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Abstract
Static analyses provide the foundation for several tools that
help developers find problems before executing the program
under analysis. Common applications include warning about
unused code, deprecated API calls, or about potential security
vulnerabilities within an IDE. A static analysis distinguishes
itself from a dynamic analysis in that it is supposed to termi-
nate even if the program under analysis does not. In many
cases it is also desired for the analysis to be sound, meaning
that its answers account for all possible program behavior.
Unfortunately, analysis developers may make mistakes that
violate these properties resulting in hard-to-find bugs in the
analysis code itself. Finding these bugs can be a difficult task,
especially since analysis developers have to reason about
two separate code-bases: the analyzed code and the analysis
implementation. The former is usually where the bug man-
ifests itself, while the latter contains the faulty implemen-
tation. A recent survey has found that analysis developers
prefer to reason about the analyzed program, indicating that
debugging would be easier if debugging features such as
(conditional) breakpoints and stepping were also available
in the analyzed program. In this paper, we therefore propose
cross-level debugging for static analysis. This novel technique
moves debugging features such as stepping and breakpoints
to the base-layer (i.e., analyzed program), while still making
interactions with the meta-layer (i.e., analysis implementa-
tion) possible. To this end, we introduce novel conditional
breakpoints that express conditions, which we call meta-
predicates, about the current analysis’ state. We integrated
this debugging technique in a framework for implement-
ing modular abstract interpretation-based static analyses
called MAF. Through a detailed case study on 4 real-world
bugs taken from the repository ofMAF, we demonstrate how
cross-level debugging helps analysis developers in locating
and solving bugs.

CCS Concepts: • Software and its engineering→ Auto-
mated static analysis; Software testing and debugging.
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1 Introduction
Static analyses derive run-time properties of programs with-
out actually running them. They provide the foundation for
tools such as Integrated Development Environments, opti-
mizing compilers, and quality assurance tooling. Termination
is an important property for any static analysis, stating that
the analysis always terminates evenwhen the program under
analysis does not. In application contexts such as compilers,
analyses also ought to be sound, meaning that their results
account for any possible execution of the program under
analysis. For example, an analysis that determines whether
integers can be stored in a unsigned variable, should only
state that an expression will evaluate to a positive integer if
this is the case for every possible program execution.
Unfortunately, analysis developers may make mistakes

while trying to realise these properties. Such mistakes are of-
ten hard to locate and therefore fix. Debuggers have proven
themselves as tools for locating the source of problems in
an application. However, as Nguyen et al. [7] found in a sur-
vey conducted amongst 115 analysis developers, traditional
debuggers are ill-suited for debugging a static analysis:

• Debugging target mismatch: a traditional source-level
debugger targets the code of the analysis implemen-
tation. However, a bug usually manifests itself in an
analyzed program. Therefore, for analysis developers,
it can be easier to reason about the behavior of the
analysis by looking at a specific analyzed program,
rather than debugging the static analysis as a whole.
Stepping features of the debugger should therefore
also be able to target the analyzed program, rather
than the analysis implementation itself.

• Generic visualisation: debuggers show generic infor-
mation (e.g., the value of variables in the current call
frame) about the implementation of a static analy-
sis. As static analyses typically follow the same struc-
ture, domain-specific visualisations can be developed.
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Nguyen et al. find that these domain-specific visualisa-
tion help to understand the behaviour of the analysis,
and help to locate bugs.

In this paper, we argue furthermore that the breakpoints
from traditional debuggers are inadequate:

• Shifting breakpoints to the base layer: traditional de-
buggers that target the analysis implementation do not
support placing breakpoints in the analyzed program.
This makes debugging more difficult, since the analy-
sis developer cannot easily suspend the analysis when
a particular point in the analyzed code is reached.

• Domain-specific conditional breakpoints: conditional
breakpoints enable developers to limit the number of
times a debugged program is suspended at a break-
point. Similar to regular breakpoints, we argue that
the conditional ones ought to be placed in the analyzed
code. However, they must be cross-level, meaning that
they do not only express properties of the analyzed
program (base level), such as the contents of an in-
scope variable, but also properties about the global
analysis state (meta level) at the point of its evalua-
tion. Predicates for conditional breakpoints therefore
become domain-specific, which renders expressing
properties about the analysis state easier compared to
expressing them in terms of implementation-specific
data structures.

1.1 Contributions
In this paper, we propose cross-level debugging for static anal-
ysis. More specifically, we propose a debugger that moves
stepping and breakpoints features to the analyzed program
(base level), while still allowing for expressing properties
about the analysis implementation (meta level) as conditional
breakpoints. To this end, we propose domain-specific meta-
predicates that can be used to formulate analysis-specific
conditional breakpoints. Our debugger therefore crosses the
boundary between the base level andmeta level, and becomes
cross-level. In summary our contributions are as follows:

• A novel debugging technique for static analysis called
cross-level debugging, which includes domain-specific
visualisations and stepping features that can step through
each individual step of the analysis.

• Three categories of domain-specific meta-predicates
that can be used as the conditions for our cross-level
conditional breakpoints.

