
Control and Data Flow in Security Smell Detection
for Infrastructure as Code: Is It Worth the Effort?

Ruben Opdebeeck
Ruben.Denzel.Opdebeeck@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Ahmed Zerouali
Ahmed.Zerouali@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Coen De Roover
Coen.De.Roover@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Abstract—Infrastructure as Code is the practice of developing
and maintaining computing infrastructure through executable
source code. Unfortunately, IaC has also brought about new
cyber attack vectors. Prior work has therefore proposed static
analyses that detect security smells in Infrastructure as Code
files. However, they have so far remained at a shallow level,
disregarding the control and data flow of the scripts under
analysis, and may lack awareness of specific syntactic constructs.
These limitations inhibit the quality of their results. To address
these limitations, in this paper, we present GASEL, a novel
security smell detector for the Ansible IaC language. It uses
graph queries on program dependence graphs to detect 7 security
smells. Our evaluation on an oracle of 243 real-world security
smells and comparison against two state-of-the-art security smell
detectors shows that awareness of syntax, control flow, and data
flow enables our approach to substantially improve both precision
and recall. We further question whether the additional effort
required to develop and run such an approach is justified in
practice. To this end, we investigate the prevalence of indirection
through control and data flow in security smells across more than
15 000 Ansible scripts. We find that over 55% of security smells
contain data-flow indirection, and over 32% require a whole-
project analysis to detect. These findings motivate the need for
deeper static analysis tools to detect security vulnerabilities in
IaC.

Index Terms—Infrastructure as Code; Ansible; code smells;
security; program dependence graph; empirical study

I. INTRODUCTION

Infrastructure as Code (IaC) has emerged as the practice of
automating the process of deploying and maintaining a digital
infrastructure through executable source code [1]. A main
benefit is that practitioners can apply software engineering
principles for general-purpose code to infrastructure code.
Examples include checking the code into version control
systems and applying code quality assessments.

Part of the IaC practice is enabled by configuration man-
agement tools such as Ansible, Puppet, and Chef. Practitioners
write scripts in these languages to automatically configure
machines in their infrastructure, ranging from user account
management, over installing software dependencies, to man-
aging the software’s configuration files. The aforementioned
tools have gained considerable traction in recent years [2],
with Ansible being the most popular today [3].

Nonetheless, since infrastructure code remains source code,
it is plagued by the same problems as application code.
Defects can cause issues in infrastructure deployments and

potentially lead to outages [4]. Bad practices and code smells
(i.e., recurring code patterns that indicate potential problems
[5]) can hamper the maintainability of infrastructure code,
decreasing the velocity at which changes are made [6]–[9].
Worse, security-related bad practices can give rise to security
vulnerabilities in an infrastructure. Such vulnerabilities may
be exploited by malicious actors as an attack vector to abuse
enterprise systems hosted on a digital infrastructure.

Prior work has identified numerous security smells, i.e.,
recurring patterns indicating potential security vulnerabilities,
that can occur in IaC scripts written in Ansible, Chef, and
Puppet [10]–[12]. Language-specific security smell detectors
have been developed to this end. As the most popular IaC
language, Ansible is supported by two tools, SLAC [11] and
GLITCH [12], which detect various security smells such as
hardcoded secrets and missing integrity checks for downloads.

However, we observe a number of limitations exhibited
by existing approaches. Specifically, they lack awareness of
Ansible syntax and do not take control-flow and data-flow
information into account. These limitations lead them to report
false positives, and worse, may lead to vulnerable Ansible code
being reported as safe (i.e., false negatives).

In this paper, we propose a novel approach to detecting
security smells which leverages Program Dependence Graphs
(PDG) built for Ansible code [9]. This representation includes
control-flow and data-flow information, enabling our approach
to address the latter two limitations. Moreover, we leverage
Ansible’s own parser when building the PDGs, thereby intro-
ducing more syntax awareness. We implement this approach
in GASEL (Graph-based Ansible SEcurity Linter), a prototype
detector for seven previously-proposed security smells.

We evaluate our approach on an oracle of 243 real-world
security smells and show that it outperforms two state-of-the-
art approaches. However, our approach is more expensive to
both implement and apply. We therefore investigate whether
the higher cost is justified in practice. To this end, we
empirically investigate the prevalence of indirection caused by
control flow and data flow in security smells found across a
large corpus of Ansible scripts. Our findings show that these
types of indirection are indeed common in practice, motivating
the need for deeper static analysis tools for IaC languages.

To summarise, this paper makes the following contributions.
• We describe a PDG representation for both Ansible

playbooks (client) and role (library) code, based on
Opdebeeck et al.’s prior work [9], which only supports
the latter and a smaller subset of the Ansible syntax.

• We propose a novel PDG-based approach to security
smell detection for IaC. In contrast to existing ap-
proaches, which consider individual files (akin to intra-
procedural analysis), our approach performs a whole-
project, inter-procedural analysis and leverages data flow
to guide its smell detection.

• We construct an oracle of 243 real-world security smells,
which is over 5 times larger than oracles from prior work.

• We evaluate our approach on this oracle, showing that it
substantially outperforms state-of-the-art security smell
detectors in both precision and recall.

• We empirically investigate the prevalence of control-
flow and data-flow indirection within security smells in a
dataset of over 15 000 Ansible scripts to motivate taking
such information into account when developing static
analysis tools for IaC.

A replication package containing our prototypes, data,
and analysis scripts is available at https://doi.org/10.6084/m9.
figshare.21929856.

II. BACKGROUND

A. Ansible

Ansible scripts comprise a number of tasks describing the
steps needed to configure an infrastructure machine. Each
task executes an action, implemented as a module, which
can be provided with arguments. Tasks also support various
directives to enable conditional or looping execution. Tasks
are assembled into plays, each of which targets a group
of machines to be configured identically. Plays are further
grouped into playbooks, which orchestrate deployments of
different types of machines.

Users can define variables at various places in their code,
e.g., for a single tasks, for all tasks in a play, etc. These
variables can be referenced in expressions (denoted using
double braces). Expression are often used to manipulate data.

Tasks and variables can further be modularised into reusable
roles. These are akin to “packages” or “modules” in general-
purpose languages. Roles can then be included into a play,
which will define all its variables and execute all its tasks.

B. IaC Security Smells

The earliest work on security smells in infrastructure code
is by Rahman et al. [10], who investigate security weaknesses
in Puppet scripts. They devise a catalogue of several security
smells, such as hardcoded secrets and missing integrity checks
on downloaded executable code, and develop SLIC, a tool to
detect them. Rahman et al. later replicate this work for Ansible
and Chef [11], developing a similar tool named SLAC.

For Ansible, SLAC parses the Ansible YAML code into
dictionaries and lists. It traverses this representation and
checks pairs of dictionary keys and values in search of smells
according to a set of detection rules combined with a set
of string patterns. For instance, to detect a hardcoded secret,

1 - name: Download nginx-{{ version }}.tar.gz
2 get_url:
3 url=http://nginx.org/download/nginx-{{ version }}.tar.gz
4 dest=/usr/local/src/nginx-{{ version }}.tar.gz

Fig. 1. Task adapted from personium/Ansible exhibiting HTTP Without
SSL/TLS and Missing Integrity Check smells.

SLAC searches for keys denoting a secret (e.g., keys named
“password”) with an associated value that is a literal string.

