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Replicated Data Types (RDTs) are a type of data structure that can be replicated over a network, where

each replica can be kept (eventually) consistent with the other replicas. They are used in applications with

intermittent network connectivity, since local (o�ine) edits can later be merged with the other replicas.

Applications that want to use RDTs often have an inherent security component that restricts data access for

certain clients. However, access control for RDTs is di�cult to enforce for clients that are not running within

a secure environment, e.g., web applications where the client-side software can be freely tampered with. In

essence, an application cannot prevent a client from reading data which they are not supposed to read, and

any malicious changes will also a�ect well-behaved clients. This paper proposes Secure RDTs (SRDTs), a data

type that speci�es role-based access control for o�ine-available JSON data. In brief, a trusted application

server speci�es a security policy based on roles with read and write privileges for certain �elds of an SRDT.

The server enforces read privileges by projecting the data and security policy to omit any non-readable �elds

for the user’s given role, and it acts as an intermediary to enforce write privileges. The approach is presented

as an operational semantics engineered in PLT Redex, which is validated by formal proofs and randomised

testing in Redex to ensure that the formal speci�cation is secure.
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1 INTRODUCTION

Modern distributed applications often replicate data over the network. By storing a copy of the
data locally, an application can guarantee low latency data access, and it becomes resilient to
temporary network failures. Notable data abstractions called Replicated Data Types (RDTs) manage
the complexity of data replication to ensure that each replica (i.e., local copy) can be brought back
to a consistent state with the other replicas after a network failure. A popular variant of RDTs are
Con�ict-free Replicated Data Types (CRDTs) [Shapiro et al. 2011a,b], which are used in distributed
databases and are o�ered by many libraries. Of particular importance for this paper is the recent
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work on a CRDT for the JSON data type,1 which has practical implementations for JavaScript and
Rust [Automerge Contributors 2023; Kleppmann and Beresford 2017, 2018].

Consider a modern web or mobile application built with popular Graphical User Interface (GUI)
frameworks such as React or React Native [Madsen et al. 2020; Meta Platforms 2023a,b]. To reduce
initial page load times and to encourage interactivity, users are initially served a page with limited
static content and skeletons for the dynamic content. The skeletons are replaced dynamically, which
in practice means that the client fetches JSON objects from an API and renders them locally via
React components. Later on, the server will push more JSON objects to update the page dynamically
(e.g., comments, chat messages, likes, shares, a data feed, . . . ).

Instead of manually passing large JSON objects between a client and server, RDTs such as the
aforementioned JSON CRDT are used as a programmer abstraction to more easily implement the
application, and to make it usable o�ine “for free”. In this case the client would receive a replica of
the JSON data which, via the properties of RDTs, is automatically kept (eventually) consistent with
other replicas of the same data whenever updates occur (e.g., by the server or other clients). This
scenario is appealing for ease and correctness of the application’s functionality, but raises security
concerns because current approaches such as the JSON CRDT assume that all clients are trusted.
For web applications this has the following security drawbacks:

(1) All clients receive a full copy of the data even if they are not allowed to read all parts of it.
While those parts can be hidden behind the GUI, the clients do receive the data and can still
access it (e.g., via a web browser’s developer tools).

(2) It is a fundamental property of RDTs that any local changes to a replica will be merged with the
replicas of other clients, such that when no other updates occur, all replicas will (eventually)
converge to the same state [Shapiro et al. 2011a]. In other words, any changes made to any part
of a local replica will be merged with the other clients. While the GUI can hide the ability to
modify data, malicious clients can bypass it easily (e.g., via web browser extensions).

Hence, applications will have to enforce additional access control. For RDTs such as the JSON CRDT
this currently requires ad-hoc coding which is: (1) very di�cult to combine with an RDT’s o�ine
availability, (2) impossible to enforce on malicious clients, and (3) very likely to be insecure: “Broken
Access Control” is the number 1 security problem identi�ed in the 2021 OWASP2 Top 10 [OWASP
Foundation 2021].
The main contribution of this paper is the design of Secure RDTs (SRDTs), a data type which

speci�es Role-based Access Control (RBAC) [Sandhu et al. 1996] for o�ine-available JSON data.
While the proposed approach applies to o�ine-available JSON data in general, it was designed
with libraries such as Automerge [Automerge Contributors 2023; Kleppmann and Beresford 2018]
and Yjs [Jahns and Yjs Contributors 2023; Nicolaescu et al. 2015] in mind, since they are popular,
real-world implementations of o�ine-available JSON data. We assume a single leader per SRDT that
speci�es a security policy for said SRDT, and which acts as a central authority that is responsible
for authentication and authorisation. The leader enforces read privileges by creating di�erent
projections of an SRDT depending on the security role of a client, and it enforces write privileges
when clients modify a replica and try to push changes to the leader. As far as we know this is
the �rst proposal to add RBAC to o�ine-available JSON data for the purpose of easier application
development with code which is secure by design.
The paper is structured as follows. In Section 2 we more precisely state the problem with

combining RBAC and o�ine available replicated data, and Section 3 explains our proposed approach.
The formal semantics in PLT Redex is explained in Section 4. Sections 5 and 6 prove (formally and

1JavaScript Object Notation, a commonly used open standard for data interchange [ISO Central Secretary 2017].
2Open Web Application Security Project
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through randomised testing respectively) that SRDTs are secure, and that they retain the properties
of regular o�ine available replicas. Finally, Section 7 discusses the limitations and related work.

2 PROBLEM STATEMENT

We introduce the adversary model [Do et al. 2019], a running example, and state the problem.

2.1 Adversary Model

We assume an adversary model where some parts of an application run in a trusted environment,
and other parts in an untrusted environment. The trusted environment consists of servers (e.g.,
owned by an organisation) which we assume to be secure in every way, i.e., trusted hardware
and software, and not compromised by an attacker. Some of these servers will be responsible for
user authentication and role assignment. The users that interact with the system using RDTs are
potentially active adversaries that try to elevate their privileges, i.e., to read information from their
replicas that they are not allowed to see, or to manipulate (write) information that they are not
allowed to change. The threshold to become such an adversary is extremely low in web-based
applications because every user can easily inspect and modify the client-side application via web
browser extensions and a browser’s standard code and network debugging tools.

2.2 Running Example

Citizen science is research conducted with participation from non-experts, often involving volun-
teers that collect data [Vohland et al. 2021]. In this context, consider a volunteer-driven organisation
that is responsible for the upkeep of designated nature areas (e.g., Belgium’s Natuurpunt [2023]).
To maintain an overview of biodiversity, the organisation develops a web-based mobile application
with which volunteers can report sightings of plant and animal species, and they invite the local
youth organisations for a “spotting day” where the volunteers map a desired region (e.g., a forest).
As is often the case for citizen science, the application spurs competition via gami�cation. In this
case a biologist will award points to participants’ sightings and provide live feedback.

JSON CRDT libraries such as Automerge [Automerge Contributors 2023; Kleppmann and Beres-
ford 2018] and Yjs [Jahns and Yjs Contributors 2023; Nicolaescu et al. 2015] are an ideal imple-
mentation technology for the desired collaborative experience, and to ensure that the application
remains usable o�ine (e.g., when users have bad cell phone reception in remote areas such as
national parks). A proposal for the application’s JSON data model is given in Figure 1a. The data
contains 2 teams stored in the top-level �elds team1 and team2. As is typical for JSON, we will say
that each �eld consists of a key (the �eld’s name) and value. A team is represented by an object
with a name and sightings �eld, where the latter is an object where each key is a Unix timestamp,
and each value an object that contains the information of the associated sighting. A GUI is rendered
based on this data, e.g., Figure 1b depicts a “card” GUI component that displays a sighting from the
point of view of the biologist (e.g., as part of a live feed).
The application should enforce a straightforward security policy with the following rules:

(1) Users may add and modify sightings for their own team, which consist of a location, the species,
and a photo.

(2) Users can see (but not modify) the points and feedback given on their sightings.
(3) Users can see the photo and points awarded to sightings of other teams.
(4) Biologists can see the sightings of all teams, can award points, and provide feedback.
(5) Anyone can see the name of a team.

Note that web-based applications are just one example of an application domain where o�ine
available RDTs are used, and which have an inherent security component.
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1 let data = {

2 team1: {

3 name: "The Fantastical Scouts",

4 sightings: {

5 1674813931967: {

6 location: { lat: 51.06038 ,

7 lng: 4.67201 },

8 species: "Fly Agaric",

9 photo: "blob :...",

10 points: 3,

11 feedback: "Do not eat this!" }}},

12 team2: { ... },

13 }

(a) Data model of teams and sightings.