• An implementation for this debugger using MAF, a
framework for implementing modular analyses for
Scheme.

1.2 Motivating Example
Wemotivate the need for cross-level debugging of static anal-
ysis implementations through a hypothetical sign analysis
that does not properly allocate the parameters of a function.

The bug manifests itself during the analysis of the following
Scheme program:

1 ; define a function named "add"
2 (define (add x y)
3 (+ x y))
4 ; call the "add" function
5 (add 5 2)

When executed by a concrete interpreter, the program
evaluates to 7. The corresponding analysis result for this
program should be the + element of the sign lattice of ab-
stract values (or its ⊤ element in case sound imprecisions
are allowed). Imagine that the hypothetical sign analysis
produces the ⊥ lattice element instead, denoting the absence
of sign information.

Without prior knowledge about this bug, it may be unclear
what part of the analysis is to blame. Several analysis compo-
nents may be at fault: the implementation of the abstraction
of literals 5 and 2 to sign lattice elements, the implementa-
tion of the abstract + operation on these lattice elements,
or the implementation of the abstract semantics of function
calls and returns.
Inspecting the state of the analysis at the corresponding

points in the analysed program would help to locate the
bug in the analysis implementation. Unfortunately, regular
debuggers are not well-equipped for this task. First, the anal-
ysis implementation does not exactly mirror the structure of
the analysed program. Steps through the analysis implemen-
tation therefore do not necessarily correspond to steps in
the analysed program. This motivates the need for moving
stepping and breakpoint features to the analyzed program
(base level) rather than the analysis implementation (meta
level).

Second, regular debuggers do not understand the structure
of the analysis state. For example, at line 3, it is expected
that the analysis knows about variable 𝑦 in the program
under analysis. Although a regular debugger can visualize
the state of the analysis implementation in terms of local
and global variables, it does not provide an effective way
to visualize the contents of, for example, the environments
and stores that the analysis is manipulating. This motivates
the need for domain-specific visualisations that show the
analysis state on a more abstract level, rather than in terms
of implementation-specific data structures.

Third, regular debuggers do not support analysis develop-
ers in formulating and testing hypotheses about the source
of a bug in terms of program points from the program un-
der analysis. For example, if the analysis developer suspects
that the abstract semantics of function calls is to blame, it
would be natural to place a breakpoint at the beginning of
the add function. For the hypothesis that no addresses have
been allocated in the store for the function’s parameters, the
following domain-specific conditional breakpoint can help
reduce the number of steps required to test it:
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(define (add x y)
(break (not (store:contains "y")))
(+ x y))

Note that this breakpoint has not been formulated in terms
of the program under analysis, but in terms of the state of the
analysis when it reaches the corresponding program point
in the program under analysis. This motivates the need for
cross-level conditional breakpoints that can be placed in the
analyzed code itself.

2 Effect-Driven Modular Static Analysis
In this paper, we focus on static analyses defined as abstract
definitional interpreters, which use global store widening
and are effect-driven in their worklist algorithm. In the next
few sections we introduce each of these parts of our target
static analysis, and illustrate how bugs can arise in their
implementation.

2.1 Abstract Definitional Interpreters
Abstract interpretation [3] is an approach to static analysis
where an analyser is derived by starting from the concrete
semantics of the language under analysis, and then abstract-
ing parts of this concrete semantics. As an example, consider
a language that consists of numeric literals, addition (+) and
subtraction (−) or any combination thereof. In its concrete se-
mantics, numeric literals evaluate to themselves and addition
and negation are defined as usual.

An abstraction of this language could abstract each num-
ber to its sign. In this semantics, the abstraction for 5 would
be +. We also write that 𝛼 (5) = +, where 𝛼 is called the
abstraction function. The abstract versions of the addition (+̂)
and subtraction (−̂) operations have to be defined differently.
For example, summing two positive numbers results in a
positive number. However, summing a positive and negative
number could result in either a positive or a negative number.
To remain sound, an analysis has to account for both possibil-
ities. Hence, a third value is introduced called top (denoted by
the symbol ⊤) expressing that the sign of the number could
be either negative or positive. A final value called bottom
(denoted by ⊥) is included to express the absence of sign
information. The set of these values forms a mathematical
lattice, meaning that a partial order (⊑) and a join operation
(⊔) can be defined. As illustrated above, abstract operations
are often non-trivial to implement and could result in subtle
issues with the result of the analysis.
Van Horn et al. [8] propose a recipe for deriving static

analyses by systematically abstracting the small-step opera-
tional semantics of a programming language. More recently,
this recipe has been transposed to the context of definitional
interpreters [5, 10]. Definitional interpreters are a way of for-
mally specifying programming language semantics through
an interpreter implementation. These interpreters are usually
formulated in a recursive way and proceed by case analysis

on the type of expression that is being analyzed. For exam-
ple, for evaluating a number literal, the following abstracted
semantics can be used:
eval expr :=

