state merging generally offers an increased code coverage com-
pared to StackFulINTER over the same unit of execution time, and hence answer
the third research question in the affirmative as well.

183

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

0

25

50

75

100

10 100 1000
Execution Time (s)

Lin
e C

ov
er

ag
e (

%
)

Calculator Chat Game of Life

Simple Chat Slack Mockup TOHacks

Totems Whiteboard

Figure 6.18: Line coverage attained by the tester in function of the execution time
(in seconds) for eight input programs, with (blue, with circles) and
without (orange, with triangles) state merging applied.

6.6 Conclusion

In this chapter, we described an approach to incorporating state merging in con-
colic testing of event-driven code. This algorithm allows for merging similar states
together, hence curbing the state explosion problem that arises during naive test-
ing. This is the first approach that enables state merging to be performed in
the setting of concolic testing of event-driven applications, which in turn enables

184

6.6. CONCLUSION

state merging for concolic testing of full-stack JavaScript web applications. We
summarise the chapter and conclude by comparing StackFul against the criteria
outlined in Section 2.4 for testing full-stack JavaScript web applications.

6.6.1 Summary

Naive concolic testing gives rise to the state explosion problem, where the number
of states to be covered by the tester grows exponentially in function of the number
of branch conditions that are executed. One approach for mitigating this problem
is to merge similar states together, thereby reducing the total number of states in
the symbolic execution DAG. When merging states, shared variables that have
been assigned different values in each state can be represented as a single variable
with an ITE expression as value.

We distinguished between state merging performed by online symbolic executors,
and offline executors, such as concolic testers. Although state merging for concolic
testers is more cumbersome than for online testers because of the path determinacy
problem, we described an approach where offline state merging mimics the state
merging performed by online testers. We also specified how state merging can be
incorporated into concolic testing of event-driven applications, by extending the
definition of a program point to incorporate event sequences and by translating
event branching nodes into symbolic expressions that can be incorporated into
ITE constructs. We described a prototype implementation for this approach to
state merging. We also discussed the prototype’s current limitations and their
potential solutions.

We evaluated StackFul, which incorporates state merging, and Stack-
FulINTER, which does not, on eight full-stack JavaScript web applications. We
compared both testers with respect to the code coverage that they achieve per
test run, the computational overhead of state merging per test run, and the
code coverage per unit of execution time. Our evaluation finds that StackFul
achieves a higher code coverage for the same number of test runs, as well as for
the same length of execution time on about half of the applications, while it
attains an equal coverage on the other applications.

185

CHAPTER 6. STATE MERGING FOR EVENT-DRIVEN PROGRAMS

Table 6.1: StackFul evaluated on the criteria identified in Section 2.4.

Criterion Description Satisfied?

1 A Capable of testing sequential JavaScript
code

3

B Models inputs from the DOM 3

2 A Allows for dynamic (de)registration of
event handlers

3

B Explores event space 3

3 Capable of finding composition-specific
faults

3

4 A Whole-program monitoring 3

B Observes communication between dis-
tributed processes

3

6.6.2 Concluding Remarks

We conclude the chapter by evaluating StackFul on the criteria for concolic
testing of full-stack JavaScript web applications identified in Section 2.4. Recall
that StackFulINTER satisfied six of the seven criteria (cf. Section 5.6): all except
for the efficient exploration of the application’s event space (criterion 2.B).

Table 6.1 evaluates StackFul on these criteria. State merging does not extend or
affect the capabilities already achieved by StackFulINTER but rather stands or-
thogonal to the inter-process procedure employed by this tester. It therefore does
not interfere with the criteria already achieved by StackFulINTER. However,
by alleviating the state explosion problem, we enable a more efficient exploration
of the application’s search space, thereby resulting in the compliance of criterion
2.B. By satisfying this last criterion, we hence conclude that StackFul meets all
criteria for concolic testing of full-stack JavaScript web applications.

186

7 Conclusion

This dissertation presented StackFul, a concolic tester for full-stack
JavaScript web applications. StackFul uses inter-process testing to
improve precision and prevent false-positive errors from being reported.
StackFul also incorporates state merging to alleviate the state explo-
sion problem. The source code of StackFul is publicly available at
https://github.com/softwarelanguageslab/StackFul In this final chapter,
we summarise our work, revisit our contributions, and discuss avenues for future
research.

7.1 Summary

Chapter 2 defined full-stack JavaScript web applications as web applications
of which both the client and the server processes are implemented in JavaScript.
Their unique set of characteristics gives rise to four challenges: the dynamic nature
of JavaScript, the necessity to test event-driven code, the need for handling dif-
ferent multiplicities, and the interplay between the application’s constituent pro-
cesses. These challenges were distilled into seven concrete criteria for having
automated testers test these applications.

Chapter 3 presented the state of the art in automated testing of distributed
systems, event-driven applications, JavaScript programs, and web servers. We
evaluated the most relevant concolic testers for web clients and servers on the
seven criteria that were identified in the previous chapter.

Chapter 4 presented StackFulINTRA, an intra-process concolic tester for
JavaScript. StackFulINTRA instruments the JavaScript code under test so
it can perform shadow execution. This enables the tester to execute the code
while simultaneously collecting symbolic constraints over the program inputs.
StackFulINTRA is also capable of testing event-driven programs, by observing
which event handlers are registered and deregistered and then automatically

187

https://github.com/softwarelanguageslab/StackFul

CHAPTER 7. CONCLUSION

triggering the corresponding user event or system event. As an intra-process
tester, StackFulINTRA only tests a single process and relies on mocking of
messages to cover the corresponding message handler. Nevertheless, we evaluated
the tester on the seven criteria and found that it satisfies three of them.

Chapter 5 introduced the concept of inter-process testing and implemented this
technique in StackFulINTER. We described how StackFulINTER simultane-
ously tests multiple processes of the full-stack JavaScript web application, how it
intercepted and observed the communication between these processes, and how it
managed a global, cross-process path constraint. As a motivation for inter-process
testing, StackFulINTER was used to distinguish between high-priority and low-
priority server errors, based on whether a server error is reachable from a client
in the application. We evaluated StackFulINTER on three research questions
related to this use case. We then evaluated StackFulINTER on the seven criteria
and found that it satisfies six of them.