Fly Agaric
5 m · The Fantastical Scouts

Give Feedback

Do not eat this!    

Points

3

(b) Mockup of a sighting, biologist’s view.

Fig. 1. Example data model and GUI mockup for a citizen science application.

2.3 Problems When Using RBAC for O�line Available Replicated JSON Data

By using an existing RDT such as Automerge or Yjs, one can already build an interactive application
with the data model of Figure 1a. This makes the application easy to implement and usable when
the user is temporarily o�ine. However, under the assumed adversary model, the application is
vulnerable to the following problems.

Replicated Data Leaks Read privileges cannot be enforced because the entire data structure is
replicated to every user. In the running example each volunteer would receive the data about
their team and all other teams, including the locations of their sightings. While the GUI can
implement the security policy by hiding information, it cannot enforce it since the data is
stored on the local machine and can be extracted, e.g., via a web browser’s JavaScript console.
This clearly violates the principle of least privilege [Saltzer and Schroeder 1975], which is
one of the most important principles to adhere to when securing an application. The only
way to prevent leaking sensitive data is to not send the data.

Data Contagion Write privileges cannot be enforced locally, and any maliciously written data
will be synchronised with well-behaved clients. E.g., volunteers are not allowed to modify
the points and feedback of sightings. While the GUI can hide that functionality, it cannot
be enforced since the user can bypass it (e.g., via the JavaScript console or web browser
extensions), and due to the eventual consistency of RDTs all other replicas will eventually
converge to the same, compromised application state. Any change to a replica that does

not conform to the security policy must not be merged with replicas of well-behaved

clients.

Lack of O�line Policy Enforcement One of the main bene�ts of RDTs is that an application
remains usable without network connectivity, andwhen the network is restored the properties
of RDTs guarantee that all replicas (eventually) converge to the same state. Without a network
connection, a client cannot authorise read or write operations with the leader before executing
them locally. Thus, if a replica’s security hinges on its ability to reach the leader, then the RDT
e�ectively becomes unusable without network connectivity, which is unacceptable. Any
security mechanism that is suitable for RDTs should preserve the o�line availability

of RDTs.
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3 APPROACH: SECURITY POLICY PROJECTION AND DATA PROJECTION

SRDTs overcome the problems listed in Section 2.3 by enforcing an application’s security policy on
both (well-behaved) clients and the leader. In brief:

Client-side Enforcement To support o�ine policy enforcement, each (well-behaved) client can
check whether it is allowed to write to a �eld of their replicas. This prevents a well-behaved
client from erroneously writing to a write-restricted �eld of a local replica (e.g., during a
period of being o�ine). If write privileges are only checked when changes are (eventually)
merged at the leader, then a well-behaved client could be forced to roll back its changes after
the �rst disallowed write. This complicates the notion of eventual consistency in RDTs and
invalidates the core purpose of o�ine available mutable state. Note that due to the adversary
model it is impossible to enforce a security policy on the client-side. Hence, true enforcement
must happen on the leader.

Leader-side Enforcement The leader prevents replicated data leaks by excluding the SRDT �elds
for which a client has no read privileges from the replica which is sent to said client. When
a client authenticates with the leader to acquire an initial copy of the data, the leader will
sanitise this data depending on the role of the client, as well as any future updates to the
data. The leader also prevents data contagion by enforcing the security policy for all writes
to �elds, and discarding any writes from clients that are not authorised to do so. Hence,
unauthorised changes will not be merged with the replicas from well-behaved clients.

To o�er both types of enforcement, SRDTs require projections of the security policy and the
SRDT data. Before showing a formal semantics in Section 4, we discuss our approach by specifying
the concepts of security policies, security policy projections, and data projections in more detail.

3.1 Security Policy Specification Language

A leader securely replicates an SRDT based on a policy that consists of roles and privileges, which
are machine-readable descriptions of operations that may be performed by a role. The technique to
specify privileges is inspired by access control for XML documents [Fundulaki and Marx 2004],
which has similar requirements. In essence, both JSON and XML are tree-structured documents
where (parts of) the structure can be described as a path from the root of the document. We will
call such a path a path selector. Then, a privilege grants read or write access to a set of SRDT �elds
(identi�ed by a path selector) for a speci�ed role, or a wildcard for all roles. In the S-expression
syntax which we use throughout the remainder of this paper, a privilege is denoted as follows:

(ALLOW role READ/WRITE OF path-selector)

We �rst detail how to specify path selectors, followed by how to implement a full security policy.

3.1.1 Specifying Object Paths With Path Selectors. Security rule (4) in the running example says
that biologists can (among other things) see the sightings of all teams. This means that any biologist
can access the values of the �elds of the JSON object in Figure 1a named by the following paths,
expressed as S-expression lists describing a path from the object’s root:

(team1 sightings 1674813931967 location lat)
(team1 sightings 1674813931967 location lng)
(team1 sightings 1674813931967 species)
(team1 sightings 1674813931967 photo)
(team1 sightings 1674813931967 points)
(team1 sightings 1674813931967 feedback)
(team2 . . . ) . . .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 227. Publication date: October 2023.
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Table 1. Overview of the supported types of path expressions adapted from JSONPath.

Path Expr. Description

k Key. Matches one �eld’s name exactly (e.g., the sightings or 1674813931967 �eld).

␣ (space) Child operator. Goes deeper into an object as indicated by the following path expression.

* Wildcard. Matches all keys in the current object regardless of their name.

[∪ k1 k2 . . .] Union operator. Matches any of the given keys in the current object (e.g., k1, k2, etc).

[f? k]
[f? [∼ k . . .] ]

Expression operator. Matches all keys in the current object for which the predicate function f? holds,

given each of the current object’s keys as �rst argument, and the provided k as the second argument.

An alternative form uses a nested “∼” expression which looks up a value (e.g., given by the plain

path (k . . .)) in the user’s environment. Supported predicates include = (object’s key matches the value

named by the lookup exactly) and ∈ (object’s key is a member of the list named by the lookup).

Specifying privileges using only absolute paths is cumbersome, and in general even impossible
given the dynamic nature of replicated JSON objects which can by modi�ed continuously (e.g.,
when new sightings are made). For XML documents this problem is tackled by using the XPath
query language [Clark and DeRose 1999] to specify which parts of an XML document can be
accessed [Crampton 2006; Fundulaki and Marx 2004; Murata et al. 2006]. When using JSON’s
equivalent to XPath, called JSONPath [Friesen 2019; Goessner 2007], the paths above can be
referred to via the 2 following path selectors that use a wildcard to abstract over multiple keys,
thus capturing multiple teams and sightings.

(* sightings * *)
(* sightings * location *)

A wildcard is just one example of an expression that can capture multiple �elds. All types of
path expression that we adapted from JSONPath are described in Table 1. We will further explain
them when they are used. In essence, we adapted JSONPath to S-expression syntax, and restricted
the expressivity of the path expressions in 3 ways, namely:

(1) Path expressions cannot depend on a �eld’s value (e.g., via JSONPath’s “@” and “$” expressions).
Instead, we introduce a restricted form (cf. Table 1) which depends only on the values of a
per-user private object, which we call the user environment. The user environment can be
thought of as an immutable dictionary (i.e., another JSON object) which is sent by the leader.
Values from a user’s environment can be read only by the user themselves and the leader using
the syntax “[∼ k . . .]”, chosen to invoke the intuition of a Unix user’s “home directory”.

(2) We do not support any expressions to manipulate arrays since SRDTs do not support array
operations (e.g., push, pop, etc.). Instead, arrays can be represented as an object where the keys
are numeric indices, and the �elds’ values serve as the array’s values.

(3) JSONPath expressions such as “..” (a recursive descent operator) are an engineering e�ort for
practical implementations, and are excluded for simplicity of the formalism.

The limitations (1) and (2) are further discussed in Section 7.5.

3.1.2 Specifying Security Policies. A security policy is a set of privileges. For example, the full
security policy of the running example is implemented in Listing 1. Compared to the textual
description of Section 2.2 they are ordered based on increasing complexity, starting with rule (5).

Rule (5) is implemented on Line 1. It grants all roles (denoted by the wildcard role) read access to
the name �eld of all teams.

