Helm Charts for Kubernetes Applications:
Evolution, Outdatedness and Security Risks

Ahmed Zerouali
Ahmed.Zerouali@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Abstract—Using Kubernetes for the deployment, management
and scaling of containerized applications has become a common
practice. To facilitate the installation and management of these
applications, practitioners can use the Helm package manager
to assemble their configuration files into charts. The latter are
reusable packages of pre-configured Kubernetes resources that
can be deployed as a unit. In this paper, we aim to support chart
developers and users by carrying out a comprehensive study on
publicly available charts. For 9,482 charts that are distributed via
the Artifact Hub repository, we mine and collect the list of their
metadata, versions, dependencies, maintainers and container
images. Then, we carry out an empirical analysis to assess the
state and evolution of charts, as well as the outdatedness and
security risks of their images. We found that the ecosystem
forming around Helm charts is growing fast. However, most of
the charts are not official with no popularity and no license. We
also observed that charts tend to release multiple versions, but
around half of them are still in the initial development phase.
When looking at the container images used in charts, we found
that around half of them are outdated and 88.1% of them are
exposed to vulnerabilities, jeopardizing 93.7% of the charts.

Index Terms—Kubernetes, Helm, Software Ecosystem,
Infrastructure-as-code, Evolution, Security

I. INTRODUCTION

Over the last decade, containerisation has become a com-
mon practice in deploying software. Containers provide a
lightweight solution to provisioning multiple software systems
on a single host. Each system runs in an isolated container,
which includes all dependencies, binaries and configuration
files required by the system. Varying the number of container
instances at run time facilitates realising elasticity for contem-
porary software architectures.

The most popular containerisation technology is Docker. It
is often used in tandem with Kubernetes, the most popular
container management and orchestration tool [1]. According
to the 2022 Stack Overflow Developer Survey [2], both Docker
and Kubernetes are in first and second place as the surveyed
developer’s most loved and wanted tools.

Kubernetes enables deploying containerized applications on
a distributed cluster consisting of a number of compute nodes
[3]. In the spirit of Infrastructure as Code, cluster deployments
are entirely managed through declarative configuration files.
Each file declares the configuration of the resources needed for
the cluster such as the containers, pods, deployments, secrets,
service and volumes.

Ruben Opdebeeck
Ruben.Denzel.Opdebeeck @ vub.be
Vrije Universiteit Brussel
Brussels, Belgium

Coen De Roover
Coen.De.Roover@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Specifying all configurations and verifying their correct-
ness can be cumbersome, especially for complex setups of
large clusters. To ease the Kubernetes configuration burden,
the Cloud Native Computing Foundation (CNCF) released
Helm ! as a package manager for Kubernetes applications
in 2015. Helm enables assembling Kubernetes configuration
files into packages that can be shared through local and
remote repositories for reuse. These reusable packages are
called charts. It is possible to install, update or uninstall a
chart with a single command, abstracting away the underlying
control plane interactions. Properly versioned, charts evolve
over time. According to a 2020 survey of practitioners by
the CNCF [4], Helm is the most popular tool for packaging
Kubernetes applications and is used by 63% of respondents.

In this paper, we collect and analyse the charts made pub-
licly available through the Artifact Hub repository 2. The latter
is considered as the largest repository of Helm charts. Our goal
is to obtain insights about the current state of the ecosystem
that is forming around Helm charts, and its evolution over
time. In particular, we look at the characteristics and growth
of the charts, as well as the outdatedness and security of the
container images used in them. Existing studies have already
looked at container images that are hosted on Docker Hub [5],
but did not look yet at the clients in which these images are
used, such as Kubernetes applications. Inspired by the work
of Wittern et al. [6], this work presents a comprehensive study
that focuses on six aspects of the ecosystem of Helm charts:

o A; Chart growth trends: We study how the ecosystem
around Helm charts has arisen over time in terms of
growth in the number of charts, their repositories and
their versions.

o A, Chart reusability characteristics: We investigate
the reusability characteristics of charts, including their
popularity, license, and types (i.e., application or library,
verified or official, etc). We also look at the number
of maintainers of each chart, as well as whether those
maintainers are primarily individuals or organisations.
This provides us insights about the risk of the ecosystem
and individual charts being abandoned.

Uhttps://helm.sh/
2 Artifact Hub is a Cloud Native Computing Foundation sandbox project
https://www.cncf.io/projects/artifact-hub/

« A Chart dependencies: We investigate how often Helm
charts include others as dependencies, and study the
practices that govern dependency version selection. This
provides us insights about how interconnected the ecosys-
tem is.

« A, Deployed container images: In addition to Docker
Hub, new registries from GitHub, Google and Quay are
emerging with thousands of images hosted on them. For
each chart, we identify the container images it manages
and present descriptive statistics about their number and
registry of origin. We also look at the tags that are used
to specify these images in the configuration files.

o As Outdatedness of deployed container images: Con-
tainer images coming from registries like Docker Hub
can contain outdated packages that lack more recently
introduced bug fixes and features. We track the images
used in Helm charts back to their source registries and
then identify whether they are outdated or not. We carry
out this study and evaluate the outdatedness of chart
images at two different time points: 1) at the analysis
date (17-10-2022); and 2) at the date of the chart’s latest
release. The latter will give us insights about how careful
chart maintainers are about the images they use when
releasing their charts, while the former will give us a
snapshot of the state of the ecosystem at the analysis
date, i.e., we assess the quality of used images as if the
charts were deployed on the analysis date.

o Ag Security of deployed container images: Charts de-
ploying older container images might unwittingly deploy
outdated packages with known security vulnerabilities.
We therefore scan the images used in charts and identify
the known vulnerabilities to which the chart is exposing
the application. We study their number, type, severity and
how they could be avoided.

The insights gained through this study will be useful to the
practitioners including the community managers, the contrib-
utors, and the users of Helm charts.

II. BACKGROUND

Helm charts are a packaged collection of files comprising all
of the resources required to manage and deploy an application
on a Kubernetes cluster. Charts can be stored in a repository,
and can be easily installed, upgraded, and uninstalled using
the Helm package manager. The files packaged by a chart are
typically organised as follows:

e Chart.yaml: a file that contains metadata about the
chart, such as its name, version and description.

e values.yaml: a file that contains default values for
the configuration parameters of the chart, including the
image repository and image tag that should be used for
the application’s pods.

e« templates/: a directory that contains one or more
Kubernetes manifest files that define the resources that
should be deployed. Templates in this folder may be
combined with the values.yaml file.

e charts/: a directory that contains the charts upon
which the chart depends.