match expr with N n → 𝛼 (𝑛) ; . . . end

To satisfy our soundness requirement, this semantics needs
to be exhaustive, meaning that it has to explore any possible
program path that might occur at run time. For example, the
analysis might be unable to compute the truth value of an if
condition precisely (e.g., the value of (> x 0) is imprecise
if 𝑥 is ⊤). In those cases, the analysis has to explore both the
consequent and the alternative branch, as either might be
executed in a concrete execution. Such a semantics can be
formulated as follows:
eval expr :=

match expr with
(if cnd csq alt) →

let 𝑣𝑐𝑛𝑑 = eval(cnd)
𝑣𝑐𝑠𝑞 = if isTrue (𝑣𝑐𝑛𝑑) then eval(csq) else ⊥
𝑣𝑎𝑙𝑡 = if isFalse(𝑣𝑐𝑛𝑑) then eval(alt) else ⊥

in 𝑣𝑐𝑠𝑞 ⊔ 𝑣𝑎𝑙𝑡
...

end

Note that isTrue and isFalse may succeed simultaneously
if the truth value of the condition is imprecise. The excerpt
depicted above demonstrates that the implementation of an
abstract definitional interpreter is non-trivial. Throughout
the implementation, there is a need to account for all possi-
ble concrete executions —which leads to subtle bugs when
implemented incorrectly.

2.2 Memory Abstraction
To analyze programs that include variables, some kind of
memory abstraction is required. In the recipe by Van Horn et
al. [8] the interpreter’s memory is modelled as a combination
of an environment, which represents the lexical scope in
which a particular program state is executed, and a store
which represents the program’s memory. An environment
is modelled as a mapping from variables to addresses, and
a store is modelled as a mapping from these addresses to
actual (abstract) values.
The original recipe includes the store in every abstract

program state. In theworst case, this results in an exponential
number of program states [9]. One solution to this problem
is to widen these (per-state) local stores into a single global
store. This global store is then used across all global states,
reducing the state space from an exponential to a cubic one.
The same approach is taken in the static analysis for which
we propose a debugger in this paper. However, our ideas also
translate to analyses that do not incorporate store widening.

2.3 Effect-Driven Modular Analyses
The analysis presented in this paper is modular [4]. In a
modular analysis, the program under analysis is split into
components that are analyzed separately from each other.
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Examples of such components are function calls [16], classes
or spawned processes [18]. In practice, however, components
might depend on each other through shared variables or
return values. The result of analyzing some component 𝐵
might therefore influence the analysis result for a component
𝐴, if the analysis of 𝐴 depends on the analysis results of 𝐵.

Nicolay et al. [16] describe an algorithm for the modular
analysis of higher-order dynamic programming languages.
In higher-order dynamic programming languages, such as
Scheme, the exact components of a program and their depen-
dencies are not known before the program is executed. Each
time a component is discovered, it is added to a worklist that
keeps track of the components to analyze next.Whenever the
results for a component change, its dependent components
(e.g., through a shared variable) are added to this worklist
and eventually reanalyzed to take the new results into ac-
count. The algorithm repeats itself until the workist is empty.
This process results in a dependency graph that consists of
components and the store addresses (representing shared
variables and return values) through which they depend on
each other.

3 Approach
In this section, we introduce the design of our analysis-
tailored debugger. First we discuss its visualisation, then
its stepping and breakpoint functionality, and finally we in-
troduce our novel meta-predicates for cross-level conditional
breakpoints.

3.1 Visualising the analysis state
The first feature of our debugger is its visualisation of the
analysis state. This visualisation for the factorial program
is depicted in fig. 1. The visualisation consists of four parts:
the code that is being analyzed, a graph of the components
and their dependencies, an overview of the global store, and
a visualisation of the worklist algorithm.

The component graph (C) visualizes the components dis-
covered so far and their dependencies. Colored in green are
the components themselves, and colored in blue are the store
locations (addresses) on which the components depend. The
component currently under analysis is highlighted using a
purple border. Each of the edges depicts dependencies on
these store locations and their direction indicates the flow
of values. For example, the call to the factorial function (de-
picted by the node labeled Call...) both reads (from its
recursive call) and writes to its return value.
The global store visualisation (D) depicts the addresses

and their corresponding values that are currently in the
global store. Highlighted in yellow are addresses that are up-
dated during the interval between the previous and current
breakpoint, while highlighted in green are addresses that are
added during that time frame.

Finally, the worklist visualisation (E) depicts the current
contents of the worklist. Its order corresponds to the order
in which components will be removed from the worklist and
therefore shows their analysis order.

3.2 Stepping and regular breakpoints
Recall that analysis developers prefer to reason about a spe-
cific manifestation of a bug in an analyzed program, rather
than debugging the analysis implementation as a whole. We
achieve this in two ways. First the code is presented promi-
nently in the interface of the debugger (area A). Second, the
analysis developers step through and break in the analyzed
program instead of through the analysis implementation
itself. This is important since unsound results often occur
in specific parts of the analyzed the program. Setting break-
points and stepping through the analyzed program makes it
easier to pin-point the problem, and reason about how the
analysis proceeds for the analyzed program.
Similar to some debuggers for JavaScript, we choose to

represent breakpoints as expressions in the analyzed pro-
gram. This allows for more expressive freedom, since these
expressions can be placed in arbitrary locations inside the
program (i.e., in a specific subexpression, rather than on a
specific line) and can reuse the same parsing facilities as the
one available for the analyzed program.