SLIC and SLAC implement the same detection rules for the
three languages individually. This redundancy led Saavedra et
al. to create GLITCH [12], a polyglot detection tool for Puppet,
Chef, and Ansible. Although the detection rules are largely
identical to Rahman et al.’s, GLITCH only implements a single
version operating on an intermediate representation. Saavedra
et al. also make numerous improvements to the string patterns
proposed by Rahman et al., enabling GLITCH to outperform
SLIC and SLAC. Moreover, GLITCH implements all applicable
rules for all languages, whereas SLIC and SLAC only detect a
subset of the security smells for each individual language. For
Ansible, GLITCH’s intermediate representation is a lightweight
abstraction over the dictionaries and lists obtained by YAML
parsing. Ansible-specific concepts, such as tasks, variables,
and expressions, can be tagged in the representation.

GLITCH supports the following security smells for Ansi-
ble: Admin by default: Specifying users with administrator
privileges can violate the principle of least privilege. Empty
password: Empty passwords are trivial to crack. Hardcoded
secret: Hardcoding sensitive information such as passwords
or private keys into code can lead to severe vulnerabilities
when the code is published online, either accidentally into
open-source repositories, or maliciously through leaks. Secrets
should therefore be stored in so-called vaults. HTTP without
SSL/TLS: Omitting encryption protocols when communicat-
ing over HTTP allows an attacker to intercept or modify
communications through man-in-the-middle attacks. Commu-
nication should therefore be encrypted with SSL or TLS to pre-
vent tampering and eavesdropping. Missing integrity check:
When downloading executables, their integrity should be
checked using cryptographic hashes. Unwanted modifications
will otherwise go unnoticed. Suspicious comment: Comments
such as “TODO” or “FIXME” may reveal weaknesses in the
system. Unrestricted IP address: Having a server listen on
0.0.0.0 exposes the server to the whole network. Missing IP
address filters facilitate denial of service attacks. Weak crypto
algorithm: Hashing algorithms such as SHA-1 and MD5 are
prone to collision attacks, e.g., on hashed passwords.

Finally, Reis et al. [13] replicate SLIC’s evaluation and find
that its precision is substantially lower than originally reported
after validation with code owners, dropping from 99% to 28%.
Armed with practitioners’ feedback, they develop INFRASE-
CURE, a smell detector for Puppet which outperforms SLIC.

III. MOTIVATING EXAMPLES

The motivating examples depicted in Figures 1 and 2 high-
light the 3 major limitations exhibited by SLAC and GLITCH.

2

https://doi.org/10.6084/m9.figshare.21929856
https://doi.org/10.6084/m9.figshare.21929856

1 - hosts: ...
2 roles:
3 - role: overdrive3000.percona
4 root_password: _password_
5

6 # In overdrive3000/percona role
7 - name: Update MySQL root password
8 mysql_user:
9 name: root

10 password: '{{ root_password }}'

Fig. 2. Play adapted from CenturyLinkCloud/clc-ansible-module
exhibiting an indirect Hardcoded Secret smell.

A. Lack of Ansible Syntax Awareness

Ansible features extended syntax that is not handled by
standard YAML parsing. The most notable example of this is
the inline task module arguments syntax, exhibited in Figure 1.
This notation denotes task arguments as a string where argu-
ment names and values are separated by equals signs, rather
than as a nested dictionary (cf. Figure 2, lines 9–10). YAML
parsing therefore does not suffice to create the key-value pairs
required for existing tools to check these arguments for smells,
leading them to miss the HTTP Without SSL/TLS and Missing
Integrity Check smells exhibited in Figure 1. Moreover, since
existing approaches do not fully support expressions, they may
miss the smells even when standard YAML notation is used.

B. Lack of Data-flow Information

Existing approaches do not take the flow of data within an
Ansible script into account. This can lead to false negatives
when smells feature indirection through variables and expres-
sions. In Figure 2, for instance, a password is specified as an
expression (line 10) that refers to a variable (line 4) initialised
with a literal. Lacking data-flow information also causes tools
to report false positives for smells that cannot be harmful in
practice, e.g., due to dead code or unused variables.

C. Lack of Control-flow Information

Ansible projects are structured into separate YAML files
which are dynamically included at run time. Moreover, they
can dynamically include third-party code, as depicted in
Figure 2, where a play (lines 1–4) dynamically includes
a role from a third-party dependency. Existing approaches
do not inspect the control flow within Ansible scripts, and
must instead rely on scanning all YAML files and assuming
they contain Ansible code. However, not every YAML file
contains relevant Ansible code. The tools therefore report false
positives, such as for test code which developers often consider
harmless [11], or for non-Ansible YAML files.

Furthermore, dynamic inclusion can cause the aforemen-
tioned data-flow indirection to cross files, where a variable
is defined in one file and used in another. For instance, in
Figure 2, the hardcoded secret smell is actually spread across
different files, with the password being defined in one file (line
4) but used in another (line 10). Due to Ansible’s variable
and expression semantics [9], detecting such indirect smells
requires accurately tracking both control and data flow, and
thus necessitates a whole-project analysis.

IV. GRAPH-BASED SECURITY SMELL DETECTION

To address the above limitations, we introduce an approach
to detecting the previously-proposed security smells using
graph queries on a Program Dependence Graph representation.
The approach builds a PDG for an Ansible “entrypoint”, either
a playbook or a role (Section IV-A). We devise Cypher graph
queries for each supported security smell which, when run on
a PDG for an entrypoint, can detect the security smells that
would occur when this entrypoint is executed (Section IV-B).

We instantiated this approach into GASEL, a prototype
detector implemented in Python using RedisGraph as an in-
memory graph database that answers the Cypher queries.

A. Building Program Dependence Graphs

The PDGs produced by our approach are obtained using an
extended version of the PDG builder proposed by Opdebeeck
et al. [9]. Although the existing builder can accurately repre-
sent the control and data flow of Ansible code, it only supports
Ansible roles. The lack of support for playbooks is a severe
limitation, as playbooks are the code that clients actually exe-
cute. They are thus vital to consider when performing a whole-
project analysis. Moreover, their PDG builder only supports
simple tasks and a small subset of variables definitions. Among
others, it lacks support for handlers (a special type of tasks),
tasks which dynamically include roles, prompted variables,
and any variable type related to playbooks. As these limitations
cause it to miss large parts of Ansible codebases, we extend
their PDG builder with support for these concepts.

Our PDG builder takes as input an Ansible playbook or
role. It parses the input using Ansible’s own parser, thereby
supporting Ansible’s extended syntax such as string-based
task module arguments (cf. Section III-A). For playbooks, it
traverses each play and creates a disconnected subgraph of the
PDG to represent the play. Specifically, it explores each task
and handler reachable from the play and constructs nodes to
represent them. For roles, it analogously explores each task
or handler that would be executed when the role is executed.
Tasks are interconnected using control-flow edges (order)
representing the order in which the tasks are executed.

While exploring the tasks, the builder keeps track of the
variable definitions, which it uses to resolve variable references
when it encounters expressions. It finds the latter by inspecting
the task’s directives and module arguments, through which
it produces data nodes for expressions, variables, and literal
values. It interlinks these data nodes through data-flow edges
representing data definition (def) and usage (use), and
connects the applicable data nodes to the task via usage edges
labelled with the name of the directive or module argument.
Throughout this process, the builder accounts for the many
intricacies of Ansible’s variable precedence and expression
evaluation. For a more detailed description, we refer the
interested reader to Opdebeeck et al. [9].