In addition to these required files and directories, a chart
may include optional files such as a Readme, License and
other configuration values files. When a user installs a chart,
they have the option to override the default values specified
in the values.yaml or any of the other values files. This
makes it easy for users to customise the configuration of their
application without having to modify the chart itself.

The Helm tool itself provides a way to version and manage
the installed charts. It is, for instance, possible to upgrade to a
newer version or to rollback to a previous version of a chart.

Helm charts can be distributed through any code repository.
Artifact Hub® forms a centralised index, enabling users to
search for charts across repositories, to browse charts by
category, and to inspect basic information about charts such
as their README and version history. Users can also host a
repository for their Helm charts on Artifact Hub itself.

The Helm tool supports interacting with Artifact Hub
through commands such as “helm repo add” which adds
a chart repository to the list of locally known repositories or
“helm search” to find a particular chart. Once a reposi-
tory has been added, users can use the “helm install”
command to install charts from that repository.

III. RELATED WORK

Our empirical analysis is inspired by the work of Wittern et
al. [6], who were the first to conduct a comprehensive study
into the inter-package dynamics of the then-emerging npm
ecosystem, including JavaScript package descriptions, depen-
dencies, download metrics, and usage in publicly available
GitHub repositories. They discovered that the number of npm
packages and their updates are increasing at a super-linear rate.
Additionally, they found that packages are becoming more
and more dependent on each other. In a similar vein, our
work represents the first comprehensive study on the emerging
ecosystem of Helm charts.

Ibrahim et al. [7] carried out a study on 4,103 open-
source Github projects that use Docker Compose. The latter
is a tool for defining and running multi-container applications
on a single host using a simple YAML file that contains
configuration details (e.g., services, networks, and volumes)
for each container. On the other hand, Kubernetes is a more
robust and advanced platform for container orchestration, it
allows for automatic management and scaling of containerized
applications in a clustered environment, across multiple hosts.
The goal of the study was to understand how Docker Compose
is used in the wild. The authors found that over a quarter
(26.8%) of the considered projects use Docker Compose to
build their applications from a single image. They also found
that Docker Compose is used with basic options instead of
advanced ones, and that users tend to use earlier versions
of this tool. Docker Compose and Kubernetes are both tools

3https://artifacthub.io

for managing containerized applications, and they share some
similarities in terms of functionality and concepts.

Baur [8] collected and compared the different tools avail-
able for packaging Kubernetes applications including Helm,
Kustomize and ytt. A recent survey of 1,164 organisations
[9] found that up to 30% of low-performing organizations
apply changes manually to their Kubernetes configurations,
while a higher percentage of top-performing organizations use
a packaging solution like Helm or Kustomize (performance
was computed based on best practices and industry standards
that each organisation has). They also found that 70.67%
of the respondents consider Kubernetes security to be very
important. Bose et al. [10] quantified the frequency at which
security defects appear in Kubernetes manifests. Shamim et al.
[11] analysed 104 internet blog posts and video presentations
that discuss Kubernetes security. They identified 11 security
practices for Kubernetes, including vulnerability scanning and
continuous updates. Our study goes beyond the work by quan-
titatively analysing the outdatedness and security of images
used in Helm charts of Kubernetes applications.

In a previous work [5], we analysed the relation between
outdated system packages in Debian-based Docker images,
their associated security vulnerabilities, and bugs. We quan-
tified the gap between the outdated packages and their most
recent versions using the technical lag metric [12], [13]. We
found that even the latest versions of Debian-based container
images published on Docker Hub feature packages with known
vulnerabilities and bugs. Our current study is different since
we focus on the container images used within Helm charts. As
charts are intended as packages of reusable Kubernetes deploy-
ments, one can reasonably assume their container images to
be scrutinised further by the chart developers. Moreover, the
images stem from additional registries such as GitHub and
Quay, next to Docker Hub.

IV. DATA EXTRACTION

We analyse the ecosystem forming around reusable Kuber-
netes packages distributed as Helm charts through Artifact
Hub. To this end, we collect information about their number,
their versions, their dependencies, and the container images
they deploy on the Kubernetes cluster. Then, we analyze im-
age outdatedness and Common Vulnerabilities and Exposures
(CVE) affecting the system and third-party packages installed
therein. Various sources need to be mined to this end.

A. Helm chart corpus

First, we query the Artifact Hub repository index to retrieve
its list of publicly available Helm charts. Using the index’s
API, we extract the published versions of each chart and the
version control repository hosting its latest version.

Using this link, we download the latest version of each Helm
chart and analyse its Chart .yaml file to extract the chart’s
maintainers and dependencies. Listing 1 provides an example
of the relevant information stored in such a file. The result is
a corpus of 9,482 Helm charts hosted in 1,921 Artifact Hub
repositories as of October 17", 2022.

Listing 1: Excerpt of an example Chart.yaml file

1 apiVersion: v2 # The chart’s API version
name: MyChart # The chart’s name
version: 1.0.0 # A SemVer compatible version for the chart

appVersion: 3.0.0 # The version of the upstream application
kubeVersion: "1.8.0-0 # A range of Kubernetes versions

6 description : This is my chart # A brief description of the chart
type: application # The chart’s type

s home: https :// example.com/ # The chart’s homepage

o sources: https :// example.com/ # The chart’s repository or source

10 dependencies: # List of dependencies

Il — name: nginx

12 version: 1.2.3

13 maintainers : # List of maintainers

14— name: maintainerl

5 email: maintainer] @email

B. Deployed container images

In order to analyse the container images deployed by each
Helm chart, we “render” each chart template (i.e., instantiate
its template by substituting configuration values for template
variables) using Helm commands (helm template *) and
extract the names, tags and repositories of the images refer-
enced in the chart. For each discovered container image, we
trace it back to its source registry (e.g., Docker Hub, Quay)
and query the registry’s API for the image’s version tags and
their release dates.

To find the list of vulnerabilities affecting the images
retrieved from each chart, we rely on Artifact Hub’s security
scanner which is built on top of Trivy 3, a popular open source
tool that scans container images for security issues.

C. Vulnerabilities affecting deployed container images

For each identified vulnerability, we use its CVE 5 number
to trace it back to the National Vulnerability Database 7 and
extract its CVSS score. The latter is a metric that captures
the severity of a vulnerability as an integer between 0-10.
In addition, for each CVE, we look for its corresponding
Common Weakness Enumeration (CWE) 8. CWE is a standard
way used to classify and describe vulnerabilities (CVE).