Rule (4) is implemented on Lines 2 to 4 using the path selectors previously shown in Section 3.1.1.
The privileges grant the biologist role read access to the described paths. Note in particular that
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1 (ALLOW * READ OF (* name))

2 (ALLOW biologist READ OF (* sightings * *))

3 (ALLOW biologist READ OF (* sightings * location *))

4 (ALLOW biologist WRITE OF (* sightings * [∪ points feedback ]))

5 (ALLOW user READ OF (* sightings * [∪ photo points ]))

6 (ALLOW user READ OF ([= [∼ my-team ]] sightings * feedback))

7 (ALLOW user WRITE OF ([= [∼ my-team ]] sightings *))

8 (ALLOW user WRITE OF ([= [∼ my-team ]] sightings * [∪ species photo]))

9 (ALLOW user WRITE OF ([= [∼ my-team ]] sightings * location [∪ lat lng]))

Listing 1. Specification of the security policy of the running example (Section 2.2).

being granted access to a particular object does not mean that the role has access to all values
within that object. In this case, Line 2 grants read access to all keys of sighting objects (e.g., the
1674813931967 �eld in Figure 1a). This includes the location key, but not location’s children
lat and lng. A biologist can hence e�ectively traverse the location �eld, but still needs to be
granted read privileges for its children on Line 3. The remainder of rule (4) is implemented on
Line 4, which grants biologists write access to every sighting’s points and feedback �elds via a
union path expression which selects both keys (cf. Table 1).

Rule (3) of the running example is implemented on Line 5. The privilege grants every volunteer
(i.e., the user role) read access to the photo and points of all teams’ sightings.

Rule (2) is implemented on Line 6, and gives users read access to the feedback �eld of only their

own team’s sightings. To encode this requirement of “a user’s own team”, the path selector uses
an expression operator (cf. Table 1) which tests via a built-in predicate, in this case =, whether a
key from the object should be included. In this case the keys in the object are teams, e.g., team1 (cf.
Figure 1a), and the expression with which it should match is speci�ed using the ∼ operator which
looks up the current user’s my-team �eld in the user’s environment.3

Rule (1) is implemented on Lines 7 to 9 and gives users write access to their own team’s sightings,
excluding the feedback and points �elds which only biologists can write to. Because users have
wildcard write access to any key of the sightings object, it also grants them the permission to
add new sightings (because they are covered by the wildcard). Note that a new sighting object that
is added by a user can only include the �elds to which users are explicitly granted write access, i.e.,
species, photo, and location. The points and feedback �elds can be added later by biologists.
In general, Murata et al. [2006] state that access control policies should satisfy 3 requirements:

succinctness, least privilege, and soundness. Succinctness means that policies should be expressible
with a smaller number of privileges instead of having to specify every single �eld in the data. We
satisfy this requirement by using path selectors modelled on JSONPath. Least privilege means that
the security policy should grant the smallest possible access to a role, and soundness means that
the security policy should always either allow or deny an access. Both are satis�ed because all
access to �elds is denied unless access is explicitly granted via an ALLOW privilege. While we do
not implement explicit DENY privileges for simplicity, they can be added using the “denial takes
precedence” principle [Murata et al. 2006] where a DENY privilege removes any access that was
previously granted. Note that in our model write permissions for a �eld imply that the role is
allowed to read said �eld.

3.2 Projecting a Security Policy

The complete security policy is speci�ed only on the leader of an SRDT. To support o�ine policy
enforcement of SRDTs, clients must be able to check (o�ine) whether they are allowed to write to

3An example user environment is the object ((my-team := ’team1)).
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+

Security Policy

EXCERPT EXCERPT EXCERPTROLES PRIVILEGES

EXCERPT EXCERPT

Policy Excerpts

Fig. 2. The projection of a security policy based on each role yields a policy excerpt per role.

a �eld. Hence the leader compiles di�erent projections of the security policy, namely one for each
role. A high-level representation is depicted in Figure 2. The left depicts a security policy which is
a set of roles and privileges, and the result depicted on the right is a set of policy excerpts. A policy
excerpt contains the subset of privileges that (well-behaved) clients of a particular role are expected
to adhere to locally. More speci�cally, the policy excerpt includes only a client’s own privileges.
Including other roles’ privileges would enable a malicious client to know which �elds exist that
they do not have read access to, and what roles can access those �elds. This poses a security risk in
its own right.

3.3 Data Projection

To enforce that each client accesses only the data from the SRDT for which they have been granted
read privileges, we ensure that each client is sent only the data it has read privileges for. We refer
to the act of selecting the readable subset of an SRDT for a certain user as data projection. A correct
data projection ensures that adversaries can never bypass privileges to extract data. However, a
consequence of data projection is that each client has a potentially di�erent subset of the complete
SRDT. The leader manages cooperation between those ostensibly incompatible replicas.
Figure 3 depicts the interactions of clients and the leader, including the points where data

projection occurs.

(1) First, a client authenticates with the leader (e.g., using a password, or public key authentication).
The leader assigns a role to the client according to the security policy, which we depict as a red
square (i.e., the “red square” role).

(2) Once authenticated, the client can ask the leader for a copy of the data to instantiate a local
replica. The leader responds with the policy excerpt that corresponds to the client’s role, a
projected copy of the data that excludes all �elds for which the client has no read privileges,
and the user’s environment needed to correctly interpret the policy excerpt.

(3) After initialisation, a client can perform operations on its local replica.

During periods without network connectivity a well-behaved client can check whether they
are allowed to execute write operations by using the policy excerpt. Eventually, when network
connectivity is restored, the local changes are sent to the leader, who veri�es that the changes
were permitted. Accepted changes are merged according to the semantics of the underlying RDT
library. Other clients need to be (eventually) informed of this change in order for their replicas to
(eventually) become consistent. In Figure 3 we depict 2 other clients with a “blue circle” and “green
triangle” role. The leader cannot simply forward the change to both of them, because their roles
may not have read privileges for the changed �eld. Instead the change is sent only to clients with
the correct read or write privileges, which in Figure 3 includes the blue client but not the green
client. Withholding the change for the green client prevents leaking sensitive data. It does not
negatively impact the green client’s normal operation since the changed �eld is not part of their
local replica.
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Local 
change

Get-Replica()
User role: 

EXCERPT DATA

Authenticate(user, key)

Client Leader

Push(change)

Client Client

Accept/Reject?

Push(change)

USER-ENV

(1)
(2)

(3)

Fig. 3. Interactions between clients and a leader.

3.4 Overview of Assumptions

We brie�y state the assumptions made (implicitly or explicitly) throughout Sections 2 and 3.

Adversary Model.

• All clients are untrusted. A client is supposed to check their security policy excerpt locally
for correct operation, but the security model assumes that clients can disable any security
feature included in their local software (e.g., in their web browser).

• The leader is completely trusted (trusted hardware and software).
• No defence against clients that leak data which they legitimately have access to.

Security Policy.

• The security policy is static (does not change at run-time).
• The security policy can only depend on a replica’s �eld keys, not on their values (limitation
further discussed in Section 7.5.4).

• Write access to a certain �eld also implies read access.

Data Model.

• A replica’s data contains no arrays (limitation further discussed in Section 7.5.2).
• A replica’s data contains no cycles (which are also not a part of standard JSON).
• No compound changes (limitation further discussed in Section 7.5.7).
• The underlying RDT is operations-based (further discussed in Section 7.5.8).

Distribution Model.

• There is a single leader per SRDT. Practical implementations may internally divide the work
of supporting many clients, e.g., by using ordinary RDTs that synchronise peer-to-peer with
each other, running on multiple trusted servers behind a load balancer.

• The leader is trusted by all clients.
• No direct (peer-to-peer) communication or synchronisation between clients (limitation further
discussed in Section 7.5.1).
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CommonLang

ReplicaLang LeaderLang

Objects, roles & privileges

Projections, authentication, authorizationSRDT client

Inherits from

Fig. 4. Relation between the di�erent formal languages.
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atom ::= number | boolean | string | quoted | ()
quoted ::= 'i

d ::= (kj �)
kj ::= (k := json)
k ::= number | i

json ::= atom | d
p ::= (k �)
· ::= (! p atom)

ps ::= (p-exp �)
p-exp ::= k | * | [script-op (~ k �)] | [script-op k] | [* k �]
p-role ::= role | *

priv ::= (ALLOW p-role r/w OF ps)
r/w ::= READ | WRITE
env ::= d

script-op ::= * | + | < | > | f | g | b | =
role, i ::= variable-not-otherwise-mentioned

primitive values
quoted symbols
json object
json ûeld
json ûeld key
json ûeld value
ûeld access path
RDT delta (writen value)
path selector
path expressions
security policy privilege role
security policy privilege
security policy permission
user environment
path expr. script operator
role name, identiûer

Fig. 5. Semantic entities of CommonLang.