Some special cases are handled differently. Tasks that lead to
the dynamic inclusion of Ansible files are handled by resolving
the file that would be included, if possible, and expanding
the PDG with new nodes created for the included file. For

3

root password

" password "

DEF

{{ root password }}
USE

"root"

user

password

name

Fig. 3. PDG of the example depicted in Figure 2.

variable includes (e.g., include_vars), the variables de-
fined in this file are tracked analogously to other variables.
For task includes (e.g., include_tasks), the builder adds
each included task to the PDG analogously to other tasks. For
role includes (e.g., include_role), the builder applies the
same building process it does for input roles, yet also uses the
previously-tracked variables since the role may use variables
defined outside of its scope. The builder searches for the
included role within the repository itself (for first-party roles)
and in a configurable search directory (for third-party roles).
Throughout the handling of these special cases, the builder
uses control-flow information to ensure the PDG only contains
nodes for tasks that are actually reachable from a playbook or
role, and thus omits irrelevant files. This enables our approach
to overcome the limitation described in Section III-C.

Figure 3 depicts the PDG built for the example of Figure 2.
The sole task is depicted as an oval on the right. It is linked
to its two module arguments via usage edges, leading to
a definition-use chain of an expression (dashed rectangle),
variable (solid rectangle), and a literal (dotted rectangle). This
chain from the literal to the password argument is indicative
of an indirectly hardcoded secret.

B. Security Smell Detection

To detect security smells, our approach leverages graph
queries written in the Cypher query language, which are run on
the PDG constructed by the builder. We design a Cypher query
for 7 of the 8 smells supported by GLITCH (see Section II-B).
We do omit the Suspicious comment smell, as comments
are missing from the PDG and control-flow and data-flow
information will not improve its detection.

To design the graph queries, we took initial inspiration from
the matching rules of the GLITCH tool. However, our queries
match paths in the graph rather than keys and values of a tree-
based representation. A major advantage is that our queries
can account for data-flow indirection in the code by matching
variable-length definition-use chains. As a result, our queries
report the indirectly hardcoded password exemplified in Fig-
ure 2, thus addressing the limitation described in Section III-B.

Table I summarises our graph queries for security
smell detection. Figure 4 depicts an example of a cor-
responding Cypher query. In the table, the function
hasDUPath(n1, e, n2) finds definition-use paths between
nodes n1 and n2, where the final edge in the path
is denoted by e. A second form with two arguments,
hasDUPath(n1, n2) is used when the final edge is irrelevant.
Functions isExpression and isLiteral check the type
of a given node, while functions such as isPassword or
isUser check the label of a given node or edge. Similarly

1 MATCH (l:Literal)-[:DEF|USE*0..]->()-[e:KEYWORD]->(t:Task)
2 WHERE (e.value CONTAINS "user" OR e.value CONTAINS "role")
3 AND (l.value = "admin" OR l.value = "root")
4 RETURN l.location;

Fig. 4. Simplified graph query for Admin By Default smell.

to SLAC and GLITCH, the latter functions use string patterns,
summarised in Table II.

Our string patterns are inspired by those of GLITCH, which
have previously been shown to outperform those of SLAC, but
we slightly refined the patterns using our Ansible domain-
specific knowledge. For instance, we add a whitelist to the
Hardcoded Secret query to account for common string-valued
arguments that are used as flags rather than secrets (e.g.,
update_password, which specifies when a password must
be updated). Importantly, for the Hardcoded Secret smell,
we do not consider usernames to be secret, following the
practitioner feedback reported by Reis et al. [13].

V. SECURITY SMELLS IN PRACTICE

The following research questions evaluate our approach and
assess the need for deep static analysis in smell detection:

• RQ1: How accurate is our security smell detector?
• RQ2: How prevalent are security smells in open-source

Ansible codebases?
• RQ3: How often do security smells cross file boundaries?
• RQ4: How prevalent is data-flow indirection in security

smells?

A. Dataset Collection

To answer these questions, we need a dataset of Ansible
repositories. We start from the dataset previously collected by
Saavedra et al. [12]. They collected a list of 681 repositories
through a GitHub search and applied various filtering criteria
focused on development characteristics (number of contribu-
tors, number of commits) to discard irrelevant projects. How-
ever, we argue that these criteria may have discarded several
relevant, frequently-used repositories, while simultaneously
retaining irrelevant projects. We aim to enrich this initial
dataset by adding relevant repositories that were missed, while
also removing irrelevant repositories that are rarely used.

First, we use the Ansible Galaxy registry1 to add popular
open-source reusable Ansible roles to the dataset. To this
end, we use the Andromeda dataset [14] to collect the most
popular repositories that cumulatively represent 95% of all
role downloads in the ecosystem. We found a total of 710
repositories, from which we omit 64 that are already present
in the original dataset, and a further 34 which are forks. Thus,
we obtain 612 new relevant repositories.

Then, we remove repositories with no GitHub stars, which
indicates they lack popularity and are thus irrelevant for our
purposes. This removes 272 repositories from the dataset, 199
of which originate from the original dataset by Saavedra et al.
Moreover, we remove 49 hidden forks, 34 of which originate
from the original dataset. These are repositories which are not

1https://galaxy.ansible.com/

4

https://galaxy.ansible.com/

TABLE I
DETECTION RULES FOR SECURITY SMELLS. n DENOTES ANY NODE, l, v, AND t DENOTE LITERAL, VARIABLE, AND TASK NODES, e DENOTES EDGES.

Smell type Query description

Admin by default hasDUPath(l, e, t) ∧ isAdmin(l) ∧ isUser(e)

Empty password [(hasDUPath(l, e, t) ∧ isPassword(e)) ∨ (hasDUPath(l, v) ∧ hasDUPath(v, t) ∧ isPassword(v))] ∧ isEmpty(l)

Hardcoded secret [(hasDUPath(l, e, t) ∧ isSecret(e) ∧ ¬isSecretWhitelist(e)) ∨ (hasDUPath(l, v) ∧ hasDUPath(v, t) ∧
isSecret(v) ∧ ¬isSecretWhitelist(v))] ∧ ¬isEmpty(l)

HTTP without SSL/TLS hasDUPath(n, t) ∧ (isLiteral(n) ∨ isExpression(n)) ∧ isHTTP(n)
∧ ¬(isHTTPWhitelist(n) ∨ (hasDUPath(l, n) ∧ isHTTPWhitelist(l)))

Missing integrity check [hasDUPath(l1, t) ∧ isDownload(l1) ∧ ¬(hasDUPath(n, e1, t) ∧ isChecksum(e))]
∨ [hasDUPath(l2, e2, t) ∧ ((isCheckFlag(e2) ∧ ¬l2) ∨ (isDisableCheckFlag(e2) ∧ l2))]

Unrestricted IP address hasDUPath(n, t) ∧ (isLiteral(n) ∨ isExpression(n)) ∧ isBadIP(n)

Weak crypto algorithm hasDUPath(n, t) ∧ (isLiteral(n) ∨ isExpression(n)) ∧ isWeakCrypto(n)

TABLE II
STRING PATTERNS USED IN GRAPH QUERIES.

Function String pattern

isAdmin admin, root
isUser user, role, uname, login, . . .
isPassword pass, pwd
isSecret pass, pwd, token, secret, ssh.*key, . . .
isSecretWhitelist generate, update
isHTTP http://
isHTTPWhitelist localhost, 127.0.0.1
isDownload http.+.tar.gz, http.+.dmg, http.+.rpm, . . .
isChecksum checksum, cksum
isCheckFlag gpg check, check sha
isDisableCheckFlag disable gpg check
isBadIP 0.0.0.0
isWeakCrypto md5, sha1, arcfour

TABLE III
DATASET STATISTICS.