V. STATISTICAL ANALYSIS

In this section, we use the dataset collected in Section IV
to analyse the dynamics of the Helm ecosystem in terms of
the aspects introduced in the introduction. We limit ourselves
to the concrete results of the analysis here, and discuss their
implications in Section VI.

To enable reproducibility of our work, we provide a replica-
tion package with the code and the data used for the analysis °.

4https://helm.sh/docs/hclm/he]m_template/

Shttps://github.com/aquasecurity/trivy

6Common Vulnerabilities and Exposures is a popular numbering system
used to identify publicly acknowledged vulnerabilities; https://cve.mitre.org.

"https://nvd.nist.gov/

8https://cwe.mitre.org/

“https://doi.org/10.5281/zenodo. 7552697

Ay Chart growth trends

The first Helm chart was created in October 2016. Helm
charts and repositories were initially hosted by Google, be-
fore being moved to Artifact Hub in November 2020. The
latter contains more than 9,482 charts maintained by different
organizations and users. In this part of the study, we investigate
the evolution of this ecosystem since its creation. We look at
the number of new charts, versions, and repositories registered
on Artifact Hub over the observation period.

Figure 1 shows the evolution over time of the cumulative
number of Helm repositories, charts and their versions. The
Y-axis is in a log scale, revealing a large difference between
the number of repositories, charts, and versions. We observe
that the cumulative number for each artifact is increasing
exponentially over time, confirming that the Helm ecosystem
is growing. This is statistically confirmed by a regression
analysis using linear and exponential growth models. Table I
summarizes the R? values reflecting the fit.

10° { —— Repositories
Charts
——— Versions

2017 2018 2019 2020 2021 2022

Fig. 1: Evolution of the cumulative number of Helm reposi-
tories, charts and their versions available in Artifact Hub.

TABLE I: R2-values of regression analysis on the evolution
of the number of Helm repositories, charts and versions.
| Repositories

Linear 0.72
Exponential | 0.98

Charts | Versions
0.73 ‘ 0.76

0.92 0.85

As explained before, a Helm repository contains different
charts and each chart has many versions. We found that each
repository has an average and median of 1 and 4.9 charts,
respectively. Similarly, we found that each chart has an average
and median of 17.6 and 4 versions, respectively. We also
computed the number of versions released between the first
and the latest chart version. We found that charts release an
average and median of 27.6 and 5 versions per month. This
difference between the mean and median is due to the age of
charts since more than 80% of them are less than 2 years old
and have less than 11.7 months between their first and latest
versions.

As a versioning scheme, Helm requires version numbers of
charts to be compliant with the semantic versioning v2.0.0
standard (SemVer) ', A SemVer-compatible release uses
a version number composed of a major, minor and patch
number. An optional pre-release label can also be added to
the version numbers as follows Major.Minor.Patch-pre. This

10SemVer 2: https://semver.org/spec/v2.0.0.html

format enables ordering releases and indicates the importance
of each new release. We found that 4% of the chart releases are
major (i.e., a change happened to the major version number),
16.5% are minor (i.e., a change happened to the minor version
number but not to the major number), 77.5% are patch (i.e., a
change happened to the patch version number only), and 2%
are pre-releases having the format X.Y.Z-pre instead of X.Y.Z.
We also found that on average, Helm charts released 0.8 major
releases, 3.6 minor releases and 17.3 patch releases, while
the median is 0 major, 1 minor and 4 patches. This means
that more than half of them (i.e., 72.1% to be precise) has
not changed their major version number since their creation.
In fact, we found that 48.3% of the charts are still in major
version 0 (0.Y.Z). This means that the artifacts are still in their
initial development. This is the case for 36.8% of the verified
charts and 56.2% of the unverified ones.

Summary: The ecosystem of Helm charts is growing. The
number of charts, their repositories, and their versions are
exponentially increasing over time. Helm charts released
27.6 versions on average with a median of 5. More than
80% of the charts have been created in the last two years.
According to Sem Ver specifications, 48.3% of the charts are
still in the initial development.

Ay Chart reusability characteristics

1) Chart types: Helm charts are classified into two types,
application and library charts. The former are the standard
charts describing a packaged Kubernetes deployment for a
specific application, while the latter define charts intended for
inclusion in other Helm charts. In our dataset, we found that
53% of the charts are declared as applications, 46.4% do not
have any classification, and only 0.59% (56) are explicitly
declared as library charts in the Chart . yaml manifest. Note
that the unclassified charts might in reality be either.

We also found that only 1.3% (120) are official charts
published by the owners of the deployed application, e.g.,
the prometheus chart !! is coming from the Prometheus
project. Furthermore, 59% (5,599) of the charts are verified,
i.e., published on Artifact Hub by the actual owner of the
git repository hosting it. Note that this owner is not nec-
essarily the developer of the deployed application, e.g., the
redis, mysql, postgresqgl and wordpress charts
are all packaged and published by Bitnami.

We also found that official charts are the oldest, meaning
that the first Helm charts distributed online were coming from
official organisations.

Summary: Most of the charts within the ecosystem are
declared of the application type, with only a tiny proportion
being of the library type. Merely 1.3% of the charts are
official, while 59% of all charts are verified.

2) Chart licenses: We investigated the licenses for each
chart and found that 91.9% of the charts do not include any
license file. As published code is under exclusive copyright
by default, not including a license with a chart might cause

https://artifacthub.io/packages/helm/prometheus-community/prometheus

license compatibility problems when they are deployed!?. For
the other charts, we found that 5.2% of them have an Apache-
2.0 license and 2.3% have an MIT license, while the rest
(0.6%) have other licenses. This will be discussed further in
Section VI.

Summary: Only 8.1% of the charts have a license. Helm
charts tend to use permissive licenses.

3) Chart popularity: Few charts are truly popular. We
found that 81.2% of charts has not received any star, 91.9%
does not have any subscribers and 97.1% does not have any
production users. The latter is a measure of how many users
are deploying a particular chart in production environments.
Looking at an aggregated popularity metric, popularity =
stars + subscribers + production users, we found that
79.6% of the charts have zero popularity. Only 2.5% of the
charts have a popularity higher than or equal to 10, while the
maximum popularity we found is 608.

Summary: Few charts are popular. Only 20.4% has at least
one star, subscriber, or a production user.