4 FORMAL SPECIFICATION OF SRDTS

We present a formal speci�cation and implementation of SRDTs in PLT Redex [Felleisen et al.
2009; Klein et al. 2012], a domain-speci�c language in Racket [Felleisen et al. 2018] to specify
operational semantics which are also executable. The formalism comprises 3 di�erent languages
as depicted in Figure 4: ReplicaLang and LeaderLang specify the behaviour of the client and
leader respectively, and their commonalities are shared via a language called CommonLang. The
complete implementation spans 2161 lines of Racket and Redex code (565 for the core formalism),
and is available as a publication artifact.4 All �gures in this paper were generated by Redex to
avoid the introduction of mistakes, sometimes with slight modi�cations in Adobe Illustrator to
add explanatory notes or to reposition elements to �t within the allowable space. We use the same
font convention in the text as in the �gures. Non-terminals in the language grammar are typeset in
italic in a serif font. Terminals are typeset in an upright monospaced non-serif font.

4.1 CommonLang: Objects, Roles and Privileges

The formalisation of the leader and the replicas share a common formal language called Common-
Lang. CommonLang speci�es primitive atoms (numbers, booleans, strings, quoted symbols, and
the empty object), and the de�nition of objects, roles and privileges. Its semantic entities are given
in Figure 5, and will be introduced by example throughout this section.

4.1.1 Specifying Objects. The semantic entity d in Figure 5 de�nes the structure of JSON objects
used to describe SRDT data. Every object is a list of terms kj of the form (k := json), where k is
the name of a �eld and json its value. A list of terms is denoted in Redex via an ellipsis, which is a
form of Kleene star which repeats the preceding term 0 or more times, e.g., (kj . . .) denotes a list
of 0 or more kj terms. For example, Listing 2 represents the JSON data of the running example in

4See data-availability statement at the end of the paper.
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1 ((team1 := ((name := "The Fantastical Scouts")

2 (sightings := ((1674813931967 :=

3 (( location := ((lat := 51.06038) (lng := 4.67201)))

4 (species := "Fly Agaric")

5 (photo := "blob :...")

6 (points := 3)

7 (feedback := "Do not eat this!")))))))

8 (team2 := <omitted for brevity>))

Listing 2. The data schema of Figure 1a in CommonLang syntax.

excerpt-for-roleçrole, ((ALLOW * r/w OF ps) priv1 .)ç  = ((ALLOW role r/w OF ps) priv2 .)

 where (priv2 .) = excerpt-for-roleçrole, (priv1 .)ç

excerpt-for-roleçrole, ((ALLOW role r/w OF ps) priv1 .)ç  = ((ALLOW role r/w OF ps) priv2 .)

 where (priv2 .) = excerpt-for-roleçrole, (priv1 .)ç

excerpt-for-roleçrole1, ((ALLOW role2 r/w OF ps) priv .)ç  = excerpt-for-roleçrole1, (priv .)ç
 where role1 b role2

excerpt-for-roleçrole, ()ç  = ()

Fig. 6. Computing a policy excerpt for a particular role in LeaderLang.

Figure 1a, but conforming to the de�nition of a term d. The value of team1 spans Lines 1 to 7, and
team2’s on Line 8 has been omitted for brevity.

4.1.2 Specifying Security Policies. Each privilege from a security policy is represented by term priv

in Figure 5. Note that the role can be a concrete identi�er (e.g, biologist) or a wildcard (matching
any role). The set of �elds to which access is provided is given by a term ps that describes a path
selector. Each path selector is a sequence of path expressions p-exp which we previously described
in Table 1. To correctly assess whether a role is allowed to access a �eld, each path selector will
expand to a set of concrete paths. Here, each concrete path conforms to semantic entity p, which is
a sequence of keys that correspond to the �elds of a (nested) object.

4.1.3 SRDT Deltas. Changes made by clients to the SRDT data structure are represented by a
semantic entity X that describes a single change (a written value) to a �eld. This can be considered
as an operation from the underlying (operation-based) RDT (e.g., a JSON CRDT) that is sent
from one replica to another to synchronise and (eventually) converge to the same state. Since the
implementation of a full RDT library is outside the scope of this formalism, we represent such a
change as a term that indicates that a value (an atom) was written to a path p that identi�es the
�eld it was written to.

4.2 LeaderLang: Securely Projecting Policies and Data

LeaderLang models the behaviour of the leader which is responsible for the authentication of
users, projecting the security policy and SRDT data, and authorising changes to replicas made by
clients. It is de�ned in 2 phases that correspond to the aforementioned projection phase and replica
management phase (cf. Section 3). In the remainder of this section we discuss both phases in turn.

4.2.1 Projection Phase. We use Redex metafunctions to de�ne computations on Redex terms.
Essentially, a metafunction has a name and transforms the given input terms (its arguments) to an
output term. Metafunctions pattern match on the structure of terms, optionally with side-conditions
that must hold for a clause to match. Consider the metafunction called excerpt-for-role in
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request ::= (LOGIN »u auth-key)
 | (GET-REPLICA »s)
 | (PUSH-� »s ·)

result ::= (ACCEPT (action . ))
 | (REJECT)

action ::= (ACCEPT-LOGIN »s)
 | (INIT »s (priv . ) d env)
 | (PUSH-� »s ·)

excerpt ::= (role (priv . ))
user ::= (»u role auth-key env)

», auth-key ::= string
s ::= (»s »u)

············

·······

···················

····················

security policy excerpt
user conûguration
id (»  user id, »  session id), user authentication key
user session

·········

···········

··············

·········

·················

client requests to log in
client requests a replica
client requests to push a change
leader accepts a request, will perform actions
leader rejects a request

··········

·····

··············

leader accepts a new user session
leader initialises a replica at a client
leader pushes a change to a client

u s

Fig. 7. Semantic entities of LeaderLang.

Figure 6 which implements the main logic of the projection phase. For each equation, the left-hand
side denotes the application of the metafunction on the input terms speci�ed between brackets
“〚〛” (separated via commas). The right-hand side of the equation is the output term. When side-
conditions apply for an input term to match, those are speci�ed as where clauses.

The excerpt-for-role metafunction computes the policy excerpt for one role. It takes 2 argu-
ments, namely a role and security policy (given as a list of privileges). The result of the metafunction
is a list of privileges that apply only to the given role. Essentially, excerpt-for-role recurses
over the security policy from left to right and keeps only the privileges that apply to the given role.
From top to bottom, the 4 clauses of the metafunction are as follows:

(1) When the privilege in the �rst position has the wildcard role, then the output list contains the
same privilege but with the wildcard role replaced by role. The term priv2 in the output list is
the result of applying excerpt-for-role to the tail of the input list.

(2) When the privilege in the �rst position has the same role as the role argument, then the privilege
is copied to the output list.

(3) When the privilege in the �rst position matches a di�erent role than the one given as argument,
then do not include it into the output.

(4) When the security policy is empty, then the policy excerpt is empty too.

4.2.2 Replica Management Phase. LeaderLang models the behaviour of a leader by reducing terms
that represent a request from a client to a term that represents the actions that a leader undertakes
to correctly process said request. The semantic entities de�ned by LeaderLang are given in Figure 7.
Supported requests are LOGIN to authenticate a client, GET-REPLICA to obtain an SRDT replica,
and PUSH-Δ to send a local change to the leader. A response is computed by the handle-request
metafunction in Figure 8. The arguments of handle-request represent the run-time state of the
leader, which is a list of known users (user . . .), a list of policy excerpts (excerpt . . .), the leader’s
copy of the SRDT data d, a list of user sessions (s . . .) (one per client), and �nally a request term to
reduce. The result is the updated application state: new SRDT data, a new list of sessions, and a
result term that indicates whether the leader accepts or rejects the request.