Chapter 6 discussed how the state explosion problem — which arises when test-
ing even sequential, single-process code but is made worse in the context of event-
driven, multi-process applications — can be alleviated by merging similar states
together. We showed how state merging can be applied by online symbolic ex-
ecutors and concolic testers on sequential code, and then lifted the technique to
concolic testing of event-driven code. We implemented this form of state merging
in StackFul, and evaluated the effectiveness of StackFul in covering full-stack
JavaScript web applications. Finally, we evaluated StackFul on the seven cri-
teria and found that it satisfies all of them.

7.2 Revisiting the Contributions

This dissertation presented the following four contributions:

1. Identifying Challenges for Automated Testing of Full-stack
JavaScript Web Applications: We identified the following challenges
for automated testing of full-stack JavaScript web applications:

• As all constituent processes of the full-stack JavaScript web application
are implemented in JavaScript, the tester must be capable of handling
the dynamic nature of JavaScript.

188

7.2. REVISITING THE CONTRIBUTIONS

• Since both client and server processes are event-driven, each register-
ing event handlers and message handlers, the tester must be capable
of generating and testing sequences of events and messages.

• As the number of instances of clients and servers is not fixed, and
because certain bugs may only manifest themselves when a specific
number of processes have connected, the tester must be capable of
handling different multiplicities.

• The tester must consider the interplay between processes, as well
as how execution of one process affects that of others.

2. Inter-process Concolic Testing: We defined inter-process testing as test-
ing the composition of all processes in a full-stack JavaScript web application
as a whole, while observing their communication, and having their execution
paths cross process boundaries. Inter-process testing was implemented in
StackFulINTER, which was built on top of StackFulINTRA.

Chapter 4 discussed how StackFulINTRA performs concolic testing of
event-driven JavaScript applications, and hence how both StackFulINTRA
and StackFulINTER tackle the first and second challenge. Chapter 5
described how StackFulINTER is capable of launching and testing several
processes simultaneously, thus addressing the third challenge. Chapter 5
also stipulated how StackFulINTER is capable of observing message
sends and message receives, and how this enables constructing precise
global path constraints that cross process boundaries. This in turn helps
StackFulINTER solve the fourth challenge.

3. Distinguishing between High-Priority and Low-Priority Server
Errors: The increased precision offered by inter-process testing enabled
StackFulINTER to distinguish between high-priority and low-priority
server errors, based on whether the server error was reachable from a client
process in the application. StackFulINTER employed a two-phase testing
approach to perform this classification. In the first phase, StackFulINTER
performs traditional, intra-process testing of the server to construct path
constraints from the entry points of the server, e.g., message handlers, to
these errors. In the second phase, StackFulINTER performs inter-process
testing, and starts testing the application from its clients. StackFulINTER
then searches for paths that cause a client to send a message to the

189

CHAPTER 7. CONCLUSION

server that results in the previously detected server error to be triggered
again, hence marking it as a high-priority error. Errors that could not be
reproduced in this manner were labelled as low-priority errors.

4. State Merging for Concolic Testing of Event-driven Applications:
When testing an application, the number of distinct execution paths, or
states, that are available in the application generally grows exponentially
in function of the number of branch conditions encountered while testing
the application. This problem is exacerbated for i) event-driven programs,
as event handlers introduce new branching with conditions, and ii) inter-
process testing as more branching points may be encountered on longer,
cross-process execution paths

This problem can be alleviated by applying state merging, in which similar
states are merged together to reduce the number of states. We discussed how
state merging can be performed for concolic testers like StackFulINTER,
and further lifted this technique to the domain of concolic testing of event-
driven application. We then incorporated this technique into our tester,
naming it StackFul.

7.3 Limitations and Future Work

We envision several avenues for future research.

7.3.1 State Merging for Two-phase Inter-process Testing

Recall that the two-phase approach to inter-process testing consists of an intra-
process phase which tests just the server, followed by an inter-process testing
phase where the entire application is tested via its clients. In the first phase, the
server’s message handlers are used as entry points into the execution of the server.
For every server error detected by the tester, the tester stores the path constraints
from the message handler to the error. In the second phase, the tester aims to
reach the previously detected server errors from the clients of the application. To
this end, when testing the clients in the second phase, the tester looks for message
sends where the client sends a message that is received by a message handler which
was previously reported as a possible entry point for a server error. The tester
then attempts to match the current path constraint, ranging from the client’s

190

7.3. LIMITATIONS AND FUTURE WORK

starting point to the message send operation, with the previously reported path
constraint from the message handler to the server error. If a match is satisfiable,
the server error can be reproduced and the error is marked as a high-priority
error. Any server errors remaining at the end of the inter-process testing phase
are deemed unreachable and labelled as low-priority errors.

Although StackFul incorporates state merging into inter-process testing, it has
not yet been integrated with this two-phase approach to inter-process testing.
Applying state merging to the first phase would allow for increased code coverage,
and hence would increase the number of server errors that can be found within
the same test budget. Likewise, incorporating state merging into the second
phase would allow the tester to more quickly find points in the execution where
the client communicates with the server, and hence where a server error may be
reached. However, applying state merging would also complicate both types of
path constraints. It may then not be feasible for the SMT solver to determine
whether both path constraints can be matched.

7.3.2 Heuristical Search for Inter-process Testing

Heuristical search strategies (cf. Section 3.5.1) may prioritise exploration of pro-
gram paths that reach previously uncovered parts of the code [20], or program
paths that maximise a specific metric, such as the number of read-write conflicts
between event handlers [72]. In the context of inter-process testing, one could
employ such a heuristic for directing testing towards message sends in the code
where the application’s constituent processes communicate with each other. This
would allow the tester to more quickly find points in the program where the ex-
ecution of one process may affect that of another. However, heuristical search
strategies may also interfere with the application of state merging, since state
merging prefers for testing to traverse the application’s control flow in a topo-
logical order (i.e., exhaustively exploring a node in a control-flow graph before
moving on to the exploration of its descendants), to maximise the opportunities
for merging states [66].

Nevertheless, developing a heuristic which allows the tester to more quickly find
points of contact between the application’s processes while respecting the preferred
order in which state merging drives execution may increase the code coverage
attained by the tester.

191

CHAPTER 7. CONCLUSION

7.3.3 Automatic Exploration of Multiplicities

Although StackFul is capable of testing various multiplicities of an application,
the desired multiplicity must be configured by StackFul’s user. That is, the
user must specify the number of processes to be started, their type, and the order
in which they should be launched. Once StackFul has been launched, this
configuration remains fixed throughout all test runs.