Our debugger provides two types of stepping (as depicted
in area B). The first type continues analysis until the next
breakpoint is reached. The second type of stepping allows
the developer to step over each expression in the analyzed
program. Note that, because of our effect-driven worklist
algorithm, this stepping feature never steps into function
calls, since those are only analyzed once the component of
the caller has been fully analyzed. However, once the analysis
of a component is complete, this stepper continues stepping
as before in the component that is analyzed next.
Recall that the branches of an if-expression need to be

evaluated non-deterministically, in case the truth-value of the
condition cannot be determined precisely. In that case, the
stepper steps over these branches sequentially (evaluating
the consequent branch first and then the alternative branch),
and displays the state of the analysis accordingly.

Table 1. Overview of the meta-predicates in our debugger.

Store predicates Lattice predicates
store:lookup lattice:integer? lattice:vector?
store:changed? lattice:pair? lattice:car
Worklist predicates lattice:real? lattice:cdr
wl:length lattice:real?
wl:prev-length lattice:char?
wl:component lattice:bool?
wl:prev-component lattice:string?
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Figure 1. Debugger visualisation, which features the following components: the code (A), debugger controls (B), component
graph (C), store visualisation (D) and worklist visualisation (E).

.

3.3 Cross-Level Conditional Breakpoints
Conditional breakpoints are used in traditional debuggers to
suspend the program once a particular condition is reached.
These conditions are usually expressed in terms of program
variables and predicates that act upon them. This type of
breakpoint is especially important for static analyses where
each program part can be analyzed more frequently than in
their concrete execution. Hence, analysis developers need
conditional breakpoints that can express conditions on the
current state of the analysis. We call these kind of predicates
meta-predicates since they do not express constraints on
the program containing the breakpoints (i.e., the analyzed
program) but rather on the meta layer above it (i.e., the
analysis implementation).

Based on the parts of the analysis’ state, we split our meta-
predicates in three categories: store-based, worklist-based
and lattice-based meta-predicates. A full list of predicates,
split according to these categories is depicted in table 1.

3.3.1 Categories of Meta-Predicates.

Store predicates. Our store-based meta-predicates ex-
press conditions on the state of the global store. We propose
two meta-predicates: store:lookup and store:changed?.
The first predicate enables looking up a value on a specific
address in the current global store. The argument of this
meta-predicate must correspond to the string representation
of the store address as displayed in the visualisation. If the
address is absent, the meta-predicate returns false. This

allows expressing conditional breakpoints that break on the
absence of a particular store address. Note that the values
returned by this predicate are abstract rather than concrete.
Therefore, operations on these values can only be applied
using the lattice meta-predicates.
The second predicate, called store:changed?, returns

true whenever a particular address in the store has changed
since the last break. It returns false whenever the value on
that address has not changed or whenever the address could
not be found.

The latter predicate is especially useful when components
are (re-)analyzed frequently without actually changing any
address of interest. Those re-analyses can simply be executed
without breaking, therefore saving the analysis developer’s
time.

Lattice predicates. To interact with the values returned
from store:lookup, we provide an interface to the abstract
lattice operations as lattice meta-predicates. We divide
these predicates into two sub-categories: type-checking pred-
icates, and reified abstract operations.

For the former category, we provide type-checking predi-
cates for Scheme’s primitive values: integers, reals, charac-
ters, strings, booleans, pairs and vectors. The latter category
provides operations on these datatypes, such as lattice:car
and lattice:cdr to retrieve the first and second element of
a pair respectively.

While the type-checking predicates return a boolean value
that can be used for deciding whether to break, the abstract
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domain operations always return an abstract value. There-
fore, a type-checking predicate is always needed to use an
abstract operation in the condition of a conditional break-
point.

Worklist predicates. Finally, we introduce predicates
concerning the current state of the worklist: wl:length and
wl:component. The former predicate returns the current
length (as a concrete number) of the worklist. This length
corresponds to the number of components that are scheduled
for analysis. The latter returns the name of the component
that is currently being analysed. This predicate is rather re-
dundant for context-insensitive analyses, since the location
of the breakpoint already implies which component is being
analyzed. However, when the analysis is configured with a
form of context sensitivity [17] (e.g., the last-k callers on the
stack), multiple components might be created for the same
function.

In addition to the aforementioned predicates, we also pro-
pose history-aware variants of them. These variants corre-
spond to the wl:prev-length which returns the length of
theworklist at the previous breakpoint, and wl:prev-component
which returns the previously analyzed component. These
predicates can be used to detect unusual behavior of the
worklist algorithm. For example, a worklist that does not
shrink in size could be indicative of a bug in the worklist
algorithm itself. Furthermore, frequent re-analyses of the
same component could hint that the analysis is not termi-
nating. Using these meta-predicates, analysis developers can
express invariants and expectations about the behavior of
the worklist algorithm.