Handling LOGIN. Clients authenticate via a LOGIN request that contains a correct username and
password, as handled by the �rst case of handle-request (Figure 8). The term matches only when
all of the where clauses hold: the user must not have an active session, and the auth-key must be
valid. In the returned application state a fresh session (]s ]u) is added to the preexisting sessions,
and the LOGIN term is reduced to an ACCEPT-LOGIN term that contains the fresh session id. A
real-world system will use existing authentication protocols, but we do not model them as they are
well-established and orthogonal to our approach.
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handle-requestç(user .), (excerpt .), d, (sold .), (LOGIN »u auth-key)ç  = (d ((»s »u) sold .) (ACCEPT ((ACCEPT-LOGIN »s))))
 where no-active-session-forç»u, (sold .)ç, 

key-is-validç(user .), »u, auth-keyç, 
»s = fresh-session-idç»uç

handle-requestç(user .), (excerpt .), d, (s .), (GET-REPLICA »s)ç  = (d (s .) (ACCEPT ((INIT »s (priv .) dprojected env))))

 where (»s »u) * (s .), 

(»u role _ env) * (user .), 

(role (priv .)) * (excerpt .), 

dprojected = readable-projectionçd, (priv .), d, env, ()ç

handle-requestç(user .), (excerpt .), d, (s .), (PUSH-� »s (! p atom))ç  = (dnew (s .) (ACCEPT (action .)))

 where (»s »u) * (s .), 

(role (priv .)) * (excerpt .), 

(»u role _ env) * (user .), 
is-writableçd, p, (priv .), envç, 
dnew = json-writeçd, p, atomç, 
(sother .) = (s .)\(»s »u), 

(action .) = actions-per-sessionç(sother .), (user .), (excerpt .), dnew, (! p atom)ç

handle-requestç(user .), (excerpt .), d, (s .), requestç  = (d (s .) (REJECT))

Fig. 8. Handling client LOGIN, GET-REPLICA and PUSH-Δ requests in LeaderLang.

Handling GET-REPLICA. A GET-REPLICA term is reduced by the second case of handle-request.
The returned term contains the data that is used to initialise a client. In this case the speci�ed
where clauses that must hold are “lookups”, typeset via the ∈ notation, to retrieve information
from a list of terms. The �rst clause speci�es that the session id ]s in the request must be an active
session (]s ]u), and the second clause uses the matching user id ]u to retrieve the user’s role and user
environment. The third clause retrieves the policy excerpt for that role, and the fourth clause calls
another metafunction readable-projection that projects the complete SRDT data d to a new object
dprojected which only contains the �elds that can be read by the user according to their privileges.
The implementation of readable-projection will be shown in Lemma 5.4. It is essentially a tree
recursive copy which omits the non-readable �elds. The information returned to the client is an
INIT term with the session id ]s, the policy excerpt (priv . . .), the projected data dprojected, and the
user’s environment env.

Handling PUSH-Δ. The third case of handle-request handles a change to the SRDT pushed by
a client, represented by a PUSH-Δ term. The input PUSH-Δ term denotes that a client identi�ed by
session ]

s has written an atom to a particular �eld access path p. The computed response is a list of
PUSH-Δ terms that indicate to which other clients the accepted change should be forwarded in order
to reach eventual consistency. When all of the where clauses hold, the result of the metafunction is
an updated copy of the data dnew, the unmodi�ed sessions, and an ACCEPT response that contains a
list of action terms. The �rst 3 clauses are the same as for GET-REPLICA to extract the user’s role,
policy excerpt and user environment. Additionally, the leader uses the is-writable metafunction
to verify that the given user is allowed to write to the path p according to their privileges. When
this condition holds, the data is actually written to the object on the leader (yielding a new object
dnew), and a list of actions is computed via the metafunction actions-per-session. Essentially,
this metafunction returns a list of PUSH-Δ terms for all other sessions5, but only when those clients
have read privileges for the path that was written to.
Any other request which does not match the �rst, second or third case of handle-request is

rejected by the fourth case.

5The notation (s . . .) \ (]s ]u ) is shorthand for a list of sessions (s . . .) without the speci�ed session (]s ]u ) .
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built-in Racket operators
cursor into replica
replica object
replica name
variable

client program
values
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value expression
application expression
application expression (Racket)
if expression
let expression
root expression (replica root cursor)
cursor read ûeld expression
cursor write ûeld expression
error expression

program ::= ((r �) e)
v ::= (» (x �) e) | atom | c
e ::= x

 | v
 | (e e �)
 | (op e �)
 | (if e e e)
 | (let ([x e] �) e)
 | (root e)
 | (� e k)
 | (�! e k e)
 | (error string)

op ::= + | - | / | * | and | or | not | < | > | =
c ::= (»r p)
r ::= (»r (priv �) d env (· �))
» ::= string
x ::= variable-not-otherwise-mentioned

Fig. 9. Terms of ReplicaLang. Terms from CommonLang such as atom, priv, d and env are inherited.

4.3 ReplicaLang: Secure Manipulation of Replicas

ReplicaLang is a formalism of (well-behaved) clients which intends to strike a balance between
being simple enough, yet being representative for client-side manipulation of replicas. Because
ReplicaLang and LeaderLang model the behaviour of the system instead of serving as an implement-
ation, there is no direct communication between ReplicaLang and LeaderLang in the formalism,
i.e., ReplicaLang does not “send” LOGIN requests to LeaderLang, and LeaderLang does not “send” a
response back to ReplicaLang. Instead, ReplicaLang models a client that has authenticated with a
leader, has acquired a local replica, and which is manipulating replicas through program expressions.
The paper’s code artifact contains an interactive tool that, given data, a security policy, and users,
integrates the requests and responses of ReplicaLang and LeaderLang to model real interactions.
Figure 9 shows the semantic entities of ReplicaLang. A program term contains a list of replica

objects (r . . .) and an expression e. Each replica object has an identi�er ]r, a list of privileges
(priv . . .), the replicated data d, a user environment env, and a list of changes (X . . .) which are
performed throughout the evaluation of e, but which are not immediately sent to the leader (i.e.,
they are “o�ine”). The expressions e are modelled after a variant of the _-Calculus with support
for multi-argument lambdas (for convenience), let-bindings, some primitive Racket operators op,
and operators for interacting with replicas.

4.3.1 Interacting With Replicas. The expressions that interact with replicas are “•” to read a �eld
of a replica object, and “•!” to write to a �eld. A reference into a replica object is represented as
a “cursor”, which is used to establish the full �eld access path whenever a �eld is written to. A
real-world system might implement a cursor as a proxy that wraps the replicated object. A cursor
(term 2) stores the identi�er of replica object it refers to and a path from the object’s root. They
are needed both for the normal workings of the underlying replica (e.g., cursors are also used by
Kleppmann and Beresford [2017]), as well as speci�cally for our security policy enforcement.
Consider the example program in Listing 3 which is a valid program term of ReplicaLang that

models an interaction with a replica. The �rst part of the program on Lines 1 to 10 contains the
replica objects known to the program, in this case a replica called "teams", which contains the
policy excerpt for this user and the replica data. The expression on Lines 11 to 13 represents the
program code that performs the interaction, which in this case adds feedback to a sighting. First, it
navigates to the correct part of the replica object by obtaining a cursor cr to the root of the replica
object (Line 11). Second, it navigates down into the object via the “•” operator to obtain a cursor
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1 ((("teams" ((ALLOW biologist WRITE OF (* sightings * [∪ points feedback ])))

2 ((team1 := ((name := "The Fantastical Scouts")

3 (sightings :=

4 ((1674813931967 :=

5 (( location := ((lat := 51.06038) (lng := 4.67201)))

6 (species := "Fly Agaric")

7 (photo := "blob :...")

8 (points := 3))))))))

9 ()

10 ()))

11 (let ((cr (root teams)))

12 (let (( sighting ( · ( · ( · cr team1) sightings) 1674813931967)))

13 ( · ! sighting feedback "Do not eat this!"))))

Listing 3. Example program accepted by ReplicaLang.

1 ((("teams" ((ALLOW biologist WRITE OF (* sightings * [∪ points feedback ])))

2 ((team1 := ((name := "The Fantastical Scouts")

3 (sightings :=

4 ((1674813931967 :=

5 (( location := ((lat := 51.06038) (lng := 4.67201)))

6 (species := "Fly Agaric")

7 (photo := "blob :...")

8 (points := 3)

9 (feedback := "Do not eat this!"))))))))

10 ()

11 ((! (team1 sightings 1674813931967 feedback) "Do not eat this!"))))

12 "Do not eat this!")