A more flexible approach would be to have StackFul investigate automatic-
ally which multiplicities should be explored, i.e., which multiplicities give rise
to different, potentially buggy, behaviour of the application. We can leverage re-
search undertaken in the context of testing actor programs or distributed systems,
where automated testers must also consider the number and type of processes to
be spawned. For example, COMPI [73] is a concolic tester for message-passing
applications that renders the number of processes symbolic. This is sufficient
for scenarios where a process directly queries the number of processes so that
this number is included directly in the program’s path constraint. TAP [75] in-
vestigated a more general approach, where the tool performs backwards symbolic
execution on actor programs. This allows TAP to reason over the number of act-
ors that must be spawned and how their message schedules must be constructed
in order to reach a particular targets statement in the code.

7.3.4 Scaling StackFul to Test Larger Applications

Although StackFul has been evaluated on real-world full-stack JavaScript web
applications, the scale of the investigated applications was rather limited. There
remain several practical obstacles that prevent the tester from scaling to larger
applications:

1. Even when merging similar program states, the state explosion problem
remains an important challenge. Although StackFul is capable of remov-
ing almost all duplicates of a state, state merging introduces such a large
overhead on the SMT solver that the timed gained by preventing duplicate
states from being explored is largely offset by the increased execution time
per test run. It may be advantageous to only apply state merging condi-
tionally, when the impact of merging on the SMT solver can be estimated
to be sufficiently low [66].

192

7.4. CLOSING REMARKS

2. StackFul requires more sophisticated heuristics for exploring applications
that are highly event-driven: i.e., applications that require a large number
of events to be triggered before reaching a specific part of the application.
For example, StackFul finds it difficult to test parts of a website that
are only made available when a user has logged in to the website, as these
sites typically require many different navigation events before allowing the
user access. To solve this problem, we might employ path prefixes [14]:
programmer-defined sequences of events that are guaranteed to lead the
tester to exercise a desired part of the application. A more general solution
would consist of employing new search heuristics to test event-driven applic-
ations, potentially taking into account the synergy between these heuristics
and state merging (cf. Section 7.3.2).

3. StackFul does not support web workers, which are often employed on mod-
ern web applications to improve the performance on multicore machines.
Web workers interleave non-deterministically and may lead to race condi-
tions that cannot be reproduced by the tester. The problem of testing mul-
tithreaded applications has been well studied in existing work [115, 53, 67,
127]. There is hence a wide body of known techniques for testing concurrent
systems that can be incorporated into StackFul.

4. The execution overhead imposed by the instrumented code is fairly high,
so that StackFul experiences a noticeable slowdown when testing even
sequential JavaScript applications. It may prove beneficial to configure the
instrumentation library to remove redundant calls to the advice (cf. Sec-
tion 4.2.1).

5. A memory model should be added to StackFul to allow for reasoning
over array operations and object constraints without having to resort to
concretisation.

7.4 Closing Remarks

Concolic testing of full-stack JavaScript web applications gives rise to several
challenges. First, the event-driven nature of these applications forces concolic
testing to generate sophisticated sequences of user events and system events to
completely cover the application. Second, these applications are implemented in
JavaScript, which is notoriously difficult to test. Third, these applications do

193

CHAPTER 7. CONCLUSION

not consist of a fixed number of instances of client and server processes. Fourth,
because of the interconnected nature of these processes, the execution of one
process may affect that of another in unpredicable ways.

In light of these challenges, we demonstrated that intra-process testing, where a
tester only tests a single process in isolation from others, is no longer sufficient.
We introduced inter-process testing, which we defined as testing the composition of
all processes in a full-stack JavaScript web application as a whole, while observing
their communication, and having their execution paths cross process boundaries.
We demonstrated how to perform inter-process testing on these applications, and
how this leads to an increase in the precision of the tester. This increased precision
allowed us to distinguish between high-priority and low-priority server errors,
based on whether the server error was reachable from a client in the application.

However, inter-process testing also exacerbates the state explosion problem, where
the number of states that an application may assume grows exponentially in func-
tion of the branching points encountered while testing the application. To alleviate
the state explosion problem, we detailed how state merging can be integrated into
concolic testing of event-driven applications. We implemented this form of state
merging into a concolic tester for inter-process testing, and named the resulting
tester StackFul.

We believe that these contributions are the first steps towards the wider applica-
tion of inter-process concolic testing.

194

Bibliography

[1] Abdullah, H. M. and Zeki, A. M. (2014). Frontend and Backend Web Tech-
nologies in Social Networking Sites: Facebook as an Example. In 3rd Interna-
tional Conference on Advanced Computer Science Applications and Technolo-
gies, pages 85–89. IEEE.

[2] Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic review of search-
based testing for non-functional system properties. Inf. Softw. Technol., 51(6),
957–976.

[3] Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege, R. K. (2010). A
Systematic Review of the Application and Empirical Investigation of Search-
Based Test Case Generation. IEEE Transactions on Software Engineering,
36(6), 742–762.

[4] Alshahwan, N., Gao, X., Harman, M., Jia, Y., Mao, K., Mols, A., Tei, T., and
Zorin, I. (2018). Deploying Search Based Software Engineering with Sapienz
at Facebook. In Search-Based Software Engineering - 10th International Sym-
posium, SSBSE 2018, Montpellier, France, September 8-9, 2018, Proceedings,
pages 3–45.

[5] Anand, S. and Harrold, M. J. (2011). Heap Cloning: Enabling Dynamic
Symbolic Execution of Java Programs. In 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011 , pages 33–42.

[6] Anand, S., Godefroid, P., and Tillmann, N. (2008). Demand-Driven Com-
positional Symbolic Execution. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages
367–381.

195

Bibliography

[7] Anand, S., Naik, M., Harrold, M. J., and Yang, H. (2012). Automated Con-
colic Testing of Smartphone Apps. In 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012 , page 59.

[8] Anand, S., Burke, E. K., Chen, T. Y., Clark, J. A., Cohen, M. B., Grieskamp,
W., Harman, M., Harrold, M. J., and McMinn, P. (2013). An Orchestrated Sur-
vey of Methodologies for Automated Software Test Case Generation. Journal
of Systems and Software, 86(8), 1978–2001.

[9] Andreasen, E., Gong, L., Møller, A., Pradel, M., Selakovic, M., Sen, K., and
Staicu, C. (2017). A Survey of Dynamic Analysis and Test Generation for
JavaScript. ACM Computing Surveys, 50(5), 66:1–66:36.