3.3.2 Examples. In this section, we briefly show some
examples of conditional breakpoints to illustrate the synergy
between the different categories of meta-predicates.
(1) (break #t)
(2) (break (> (abs (- (wl-length) (wl:prev-length))) 100))
(3) (break (and (sto:changed? "adr")

(lattice:string? (sto:lookup "adr"))))
(4) (break (lattice:char?

(lattice:car (sto:lookup "adr"))))

Some brief examples are depicted in the listing above. (1)
depicts a conditional breakpoint that always breaks, thus
behaving like a regular breakpoint. In (2), the difference
in length of the worklist is computed and some threshold
(i.e., 100) is used to break. This breakpoint can be used to
detect rapidly growing or shrinking worklists. (3) combines
multiple predicates together using a conjunction (i.e., and).
In this case the breakpoint will be triggered when the address
adr has changed and the abstract value at that address in the
store can be a string. Finally, (4) depicts a combination of
type-checking lattice predicates, and lattice operations. In
this case, the operation car is used to obtain the first value
of a pair, and lattice:char? is used to check whether the
value is a character.

Debugger Static analysis Predicate Evaluator

(break e)(1)
e

true/false

(2)

(3)

(4)(5)
true/false

Figure 2. Interactions between the debugger and the meta-
predicate evaluator.

Table 2. Summary of bugs from the Github repository.

Commit Description

a2f43f6 Implemented car as cdr
1a3c6be vector-set! ignores its own index
08bbe43 Variable arguments are ignored
8b98b9b Unnecessary triggering of effects

3.3.3 Predicate evaluator. Conditional breakpoints are
evaluated in a separate evaluator which we call the meta-
predicate evaluator. This evaluator has access to the current
state of the analysis but cannot change it. Although the meta-
predicate evaluator evaluates arbitrary Scheme expressions,
these Scheme expressions cannot influence the results of the
program under analysis. We argue that this is necessary for
a clear separation between the debugging facilities and the
analysis implementation to be maintained. The interactions
between the debugger, static analyser, and meta-predicate
evaluator are depicted in fig. 2.
The evaluation of a meta-predicate proceeds as follows.

First, the break expression is analyzed by the static analysis
(1). Then, since the static analyzer does not include semantics
for evaluating predicates of those break expressions, the
predicate expression 𝑒 is passed to the predicate evaluator
(2). Third, the predicate evaluator computes the truth value
of the predicate 𝑒 by querying the state of the static analysis
(3). Finally, the computation results in a boolean value (true
or false) which is returned to the static analysis (4). Based on
this value the debugger decides whether to pause the analysis
and show intermediate analysis results in its interface (5).

4 Evaluation
In this section we evaluate our approach through a case
study. We first discuss the details of this evaluation method,
and then demonstrate how our debugger supports locating
4 real-world bugs in the implementation of MAF.

4.1 Evaluation Method
We evaluated our approach by querying the MAF repository
on Github1 to find soundness related bugs. To this end, we
queried for keywords such as: “bug” and “fix”, From the
1https://github.com/softwarelanguageslab/maf

https://github.com/softwarelanguageslab/maf
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results of this query we selected 4 real-world soundness bugs
which are summarized in table 2. Additionally, to illustrate
how termination issues can be debugged, we introduced a
synthetic bug that affects the worklist algorithm.

Then, based on the fixes introduced in the aforementioned
commits, we reintroduced the bugs back into the analysis
itself, adapting the bug to the current state of the framework
if necessary. Each case corresponds to one re-introduced bug
in isolation, in order to avoid the effects of multiple bugs in-
fluencing each other and to replicate the precise environment
in which the bug was originally found and fixed.

4.2 Studied Cases
The following cases correspond to re-introduced bugs found
in the MAF repository, and to one synthetic bug introduced
specifically to study the effectiveness of our worklist meta-
predicates. For each case, we first detail the corresponding
real-world or synthetic bug, then we show how it was re-
solved, before describing a scenario of successive interactions
with our debugger that will lead to the bug being located.
In the remainder of this section, we use to indicate the
location of a breakpoint.

4.2.1 Implemented car as cdr. In Scheme, pairs are con-
structed using the primitive cons. For example, the expres-
sion (cons 1 2) denotes a pair that consist of 1 as its first
element (also called the car) and 2 as its second element (also
called the cdr). In the bug studied in this first case, the car
value was used for both the car and cdr of the pair allocated
in the store.

We illustrate this bug in the program depicted below. This
program provides an implementation for a bank account.
The account is represented by a pair consisting of the ac-
count name and the current balance of that account (line 1-2).
The functions add-to-balance (line 3-4) and balance (line
5-6) change and retrieve the balance of the bank account
respectively.

1 (define bankAccount
2 (cons "Lisa" 1983))
3 (define (add-to-balance account amount)
4 (set-cdr! account (+ amount(cdr account))))
5 (define (balance account)
6 (cdr account))
7 (add-to-balance bankAccount 10)
8 (balance bankAccount)

The analysis result for this program, produced by the
buggy analysis implementation, is the pointer to Lisa in-
stead of the expected value integer, rendering the analysis
unsound.