Listing 4. ReplicaLang’s reduction of Listing 3. The changes compared to Listing 3 are highlighted.

named sighting to the correct sightings object. Finally, the cursor is used to update (in this case,
add) the feedback �eld via a “•!” expression.
The result of fully reducing the program is given in Listing 4, where we highlighted the parts

of the term that have changed compared to Listing 3. First, the replica object’s data was updated
(Line 9) and the program’s expression was reduced to "Do not eat this!" (Line 12), which is the
return value of “•!” (the value that was written). Each replica object also stores a list of changes
that occurred “while o�ine” and which need to be sent to the leader, in this case a single write to a
�eld (Line 11).

4.3.2 Evaluation Semantics of ReplicaLang. Some of the reduction rules of ReplicaLang are standard
for _-Calculi, e.g., those for if, let and apply terms. Since they are not involved in upholding
security we will not discuss them here. Beside the typical _-Calculus rules, Figure 10 depicts the
reduction rules for root terms (to obtain a cursor), “•” (read) terms and “•!” (write) terms. The format
of each reduction rule C1 → C2 transforms a term that pattern matches C1 into a reduced term C2,
optionally with side conditions speci�ed via where clauses. In this case both C1 and C2 are program
terms. For example, the [root-cursor] rule reduces a (root ]A ) term to a new cursor (]A ()) with
an empty �eld access path. Note that the expression may be nested in another expression (e.g., a
let or “•” term). These potential surrounding expressions are represented by the context E, which
is a standard technique to abstract over compound expression as having a “hole” [Klein et al. 2012].

Consider the [read] rule. When a �eld :2 is read from a cursor (]r (k1 . . .)), then evaluation will
proceed by locating the data 3 of the replica object ]r and using json-read on the full �eld access
path (:1 . . . :2) to retrieve the correct value from the replica. The metafunction json-read returns
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((r .) E[(if #f e1 e2)]) ((r .) E[e2])  [if #f]

((r .) E[(if v e1 e2)]) ((r .) E[e1])  [if #t]

 where v b #f

((r .) E[(let ([x v] .) e)]) ((r .) E[substituteçe, [x v], .ç])  [let]

((r .) E[((» (x .) e) v .)]) ((r .) E[substituteçe, [x v], .ç])  [apply]

((r .) E[(op v .)]) ((r .) E[apply-racket-opçop, v, .ç])  [apply-rkt]

[(r .) E[(root »r)]] [(r .) E[(»r ())]]  [root-cursor]

[(r .) E[(� (»r (k1 .)) k2)]] [(r .) E[v]]  [read]

 where (»r _ d _ _) * (r .), v = json-readç»r, d, (k1 . k2), (k1 . k2)ç

[(r .) E[(� (»r (k1 .)) k2)]] [(r .) (error string)]  [¬read]

 where (»r _ d _ _) * (r .), (error string) = json-readç»r, d, (k1 . k2), (k1 . k2)ç

[(r .) E[(�! (»r (k1 .)) k2 atom)]] [((»r (priv .) dnew env (· . (! (k1 . k2) atom))) rother .) E[atom]]  [write]

 where rc * (r .), (»r (priv .) d env (· .)) = rc, is-writableçd, (k1 . k2), (priv .), envç, 
(rother .) = (r .)\rc, dnew = json-writeçd, (k1 . k2), atomç

[(r .) E[(�! (»r (k1 .)) k2 atom)]] [(r .) (error �Write forbidden�)]  [¬write-¬w]

 where (»r (priv .) d env _) * (r .), ¬is-writableçd, (k1 . k2), (priv .), envç

[(r .) E[(�! (»r (k1 .)) k2 v)]] [(r .) (error �Write forbidden�)]  [¬write-¬a]

 where ¬is-atomçvç

Fig. 10. The complete set of reduction rules for expressions in ReplicaLang.

an atom or an extended cursor if the read �eld is another object. The read expression is reduced to
this value v. Note that security checks are not needed, since non-readable �elds were removed by
the projection on the leader. Whenever a read is not permitted (i.e., the �eld does not exist) then
the rule [¬read] discards the entire context E and returns error.
Complementary to [read] is the [write] rule to write an atom to a replica. This rule uses the

metafunction json-write to modify the replica’s local data. The crucial di�erence is that [write]
only proceeds when is-writable holds, i.e., that the client is authorised to write to the given �eld
according to the privileges (priv . . .) of the policy excerpt. Otherwise, [¬write-¬w] rejects the
write with an error. Finally, [¬write-¬a] rejects any write of a non-atom value.

5 FORMAL VALIDATION OF THE SPECIFICATION

In this section we prove the claim that the formal speci�cation in Section 4 tackles the 3 problems
outlined in Section 2.3, namely freedom from Replicated Data Leaks (as Theorem 5.6), freedom
from Data Contagion (as Theorem 5.7), and O�ine Policy Enforcement (as Theorem 5.8). Before
we can prove these 3 theorems, we �rst have to prove some lemmas.

5.1 Correctness of Projections

We �rst prove the lemmas related to the correctness of the selection of policy excerpts (Lemma 5.1),
correctness of the projection of deltas (as Lemmas 5.2 and 5.3), and correctness of the initial
projection of data sent to replicas (as Lemma 5.4).

Lemma 5.1 (Correct Construction of Policy Excerpt). Given a role and list of privileges

(priv ...), excerpt-for-roleÈrole, (priv ...)É constructs the correct local policy excerpt for that role.

Proof. It follows directly from the de�nition of metafunction excerpt-for-role (see Figure 6
on Page 11) that exactly those privileges that apply to role are selected for the policy excerpt. Since
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matches-in-envç(), (), envç
 [empty-selector]

matches-in-envç(p-exp .), (k2 .), envç

matches-in-envç(k1 p-exp .), (k1 k2 .), envç
 [literal-key]

matches-in-envç(k1 p-exp .), (k2 .), envç

matches-in-envç([* k1 k3 .] p-exp .), (k2 .), envç
 [union-first]

matches-in-envç([* k3 .] p-exp .), (k2 .), envç

matches-in-envç([* k1 k3 .] p-exp .), (k2 .), envç
 [union-other]

matches-in-envç(p-exp .), (k2 .), envç

matches-in-envç(* p-exp .), (k1 k2 .), envç
 [wildcard]

script-holdsçscript-op, k3, k1ç matches-in-envç(p-exp .), (k2 .), envç

matches-in-envç([script-op k3] p-exp .), (k1 k2 .), envç
 [script]

env-script-holdsçscript-op, k1, (k .), envç matches-in-envç(p-exp .), (k2 .), envç

matches-in-envç([script-op (~ k .)] p-exp .), (k1 k2 .), envç
 [env-script]

Fig. 11. Verifying whether a path matches a path selector in a user environment in CommonLang.

any occurrence of the role wildcard * in the privileges is replaced with role (see Section 4.2.1), no
(side-channel) leaks of information on other roles’ privileges exists. A role receives information
only on privileges that apply to role itself. �

Lemma 5.2 (Delta Projection Contagion Safety). The leader accepts and propagates writes to

�elds only when the role of the writer is permitted to write to the a�ected �elds.

Proof. To handle requests of the form (PUSH-Δ ]s (! p atom)), LeaderLang’s handle-request
uses is-writable (see Figure 8). is-writable checks whether a privilege exists that assigns a
WRITE permission to a path selector that matches the written path: matches-in-envÈps, p, envÉ.
The metafunction matches-in-env (see Figure 11) formalises a direct implementation of the notion
of paths matching path selectors described in Section 3.1. Jointly, that means that a change (! p atom)
is propagated exactly when the write is permitted. �

Lemma 5.3 (Delta Projection Leak Safety). The leader propagates writes to exactly those target

replicas that are permitted to read the a�ected �eld.