[10] Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A. M., and
Ernst, M. D. (2010). Finding Bugs in Web Applications Using Dynamic Test
Generation and Explicit-State Model Checking. IEEE Transactions on Software
Engineering, 36(4), 474–494.

[11] Artzi, S., Dolby, J., Jensen, S. H., Møller, A., and Tip, F. (2011). A Frame-
work for Automated Testing of JavaScript Web Applications. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011 , pages 571–580.

[12] Avgerinos, T., Rebert, A., Cha, S. K., and Brumley, D. (2016). Enhancing
Symbolic Execution with Veritesting. Communications of the ACM , 59(6),
93–100.

[13] Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi, I.
(2018). A Survey of Symbolic Execution Techniques. ACM Computing Surveys,
51(3).

[14] Bardin, S., Kosmatov, N., Marre, B., Mentré, D., and Williams, N. (2018).
Test Case Generation with PathCrawler/LTest: How to Automate an Industrial
Testing Process. In Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium, ISoLA 2018,
Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV , pages 104–120.

[15] Barrett, C., Deters, M., De Moura, L., Oliveras, A., and Stump, A. (2013).
6 Years of SMT-COMP. Journal of Automated Reasoning, 50(3), 243–277.

196

Bibliography

[16] Böhme, M., Pham, V., Nguyen, M., and Roychoudhury, A. (2017). Directed
Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, Octo-
ber 30 - November 03, 2017 , pages 2329–2344.

[17] Böhme, M., Pham, V., and Roychoudhury, A. (2019). Coverage-Based Grey-
box Fuzzing as Markov Chain. IEEE Transactions on Software Engineering,
45(5), 489–506.

[18] Bounimova, E., Godefroid, P., and Molnar, D. A. (2013). Billions and Billions
of Constraints: Whitebox Fuzz Testing in Production. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013 , pages 122–131.

[19] Buchanan, M. (2015). Physics in Finance: Trading at the Speed of Light.
Nature, 518(7538), 161–163.

[20] Burnim, J. and Sen, K. (2008). Heuristics for Scalable Dynamic Test Gen-
eration. In 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages 443–
446.

[21] Cadar, C. and Sen, K. (2013). Symbolic Execution for Software Testing:
Three Decades Later. Communications of the ACM , 56(2), 82–90.

[22] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R.
(2006). EXE: Automatically Generating Inputs of Death. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, October 30 - November 3, 2006 , pages 322–335.

[23] Cadar, C., Dunbar, D., and Engler, D. R. (2008). KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for complex systems programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224.

[24] Camps, U. S. B. (2020). What Is a Full Stack Developer &
What Do They Do? https://bootcamp.learn.utoronto.ca/blog/
what-is-a-full-stack-developer, Last accessed on 2022-05-12.

[25] Cha, S. and Oh, H. (2019). Concolic Testing with Adaptively Changing
Search Heuristics. In Proceedings of the ACM Joint Meeting on European

197

https://bootcamp.learn.utoronto.ca/blog/what-is-a-full-stack-developer
https://bootcamp.learn.utoronto.ca/blog/what-is-a-full-stack-developer

Bibliography

Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019 , pages 235–245.

[26] Cha, S., Hong, S., Lee, J., and Oh, H. (2018). Automatically Generating
Search Heuristics for Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27
- June 03, 2018 , pages 1244–1254.

[27] Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D. (2012). Unleashing
Mayhem on Binary Code. In IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA, pages 380–394.

[28] Champion, M., Byrne, S., Nicol, G., and Wood, L. (1998). Document Object
Model (Core) Level 1.

[29] Chen, C., Cui, B., Ma, J., Wu, R., Guo, J., and Liu, W. (2018). A Systematic
Review of Fuzzing Techniques. Computers & Security, 75, 118–137.

[30] Chen, T., Zhang, X.-s., Guo, S.-z., Li, H.-y., and Wu, Y. (2013). State of
the Art: Dynamic Symbolic Execution for Automated Test Generation. Future
Generation Computer Systems, 29(7), 1758–1773.

[31] Chipounov, V., Kuznetsov, V., and Candea, G. (2012). The S2E Platform:
Design, Implementation, and Applications. ACM Transactions on Computer
Systems, 30(1), 2:1–2:49.

[32] Christakis, M., Müller, P., and Wüstholz, V. (2016). Guiding Dynamic Sym-
bolic Execution Toward Unverified Program Executions. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages 144–
155, New York, NY, USA. ACM.

[33] Christophe, L. (2020). Aran. https://github.com/lachrist/aran, Last
accessed on 2022-06-23.

[34] Christophe, L., Gonzalez Boix, E., De Meuter, W., and De Roover, C. (2016).
Linvail: A General-Purpose Platform for Shadow Execution of JavaScript. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, pages 260–270. IEEE.

[35] Christophe, L., De Roover, C., Gonzalez Boix, E., and De Meuter, W. (2018).
Orchestrating Dynamic Analyses of Distributed Processes for Full-Stack JavaS-
cript Programs. In Proceedings of the 17th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences.

198

https://github.com/lachrist/aran

Bibliography

[36] Clarke, L., Glendinning, I., and Hempel, R. (1994). The MPI Message
Passing Interface Standard. In Programming Environments for Massively Par-
allel Distributed Systems, pages 213–218. Springer.

[37] Cousot, P. (1996). Abstract Interpretation. ACM Computing Surveys, 28(2),
324–328.

[38] de Moura, L. M. and Bjørner, N. (2008). Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, 14th Inter-
national Conference, TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 337–340.

[39] Deng, X., Lee, J., and Robby (2012). Efficient and Formal Generalized
Symbolic Execution. Automated Software Engineering, 19(3), 233–301.

[40] Derakhshanfar, P., Devroey, X., Perrouin, G., Zaidman, A., and van Deursen,
A. (2020). Search-Based Crash Reproduction Using Behavioural Model Seeding.
Software Testing, Verification and Reliability, 30(3).

[41] Dowson, M. (1997). The Ariane 5 Software Failure. ACM SIGSOFT Software
Engingeering Notes, 22(2), 84.

[42] Earle, C. B. (2000). Symbolic Program Execution Using the Erlang Verific-
ation Tool. In 9th International Workshop on Functional and Logic Program-
ming, WFLP’2000, Benicassim, Spain, September 28-30, 2000 , pages 42–55.

[43] ECMA (2021). ECMA-262, 12th Edition, June 2021 ECMAScript® 2021
Language Specification.