4) Chart maintainers: Despite its young age, the ecosys-
tem around Helm charts is growing. Helm being awarded
the graduated status by Cloud Native Computing Foundation
(CNCF) shows that it is becoming more popular amongst
Kubernetes users. Thus, these users should be aware of the
risks brought about by the use of shared charts. For instance, a
used chart might have already been abandoned or be at risk of
being abandoned by their maintainers. Using charts with a low
number of (key) maintainers (i.e., bus factor) can also be risky
in this light. Abandoned charts no longer benefit from bug
fixes and vulnerability patches, and may configure Kubernetes
or the application they deploy on a Kubernetes cluster in a
suboptimal or out of date manner.

For each chart in our dataset, we parsed the Chart.yaml file
from its latest version and extracted the list of maintainers. We
found that 64.1% (6,078) of the charts coming from 52.7%
of the repositories (1,012) specify the username or email of
at least one maintainer in this manifest. We also observed
that 53.1% of the charts that do declare their maintainers are
verified.

Maintainer information is important and should always be
included in the manifest so that users can report bugs to or
request bug fixes from a responsible person or organization.
Focusing only on the subset of charts with declared main-
tainers, we found that they have on average (and median of)
a single maintainer. The highest number of maintainers per
chart that we found is 9. Based on the username, we found a
unique number of 1,750 maintainers in total for the whole set
of charts. It is worth mentioning that maintainer information
declared in the charts does not always refer to a person but in
many cases to an organization or team.

Next, we computed the number of charts per maintainer and
repository. The average number of charts that each maintainer
is responsible for is 4.4, the median is 1, while the maximum

Zhttps://choosealicense.com/no-permission/

is 968 charts maintained by a single organisation. This skew
means that there is a subset of maintainers that is responsible
for most of the charts. Indeed, we found that 30.4% of the
maintainers (532) are responsible for more than 80% of the
charts. We also looked at the number of repositories per
chart. We found that on average, maintainers are responsible
for charts originating from 1.7 repositories, while more than
half of the maintainers contribute to charts coming from
one single repository. The maximum is 63 repositories for
a single maintainer. Table II shows more information about
the distribution of the number of maintainers per chart and
repository.

TABLE II: Distribution of the number of maintainers per (/)
chart and repository, and vice versa.

Distribution | Mean | Min | Median | Max
maintainers / chart 1.3 1 1 9

maintainers / repository | 2.9 1 1 233
charts / maintainer 4.4 1 1 968
repositories / maintainer | 1.7 1 1 63

Summary: The majority (64.1%) of charts includes the
name or email of their maintainers in their Chart .yaml
file. Charts have a mean and median of one maintainer.
Conversely, more than half of the maintainers is responsible
for a single chart. On average, each maintainer is responsible
for 4.4 charts. Organizations like AppsCode, TrueCharts and
Bitnami maintain the highest numbers of charts.

A3 Chart dependencies

It is possible for charts to depend on other charts. A chart’s
dependencies should be listed in the Chart.yaml file as
mentioned in Section IV and put in the charts/ directory.
Each dependency declared in this manifest should be either
in a local or remote repository so the Helm tool can pull
and copy it to the charts/ directory; otherwise, it should
be placed manually in this directory. By specifying versions
in Chart.yaml, developers can restrict the releases of the
charts on which they depend. Version specifications take the
form of a single SemVer version or of a constraint resulting
in a range of versions. Constraints are resolved by the Helm
tool when a chart is deployed, downloading the latest avail-
able release satisfying the dependency constraint. Examples
of these constraints include the “*” wildcard, comparison
symbols (e.g., >= 1.2.z), tilde (~ 1.2.3), caret ("1.2.3), etc.'3

Relying on many dependencies may bring about a high
monitoring effort as the upstream of each needs to be moni-
tored for new releases and needs to be configured correctly. In
our dataset, we found a total number of 4,761 dependencies
used by only 3,004 charts (31.7%). The mean and median
number of dependencies used by Helm charts are 1.6 and 1,
respectively. The maximum is 22 dependencies used by two
unverified charts. The maximum number found for verified
charts is 18, while the maximum for official charts is 4.

13See https://helm.sh/docs/chart_best_practices/dependencies/ for details.

Looking at the constraints used for declaring chart depen-
dencies, we found that 62.3% of the dependencies are used
with a strict version (e.g., 1.2.3), while the rest is declared
with a constraint (e.g., >= 0.1.0, 1.x.z, etc).

Summary: Only 31.7% of the charts have dependencies on
other charts. The median number of dependencies that charts
have is one. Chart dependencies tend to be used with strict
version constraints, i.e., only 37.7% of the dependencies
were specified with a constraint resolving to a version range.

A, Deployed container images

Helm charts package files required for the control plane of
a Kubernetes cluster, and declare the container images to be
deployed thereon. We investigate which images are the most
frequently used, and look at the source registry hosting them.
We expect most of the images to stem from Docker Hub,
which is with over 10 million images the most popular registry
for Docker.

After rendering the charts (i.e., substituting configuration
values for template variables) in our dataset using the Helm
template command, we found a total number of 12,743
(non-unique) images used in 63.4% (6,014) of the charts. Note
that this command does not render configuration values used
for testing, including image names. Thus, we only rendered
images used for actual chart deployments. Moreover, several
charts could not be rendered because they require or miss
some configuration values that are to be provided locally.
Additionally, although it is not common, it is possible for
charts to exist without including images. Such charts might
include configuration files that are reused by other charts. For
the remainder of the study, we focus on the charts that could
be rendered and that have at least one image.

We found that the median number of images used in each
chart is 1, while the average is 2.12. The maximum number
of images that were used in one chart is 181 (coming from
a verified chart). These numbers decrease to 1, 2.1 and 51,
respectively, when only focusing on unverified charts, showing
that verified charts have more images than unverified ones.
Next, we looked at the most popular images since one image
can be used by many charts. Indeed, we found that all used
images are actually corresponding to 8,935 unique images,
some of them being used in hundreds of charts. Table III shows
the top 10 images used in Helm charts.

TABLE III: Top 10 container images used by Helm charts
stored in Artifact Hub.