Proof. To handle requests of the form (PUSH-Δ ]s (! p atom)), the handle-requestmetafunction
constructs (action . . .) = actions-per-sessionÈ(sother . . .), (user . . .), (excerpt . . .), d, (! p atom)É, a
list of PUSH-Δ actions to propagate (see Figure 8). The actions-per-session metafunction �lters
each session based on whether is-readableÈd, p, (priv . . .), envÉ holds, given the session’s priv-
ileges and user environment. As shown in Figure 12, is-readable checks whether the tested path
(k1 . . .) is a pre�x of a path that exists in d (i.e., one in (pall . . .)), and where at least one READ or
WRITE privilege permits access to. Since WRITE implies READ, and since the same logic holds for
matches-in-env as in the proof for Lemma 5.2, leak safety holds during delta projection. �
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(pall .) = data-to-pathsçdç (k1 . k2 .) * (pall .) matches-in-envçps, (k1 . k2 .), envç r/w * (READ WRITE)

is-readableçd, (k1 .), (privl . (ALLOW p-role r/w OF ps) privr .), envç

Fig. 12. Verifying whether a path p in an object d is readable according a privilege and a user environment

env, by verifying whether p is a matching prefix of an accessible path of d (expressed in CommonLang).

readable-projectionçjson0, (priv �), d, env, (kaccum �)ç = 

§«««
«««««

((k1 := json2) kj3 �) where ((k1 := json1) kj2 �) = json0, 
is-readableçd, (kaccum � k1), (priv �), envç, 
json2 = readable-projectionçjson1, (priv �), d, env, (kaccum � k1)ç, 
json2 b (), 

(kj3 �) = readable-projectionç(kj2 �), (priv �), d, env, (kaccum �)ç
(kj3 �)  where ((k1 := json1) kj2 �) = json0, 

(kj3 �) = readable-projectionç(kj2 �), (priv �), d, env, (kaccum �)ç
json0  otherwise

Fig. 13. LeaderLang: Selecting the readable projection of a data structure for a certain role.

Lemma 5.4 (Data Projection Leak Safety). Data projection contains exactly those �elds that the

target role is permitted to read, i.e., if d is readable, then readable-projectionÈd, (priv ...), d, env, ()É
(see Figure 13) contains exactly the �elds of d that (priv ...) permits reading.

Proof. The induction hypothesis is that if (priv . . .) in env permits reading json which is situated
at path p inside a replicated data structure d, then readable-projectionÈjson, (priv . . .), d, env, pÉ
returns a structure containing exactly the sub�elds of json that (priv . . .) permits reading. This
hypothesis holds for the call readable-projectionÈd, (priv . . .), d, env, ()É in handle-request since an
SRDT’s root is part of each replica’s projection. Hence, any list of privileges trivially permits reading
the initial json, as that json is the replicated object’s root d. The 3 clauses of readable-projection (see
Figure 13) uphold this induction hypothesis as follows:

(1) If a json1 exists at key k1 within json0, and if for the accumulated path that ends with that k1 it
holds that is-readableÈd, (kaccum . . .k1), (priv . . .), envÉ, then json1 is readable (since the same
logic holds for is-readable as in the proof for Lemma 5.3), and its readable projection must
be included in the projection.
By the induction hypothesis, json2 = readable-projectionÈjson1, (priv . . .), d, env, (kaccum . . .k1)É
contains exactly those �elds of json1 that (priv . . .) permits reading. Also by induction, kj3 =

readable-projectionÈ(kj2 . . .), (priv . . .), d, env, (kaccum . . .)É contains exactly the sub�elds of the
rest of (kj2 . . .) that (priv . . .) permits reading. The induction hypothesis is upheld by combining
both results into one data structure ((k1 := json2) kj3 . . .).

(2) In the second case, subobject json1 needs not be included in the projection. By the induction
hypothesis, kj3 = readable-projectionÈ(kj2 . . .), (priv . . .), d, env, (kaccum . . .)É contains exactly the
sub�elds of the rest of (kaccum . . .) that (priv . . .) permits reading. The induction hypothesis is
upheld by returning that data structure (kj3 . . .).

(3) The induction hypothesis trivially holds for any readable, non-compound json0. �

5.2 Correctness of Security Policy Enforcement Locally at the Replicas

We now prove the lemma related to the local enforcement of security policies in ReplicaLang.

Lemma 5.5 (Write Permissions are Enforced in ReplicaLang). Let program be a program

in ReplicaLang, let role be the role for which the replica evaluating program has authenticated, let
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(privlocal . . .) be the privileges from the policy excerpt for role, and let (k1 . . .k2) be a non-empty

(potentially invalid) path into the replica’s projection of the SRDT.

If and only if a replica’s user’s role is permitted to write to the �eld at (k1 . . .k2), then ReplicaLang’s

reduction relation → reduces a write operation (•! (]r (k1 . . .)) k2 atom) to atom and updates the

replica object’s inner state by adding one X to the local list of changes. Otherwise, the write operation

reduces the program’s entire expression to an (error _) expression, and leaves the list of replica objects
unchanged. Any expression other than a locally permitted write operation does not modify a replica’s

local state, nor logs changes.

Proof. Consider the reduction relations of ReplicaLang, shown in Figure 10. The write operation
we are interested in is only performed in [write]. In that clause, a write operation to replica ]r is
reduced. The replica object corresponding to ]r is bound to rc. The local privileges of ]

r are retrieved
from rc. By de�nition of “local privileges”, the privileges (priv . . .) in rc are the local privileges
(privlocal . . .). If at least one privilege in (priv . . .) grants a WRITE permission to a path selector that
matches (k1 . . .k2) in environment env, then the judgment is-writableÈd, (k1 . . .k2), (priv . . .), envÉ
holds (see proof for Lemma 5.3). Hence, by de�nition, the judgment holds if role is permitted to
write to the �eld at (k1 . . .k2) by the local privileges. Hence, in this clause the premise of Lemma 5.5
holds, and we must therefore prove that in this clause exactly one corresponding X is logged.
On the right-hand side of the reduction relation, a new X = (! (k1 . . .k2) atom) is logged in the

replica object’s list of changes. This X corresponds to the write: it records the correct atom for the
correct path (k1 . . .k2) of the correct replica object ]

r. The requirement is thus met.
Every other clause has the form ((r . . .) (in-hole E e)) → ((r . . .) e′). In the absence of a write, no

X should be logged. Since (r . . .) is left unchanged, the requirement is trivially met. �

5.3 Main Theorems

Finally, we prove the main three theorems as explained at the start of Section 5:

Theorem 5.6 (Freedom from Replicated Data Leaks). A replica receives information only

on the �elds of an SRDT that the replica is permitted to read by the security policy. A replica is not

informed of the �elds that it is not permitted to read, nor on the privileges of other roles.

Proof. Let (privglobal . . .) be the privileges that make up the full security policy for a replica identi-

�ed by ]r, and let role be a role speci�ed in the security policy for ]r. Let (]r (privlocal . . .) d env (X . . .))
be a replica object that is in scope at a ReplicaLang program that has authenticated for role. To
prove Theorem 5.6 we prove that all members of the replica object are free from data leaks:

(1) This holds trivially for ]r, the identi�er of the local replica.
(2) (privlocal . . .) is the policy excerpt for role, listing only the name of role itself and the readable

and writable (and hence also readable) �elds (Lemma 5.1).
(3) The �elds of d can come from three origins:
(a) if the �eld was sent during initialisation, it is part of the readable projection, hence role is

permitted to read the �eld according to (privglobal . . .) (Lemma 5.4),

(b) if the �eld was pushed by the leader, it is part of the delta projection, i.e., role is permitted to
read the �eld according to (privglobal . . .) (Lemma 5.3),

(c) if the �eldwas locallywritten to, no newnon-local data is introduced. Freedom fromReplicated
Data Leaks holds trivially for locally produced data.

(4) This holds trivially for env, the environment of the local replica.
(5) The list (X . . .) contains only changes made locally by program. Freedom from Replicated Data

Leaks holds trivially for locally produced data.

�
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Theorem 5.7 (Freedom from Data Contagion). A replica has write access only to those �elds of

an SRDT that the replica is permitted to write to by the security policy.

Proof. Let (privglobal . . .) be the privileges that make up the security policy, and let role be a

role speci�ed in the security policy. A ReplicaLang program only writes to the �elds of d which
are writable according to (privlocal . . .) (Lemma 5.5). Since (privlocal . . .) is the correct policy excerpt
of (privglobal . . .) for role (Lemma 5.1), it holds that ReplicaLang programs only write to �elds of d

which are writable according to (privglobal . . .). Finally, delta projection in LeaderLang only accepts

and propagates writes that are permitted (Lemma 5.2).
Since no disallowed writes are performed by well-behaved clients, and since malicious clients’

writes are rejected by the leader, disallowed writes to an SRDT do not impact the leader nor
other replicas. E�ectively, replicas only have write access to those �elds of an SRDT that they are
permitted to write to according to the security policy. �

Theorem 5.8 (Offline Policy Enforcement). A replica retains o�ine availability, including

eventual data consistency with the leader and the other replicas of the SRDT, even when enforcing the

SRDT’s security policy.