[44] Elfriede Dustin, Jeff Rashka, J. P. (1999). Automated Software Testing:
Introduction, Management, and Performance. Addison-Wesley Professional.

[45] Express (2017). Using Middleware. https://expressjs.com/en/guide/
using-middleware.html, Last accessed on 2022-05-27.

[46] Felleisen, M. and Friedman, D. P. (1987). A calculus for assignments in
higher-order languages. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’87, page 314,
New York, NY, USA. Association for Computing Machinery.

[47] Ferles, K., Wüstholz, V., Christakis, M., and Dillig, I. (2017). Failure-
Directed Program Trimming. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Ger-
many, September 4-8, 2017 , pages 174–185.

199

https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html

Bibliography

[48] Gay, G. (2017). The Fitness Function for the Job: Search-Based Generation
of Test Suites That Detect Real Faults. In 2017 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan,
March 13-17, 2017 , pages 345–355.

[49] Godefroid, P. (2007). Compositional Dynamic Test Generation. In Proceed-
ings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, page 47–54, New York, NY, USA. Asso-
ciation for Computing Machinery.

[50] Godefroid, P. and Luchaup, D. (2011). Automatic Partial Loop Summariza-
tion in Dynamic Test Generation. In Proceedings of the 20th International Sym-
posium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,
July 17-21, 2011 , pages 23–33.

[51] Godefroid, P., Levin, M. Y., and Molnar, D. A. (2008). Automated Whitebox
Fuzz Testing. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th
February 2008 .

[52] Godefroid, P., Levin, M. Y., and Molnar, D. A. (2012). SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM , 55(3), 40–44.

[53] Guo, S., Kusano, M., Wang, C., Yang, Z., and Gupta, A. (2015). Assertion
Guided Symbolic Execution of Multithreaded Programs. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015 , pages 854–865.

[54] Hamill, M. and Goseva-Popstojanova, K. (2017). Analyzing and Predicting
Effort Associated with Finding and Fixing Software Faults. Information and
Software Technology,, 87, 1–18.

[55] Hansen, T., Schachte, P., and Søndergaard, H. (2009). State Joining and
Splitting for the Symbolic Execution of Binaries. In Runtime Verification,
9th International Workshop, RV 2009, Grenoble, France, June 26-28, 2009.
Selected Papers, pages 76–92.

[56] Harman, M. and McMinn, P. (2007). A Theoretical & Empirical Analysis
of Evolutionary Testing and Hill Climbing for Structural Test Data Genera-
tion. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, page 73–83, New York, NY, USA. Association for
Computing Machinery.

200

Bibliography

[57] Harman, M., Jia, Y., and Zhang, Y. (2015). Achievements, Open Problems
and Challenges for Search Based Software Testing. In 8th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015 , pages 1–12.

[58] Ivancic, F. (2020). SunDew: Systematic Automated Security Testing. In 13th
IEEE International Conference on Software Testing, Validation and Verifica-
tion, ICST 2020, Porto, Portugal, October 24-28, 2020 , page 3.

[59] Jaffar, J., Murali, V., and Navas, J. A. (2013). Boosting Concolic Testing
via Interpolation. In Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-
26, 2013 , pages 48–58.

[60] Jensen, C. S., Prasad, M. R., and Møller, A. (2013). Automated Testing with
Targeted Event Sequence Generation. In International Symposium on Software
Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013 , pages
67–77.

[61] Jensen, S. H., Jonsson, P. A., and Møller, A. (2012). Remedying the eval
that men do. In International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012 , pages 34–44.

[62] Kähkönen, K., Kindermann, R., Heljanko, K., and Niemelä, I. (2010). Exper-
imental Comparison of Concolic and Random Testing for Java Card Applets.
In Model Checking Software - 17th International SPIN Workshop, Enschede,
The Netherlands, September 27-29, 2010. Proceedings, pages 22–39.

[63] Khari, M. and Kumar, P. (2019). An Extensive Evaluation of Search-Based
Software Testing: a Review. Soft Computing, 23(6), 1933–1946.

[64] Kim, M., Kim, Y., and Jang, Y. (2012). Industrial Application of Concolic
Testing on Embedded Software: Case Studies. In Fifth IEEE International Con-
ference on Software Testing, Verification and Validation, ICST 2012, Montreal,
QC, Canada, April 17-21, 2012 , pages 390–399.

[65] Kuchta, T., Palikareva, H., and Cadar, C. (2018). Shadow symbolic execution
for testing software patches. ACM Trans. Softw. Eng. Methodol., 27(3), 10:1–
10:32.

201

Bibliography

[66] Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G. (2012). Efficient State
Merging in Symbolic Execution. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’12, Beijing, China - June
11 - 16, 2012 , pages 193–204.

[67] Kähkönen, K., Saarikivi, O., and Heljanko, K. (2013). LCT: A Parallel Dis-
tributed Testing Tool for Multithreaded Java Programs. Electronic Notes in
Theoretical Computer Science, 296, 253–259. Proceedings the Sixth Interna-
tional Workshop on the Practical Application of Stochastic Modelling (PASM)
and the Eleventh International Workshop on Parallel and Distributed Methods
in Verification (PDMC).

[68] Leveson, N. G. (2017). The Therac-25: 30 Years Later. Computer , 50(11),
8–11.

[69] Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., and Jr., E. J. W. (2013).
Does Bug Prediction Support Human Developers? Findings from a Google
Case Study. In 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013 , pages 372–381.

[70] Lewis, S. (2019). Definition: Full-stack Developer. https://www.
theserverside.com/definition/full-stack-developer, Last accessed on
2022-05-12.

[71] Li, G. and Ghosh, I. (2013). PASS: String Solving with Parameterized Array
and Interval Automaton. In Hardware and Software: Verification and Testing
- 9th International Haifa Verification Conference, HVC 2013, Haifa, Israel,
November 5-7, 2013, Proceedings, pages 15–31.

[72] Li, G., Andreasen, E., and Ghosh, I. (2014). SymJS: Automatic Symbolic
Testing of JavaScript Web Applications. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014 , pages 449–459.

[73] Li, H., Li, S., Benavides, Z., Chen, Z., and Gupta, R. (2018a). COMPI:
Concolic Testing for MPI Applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada,
May 21-25, 2018 , pages 865–874.

[74] Li, J., Zhao, B., and Zhang, C. (2018b). Fuzzing: a Survey. Cybersecurity,
1(1), 6.