Instrumenting the abstract definitional interpreter to out-
put the analysis state at each evaluation step results in a
large amount of unstructured information. Instead, we are
interested in the analysis state for specific locations in the
analyzed program. Recall that the store shows that the value
of balance is string. To find the origin of the bug we start
by checking whether bankAccount is still a pair consisting

of a string and an integer after changing its balance. To
this end, we place the following breakpoint before ‘(balance
bankAccount)’ (line 8), which breaks whenever the contents
of the store has the expected structure.
(break (and

(lattice:pair? (store:lookup "bankAccount@1:9"))
(lattice:string? (lattice:car (store:lookup "bankAccount@1:9")))
(lattice:integer? (lattice:cdr (store:lookup "bankAccount@1:9")))))

The inserted breakpoint does not suspend the analysis, mean-
ing that the address does not point to a cons cell of the ex-
pected structure. Therefore, the bug has already occurred in
the previous part of the program. A possible culprit could be
the set-cdr! primitive, which mutates the cdr component
of a pair. To test this hypothesis, we place the same break-
point before add-to-balance (line 7). Again our analysis
does not suspend, meaning that the structure of the pair is
not affected by set-cdr!. Therefore the primitive cons itself
could be the source of the bug. We test this by using the same
breakpoint, but placing it right after the allocation (line 2).
Again, this breakpoint does not result in a suspension of the
analysis. We have now located that the implementation of
cons itself is most likely to blame. To test this hypothesis,
we reduce our conditional breakpoint to break whenever
the cdr contains a value of an unexpected type (i.e., a value
other than an integer).

(break (not (lattice:integer?
(lattice:cdr (store:lookup "bankAccount@1:9"))))

Finally, the analysis suspends, which means that the bug
resides in the implementation of the abstract allocation of
the pair.

4.2.2 vector-set! ignores its own index. In Scheme,
vectors represent collections of a fixed size whose elements
can be accessed in constant time. A vector can be allocated
using the make-vector primitive which needs the length
of the vector and an initial value for each position in the
vector. Lookup and mutation are provided using primitives
vector-ref and vector-set! respectively. In this example,
we investigate a bug in the latter primitive.

The bug is located in the implementation of vector-set!.
Recall that in order for an analysis to be sound, it must ac-
count for all possible program behavior. To this end, the
implementation of vector-set! must join the previous val-
ues of the changed cell with the new value. Unfortunately,
in this bug, only the old value was taken into account and
the new value was simply ignored.
We demonstrate this bug with the program depicted be-

low:
1 (define (change-age user age)
2 (vector-set! user 0 age))
3
4 (define (paid user)
5 (vector-set! user #f))
6
7 (define (set-name user name)
8 (vector-set! user 1 name))
9
10 (define (get-name user)
11 (vector-ref user 1))



SLE ’23, October 23–24, 2023, Cascais, Portugal Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover

12
13 (define new-user (make-vector 3 #f))
14
15 (change-age new-user 21)
16 (paid new-user)
17 (set-name new-user "Steve")
18 (define name (get-name new-user))
19 name

We expect that the result of the analysis will be the value
of the final expression (i.e., the value of the variable name).
Since the name of the user is supposed to be a string, the
abstract value associated with the address corresponding to
name in the store should at least contain a string. However,
the analysis results in false only. To debug this problem,
we start by placing a breakpoint after name (line 19) .

(break (store:lookup "name"))

This breakpoint suspends the analysis whenever the variable
name is added to the store. We observe that the analysis sus-
pends at this breakpoint, meaning that the analysis reaches
the final expression and the variable has been correctly allo-
cated.
We shift our attention to functions paid (line 16) and

set-name (line 17), which both change the contents of the
vector. We test whether calling these functions has an un-
expected effect on the allocation of the vector. To this end
we add the following breakpoint after the execution of these
functions (line 17).

(break (store:lookup "PtrAddr((make-vector 3 #f))"))

Since the breakpoint suspends the analysis, the vector is
still properly allocated after the calls to these functions have
been analysed. We also note that ‘Steve’ ‘21’ have been
added to the store.

Our set-name and paid functions are both implemented
using a vector-set!. The expected semantics for this prim-
itive is that it reads the current contents of the vector and
updates the value at the specified index. Therefore, the value
at the store address of this vector is supposed to change after
the primitive has been executed. To verify whether this is
the case, we place a breakpoint on line 5 and on line 8 to
suspend the analysis whenever the store has not changed.

(break (not (store:changed? "PtrAddr((make-vector 3 #f)))"))

This results in the analysis suspending at both line 5 and 8,
meaning that the vector operations did not have the desired
effect. We can conclude that the bug is therefore situated in
the implementation of vector-set!.