Attribute Original Extension Total

repositories 448 524 972
owners 285 196 449
YAML files 74 862 8 932 83 794
non-test YAML files 64 311 6 449 70 760
playbooks 7 744 219 7 963
roles 7 490 527 8 017

marked as forks on GitHub but share an initial commit with
another repository in the dataset. Such repositories may share
a lot of code with another repository in the dataset, and their
inclusion may skew our results. For each group of forks, we
retain the most popular repository as indicated by the number
of stars.

We obtain a final dataset of 972 Ansible repositories com-
prising 15 980 entrypoints (playbooks or roles). A summary
of this dataset is depicted in Table III.

B. Empirical Analysis

We describe the research method and the results for each
research question separately.

RQ1: How accurate is our security smell detector?: This
RQ serves as the evaluation of our approach, in which we
construct an oracle of real-world security smells, use it to

determine precision and recall of our approach, and compare
it to two state-of-the-art security smell detectors for Ansible,
namely SLAC [11] and GLITCH [12].

Research Method: To calculate precision and recall and
compare to the state of the art, we require a set of true security
smells in Ansible scripts. Although prior work provides such a
manually annotated oracle, it does not serve our needs for two
reasons. First, the oracle considers individual files, whereas
our approach performs a whole-project analysis. Second, for
several security smells, the oracle contains very few or no true
positives, which may lead to unrepresentative results.

Instead, we create a new ground-truth oracle by sampling
the results of the three detectors on a corpus of Ansible
projects and by pooling [15] the true positive reports. Specif-
ically, we first run the three detectors on the entire corpus of
Ansible repositories. We run GASEL on each playbook and
role in each repository and rely on its ability to resolve and
subsequently scan included files. We configure it to search
for third-party role dependencies in a search path containing
all roles in the Andromeda dataset [14]. We run SLAC and
GLITCH on each repository in the corpus using the configura-
tions from their respective replication packages. We filter out
all reports of suspicious comments and hardcoded usernames,
since these are not implemented in GASEL, as motivated in
Section IV-B.

Next, we randomly select a sample of reports for manual
review. However, since SLAC does not report line numbers,
and line numbers reported by GASEL may differ slightly from
those reported by GLITCH, we cannot automatically relate the
reported smells. Instead, we sample entire files and manually
review all reported smells for those files.

To obtain a varied set of files that is representative of all
detectors, we first group the files into three categories for each
security smell: files for which GASEL reports the same number
of smells as another tool, files for which GASEL reports more
smells, and files for which GASEL reports less smells. The aim
is to review both smells that are commonly found, and smells
that are missed by at least one tool. As noted above, GASEL
relies on resolving dynamically included files to perform a
whole-project analysis, but resolving such files statically is not
always possible. As such, it may occasionally overlook files

5

that were scanned by SLAC and GLITCH, which do not rely
on control-flow information and simply scan all YAML files.
Conversely, SLAC and GLITCH may mistakenly scan irrelevant
files, such as non-Ansible YAML files, which would degrade
their results. To reduce this bias, we decided to only consider
the files that were scanned by all three tools. Subsequently,
we randomly select 10 files of each category for each security
smell, leading to a total of 210 files to be manually reviewed.
Note that each file can contain multiple security smells of the
same type.

The first author, who has 3 years of experience with Ansible
and security, then manually labels each sampled smell as a true
or false positive. We consider smells to be false positives if
they cannot cause a security weakness in the project (e.g., a
reported hardcoded secret that is not a secret, or a variable
containing a smell while that variable is never used). Through
the resulting oracle, we will be able to calculate each tool’s
precision and recall. Note that the obtained recall values will
be an approximation, since the oracle will lack smells that are
missed by all detectors.

Results: In total, we manually reviewed 390 unique poten-
tial smells from 662 reports by the three detectors. We find
243 true positives, ranging between 11 and 64 per smell type.

Table IV depicts the precision and recall for the three
detectors on the oracle set of security smells. Note again that
the recall values are an approximation, since the oracle does
not contain smells missed by all detectors.

GASEL achieves the highest recall for 6 of the 7 smells, by
an often substantial margin. For all smells, GASEL finds more
than 75% of their instances in the sample set. GASEL also
achieves the highest precision for 4 of the 7 security smells,
and only a slightly lower precision than GLITCH for another.

We further observe that for 4 smells, namely Empty Pass-
word, HTTP Without SSL/TLS, Missing Integrity Check, and
Weak Crypto Algorithm, our tool achieves both the highest pre-
cision and recall of all detectors. For HTTP Without SSL/TLS
and Missing Integrity Check, our tool substantially outperforms
SLAC and GLITCH. For the Admin By Default and Hardcoded
Secret smells, the improvement in recall is paired with lower
precision, possibly indicating a trade-off between precision
and recall. Finally, we note a substantial decrease in both
precision and recall for the Unrestricted IP Address smell,
where GASEL performs worst.

Apart from precision and recall, a secondary yet important
concern in security smell detection is the time taken to scan
a project. Unsurprisingly, because GASEL needs to perform
more in-depth analysis, it takes more time than the other tools.
In our experiments, SLAC and GLITCH took 8 and 22 minutes
respectively to scan the entire dataset, while GASEL took
slightly over 2 hours. Nonetheless, GASEL’s mean running
time is around 220ms to scan an entire repository and around
65ms to scan a single playbook or role, which is acceptable.
However, large projects may form large outliers, with some
repositories taking multiple minutes, upwards of 40 minutes
for a single repository. For such projects, GASEL may need to
scan the same Ansible file many times if the file is included

multiple times in the repository (e.g., a role included by
multiple playbooks). Another factor is the use of a graph
database in GASEL’s prototype implementation. We observe
that a large portion of time is spent merely importing the built
PDG into this database. We theorise that performance tuning
of the database may aid in improving the performance on large
projects and consequently, large PDGs.

Answer to RQ1: Our approach achieves consistently high
recall (above 75% for all smells). Its precision is also often
high (>95% for 4 smells), except for Empty Password and
Hardcoded Secret smells. It achieves the highest precision
and recall for 4 and 6 smell types, respectively, but performs
considerably worse for Unrestricted IP Address.

RQ2: How prevalent are security smells in open-source
Ansible codebases?: In this RQ, we investigate how often
security smells of different types are manifested in Ansible
repositories, entrypoints, and files. The results will provide
insights into the prevalence of security smell types in practice.

Research Method: We run GASEL on the entire corpus of
repositories according to the same setup as detailed in RQ1.
However, we additionally instruct it to produce a sink location
for each smell, i.e., the location of the task that it affects. This
is different from the smell’s own location, which we shall
from now on refer to as the source location, in part because
of control-flow and data-flow indirection.

Note that since GASEL scans each entrypoint separately, it
may report duplicates when smells are reachable from multiple
entrypoints in a repository, e.g., because both entrypoints
include a common file. Since duplicate reports would skew our
results, we eliminate them by not considering the entrypoint
through which the smells are reported, except when investi-
gating the proportion of entrypoints affected by smells.

Results: GASEL detected a total of 7 933 unique security
smells affecting 472 repositories (48.56% of our corpus) and
3 457 entrypoints (21.63% of the corpus). The mean and
median number of affected entrypoints per repository are 7.32
and 1, respectively, while the mean and median number of
smells per affected entrypoint are 4.42 and 2.