202

https://www.theserverside.com/definition/full-stack-developer
https://www.theserverside.com/definition/full-stack-developer

Bibliography

[75] Li, S., Hariri, F., and Agha, G. (2018c). Targeted Test Generation for
Actor Systems. In 32nd European Conference on Object-Oriented Program-
ming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, pages
8:1–8:31.

[76] Liang, H., Pei, X., Jia, X., Shen, W., and Zhang, J. (2018). Fuzzing: State
of the Art. IEEE Transactions on Reliability, 67(3), 1199–1218.

[77] Lin, Y., Miller, T., and Søndergaard, H. (2015). Compositional Symbolic
Execution Using Fine-Grained Summaries. In 24th Australasian Software En-
gineering Conference, ASWEC 2015, Adelaide, SA, Australia, September 28 -
October 1, 2015 , pages 213–222.

[78] Liu, Y., Zhou, X., and Gong, W.-W. (2017). A Survey of Search Strategies
in the Dynamic Symbolic Execution. In ITM Web of Conferences, volume 12,
page 03025. EDP Sciences.

[79] Liu, Z. and Gupta, B. (2019). Study of Secured Full-stack Web Development.
In Proceedings of 34th International Conference on Computers and Their Ap-
plications, CATA 2019, Honolulu, Hawaii, USA, March 18-20, 2019 , pages
317–324.

[80] Loring, B., Mitchell, D., and Kinder, J. (2017). ExpoSE: Practical Symbolic
Execution of Standalone JavaScript. In Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software, Santa Barbara,
CA, USA, July 10-14, 2017 , pages 196–199.

[81] Loring, B., Mitchell, D., and Kinder, J. (2019). Sound Regular Expression
Semantics for Dynamic Symbolic Execution of JavaScript. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019 , PLDI 2019,
page 425–438, New York, NY, USA. Association for Computing Machinery.

[82] Ma, K.-K., Phang, K. Y., Foster, J. S., and Hicks, M. (2011). Directed
Symbolic Execution. In International Static Analysis Symposium, pages 95–
111. Springer.

[83] Majumdar, R. and Sen, K. (2007). Hybrid Concolic Testing. In 29th Inter-
national Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007 , pages 416–426.

[84] Mamun, A. M. A. (2022). Full Stack. https://www.webopedia.com/
definitions/full-stack/, Last accessed on 2022-05-12.

203

https://www.webopedia.com/definitions/full-stack/
https://www.webopedia.com/definitions/full-stack/

Bibliography

[85] Manès, V. J., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., and
Woo, M. (2019). The Art, Science, and Engineering of Fuzzing: a Survey. IEEE
Transactions on Software Engineering, 47(11), 2312–2331.

[86] Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols,
A., and Scott, A. (2019). SapFix: Automated End-To-End Repair at Scale.
In Proceedings of the 41st International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019 , pages 269–278.

[87] McMinn, P. (2011). Search-Based Software Testing: Past, Present and Fu-
ture. In Fourth IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Work-
shop Proceedings, pages 153–163.

[88] Miller, C., Peterson, Z. N., et al. (2007). Analysis of Mutation and
Generation-Based Fuzzing. Independent Security Evaluators, 4.

[89] MozillaSecurity (2016). GitHub - MozillaSecurity/funfuzz: A Collection of
Fuzzers in a Harness for Testing the SpiderMonkey JavaScript Engine.

[90] Myers, G. J. (2011). The Art of Software Testing (3. Edition). Wiley.

[91] Nethercote, N. and Seward, J. (2007). Valgrind: a Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation, San
Diego, California, USA, June 10-13, 2007 , pages 89–100.

[92] Noller, Y., Nguyen, H. L., Tang, M., Kehrer, T., and Grunske, L. (2019).
Complete Shadow Symbolic Execution with Java PathFinder. ACM SIGSOFT
Softw. Eng. Notes, 44(4), 15–16.

[93] Nuseibeh, B. (1997). Ariane 5: Who Dunnit? IEEE Software, 14(3), 15–16.

[94] Oberg, J. (1999). Why the Mars Probe Went Off Course [Accident Investig-
ation]. IEEE Spectrum, 36(12), 34–39.

[95] Ognawala, S., Ochoa, M., Pretschner, A., and Limmer, T. (2016). MACKE:
Compositional Analysis of Low-Level Vulnerabilities With Symbolic Execution.
In Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016 , pages 780–
785.

[96] Ognawala, S., Kilger, F., and Pretschner, A. (2019). Compositional Fuzzing
Aided by Targeted Symbolic Execution. CoRR, abs/1903.02981.

204

Bibliography

[97] Park, J., Lim, I., and Ryu, S. (2016). Battles With False Positives in Static
Analysis of JavaScript Web Applications in the Wild. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016 - Companion Volume, pages 61–70.

[98] Park, S., Hossain, B. M. M., Hussain, I., Csallner, C., Grechanik, M., Taneja,
K., Fu, C., and Xie, Q. (2012). CarFast: Achieving Higher Statement Coverage
Faster. In 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11 -
16, 2012 , page 35.

[99] Pasareanu, C. S. and Visser, W. (2009). A Survey of New Trends in Symbolic
Execution for Software Testing and Analysis. International Journal on Software
Tools for Technology Transfer , 11(4), 339–353.

[100] Patton, R. (2005). Software Testing. Sams Publishing, second edition.

[101] Prather, R. E. and Jr., J. P. M. (1987). The Path Prefix Software Testing
Strategy. IEEE Transactions on Software Engineering, 13(7), 761–766.

[102] Pustogarov, I., Ristenpart, T., and Shmatikov, V. (2017). Using Program
Analysis to Synthesize Sensor Spoofing Attacks. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, Asi-
aCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017 , pages 757–770.

[103] Qi, D., Roychoudhury, A., and Liang, Z. (2010). Test Generation to Expose
Changes in Evolving Programs. In ASE 2010, 25th IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium, September
20-24, 2010 , pages 397–406.

[104] Rollbar (2021). The State of Software Code Report. https://content.
rollbar.com/hubfs/State-of-Software-Code-Report.pdf, Last accessed
on 2022-06-19.

[105] Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., and Winter, C.
(2015). Tricorder: Building a Program Analysis Ecosystem. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1 , pages 598–608.

[106] Sampaio, G., Santos, J. F., Maksimovic, P., and Gardner, P. (2020). A
Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applica-
tions. In 34th European Conference on Object-Oriented Programming, ECOOP
2020, November 15-17, 2020, Berlin, Germany (Virtual Conference), pages
28:1–28:29.