Container image Registry # Charts
truecharts/multi-init GitHub 769
busybox Docker Hub | 267
bitnami/postgresql Docker Hub | 265
mysql Docker Hub | 160
nginx Docker Hub | 142
bitnami/redis Docker Hub | 123
postgres Docker Hub | 96
dellcloud/pages Docker Hub | 85
alpine Docker Hub | 78
truecharts/postgresql | GitHub 69

Looking at the origin of these images, we found that they
come from different registries, some of them private. Table IV
shows the top 5 container image registries used by Helm
charts. Perhaps surprisingly, Docker Hub is only the source for
60.5% of all used images. The second-most popular registry
is GitHub with 16.7% of all images, and the third-most
is Quay with 6.1% of the images. Note that many images
stemming from GitHub were originally hosted on TrueCharts,
and only later moved to the TrueCharts repository on GitHub
as packages '4. In fact, 8.9% of the images declared in the
charts still use the old location of TrueCharts '>. All charts
using the old location are still active with at least one version
update in the past year.

TABLE IV: Top 5 container image registries used by Helm
charts stored in Artifact Hub.

Registry | # Container images | Cumulative % images
Docker Hub 5,406 60.5
GitHub 1,496 77.2
Quay 541 83.3
Google Container Registry | 301 86.7
Azure Container Registry 166 88.5

Dockerfiles typically create a new container image
from an existing one using the FROM instruction, e.g.,
FROM debian:latest. For this command, it is rec-
ommended to always use a specific tag such as FROM
debian:bullseye-20221205 instead of the latest or
a blank tag. Not pinning the image version down is considered
a code smell [14], and flagged as such by Dockerfile linters
such as Hadolint (i.e., rules DLL3006 and DL3007). In a similar
vein, images used in Kubernetes clusters should be specified
in the configuration manifests with a fixed tag. Looking at
our dataset, we found that 8.1% of the images are declared
with the latest tag and 3.2% are declared without any tag.
However, we only found 17.3% of the charts participating in
this bad practice. When differentiating between verified and
unverified charts, we found that verified charts have a higher
tendency to include images with fixed tags, i.e., 92.5% of the
images used in verified charts are declared with a fixed tag
compared to 86.2% for unverified charts.

Summary: More than 63% of the charts deploy container
images. Charts deploy a mean and median of 2.12 and 1
images, respectively. 60.5% of the images used in charts
are hosted on Docker Hub. 88.7% of the images used by
charts are declared with a pinned tag or version. Only 17.3%
of the charts make use of images with unpinned tag.

As Outdatedness of deployed container images

Usually, container images used in Helm charts and coming
from repositories registered within container registries contain
applications with the dependencies, binaries, and configuration
files needed to run them. As these applications evolve, their
images evolve too. A container image of an application can

https://github.com/orgs/truecharts/packages
SFor example, tccrio/truecharts/multi-init instead of ghcrio/truecharts/
multi-init. Both links work.

B Outdated
I Up-to-date

s Outdated
Up-to-date

Proportion of images

B Outdated
I Up-to-date

2018 2019 2020

Chart release year

2021 2022 Docker Hub

Image registry of origin

GitHub Unverified Verified

Quay
Chart verification

Fig. 2: Proportion of outdated and up-to-date container images grouped by their charts’ release year, container registry and
chart verification, at the analysis date. Each group constitutes 100% of the images belonging to it.

have different versions with multiple tags. Each image version
can correspond to a specific version of the application. For
example, node:19.4.0-alpine3.17 ' is an image that
includes the version 19.4.0 of Node.js and it is based on the
base image of Alpine v3.17. Users are in general encouraged
to deploy up-to-date images for an application. We therefore
expect Helm charts to follow this best practice too.

We investigated the outdatedness of container images used
by Helm charts by computing the difference between an
image’s release date and the release date of the latest available
image in the container registry. For this analysis, we only focus
on the container images stemming from Docker Hub, GitHub
and Quay. As mentioned before in Table IV, images from these
registries represent 83.3% of all unique images referenced in
Helm charts. Including images that are used in multiple charts,
these registries offer 85.3% of the used images.

We found that 61.5% of the used images is released in 2022,
19.7% is released in 2021, while the rest (18.8%) is released
before 2021. We also observed that images from Quay and
Docker Hub are relatively older than GitHub images. These
observations mean that some outdated images might be in use.
To quantify this outdateness, we carry out the analysis at two
different time points: 1) at the analysis date (i.e., 17-10-2022);
and 2) at the release date of the charts.

Summary: More than 61.5% of the images used in charts
were released in the last year. Images coming from GitHub
are more recent.

a) Outdatedness at the analysis date: We first compute
the outdatedness of images as if they are going to be deployed
now (at the analysis date). Thus, we simply retrieve the
latest available image version from the container registry and
compare it to the used image. We start by exploring how
many images within Helm charts are up-to-date, i.e., with the
latest available version/tag. Figure 2 shows the proportion of
outdated and up-to-date images grouped by their charts’ year
of release, their registry of origin and the chart’s verification.
At the first glance, we observe that there are many outdated im-
ages in each group. Considering all images without grouping
them, we found that 56.6% of them are outdated. As expected,
the figure reveals that more recent charts have fewer outdated
images. We also observe that images from GitHub are more
up-to-date than other images which is due to the fact that

16https://github.com/nodejs/docker-node/blob/
28ad5e0e5d0e80df44d897c¢9057fd6419a3c7a5/19/alpine3.17/Dockerfile

the majority of used GitHub images were released in 2022.
Additionally, we found that verified charts have more up-to-
date images than unverified charts.

To quantify how outdated container images are, we use the
time lag metric defined by Gonzalez-Barahona et al. [12],
[13]. More specifically, we compute the time lag as the time
between the images used in the charts and the latest versions of
these images that are available in their corresponding container
registries. Focusing only on the 56.6% of the images that are
outdated, we found that the median time lag for images used
in charts is 218 days while the average is 362 days. Figure 3
shows the time lag incurred by outdated images used in Helm
charts. We observe that Docker Hub images have higher lag
than other images while GitHub images have the lowest lag
values. We also observe that verified charts have lower image
lag values than unverified charts.

I Unverified
[Verified

1500
1000

iﬁ o

Docker Hub

Time lag (in days)

i

GitHub

Quay
Image registry
Fig. 3: Time lag of outdated images used by Helm charts,
grouped by their registry of origin and chart’s verification, at
the analysis date.