These smells are spread across 3 145 source files, affecting
a total of 3 613 sink files, indicating that certain smell sources
are used by multiple sinks. The distribution of the number of
smells per repository, entrypoint, and sink file are summarised
using boxen plots in Figure 5. We observe a mean and median
number of smells per sink file of 2.2 and 1, respectively. For
repositories, we find that the mean and median number of
smells are 16.8 and 4. The high difference between the two
suggests the presence of outliers with many smells, which can
be seen in the boxen plot. Indeed, we found repositories with
as many as 802 smells. Similarly, the maximum number of
smells in a single entrypoint is 247.

Table V summarises the number of smells, affected files, and
affected repositories per smell type. We find that Hardcoded
Secret is the most common security smell across all three met-
rics. However, note that our approach achieves low precision
for this smell type (RQ1), and its prevalence is thus likely an

6

TABLE IV
PRECISION AND RECALL FOR GASEL, SLAC, AND GLITCH ON THE ORACLE DATASET.

GASEL GLITCH SLAC
Smell type # instances Precision Recall Precision Recall Precision Recall

Admin By Default 64 98.11% 81.25% 100.00% 67.19% N/A N/A
Empty Password 15 44.44% 80.00% 42.86% 60.00% 30.77% 53.33%
HTTP Without SSL/TLS 35 100.00% 88.57% 54.84% 48.57% 22.89% 54.29%
Hardcoded Secret 11 45.45% 90.91% 56.25% 81.82% 33.33% 81.82%
Missing Integrity Check 27 96.15% 92.59% 50.00% 33.33% 75.00% 44.44%
Unrestricted IP Address 47 76.60% 76.60% 82.98% 82.98% 81.63% 85.11%
Weak Crypto Algorithm 44 97.67% 95.45% 86.11% 70.45% N/A N/A

Repositories Entrypoints Files
0

10

20

30

40

50

60

Nu
m

be
r o

f s
m

el
ls

Fig. 5. Distribution of the number of smells per repository, entrypoint and
sink file.

TABLE V
NUMBER OF SMELLS, AFFECTED REPOSITORIES AND SINK FILES GROUPED

BY SMELL TYPE.

Smell type # smells % smells # files # repos

Hardcoded Secret 2 155 27.17 1 235 211
Admin By Default 2 043 25.75 766 190
HTTP Without SSL/TLS 1 369 17.26 765 198
Missing Integrity Check 1 084 13.66 803 200
Weak Crypto Algorithm 577 7.27 234 94
Unrestricted IP Address 418 5.27 289 120
Empty Password 287 3.61 163 65

over-approximation. In terms of number of smells, Hardcoded
Secret is closely followed by Admin By Default, yet in terms
of number of affected files and repositories, Missing Integrity
Check ranks second. This may suggest that repositories or
files often contain multiple Admin By Default smells while
Missing Integrity Check more often occurs alone. The table
also suggests that smell types are not evenly distributed
across all repositories, since the highest number of repositories
affected by a smell type (211) is less than half of all affected
repositories (472).

Finally, Figure 6 depicts the distribution of the number of
smells per repository and sink file, grouped by smell type.
Note that for each group, we only focus on those repositories
or files that are affected by the smell type, so the minimum
number in each is 1. We observe that the median number of
smells per entrypoint is 1 for all smell types, whereas the
median for repositories ranges between 2 and 4 per smell
type. This figure also confirms that repositories or files often
have multiple Admin By Default instances, explaining the
observation described above.

Repositories
0
5

10
15
20
25
30
35
40

Nu
m

be
r o

f s
m

el
ls

Files
0

2

4

6

8

10

Hardcoded Secret
Admin By Default
HTTP Without SSL/TLS

Missing Integrity Check
Unrestricted IP Address

Empty Password
Weak Crypto Algorithm

Fig. 6. Distribution of the number of smells per repository and sink file,
grouped by smell type.

Answer to RQ2: 49% and 22% of the repositories and
entrypoints in our dataset are affected by 7 933 unique
security smells. Hardcoded Secret is the most prevalent,
followed by Admin By Default and Missing Integrity Check.

RQ3: How often do security smells cross file boundaries?:
In this RQ, we investigate the instances of security smells
detected in RQ2 which require whole-program analysis to
detect. Such instances involve multiple Ansible files (e.g.,
a hardcoded password variable defined in one file but used
in another) or are partly or wholly situated in third-party
dependencies, and may be undetectable to single-file analyses.
Answering this RQ provides insights into the importance of
whole-program analyses in security smell detection.

Research Method: We build upon the instances collected
in RQ2 and focus on those whose source file differs from
their sink file, indicating a control-flow indirection through
file inclusion. We also investigate smells of which the source
or sink file is located in third-party code (role dependencies),
and thus get included into the client code indirectly.

Results: We observe that 2 594 (32.7%) instances have a
source file different from the sink file and thus cross file
boundaries. The proportion of such instances is the highest
for Empty Password (51.92%) and Weak Crypto Algorithm
(51.13%) smells. Conversely, Admin By Default (21.34%)
and Unrestricted IP Address (23.68%) exhibit the lowest
proportion of such instances. For all smell types, more than
20% of their instances affect tasks defined in different files.

Moreover, we find that 510 smells (6.43%) are situated
entirely within third-party code. The majority of these are

7

Admin By Default (150) and HTTP Without SSL/TLS (109)
smells, whereas Weak Crypto Algorithm (12) and Empty
Password (13) represent the lowest number of smells. The
smell type with the highest proportion of smells in third-
party code is Unrestricted IP Address (15.55%), while Weak
Crypto Algorithm has the lowest (2.08%). Each smell type has
instances situated in third-party roles.

Finally, GASEL detected 20 smells (0.25%) that cross the
boundaries of first-party and third-party code. Specifically, we
find 9 Missing Integrity Check, 8 Hardcoded Secret, and 3
HTTP Without SSL/TLS smells where a variable defined in
first-party code is used by a task in third-party role code.

Answer to RQ3: 33% of smell instances involve file
inclusion, while 6.5% partly or fully involve third-party
code. While Admin By Default and Unrestricted IP Ad-
dress exhibit the lowest proportion of instances crossing
file boundaries, they comprise large numbers of instances
involving third-party code. Conversely, Weak Crypto Algo-
rithm and Empty Password exhibit the highest proportion of
instances crossing file boundaries, yet rarely involve third-
party code.

RQ4: How prevalent is data-flow indirection in security
smells?: Our final RQ investigates how often smell instances
involve data-flow indirection through the use of variables and
expressions. Similar to before, the answer to this question will
determine the need to account for data flow to accurately detect
security smells in practice.

Research Method: We again run GASEL on the entire
corpus of repositories using a similar setup as before. However,
we now instruct it to produce a “data-flow indirection level”
for each smell, which resembles the length of the definition-
use chain between a smell’s source and sink, counted as the
number of variables in this chain. For instance, indirection
level 2 indicates that the sink refers to a variable which in turn
depends on another variable, the latter constituting the source
of the smell. Indirection level 0 indicates that the smell occurs
directly as a task argument, without variables.

Results: We find that 55.5% (4 402) of the detected smells
involve some level of indirection through variables and ex-
pressions. Table VI depicts the number of smells, repositories
and sink files, grouped by the smell’s indirection level. We
observe that the majority of indirect smells only use one
level of indirection, with higher indirection levels becoming
increasingly rare. The highest indirection level observed is 6.

Figure 7 depicts a heatmap of the proportion of indirection
levels per smell type. We observe that a majority of Admin By
Default (77%) and Unrestricted IP Address (66%) instances
do not contain data-flow indirection. Conversely, the 5 other
security smells contain data-flow indirection more often than
not. For Empty Password, we observe that the vast majority
(85%) of its instances exhibit one level of indirection. We
further find that large proportions of HTTP Without SSL/TLS
(31%) and Weak Crypto Algorithm (28%) instances exhibit
two or more levels of indirection.