205

https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf
https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf

Bibliography

[107] Santos, J. F., Maksimovic, P., Naudziuniene, D., Wood, T., and Gardner,
P. (2018a). JaVerT: JavaScript Verification Toolchain. Proceedings of the ACM
on Programming Languages, 2(POPL), 50:1–50:33.

[108] Santos, J. F., Maksimovic, P., Grohens, T., Dolby, J., and Gardner, P.
(2018b). Symbolic Execution for JavaScript. In Proceedings of the 20th Inter-
national Symposium on Principles and Practice of Declarative Programming,
PPDP 2018, Frankfurt am Main, Germany, September 03-05, 2018 , pages
11:1–11:14.

[109] Sasnauskas, R., Landsiedel, O., Alizai, M. H., Weise, C., Kowalewski, S.,
and Wehrle, K. (2010). KleeNet: Discovering Insidious Interaction Bugs in
Wireless Sensor Networks Before Deployment. In Proceedings of the 9th In-
ternational Conference on Information Processing in Sensor Networks, IPSN
2010, April 12-16, 2010, Stockholm, Sweden, pages 186–196.

[110] Sasnauskas, R., Dustmann, O. S., Kaminski, B. L., Wehrle, K., Weise,
C., and Kowalewski, S. (2011). Scalable Symbolic Execution of Distributed
Systems. In 2011 International Conference on Distributed Computing Systems,
ICDCS 2011, Minneapolis, Minnesota, USA, June 20-24, 2011 , pages 333–342.

[111] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., and Song, D.
(2010a). A Symbolic Execution Framework for JavaScript. In 31st IEEE Sym-
posium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oak-
land, California, USA, pages 513–528.

[112] Saxena, P., Hanna, S., Poosankam, P., and Song, D. (2010b). FLAX: Sys-
tematic Discovery of Client-side Validation Vulnerabilities in Rich Web Applic-
ations. In Proceedings of the Network and Distributed System Security Sym-
posium, NDSS 2010, San Diego, California, USA, 28th February - 3rd March
2010 .

[113] Scheurer, D., Hähnle, R., and Bubel, R. (2016). A General Lattice Model
for Merging Symbolic Execution Branches. In Formal Methods and Software
Engineering - 18th International Conference on Formal Engineering Methods,
ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings, pages 57–73.

[114] Sen, K. and Agha, G. (2006a). Automated Systematic Testing of Open Dis-
tributed Programs. In Fundamental Approaches to Software Engineering, 9th
International Conference, FASE 2006, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria,
March 27-28, 2006, Proceedings, pages 339–356.

206

Bibliography

[115] Sen, K. and Agha, G. A. (2006b). Concolic Testing of Multithreaded Pro-
grams and its Application to Testing Security Protocols. Technical report,
UIUC.

[116] Sen, K., Kalasapur, S., Brutch, T. G., and Gibbs, S. (2013). Jalangi:
a Selective Record-Replay and Dynamic Analysis Framework for JavaScript.
In Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ES-
EC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013 , pages
488–498.

[117] Sen, K., Necula, G. C., Gong, L., and Choi, W. (2015). MultiSE: Multi-
Path Symbolic Execution Using Value Summaries. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015 , pages 842–853.

[118] Seo, H. and Kim, S. (2014). How We Get There: A Context-Guided Search
Strategy in Concolic Testing. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2014, page
413–424, New York, NY, USA. Association for Computing Machinery.

[119] Sharma, A., Patani, R., and Aggarwal, A. (2016). Software Testing Using
Genetic Algorithms. International Journal of Computer Science & Engineering
Survey, 7(2), 21–33.

[120] Shih-Kun, H., Han-Lin, L., Wai-Meng, L., and Huan, L. (2013). CRAX-
web: Automatic Web Application Testing and Attack Generation. In IEEE
7th International Conference on Software Security and Reliability, SERE 2013,
Gaithersburg, MD, USA, June 18-20, 2013 , pages 208–217.

[121] Shropshire, J., Landry, J. P., and Presley, S. S. (2018). Towards a Consensus
Definition of Full-stack Development. In Proceedings of the Southern Associ-
ation for Information Systems Conference, St. Augustine, IL, USA, pages 1–6.

[122] Song, J., Cadar, C., and Pietzuch, P. R. (2014). SymbexNet: Testing
Network Protocol Implementations with Symbolic Execution and Rule-Based
Specifications. IEEE Trans. Software Eng., 40(7), 695–709.

[123] Spencer, B., Benedikt, M., Møller, A., and van Breugel, F. (2017). ArtForm:
a Tool for Exploring the Codebase of Form-Based Websites. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017 , pages 380–383.

207

Bibliography

[124] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., and Vigna, G. (2016). Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. In 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016 .

[125] Strejcek, J. and Trt́ık, M. (2012). Abstracting Path Conditions. In Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012 , pages 155–165.

[126] Sun, K. and Ryu, S. (2017). Analysis of JavaScript Programs: Challenges
and Research Trends. ACM Computing Surveys, 50(4), 59:1–59:34.

[127] Sun, X. (2023). Concolic Testing of Programs with Concurrent Dynamic
Data Structures. University of California, Riverside.

[128] Tillmann, N. and de Halleux, J. (2008). Pex-White Box Test Generation for
.NET. In Tests and Proofs - 2nd International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings, pages 134–153.

[129] Vandercammen, M., Christophe, L., Di Nucci, D., De Meuter, W., and De
Roover, C. (2020). Prioritising Server Bugs via Inter-process Concolic Testing.
The Art, Science, and Engineering of Programming, 5(2), 5.

[130] Vidal, G. (2014). Towards Symbolic Execution in Erlang. In Perspectives
of System Informatics - 9th International Ershov Informatics Conference, PSI
2014, St. Petersburg, Russia, June 24-27, 2014. Revised Selected Papers, pages
351–360.

[131] W3C (2023). DOM - Living Standard. https://dom.spec.whatwg.org/
#events, Last accessed on 2023-06-20.

[132] W3Techs (2022). Usage Statistics of JavaScript as Client-side Program-
ming Language on Websites. https://w3techs.com/technologies/details/
cp-javascript, Last accessed on 2022-05-30.

[133] Wang, J., Dou, W., Gao, Y., Gao, C., Qin, F., Yin, K., and Wei, J. (2017). A
Comprehensive Study on Real World Concurrency Bugs in Node.js. In Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017 ,
pages 520–531.