Summary: 56.6% of the images used in the latest chart
versions available at the analysis date are outdated. Verified
charts have more up-to-date images and lower time lag. On
average, outdated images are one year behind their latest
available versions.

b) Outdatedness at the charts’ release date: We now
look at the outdatedness of images at the time when their charts
were released. For each chart, we identify its list of images
and then we retrieve the last version of each image right before
the release of the chart. This will give us an idea about the
quality of the images that developers include in their Helm
charts. Figure 4 shows the proportion of outdated and up-to-
date images grouped by their charts’ year of release, their
registry of origin and the chart’s verification, computed at the
charts’ release date. We observe a difference with Figure 2

in the sense that images are more up-to-date. However, we
can still find outdated images. Considering all images without
grouping them, we found that 41.3% of them are outdated.
We also observe that in recent years, chart developers include
more up-to-date images than outdated ones. We also observe
that the majority of the images coming from GitHub are up-to-
date. As previously observed, verified charts have more up-to-
date images than unverified ones. This shows once again that
verified images have better quality characteristics. Focusing
only on the 41.3% of the images that were outdated at the
charts’ release date, we find that the median time lag of images
used in charts is 168 days while the average is 299 days. Our
other observations are similar to those made in Figure 3, e.g.,
Docker Hub images have the highest lag values.

Summary: Chart developers tend to use up-to-date images,
especially in recent years. Overall, at the release date of the
charts, 41.3% of the referenced images were outdated with
around 10 months of time lag, on average.

Ag Security of deployed container images

Assuring the security of image containers used in Helm
charts is essential since vulnerable images can be exploited in
attacks on both the deployed application and on the cluster
onto which the image is deployed. We therefore analyse
whether the Helm chart images are vulnerable in terms of
known vulnerabilities of the applications and packages in-
stalled therein.

To this end, the Artifact Hub vulnerability scanner managed
to scan 93.7% (5,634) of the charts that we already inspected
for container images. We found 88.1% (4,965) of these
charts to include container images with vulnerable packages.
The total number of vulnerabilities affecting these images
is 2,532,897, while the number of vulnerability types (i.e.,
unique CVEs) is 12,812. The total number of container images
affected by these vulnerabilities is 6,893. Figure 5 shows the
proportion of unique vulnerabilities affecting Helm charts,
grouped by their severity, while Figure 6 shows the proportion
of all vulnerabilities. We observe that most of the vulnera-
bilities are of a medium or high severity. We also observe
a significant proportion (10.9%) of unique vulnerabilities for
which we could not retrieve the severity from NVD (i.e., CVSS
is not determined yet by NVD).

Considering all vulnerabilities, we found an average of
510.2 vulnerabilities in each chart, and a median of 204
vulnerabilities. Similarly, the mean and the median number of
vulnerabilities we found in each container image is 258.9 and
96, respectively. We also found that 40.8% of all vulnerabilities
have already been fixed. Table V shows the top vulnerabilities
(CVEs) to which images in Helm charts are exposed. We
observe that CVE-2022-2097 is the most widespread vulner-
ability affecting 51.67% of the images and 62.46% of the
charts. This vulnerability stems from the widely-deployed
openssl package, but is of a medium severity. In contrast, the
zlib-affecting CVE-2022-37434 is of a critical severity and is
widely-deployed through Helm charts.

While browsing the homepages of some popular images
from Docker Hub, we noticed that Docker Hub warns its users
about the Log4Shell (CVE-2021-44228) vulnerability in par-
ticular. This vulnerability was publicly disclosed on December
2021. Indeed, because of its critical severity, Log4Shell should
be patched quickly wherever it is deployed. We therefore
looked for this particular vulnerability in our dataset, and
we found that the majority of the charts are safe, with only
75 charts still deploying images with packages affected by
this CVE. However, when we looked for the more recent
Spring4Shell (CVE-2022-22965) vulnerability, we found 251
charts exposed to it through their container images. This
critical vulnerability is a remote code execution vulnerability
that affects Spring Framework. It is considered as one of the
most exploited security vulnerabilities in 2022 7.

TABLE V: Top 5 common vulnerabilities and exposures
(CVE) exposing container images used in Helm charts.

CVE | CWEID | % charts | % images
CVE-2022-2097 326 62.46 51.67
CVE-2022-37434 | 787 61.9 53.78
CVE-2021-39537 | 787 60.12 46.65
CVE-2022-29458 | 125 57.74 45.35
CVE-2017-11164 | 674 57.52 43.19

We retrieved the common weakness enumeration (CWE)
for each vulnerability that is deployed by the charts in our
dataset. Table VI shows the top CWESs of the vulnerabilities
found in this study. We observe that 82.24% of the charts
deploying a vulnerability, has at least one vulnerability of
CWE type Out-of-bounds Write. The latter is consid-
ered as the most frequent and dangerous CWE (with the
highest number of CVEs) '8. However, we also observe
that Inadequate Encryption Strength vulnerabili-
ties are prevalent across images of Helm charts, although this
CWE is not in the top 25 list of CWEs. Chart and image
maintainers should be aware of the prevalence of unpopular
CWEs like this one in their applications.

TABLE VI: Top 5 common weakness enumeration (CWE)
affecting container images used in Helm charts.

CWE | % charts | % images
Out-of-bounds Write (787) 83.24 76.48
Out-of-bounds Read (125) 75.43 66.75
Use After Free (416) 75.1 65.4
Inadequate Encryption Strength (326) 72.59 61.7
Uncontrolled Resource Consumption (400) | 72.2 59.1

Summary: Around 9 out of 10 charts deploy at least one
vulnerability. Images used in charts are affected by up to
12,812 different vulnerabilities (with a unique CVE). 9.3%
of the vulnerabilities deployed by charts are of a critical
severity. Charts have an average of 510.2 vulnerabilities and
a median of 204. Image containers used in charts have an
average of 258.9 vulnerabilities and a median of 96.

Thttps://www.dynatrace.com/news/blog/anatomy-of-spring4shell-
vulnerability/
18https://cwe.mitre.0rg/t0p25/ archive/2022/2022_cwe_top25.html

s Outdated
[Up-to-date

Proportion of images

mmm Outdated
[Up-to-date

B Outdated
[Up-to-date

2018 2019 2020

Chart release year

2021 2022 Docker Hub

Image registry of origin

GitHub Unverified Verified

Chart verification

Quay

Fig. 4: Proportion of outdated and up-to-date container images grouped by their charts’ release year, container registry and
chart verification, at the charts’ release date. Each group constitutes 100% of the images belonging to it.

v
=3

50

970029 1(2‘1‘019.7/00)5
(38.3%)

5062
4859
(39.5%) (37.9%)

N
S

40

w
=3

N
o

1402
(535 (10.9%) 211192 175458

(8:3%) (6.9%)

-
=)

Proportion of vulnerabilities (CVE)
Proportion of vulnerabilities (CVE)

Critical ~ N/A
Vulnerability severity

Low Medium High

Low Medium High
Vulnerability severity

Critical ~ N/A

Fig. 5: Proportion of uniqueFig. 6: Proportion of all
vulnerability CVEs affecting vulnerabilities affecting Helm
Helm charts, grouped by their charts, grouped by their sever-
severity. ity.