4.2.3 Variable arguments are ignored. . Functions in
Scheme can be defined to accept a variable number of argu-
ments. This is expressed using a ‘.’ in the function definition,
followed by the variable which will collect any excess argu-
ments.
The program depicted below illustrates this feature. The

program defines two functions: sum and compute, and calls
the compute function as its last expression.

1 (define (sum . vs)
2 (define (aux l)
3 (if (null? l)

4 0
5 (+ (car l) (aux (cdr l)))))
6
7 (aux vs))
8
9 (define (compute initial)
10 (+ initial (sum 1 2 3 4)))
11
12 (compute 0)

The expected result of the analysis is + (in case of a sign
analysis). However, for this bug, the analysis result is ⊥. An
analysis result of ⊥ may indicate that the program under
analysis does not terminate or that the analysis is incomplete.
As the program depicted above clearly terminates with value
10 when executed by a concrete interpreter, this analysis
result is unsound.
We add a normal breakpoint to each component (i.e., on

lines 3, 7, and 12) of the program to determine which compo-
nents can be analyzed. The analysis suspends for the main
and compute components but does not for the sum compo-
nent. We conclude that the call to the sum function must have
failed, which could be related to its use of a variable number
of arguments. However, our debugger cannot determine a
more precise cause for the bug, and further debugging in the
analysis implementation is required.

4.2.4 Ever-growing worklist. Although the bug studied
in this case is synthetic, it could easily manifest itself while
implementing a worklist algorithm. The bug we introduce
precludes the worklist from reducing in size as the com-
ponent under analysis is taken but not removed from the
worklist. As a consequence, the analysis never terminates.
We illustrate this problem with the factorial depicted be-
low:

1 (define (factorial n)
2 (if (= n 0)
3 1
4 (* n (factorial (- n 1)))))
5 (factorial 5)

Since the analysis does not terminate, our debugger never
displays a visualisation of its final state. To suspend the
analysis we use regular breakpoints (i.e., (break #t)), and
place them after line 5. We can now step through the analysis
state. We notice that each time ‘Step Until Next Breakpoint’
is pressed, the contents of the worklist remains the same
and the analysis’ state does not change. To test whether the
analysis makes progress, we replace our regular breakpoint
by a conditional one. This breakpoint suspends the analysis
whenever the current component is the same as the previous
component, and when the length of the worklist does not
change.

(break (and (eq? (wl:component) (wl:prev-component))
(= (wl:length) (wl:prev-length))))

Again, the breakpoint suspends on every analysis step, mean-
ing that the same component is re-analyzed in each iteration
of the worklist algorithm. This makes it clear that the current
component is never removed from the worklist.
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4.2.5 Unnecessary triggering of dependencies. As ex-
plained in section 2.3, the analysis is backed by an effect-
drivenworklist algorithm. Components are re-analyzedwhen
one of their dependencies changes. We say that a depen-
dency triggers the reanalysis of a component, meaning that
the component is added to the worklist for reanalysis. For
example, the analysis result of a function 𝐴 depends on its
arguments, which are represented by store addresses in our
global store. Whenever the abstract values for one of these
store addresses changes, it triggers the reanalysis of function
𝐴. In this bug, dependencies are triggered even though the
(abstract) value of their referenced store address no longer
changes. This results in a non-terminating analysis, since
components continue to be added to the worklist even if no
new information can be derived.
We illustrate this bug by reusing the example program

from section 4.2.3. The analysis of this program is infinite in
the buggy analysis implementation. We add breakpoints to
the body of each component of this program to make sure
that no component in particular is analyzed continuously.
Stepping through this program a number of times reveals
that a single component is being reanalyzed continuously:
the aux component.

To reduce the number of times the analysis is suspended,
we remove all other breakpoints except the breakpoint in the
aux function. Since a component is only reanalyzed when
one of its dependencies changes, we are interested in the
argument of aux. Therefore, we adapt this breakpoint to
suspend the analysis only when the l no longer changes:

(break (not (store:changed? "l@2:17")))

As a result, the analysis suspends less frequently and we
can step directly to the problematic infinite behavior of the
analysis. Additionally, this debugger interaction gives us an
indication of which store address is to blame, and which
type of value is associated with it. This makes it easier to
find the root cause of the bug in the analysis implementation
by focussing on that specific address or looking into the
implementation of lists. However, additional logging in the
analysis implementation is required to learn more about the
dependency triggering mechanism.

4.3 Discussion

Table 3. Overview of all the meta-predicate categories used
for solving the bug

Regular Break Store Worklist Lattice

Bug 1 ✓ ✓
Bug 2 ✓
Bug 3 ✓
Bug 4 ✓ ✓
Bug 5 ✓ ✓

Table 3 depicts on overview of the features of our debug-
ger (columns) and the re-introduced bugs considered in the
case studies (rows). The table indicates which debugging
features were used to understand and locate each bug in
the analysis implementation. In the case studies, predicates
concerning the worklist are primarily used for solving bugs
related to the termination of the analysis (bug 4). The store
predicates are used in most of the case studies. The reason
for their frequent usage is two-fold. First, the lattice predi-
cates operate on abstract values from the store. Thus, each
time a lattice predicate is used, at least one store predicate
is required. Second, many bugs involve the store in some
capacity. For example, bug 1 occurs because of a mistake in
the allocation of pairs. Bug 2 is similar, in that the resulting
value in the store is incorrectly updated, or not updated at
all. The usage of the store meta-predicates in bug 5 is more
subtle, here it is used to detect the absence of changes to the
store in order to break when dependencies are triggered for
addresses that no longer change.