TABLE VI
NUMBER OF SMELLS, AFFECTED REPOSITORIES AND SINK FILES GROUPED

BY SMELL DATA-FLOW INDIRECTION LEVEL.

Indirection # smells % smells # files # repos

0 3 531 44.51 1 759 326
1 3 227 40.68 1 565 304
2 957 12.06 456 134
3 181 2.28 70 36
4 17 0.21 11 10
5 13 0,16 7 7
6 7 0,09 3 2

Ad
m

in
 B

y
De

fa
ul

t

Em
pt

y
Pa

ss
wo

rd

HT
TP

 W
ith

ou
t S

SL
/T

LS

Ha
rd

co
de

d
Se

cr
et

M
iss

in
g

In
te

gr
ity

 C
he

ck

Un
re

st
ric

te
d

IP
 A

dd
re

ss

W
ea

k
Cr

yp
to

 A
lg

or
ith

m

0
1

2
3

4
5

6
In

di
re

ct
io

n
le

ve
l

77 5.2 29 29 49 66 22

22 85 40 56 38 23 50

1 8.7 28 11 13 3.8 21

0.2 0.35 3.7 3.2 0.37 6.9 4.3

0 0.35 0 0.28 0 0.24 1.6

0 0 0 0.32 0 0 1

0 0 0 0.28 0 0 0.17
0

20

40

60

80

Fig. 7. A heatmap showing the proportion of smells of each group (by type)
and its indirection level.

Answer to RQ4: Over 55% of security smells contain data-
flow indirection. While Admin By Default and Unrestricted
IP Address rarely contain data-flow indirection, the remain-
ing types more often than not exhibit data-flow indirection.
Data-flow indirection mostly involves one variable, while
indirection through more than 3 variables is rare.

VI. DISCUSSION

In this section, we discuss the practical implications of our
results and how they impact the prevalence of security smells
reported by prior work. We furthermore discuss limitations
of our approach and potential directions for future work. We
start by investigating the causes for differences in the smells
reported by the studied detectors.

A. Causes for Differences in Detector Reports

While evaluating GASEL’s precision and recall, we deter-
mined the root causes for GASEL finding smells where other
detectors did not, and vice versa.

1) Syntax Awareness: Awareness of Ansible syntax is a
major reason for new true positives found by our approach.
The ability to correctly parse the inline task module arguments
syntax (see Section III-A) contributes substantially to the
improved recall for Admin By Default and HTTP Without
SSL/TLS smells. Among others, the smell exemplified in
Figure 1 was found by GASEL but missed by other tools.
Furthermore, awareness of the register directive, whose
value is a variable name used to store the outcome of a task,

8

1 - ini_file:
2 path: "{{ opensds_conf_file }}"
3 section: osdslet
4 option: "prometheus_push_gateway_url"
5 value: "{{ prometheus_push_gateway_url }}"
6 vars:
7 prometheus_push_gateway_url: 'http://{{ host_ip }}:9091'
8 host_ip: 127.0.0.1

Fig. 8. Simplified example of a false HTTP Without SSL/TLS smell avoided
using data flow, adapted from sodafoundation/installer.

1 - community.crypto.openssl_csr:
2 privatekey_path: "{{ registry_dir_cert }}/domain.key"
3 vars:
4 registry_dir: /var/kubeinit/registry
5 registry_dir_cert: "{{ registry_dir }}/certs"

Fig. 9. Simplified example of a false Hardcoded Secret smell with data-flow
indirection, adapted from kubeinit/kubeinit.

enabled our approach to avoid numerous false positives of
Weak Crypto Algorithm, for which GLITCH reported instances
because of the use of md5 in the variable name2.

2) Data-flow Information: Support for expressions and
indirection uncovered 8 new instances of Missing Integrity
Check smells. Moreover, GASEL uncovered one new instance
each for Admin By Default, Hardcoded Secret, and Weak
Crypto Algorithm, among which the motivational example
depicted in Figure 2. Apart from new true positives, it
also avoided false positives (i.e., new true negatives) for
HTTP Without SSL/TLS, where localhost is used indirectly
through an expression to construct a URL, as exemplified
in Figure 8. Note that this example is heavily simplified. In
reality, both variable definitions were in separate files and
thus also required a whole-program analysis. Finally, data-flow
information also allowed GASEL to avoid a handful of false
positives caused by variables that are not used in a project.

However, the inclusion of data-flow information also caused
new false positives to be reported by GASEL. Specifically, it
reported multiple instances of paths to secret files (e.g., cer-
tificates and key files) that are constructed using expressions,
exemplified in Figure 9. Although the content of such files is
secret, the reported values only contain the path and are thus
false positives. Further improvements to the string patterns
may aid in avoiding these false positives.

3) Control-flow and Contextual Information: Since control-
flow information is used mainly in the PDG building and not
directly in our queries, we do not find new true positives or
true negatives directly related to it. Nonetheless, several of
the new true positives for Missing Integrity Check described
above involve data-flow indirection crossing files and are only
detectable using a whole-project analysis.

We also find a number of false positives caused by a lack
of control-flow information in all detectors. Specifically, for
Empty Password smells, the main reason for high false positive
rates is because there exists control flow which prevents the
empty password from being used, either by skipping tasks or
asserting that a variable is not empty. Such false positives may

2Note that the affected tasks generally did exhibit the use of weak crypto
algorithms, which were caught by both tools, but GLITCH reported these twice.

be remedied in the future by a flow-sensitive analysis, which
may be aided by the PDG representation.

Similarly, a lack of contextual information may lead to false
positives of Unrestricted IP Address. Here, the 0.0.0.0 IP
address is used in a deny-rule in a firewall configuration, and is
thus the opposite of the associated security weakness. Future
work should investigate taking more contextual information
into account to avoid such false positives.

4) String Patterns: Our improvements to the string patterns
both uncovered new true positives and avoided other tools’
false positives, e.g., in Missing Integrity Check smells. Al-
though these improvements enabled GASEL to avoid many
false positives in Hardcoded Secret, it also caused new false
positives (not reported by other tools) for this smell. This again
indicates a trade-off between precision and recall. Note that
all three detectors suffer from low precision for Hardcoded
Secret, possibly indicating that the string patterns are too
general. Further refining the string patterns may be a possible
strategy to improve precision, we doubt that much can still
be gained and question the maintainability effort required
for such patterns. Future work could investigate whether an
approach more akin to taint analysis, with literals as sources
and specific parameters of a task module as vulnerable sinks,
can improve these results. We believe that the data-flow infor-
mation contained in the PDG representation could facilitate
such an approach. Furthermore, instead of using manually-
crafted string patterns, future work could train a ML model
to predict whether a task argument name is security-sensitive
(e.g., indicates a password).

For Unrestricted IP Address, we find that 5 of the false
reports are caused by a bad string pattern which erroneously
matched the IP 10.0.0.0. Similarly, a number of false
negatives for Admin By Default are because our string pattern
requires a full match for the value, while GLITCH allows partial
matches. Both regressions can easily be fixed in future work.

5) Composite Data: A major limitation of the PDG builder
is that it considers composite data structures (lists and dic-
tionaries) as mostly opaque data and does not split their
constituents into separate nodes. Therefore, GASEL lacks the
ability to perform in-depth checking of this data. For instance,
for Unrestricted IP Address, it misses many usages of bad IP
addresses inside of the composite data structures. Similarly,
for Admin By Default, GLITCH can find a number of instances
inside dictionary key-value pairs, which are not checked by
GASEL. This limitation could be addressed by extending the
PDG representation further.