VI. DISCUSSION

Helm charts render deploying and configuring applications
on a Kubernetes cluster a systematic and repeatable pro-
cess. Charts can be reused across concrete environments, and
an ecosystem has started forming around the Artifact Hub
repository for shared charts. Our paper is the first to study
this emerging ecosystem in terms of growth, reuse, inter-
chart dependencies, the freshness of the container images they
deploy, and the known vulnerabilities of packages therein.

In A, we found that the ecosystem around Helm charts is
growing in an exponential manner. However, nearly half of the
charts are still in the initial development phase and should be
considered unstable according to the SemVer specification. We
also observed that chart releases span all types of version in-
crements (i.e., patch, minor and major). However, the meaning
of these version increment types within the context of charts
is not yet clear. For Ansible, which is another Infrastructure-
as-Code (IaC) technology, Opdebeeck et al. [15], [16] found
that developers of Ansible roles (i.e., packages) do not adhere
to the same rules when selecting the type of version increment
for a release. Future work could consider the same topic for
Helm charts.

In A,, we found that the majority of the charts have zero
popularity. This might mean that users do not tend to rate
the Helm charts they rely on, or that only a small subset of
charts enjoys widespread use. However, it is well-known that
software popularity metrics that reflect real-world popularity
are far from trivial to devise [6]. A follow-up study could
look at the GitHub repository of each chart and extract the
popularity metrics of GitHub and compare them to the metrics
from Artifact Hub. Nevertheless, such a study should take into

account the fact that multiple charts can share the same GitHub
repository.

We also found that most of the charts are not official,
and therefore provide Kubernetes deployments of applications
that belong to third parties. This is different from other
Infrastructure-as-Code ecosystems such as Docker Hub where
organisations are the ones sharing and taking care of the
maintenance of official images for their applications. We
believe that organisations that already provide official images
in Docker Hub should also provide official Helm charts. This
will instil potential chart users more confidence, as official
charts are more trustworthy and seen to be well maintained
and secure.

In addition, we found that most of the charts do not have a
license. However, for the small subset of charts that have one,
they tend to use permissive licenses such as MIT and Apache-
2.0. This sample of charts with a license gives us an idea
about the permissive climate of the Helm charts ecosystem.
The Helm community can learn from other communities like
npm and RubyGems and start providing a default permissive
license with each chart. This will promote a permissive climate
and facilitate the chart reuse. Moreover, it will push the chart
maintainers to either accept the default license or provide their
own license.

We also observed that charts tend to declare only one
maintainer in their Chart.yaml file which can be an indi-
vidual or an organisation. Many organisations maintain several
charts for multiple applications while only specifying official
email or username. This makes it difficult for users to assess
the bus factor of the charts they would want to use. The
community should devise a means to quantify the long-term
maintenance support that can be expected for such a chart,
without endangering the privacy of its maintainers.

In Az, we found that dependencies tend to be used with
strict version constraints. This means that chart developers
are less interested in having automatic updates of their de-
pendencies compared to developers in other general-purpose
ecosystems, e.g., RubyGems [17]. A follow-up study could
look at the impact of these constraints on the outdatedness of
depended upon Helm charts. However, this finding confirms
that different ecosystems have different habits and values, as
previously stated by Bogart et al. [18].

In Ay, we found that more than half of the charts only
make use of a single image. Charts can use a single image
for a Kubernetes cluster and run multiple containers from that

image. Each container on a node in the cluster is running
the same image, but has different configuration or environ-
ment variables. The usage of a single image seems to be
more prevalent in Helm charts compared to Docker-Compose
GitHub projects where Ibrahim et al. [7] found that 26.8% of
the projects they studied use Docker Compose to build their
applications from a single image.

We also found that many charts do not include any image
at all. Helm charts provide a way to package and manage
Kubernetes resources, and can therefore also be used to deploy
resources such as ConfigMaps and Services besides container
images. It is also possible for a chart to package no Kubernetes
resources at all, and to just consist of files or values intended
for reuse by other charts. This seems in contrast with the low
number of library charts that we found. Charts that are not
deploying any application are considered as libraries. In fact,
none of the library charts we have in our dataset make use of
container images. Thus, we think that charts should mention
their correct type in the Chart.yaml file so that users can
better differentiate between charts.

In Ay, we also found that 82.7% of images in charts are
used with a strictly pinned down version tag. This is a good
practice from a safety point of view, but it can also easily
lead to outdatedness, as it is not always easy to keep up with
the rate at which the used images update their tags. Indeed,
in A5 we found that if we deployed the studied charts at
the analysis date (17-10-2022), we would find that 56.6% of
the used images are outdated in terms of both versions and
time. More importantly, we also observed that images were
already outdated at the release date of their charts. However,
we believe that researchers can treat time lag in infrastructure
ecosystems different from time lag in e.g., development library
ecosystems. For Docker Hub, it was observed that different
images providing the same application and package versions
can be created within a short period of time (e.g., create a slim
version of an image after one week) [19].

In Ag, we found that the container images included in
charts are affected by hundreds of vulnerabilities, including
widespread and critical vulnerabilities like Log4Shell. This
means that despite all the work done on the outdatedness
and security of software artefacts, more effort is still required.
One easy way to reduce this high number of vulnerabilities
affecting packages installed by images in Helm charts is to
use the available vulnerability fixes. In fact, we found that
40.8% of all vulnerabilities can be avoided by just adopting
their available fixes. This should be considered by both image
and chart maintainers.

VII. THREATS TO VALIDITY

Given the empirical nature of our study, its findings are
exposed to some potential threats to validity. We present these
threats following the classification and recommendations of
Wohlin et al. [20].

The main threat to construct validity comes from impreci-
sions in the data sources we used to obtain the list of publicly-
available Helm charts. We only relied on the catalog of charts

10

registered on Artifact Hub. We might have missed other charts
that are not distributed via Artifact Hub, but are made available
through GitHub or other version control services. The Helm
tool supports installing such charts as well. However, we think
that Artifact Hub contains the most relevant charts that are
supposed to be reused. In fact, the Helm homepage refers the
users searching for charts to Artifact Hub '°.