Bug 3 is interesting since it precludes components from be-
ing analyzed. Even worse, by preventing a component from
being analyzed, its return value is always ⊥ which causes
the analysis to halt early. In the program used for illustrating
bug 3, this problem was rather obvious (i.e., the analysis
results were empty). However, for larger programs, finding
which component was prevented from being analyzed might
be more difficult. Breakpoints related to the set of analyzed
components (i.e., the seen set) might help to locate these
components. However, such breakpoints are not included in
our debugger and require further investigation. Therefore,
only non-conditional breakpoints were used for debugging
bug 3 in the case study.

5 Limitations & Future Work
As illustrated in the debugging scenario for bug 3, our current
approach lacksmeta-predicates to deal with components that
fail to be analyzed. We argue that additional breakpoints that
express properties on the dependency graph and the set of
seen components can partially solve this problem, but leave
this as future work.
Furthermore, our conditional breakpoints are stateless,

meaning that they cannot keep any state between evalua-
tions of the conditional breakpoints. We solve this problem
in our current approach by introducing history-aware break-
points such as wl:prev-length. However, as future work,
stateful predicates can be considered to allow developers to
keep track of an arbitrary state between the evaluation of
breakpoints. To this end, language extensions and extensions
to the predicate evaluator are needed.

Finally, whereas we establish a link between the analyzed
code and the analysis implementation through fine-grained
meta-predicates and visualisations of the analysis’ state,
Nguyen et al. [7] establish a clear correspondence between



SLE ’23, October 23–24, 2023, Cascais, Portugal Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover

the analyzed code and the code of the analysis implemen-
tation by pairing them together visually in the debugger
interface itself. Our debugger already keeps track of this
information internally, but does not visualize it. However,
we acknowledge that this pairing could be beneficial for
understanding the analysis implementation as well as for
finding the bug in the analysis implementation itself. We
consider the integration of our debugger with an Integrated
Development Environment as future work.

6 Related Work
Charguéraud et al. [2] propose a double-debugger for de-
bugging Javascript interpreters using domain-specific break-
points. These domain-specific breakpoints are about the in-
ternal interpreter state, and can be anchored within the inter-
preted program through predicates about line numbers and
the contents of local variables. Similarly, Kruck et al. [11, 12]
recognize that interpreter developers want to reason about
the structure of the interpreted program and propose multi-
level debugging. Their approach mainly focusses on the rep-
resentation of call stack frames in a debugging environment,
and represents them both from the perspective of the inter-
preted program as well as from the perspective of the inter-
preter itself. Similar approaches have been proposed for tai-
loring debuggers to specific applications or frameworks [14].
This allows developers to reason about the behavior of the
interpreter more easily.

Both approaches are, however, not cross-level. They either
provide domain-specific breakpoints on the meta level (e.g.,
breakpoints about the current line number of the interpreter),
or do not provide them at all. Our breakpoints are placed
in the analyzed code (base level) allowing the developer to
specify the location where they are evaluated. Furthermore,
the conditions in these breakpoints express properties of the
analysis state (meta level) rather than the analyzed program
(base level). These breakpoints therefore interact with each
other and cross the boundaries between the base and the
meta level.
Nguyen et al. [7] propose a tool called VisuFlow which

is tailored to the visualisation of data flow analyses imple-
mented in the Soot framework [13]. However, they do not
propose cross-level domain-specific breakpoints and their
approach is only applicable to data flow analyses. Static anal-
yses based on the abstract definitional interpreter approach,
however, have been shown to be applicable in many use-
cases, including control flow analysis [1, 16, 20], data flow
analysis [6] and soft contract verification [15, 19].

7 Conclusion
We proposed cross-level debugging for static analysis imple-
mentations, which moves stepping and breakpoints from the
base level to the meta level. More specifically, we proposed

domain-specific visualisations for visually depicting the cur-
rent state of the analysis. We argue that this visualisation
makes it easier to understand the behavior of the analysis
and thus to locate the root cause of bugs.

Furthermore, we proposed domain-specific conditional break-
points which enable breaking when a specific analysis state
is reached. We divided these meta-predicates into three cate-
gories: store-related, worklist-related, and lattice-based pred-
icates.

We implemented our debugger in a framework calledMAF,
and showed the applicability of our debugger on one syn-
thetic and four real-world bugs lifted from the repository of
the framework. In this case study, the debugger is highly ef-
fective for most bugs that relate to changes of store addresses
and their contents, but less so for bugs that prevent analysis
progress, or dependency-triggering related bugs. However,
we argued that our approach is sufficienlty flexible to sup-
port these classes of bugs in future work through additional
meta-predicates.
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