B. Files Ignored by GASEL

For RQ1, we only focused on files that were scanned by
GASEL. However, since GASEL relies on resolving dynamic
inclusions in Ansible code, which is not always possible,
it may miss files checked by other detectors. To investigate
this limitation, we sampled 10 files per smell type that were
checked by the other tools but not by GASEL, and investigated
why GASEL ignored them.

9

We found that the main reason why GASEL fails to scan
certain Ansible files is because of dynamic values that are
difficult to approximate statically. GASEL ignores file inclusion
if the file name depends on an expression, such as one that de-
pends on the operating system name of the targetted machine.
Although these files may contain security smells, GASEL
cannot find them. Future work should investigate whether these
dynamic file inclusions can be statically approximated so that
their contents can be represented in the PDG.

Nonetheless, since GASEL only scans files it knows are
reachable via a control-flow path from a playbook, it managed
to avoid scanning a substantial number of irrelevant files. SLAC
and GLITCH on the other hand, did scan these files, leading to
a large number of false positive reports. A majority of such
files were test files, which developers often consider irrelevant
[11]. Moreover, we observe that SLAC and GLITCH scanned
Ansible files that are never included through an entrypoint,
thus never executed and ignored by GASEL. Finally, we found
a number of reports by the other tools in YAML files that
do not contain Ansible code, such as Docker Compose and
Kubernetes files, or even files containing plain data.

C. On the Importance of Control and Data Flow

Our investigation suggests that over half of security smells
in Ansible are impacted by data-flow indirection (see RQ3).
However, this does not imply that detectors lacking data-flow
information cannot detect such instances. Indeed, SLAC and
GLITCH leverage variable naming to find potential secrets,
and detection of unrestricted IP addresses or weak crypto
algorithms does not require knowing where these values are
used. Nonetheless, our evaluation (RQ1) and consequent man-
ual investigation (Section VI-A) shows that taking data-flow
information into account can lead to substantial improvements
in both precision and recall, and we therefore suggest future
research to follow this direction.

Although indirection through control flow is less prevalent
(see RQ4), we note that accounting for control flow is a
necessity to accurately approximate data flow. Furthermore,
several instances with indirect data flow require a whole-
program analysis to detect. Moreover, we have shown that
control-flow information can avoid scanning irrelevant files
(Section VI-B). Finally, control-flow information would be
vital to address the low precision for Empty Password smells
(Section VI-A3).

We note that Missing Integrity Check, which was the least
prevalent smell according to Saavedra et al. [12], ranks fourth
in our investigation. Although our results are gathered from a
different dataset and are thus not directly comparable, the sub-
stantially higher recall and precision obtained by GASEL still
suggests that their approach has severely under-approximated
the prevalence of this smell in practice. As shown earlier, data-
flow information was the major reason for the improved recall
for this smell, providing another motivation for its importance
in security smell detection.

We also note that our approach detects much fewer Hard-
coded Secret instances proportional to the total number of

smells than prior research. This is likely in part because we
do not consider usernames to be secret, per practitioner feed-
back [13]. However, we reiterate that our approach achieves
the highest recall of all detectors for this smell, yet achieves
low precision. This suggests that our results already over-
approximate the number of hardcoded secrets, and prior re-
search may over-approximate this even more.

D. Threats to Validity

We present our threats to validity according to the rec-
ommendations of Wohlin et al. [16]. A threat to construct
validity stems from previously-discussed technical limitations
and potential bugs in our PDG builder and smell detector
which may cause false positives and negatives. To mitigate this
threat, we conducted an extensive evaluation of our prototypes
in addition to rigorous testing during its development. The
selection of the studied dataset may form a threat to internal
validity. To mitigate, we applied well-established filtering
criteria to maximise the quality of projects in this dataset.
The construction of the oracle in RQ1 exhibits some more
threats to internal validity. First, we only considered files
that were scanned by all three tools and may thus omit files
that our approach missed. We partially mitigate this risk by
qualitatively studying the missed files (Section VI-B). Second,
we note again that the recall values reported in RQ1 are
an approximation, since our oracle is an under-approximation
of the ground truth. Finally, the manual labelling of smell
reports may introduce bias. However, this is mitigated by the
labelling process being an objective binary decision following
strict criteria, leaving little room for subjective influence. As a
threat to external validity, our findings cannot be generalised
to other IaC languages such as Chef and Puppet. Nonetheless,
we believe our approach to be sufficiently general to transpose
to other languages.

VII. RELATED WORK

Research on IaC has steadily increased over the years. An
early systematic mapping study [17] categorises research into
four topics, namely tooling [18], adoption of IaC, empirical
studies [2], [19], [20], and testing [21], [22]. More recently,
Chiari et al. survey the literature for static analysis approaches
for IaC [23], and found that the majority of approaches focus
on code smell and anti-pattern detection [6]–[8], [24], defect
prediction [25], [26], or model checking [27], [28].

For Ansible specifically, various approaches to analysing
its code have been proposed. Dalla Palma et al. perform
defect prediction using a large catalogue of software quality
metrics for Ansible [26]. Borovits et al. use deep learning
to detect anti-patterns and inconsistencies in the naming of
Ansible tasks [29]. Opdebeeck et al. apply change distilling of
Ansible code to study and predict version increments in open-
source Ansible roles [30]. Kokuryo et al. investigate the use of
imperative modules in Ansible roles [31]. Later, Horton and
Parnin propose a dynamic analysis approach to automatically
migrate imperative modules to declarative ones [32]. Dai
et al. extract shell commands from Ansible code using a

10

structured representation, which they then check using a shell
security linter to detect risky scripts [33]. The aforementioned
SLAC tool by Rahman et al. checks for security smells in
Ansible [11], while Saavedra et al.’s GLITCH tool proposed
an intermediate representation to perform the same task [12].
Finally, Opdebeeck et al. propose a Program Dependence
Graph representation to check suspicious usages of variables
in Ansible roles [9].

Various researchers have focused on security in IaC. The
aforementioned works by Rahman et al. [10], [11] and Saave-
dra et al. [12] investigate security smells in configuration man-
agement languages. Reis et al. use feedback from practitioners
to improve Rahman et al.’s security linter for Puppet [13].
As described above, Dai et al. detect risky shell commands
in Ansible [33]. Lepiller et al. model the data flow and
security assumptions of CloudFormation templates to detect
so-called intra-update sniping vulnerabilities [34]. Kumara et
al. [35] model TOSCA templates as knowledge graphs and use
SPARQL graph queries to detect, among others, the security
smells proposed by Rahman et al. Although the two latter
works are similar to ours, we detect security smells in Ansible,
which is a more general automation language. Moreover, we
use data-flow information to guide smell detection and account
for data indirection, which, to the best of our knowledge, has
not yet been considered in IaC research.

VIII. CONCLUSION

Prior approaches to detecting security smells in Infrastruc-
ture as Code disregard the analysed scripts’ control and data
flow, and lack awareness of specific syntactic constructs. To
address these limitations, we presented an approach based on
Program Dependence Graphs to detect 7 security smells in An-
sible code. The PDG provides vital data-flow information and
can account for Ansible’s syntactic particularities. Moreover,
its construction follows the control flow of Ansible scripts,
enabling our approach to disregard irrelevant and non-Ansible
YAML files. We showed that these improvements enable our
approach to outperform two state-of-the-art detectors on an
oracle of 243 real-world security smells, with recall above
80% on 6 of the 7 considered security smells, while precision
is above 90% for four smells. We further investigated the
prevalence of indirection caused by control and data flow
in 7 933 security smells detected across 472 repositories and
3 457 Ansible entrypoints. We found that over half of security
smells involve data-flow indirection, and one in three smells
involve dynamic file inclusion. These findings strengthen the
motivation to include control-flow and data-flow information
into future security smell detection approaches.