Another threat to construct validity stems from the fact that
when rendering the chart template using Helm, we could not
process all charts. Some of them might require manual input
for or substitution of template variables. This means that we
might have missed some of the charts that are relevant in the
ecosystem. In addition, we relied on the Artifact Hub scanner
that is based on Trivy to find the list of vulnerabilities affecting
the packages within images used in Helm charts. It might be
possible that this tool missed some vulnerabilities. To mitigate
this threat, we inspected five images using Snyk’s scanner and
compared the results. We found that both tools reported the
same list of vulnerabilities.

Internal validity concerns choices and factors internal to
the study that could influence the observed results. When
looking at the outdatedness of images used in Helm charts,
we only focused on those coming from Docker Hub, GitHub
and Quay registries. While one may argue that this subset is
not representative of all images, the selected images represent
85.3% of all images used in the charts. Moreover, these
images are the most popular ones (see Table III). We therefore
consider the selected set of images to be representative for
most of the chart maintainers and users.

Conclusion validity concerns the degree to which the con-
clusions we derived from our data analysis are reasonable.
When extracting the list of maintainers and the type of each
chart, we found that many charts do not include this infor-
mation. It could be possible that some charts are maintained
by a large number of maintainers but that they do not specify
this in their Chart.yaml file. In a similar vein, 46.4% of
the charts do not specify their type. This might have led us
to draw conclusions about the Ao that are impacted by the
missing data.

As a threat to external validity, our findings cannot be
generalised beyond Helm charts and the ecosystem forming
around them.

VIII. CONCLUSION

We presented an empirical analysis of the ecosystem form-
ing around the Artifact Hub registry of Helm charts, which
package the resources needed to deploy containerized appli-
cations on Kubernetes clusters in a repeatable and reusable
manner. We investigated the growth, reuse aspects, and de-
pendencies of Helm charts. For the container images used
within charts, we quantified image freshness and the known
vulnerabilities of the packages within.

Considering only the charts listed in the Artifact Hub repos-
itory, we studied 9,482 charts. We observed that the ecosystem

19https://helm.sh/docs/helm/helm_search_hub/

of charts is growing in an exponential manner. However, the
majority of the charts are not official with no popularity and no
declared license. We also found that charts tend to only use
few dependencies with strict dependency constraints. When
looking at the container images used in these charts, we found
that more than half of the charts only make use of one image.
However, around half of the images are outdated, at the release
time of the charts and at the analysis date. In addition, around
9 out of 10 charts are exposed to vulnerabilities affecting their
images. Community managers, developers, and users of Helm
charts can use our results and insights to better improve the
state of their charts and ecosystem. As future work, we plan
to extend our study by detecting potential misconfigurations
in and fixes of charts.

ACKNOWLEDGMENTS

This research was partially funded by the “Cybersecurity
Initiative Flanders” project and the Research Foundation Flan-
ders (FWO) under Grant No. 1SD4321N.

REFERENCES
[1] Cloud Native. Cloud native annual survey 2021.
https://www.cncf.io/reports/cncf-annual-survey-2021/.
[2] Stack Overflow. 2022 stack overflow developer survey.
https://survey.stackoverflow.co/2022/.
[3] Kubernetes. Kubernetes components.

https://kubernetes.io/docs/concepts/overview/components/, 2022.

Cloud Native. Cncf survey 2020. https://www.cncf.io/cncf-cloud-native-
survey-2020.

Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-
Barahona. On the relation between outdated Docker containers, severity
vulnerabilities, and bugs. In International Conference on Software
Analysis, Evolution and Reengineering, pages 491-501. IEEE, Feb 2019.
Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the
dynamics of the javascript package ecosystem. In Proceedings of the
13th International Conference on Mining Software Repositories, pages
351-361, 2016.

Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E Hassan. A study
of how docker compose is used to compose multi-component systems.
Empirical Software Engineering, 26(6):1-27, 2021.

Andreas Baur. Packaging of kubernetes applications. In Proceedings
of the 2020 OMI Seminars (PROMIS 2020), volume 1, pages 1-1.
Universitdt Ulm, 2021.

[4]
[5]

[6]

[7]

[8]

[9] Humanitec. Kubernetes ~ benchmarking study 2022.
https://humanitec.com/whitepapers/kubernetes-benchmarking-study-
2022.

[10] Dibyendu Brinto Bose, Akond Rahman, and Shazibul Islam Shamim.
‘under-reported’security defects in kubernetes manifests. In 2021
IEEE/ACM 2nd International Workshop on Engineering and Cyberse-
curity of Critical Systems (EnCyCriS), pages 9—12. IEEE, 2021.

Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond
Rahman. Xi commandments of kubernetes security: A systematization
of knowledge related to kubernetes security practices. In 2020 IEEE
Secure Development (SecDev), pages 58—64. IEEE, 2020.

Jesus M Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and
Daniel Izquierdo. Technical lag in software compilations: Measuring
how outdated a software deployment is. In IFIP International Confer-
ence on Open Source Systems, pages 182-192, 2017.

Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and
Jesis Gonzdlez-Barahona. An empirical analysis of technical lag in npm
package dependencies. In International Conference on Software Reuse,
pages 95-110. Springer, 2018.

Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. Character-
izing the occurrence of dockerfile smells in open-source software: An
empirical study. /EEE Access, 8:34127-34139, 2020.

(1]

[12]

[13]

[14]

11

[15]

[16]

[17]

[18]

[19]

(20]

Ruben Opdebeeck, Ahmed Zerouali, Camilo Veldzquez-Rodriguez, and
Coen De Roover. Does infrastructure as code adhere to semantic
versioning? an analysis of ansible role evolution. In 2020 [EEE
20Th international working conference on source code analysis and
manipulation (SCAM), pages 238-248. IEEE, 2020.

Ruben Opdebeeck, Ahmed Zerouali, Camilo Veldzquez-Rodriguez, and
Coen De Roover. On the practice of semantic versioning for Ansible
galaxy roles: An empirical study and a change classification model. J.
Syst. Softw., 182, December 2021.

Alexandre Decan and Tom Mens. What do package dependencies tell us
about semantic versioning? IEEE Transactions on Software Engineering,
47(6):1226-1240, 2019.

Christopher Bogart, Christian Kistner, James Herbsleb, and Ferdian
Thung. How to break an api: cost negotiation and community values
in three software ecosystems. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 109-120, 2016.

Max de Visser. A look at how often docker images are updated.
https://anchore.com/look-often-docker-images-updated/, 2017.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