[134] Wang, K., Wang, Y., and Zhang, L. (2014). Software Testing Method Based
on Improved Simulated Annealing Algorithm. In 10th International Conference
on Reliability, Maintainability and Safety (ICRMS), pages 418–421. IEEE.

208

https://dom.spec.whatwg.org/#events
https://dom.spec.whatwg.org/#events
https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript

Bibliography

[135] Wang, X., Sun, J., Chen, Z., Zhang, P., Wang, J., and Lin, Y. (2018).
Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27
- June 03, 2018 , pages 291–302.

[136] Wüstholz, V. and Christakis, M. (2020). Targeted Greybox Fuzzing With
Static Lookahead Analysis. In ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020 , pages 789–
800.

[137] Xie, T., Tillmann, N., de Halleux, J., and Schulte, W. (2009). Fitness-
Guided Path Exploration in Dynamic Symbolic Execution. In Proceedings of
the 2009 IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009 , pages
359–368.

[138] Xie, X., Liu, Y., Le, W., Li, X., and Chen, H. (2015). S-looper: Automatic
Summarization for Multipath String Loops. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015 , pages 188–198.

[139] Xie, X., Chen, B., Liu, Y., Le, W., and Li, X. (2016). Proteus: Computing
Disjunctive Loop Summary via Path Dependency Analysis. In Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016 , pages 61–
72.

[140] Yang, G., Filieri, A., Borges, M., Clun, D., and Wen, J. (2019). Chapter
Five - Advances in Symbolic Execution. Advances in Computers, 113, 225–287.

[141] You, S., Findler, R. B., and Dimoulas, C. (2021). Sound and Complete
Concolic Testing for Higher-order Functions. In Programming Languages and
Systems - 30th European Symposium on Programming, ESOP 2021, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Pro-
ceedings, pages 635–663.

[142] Zheng, Y., Zhang, X., and Ganesh, V. (2013). Z3-str: a Z3-Based String
Solver for Web Application Analysis. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Fed-
eration, August 18-26, 2013 , pages 114–124.

209

	Introduction
	Full-stack JavaScript Web Applications
	Concolic Testing of Full-stack JavaScript Web Applications
	Problem Statement

	Overview of the Approach
	Contributions
	Publications
	Supporting Publications
	Other Publications

	Outline of the Dissertation

	Automated Testing of Full-stack JavaScript Web Applications
	Full-stack JavaScript Web Applications
	Characteristics
	Example Application

	Automated Testing Techniques
	Fuzz Testing
	Search-based Software Testing
	Concolic Testing

	Challenges in Automated Testing of Full-stack JavaScript Web Applications
	Dynamic Nature of JavaScript
	Event-driven Code
	Handling Different Multiplicities
	Process Interplay

	Criteria for an Automated Tester for Full-stack JavaScript Web Applications
	Overview of Testing Criteria
	Summary of Testing Criteria

	State of the Art in Concolic Testing
	Concolic Testing of Distributed Systems
	Actor-based Programs
	Message-passing Applications
	KleeNet

	Concolic Testing of Event-Driven Applications
	Cosette & JaVerT.Click
	SymJS
	Mobile Applications

	Concolic Testing of JavaScript Applications
	Jalangi
	Kudzu
	ArtForm
	ExpoSE

	Concolic Testing of Web Servers
	CRAXWeb
	Apollo

	Optimisations for Concolic Testing
	Heuristical Techniques
	Path Explosion Mitigation Techniques
	Hybrid Techniques

	Conclusion
	Identifying Concolic Testers for Full-stack JavaScript Web Applications
	Evaluating Concolic Testers for Full-stack JavaScript Web Applications
	Overall Conclusion

	A Foundation of Intra-process Concolic Testing
	Overview of StackFulINTRA
	Intra-process Concolic Testing with StackFulINTRA
	Architecture of StackFulINTRA

	The Test Executor
	Instrumenting JavaScript Code via Aran
	Shadow Execution via Aran
	Using Shadow Values for Concolic Testing

	The Test Selector
	Maintaining the Symbolic Execution Tree
	Suggesting Program Paths for Exploration
	Computing Values for Program Inputs

	Concolic Testing of Event-driven Applications
	Supporting Events in the Test Selector
	Supporting Events in the Test Executor

	Formalisation of Intra-process Concolic Testing
	Overview of the Language
	Evaluating Atomic Expressions
	Evaluating Non-atomic Expressions

	Conclusion
	Summary
	Concluding Remarks

	Inter-process Concolic Testing
	Motivating the Need for Inter-process Concolic Testing
	Revisiting the Calculator Application

	Overview of Inter-process Concolic Testing
	Requirements for Inter-process Concolic Testing
	Architecture of StackFulINTER

	Prioritising Server-side Reachability
	Intra-process Testing Phase
	Inter-process Testing Phase
	Exploring the Client
	Considering the Message's Payload
	Replaying the Test Run

	Formal Description of Server-side Error Prioritisation
	Extending the Syntax of the Minimal Language
	Extending the Evaluation Rules for Non-atomic Expressions

	Evaluation
	Overview of the Evaluation
	RQ1: Correct Classification of High-Priority Errors
	RQ2: Misclassifying Low-Priority Errors as High-Priority Errors
	RQ3: Inter-process Test Runs
	Threats to Validity
	Discussion of the Results

	Conclusion
	Summary
	Concluding Remarks

	State Merging for Event-driven Programs
	Overview of State Merging
	Revisiting the State Explosion Problem
	Alleviating State Explosion through State Merging
	A Formal Definition of State Merging
	State Merging for Online Symbolic Execution

	State Merging for Concolic Testing
	Complications for Applying State Merging
	Mitigating the Path Determinacy Problem

	State Merging for Event-driven Applications
	State Explosion in Event-driven Applications
	Considerations for State Merging in Event-driven Code
	Result of State Merging in Event-driven Code

	Implementation in StackFul
	Recomputing State Merging Tuples
	Technical Limitations of the Prototype Implementation

	Evaluation
	Overview of the Evaluation
	RQ1: Code Coverage per Test Run
	RQ2: Computational Overhead per Test Run
	RQ3: Code Coverage per Unit of Execution Time

	Conclusion
	Summary
	Concluding Remarks

	Conclusion
	Summary
	Revisiting the Contributions
	Limitations and Future Work
	State Merging for Two-phase Inter-process Testing
	Heuristical Search for Inter-process Testing
	Automatic Exploration of Multiplicities
	Scaling StackFul to Test Larger Applications

	Closing Remarks

	Bibliography