ACKNOWLEDGEMENTS

This research was partially funded by the “Cybersecurity
Initiative Flanders” project and the Research Foundation Flan-
ders (FWO) under Grant No. 1SD4321N. We thank Arne Van
Quickelberghe for his efforts to conduct an initial investigation
that made this work possible.

REFERENCES

[1] K. Morris, Infrastructure as Code: Managing Servers in the Cloud,
1st ed. O’Reilly, 2016.

[2] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adop-
tion, support, and challenges of infrastructure-as-code: Insights from
industry,” in Proceedings of the 35th IEEE International Conference on
Software Maintenance and Evolution, Industrial Track, ser. ICSME ’19,
2019, pp. 580–589.

[3] StackExchange, Inc. (2022) 2022 annual stackoverflow developer
survey. [Online]. Available: https://survey.stackoverflow.co/2022/
#section-most-popular-technologies-other-tools

[4] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of eight: A
defect taxonomy for infrastructure as code scripts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20, 2020, pp. 752–764.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[6] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in infrastructure
as code,” in 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), 2018, pp. 220–
228.

[7] E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is
your Puppet? an empirically defined and validated quality model for
Puppet,” in Proceedings of the 25th IEEE International Conference on
Software Analysis, Evolution and Reengineering, ser. SANER ’18, 2018,
pp. 164–174.

[8] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16, 2016, pp. 189–200.

[9] R. Opdebeeck, A. Zerouali, and C. De Roover, “Smelly variables in
ansible infrastructure code: Detection, prevalence, and lifetime,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, ser. MSR ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 61–72.

[10] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19, 2019, pp. 164–175.

[11] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security smells
in Ansible and Chef scripts: A replication study,” ACM Trans. Softw.
Eng. Methodol., vol. 30, no. 1, Jan. 2021.

[12] N. Saavedra and J. a. F. Ferreira, “GLITCH: Automated polyglot security
smell detection in infrastructure as code,” in 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE22.
New York, NY, USA: Association for Computing Machinery, 2022.

[13] S. Reis, R. Abreu, M. d’Amorim, and D. Fortunato, “Leveraging practi-
tioners’ feedback to improve a security linter,” in 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE22.
New York, NY, USA: Association for Computing Machinery, 2022.

[14] R. Opdebeeck, A. Zerouali, and C. De Roover, “Andromeda: A dataset
of Ansible Galaxy roles and their evolution,” in Proceedings of the 18th
IEEE/ACM International Conference on Mining Software Repositories,
ser. MSR ’21, 2021, pp. 580–584.

[15] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[16] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

[17] A. Rahman, R. Mahdavi-Hezaveh, and L. A. Williams, “A systematic
mapping study of infrastructure as code research,” Inf. Softw. Technol.,
vol. 108, pp. 65–77, Apr. 2019.

[18] A. Weiss, A. Guha, and Y. Brun, “Tortoise: Interactive system config-
uration repair,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2017, pp. 625–636.

[19] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code
- an empirical study,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, 2015, pp. 45–55.

[20] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba,
D. A. Tamburri, and W.-J. van den Heuvel, “The do’s and don’ts of
infrastructure code: A systematic gray literature review,” Inf. Softw.
Technol., vol. 137, Sep. 2021.

11

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-other-tools
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-other-tools

[21] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Testing idempo-
tence for infrastructure as code,” in Proceedings of the 14th ACM/I-
FIP/USENIX International Middleware Conference, ser. Middleware
’13, 2013, pp. 368–388.

[22] K. Ikeshita, F. Ishikawa, and S. Honiden, “Test suite reduction in
idempotence testing of infrastructure as code,” in Proceedings of the
11th International Conference on Tests and Proofs, ser. TAP@STAF
’17, 2017, pp. 98–115.

[23] M. Chiari, M. De Pascalis, and M. Pradella, “Static analysis of infras-
tructure as code: a survey,” in 2022 IEEE 19th International Conference
on Software Architecture Companion (ICSA-C), 2022, pp. 218–225.

[24] W. Chen, G. Wu, and J. Wei, “An approach to identifying error patterns
for infrastructure as code,” in 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2018, pp. 124–
129.

[25] A. Rahman and L. A. Williams, “Source code properties of defective
infrastructure as code scripts,” Inf. Softw. Technol., vol. 112, pp. 148–
163, Aug. 2019.

[26] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Toward
a catalog of software quality metrics for infrastructure code,” J. Syst.
Softw., vol. 170, Dec. 2020.

[27] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for Puppet,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’16, 2016, pp. 416–430.

[28] T. Sotiropoulos, D. Mitropoulos, and D. Spinellis, “Practical fault
detection in Puppet programs,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20, 2020,
pp. 26–37.

[29] N. Borovits, I. Kumara, D. Di Nucci, P. Krishnan, S. Dalla Palma,
F. Palomba, D. A. Tamburri, and W.-J. v. d. Heuvel, “FindICI: Using
machine learning to detect linguistic inconsistencies between code
and natural language descriptions in infrastructure-as-code,” Empirical
Software Engineering, vol. 27, no. 7, pp. 1–30, 2022.

[30] R. Opdebeeck, A. Zerouali, C. Velázquez-Rodrı́guez, and C. De Roover,
“On the practice of semantic versioning for Ansible Galaxy roles: An
empirical study and a change classification model,” J. Syst. Softw., vol.
182, Dec. 2021.

[31] S. Kokuryo, M. Kondo, and O. Mizuno, “An empirical study of utiliza-
tion of imperative modules in Ansible,” in 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security (QRS), 2020,
pp. 442–449.

[32] E. Horton and C. Parnin, “Dozer: Migrating shell commands to Ansible
modules via execution profiling and synthesis,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2022, pp. 147–148.

[33] T. Dai, A. Karve, G. Koper, and S. Zeng, “Automatically detecting
risky scripts in infrastructure code,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, ser. SoCC ’20, 2020, pp. 358–371.

[34] J. Lepiller, R. Piskac, M. Schäf, and M. Santolucito, “Analyzing in-
frastructure as code to prevent intra-update sniping vulnerabilities,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2021, pp. 105–123.

[35] I. Kumara, Z. Vasileiou, G. Meditskos, D. A. Tamburri, W.-J. Van
Den Heuvel, A. Karakostas, S. Vrochidis, and I. Kompatsiaris, “Towards
semantic detection of smells in cloud infrastructure code,” in Proceed-
ings of the 10th International Conference on Web Intelligence, Mining
and Semantics, ser. WIMS 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 63–67.

12

	Introduction
	Background
	Ansible
	IaC Security Smells

	Motivating Examples
	Lack of Ansible Syntax Awareness
	Lack of Data-flow Information
	Lack of Control-flow Information

	Graph-based Security Smell Detection
	Building Program Dependence Graphs
	Security Smell Detection

	Security Smells in Practice
	Dataset Collection
	Empirical Analysis

	Discussion
	Causes for Differences in Detector Reports
	Syntax Awareness
	Data-flow Information
	Control-flow and Contextual Information
	String Patterns
	Composite Data

	Files Ignored by gasel
	On the Importance of Control and Data Flow
	Threats to Validity

	Related Work
	Conclusion
	References