Proof. Each locally permitted write in a ReplicaLang program is locally logged as a X (Lemma 5.5).
When those deltas are pushed to the leader, the leader propagates the deltas to all replicas permitted
to read the �eld that was written to (Lemma 5.3). SRDTs hence o�er the same form of eventual data
consistency as the underlying replication mechanism as long as all locally performed writes are
accepted by the leader during delta projection. Since the correct policy excerpt is contained in a
ReplicaLang program (Lemma 5.1), all writes permitted by well-behaved clients are accepted by the
leader. Since Theorems 5.6 and 5.7 also hold, the leader will eventually converge on a consistent
state which accounts for all permitted writes on all replicas, and all replicas eventually see their
role’s data projection of that consistent state. �

6 RANDOMISED TESTING USING PLT REDEX

One of the main bene�ts of Redex is that the formal semantics becomes executable, and thus testable.
Redex’s randomised testing has been used successfully by Klein et al. [2012] to �nd errors in formal
speci�cations and proofs (including mechanised proofs) in all of the 9 considered ICFP papers. In
the same spirit, in Section 6.1 we brie�y explain our suite of randomised testing to gain additional
con�dence in our claims from Section 5, and in Section 6.2 we discuss the issues uncovered during
development that would likely have slipped into our formalism. While most of them are minor
implementation bugs, some were unlikely to be found manually, and 1 bug had concrete security
implications.

6.1 Randomised Testing of Read and Write Privileges

We designed 2 automated tests to verify the correct enforcement of read privileges (cf. Theorem 5.6)
and write privileges (cf. Theorem 5.7). We brie�y discuss the experimental set-up for both.

6.1.1 Randomised Verification of Read Privileges. For all possible security policies and objects, the
goal is to verify that a client with a particular security role: (1) can read the �elds allowed by the
security policy, i.e., they are not accidentally omitted by LeaderLang, and (2) cannot read any other
�elds, i.e., they are not accidentally included by LeaderLang, which is a security violation.
Redex has features to generate random terms that adhere to the semantic entities of a Redex

language, and to verify certain properties about those terms [Klein and Findler 2009]. However,
completely random generation of program terms in ReplicaLang is extremely unlikely to yield
meaningful objects, policy excerpts, and read expressions which adequately test a security policy.
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Hence, we guided the generation of test cases by starting from a completely random generated
(nested) object, and then programmatically extracting a random (but correct) security policy
(including all types of path expressions) which grants read access to a random subset of the object.
The object is then projected according to the security policy, and the test veri�es for all possible
paths in said object that: (1) every readable path according to the security policy can actually be
read by a ReplicaLang program, and (2) that every other path is not present in the projected object
(because it was correctly removed by LeaderLang’s projection).

6.1.2 Randomised Verification of Write Privileges. The test setup to verify write privileges is similar
to that for read privileges, but more convoluted because it also involves randomly generated roles
and clients. Essentially, starting from a randomly generated (nested) object and multiple roles
(including the wildcard role), we extract a random security policy from the object that contains
both READ and WRITE privileges for a random subset of (some valid and some invalid) paths in the
object. The security policy is used to project the generated object, and to verify that all roles are
correctly able to read or write the �elds that they should be able to access according to the policy.
This means to verify that paths which are read-only or non-readable cannot be written to, and that
all writable paths can actually be written to by a ReplicaLang program. Additionally, we verify that
the returned list of PUSH-Δ terms by LeaderLang is correct, i.e., that if one client writes to a �eld,
then the clients who are informed of the written value must have read privileges for the �eld.

6.2 Issues Detected Through Randomised Testing

We repeated the read and write tests 1,000,064 times (7813 tests per program instance, ran 128
times on a 64 core, 128 thread CPU), which we feel was more than su�cient to uncover any issues.
Randomised tests found 10 problems in total, which were either found immediately, or in the
worst-case after a couple thousand iterations of a single program instance. We categorise 7 of those
problems as minor issues that constitute small implementation bugs in the Redex formalism, but
which did not endanger the security of the model. For example, in one case, when trying to read a
non-existing �eld from an object, a reduction of a term in LeaderLang would get stuck instead of
rejecting the program. More interestingly, randomised testing also revealed 2 implementation bugs
which we were unlikely to �nd manually, and 1 bug which had consequences for data security.

The most important of the identi�ed bugs is the one which impacted data security. It relates to the
erroneous handling of wildcards within the readable-projection metafunction. In essence, consider
the following object which is a slightly reduced variant (for brevity) of the actual counterexample
found by a random test, and read privileges for the path selector (* JIvt).

1 ((7 := 0)

2 (r := ((x := JJ) (JIvt := #t))))

The expected projection is ((r := ((JIvt := #t)))), such that a client can read the value of the
path (r JIvt). However, the projection erroneously included the top-level �eld 7 as well despite
it not having a JIvt sub�eld. The formalism was meant to specify (* JIvt) to mean “traverse
any �eld to �nd sub�eld JIvt”, but the behaviour of our implementation was “traverse any �eld to
�nd sub�eld JIvt, or admit access if the �eld contains an atom”, thus erroneously revealing the
data stored in the 7 �eld. If another client would write to the object such that the 7 �eld becomes
(7 := ((JIvt := 0))), then reading the content of that sub�eld of 7 would be permitted by the
path selector (* JIvt).
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7 DISCUSSION AND RELATED WORK

7.1 Access Control in Replicated Databases

RDTs are used in the implementation of (geo-)replicated databases [Nadal 2023; Redis 2020;
Riak 2013; Shukla 2018]. In such databases it is possible to encrypt data before passing it on
to users [Barbosa et al. 2021; GUN 2022]. Encrypted database �elds can be locally read and modi�ed
by clients with the decryption key, or by applying operations on homomorphically encrypted data
(i.e., apply operations on encrypted data without having to decrypt it �rst). The advantage is that
no synchronisation with a central authority is required. However, the approach is di�cult to use
for �ne-grained access control due to di�culties in distributed key management. For example,
when multiple clients have read access for one �eld, then they require the encryption/decryption
key only for said �eld. When roles have access to multiple �elds, then it is up to the developer to
�gure out which (potentially overlapping) �elds must be encrypted with di�erent keys, how those
keys are distributed to each client, and tracking which keys must be used for which �elds. This
approach does not scale beyond a couple of �elds with little or no overlap between roles.
Rather than replicating a database to users, many distributed database management systems

(DBMS) have the option of using replication internally to increase availability and reduce latency.
In this case replication is an implementation concern, and not part of the programming model.
Data is not locally available at the clients, which instead must query the DBMS. Clients could use
RDTs to make the data available o�ine to them, but then they again face the original problems of
insecure RDTs.

7.2 Access Control for XML Documents

In the early to mid 2000’s XML was thought to be the future format for data interchange between
systems. There is a body of work to enforce access control for XML documents such that only parts
of documents are exposed to di�erent users [Crampton 2006; Damiani et al. 2002; Fundulaki and
Marx 2004; Murata et al. 2006]. We based the speci�cation of our security policy language on this
work, resulting in our policy language using JSONPath versus their use of XPath, as well as similar
security policy semantics. The run-time enforcement of security for XML documents is not directly
applicable to o�ine available replicated JSON data because security constraints are imposed only
when an XML document is fetched, whereas replicated data is continuously (locally) modi�ed.

7.3 Multitier Programming

Several tools and languages exist to develop (web) applications as a single code base which is
automatically split into the multiple tiers of a distributed application (client, server, . . . ), e.g.,
Hop.js [Serrano and Prunet 2016], ScalaLoci [Weisenburger et al. 2018], and Stip.js [Philips et al.
2018]. Some of this work explicitly targets security, such as Swift [Chong et al. 2009] and Fabric [Liu
et al. 2017], which use source code annotations to specify security constraints on code and inform-
ation �ow. These tools are an alternative programming model for developing secure-by-design
distributed (web) applications. This paper departs from the fact that using replication to o�er o�ine
availability is a given, as it has been widely motivated and is being used in practice. Multitier
programming does not tackle the same concerns as SRDTs, namely o�ine availability, eventual
consistency, and secure access control for replicated data.

7.4 Byzantine Fault Tolerance for RDTs

Malicious entities can try to circumvent an RDT’s security mechanisms by attacking the algorithm
that the RDT uses to establish consensus. In the CRDT literature, a CRDT that can retain a mutually
agreed ordering of data updates among replicas (needed for eventual consistency), even in the
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presence of malicious clients, is said to be Byzantine fault tolerant [Kleppmann 2022; van der Linde
et al. 2020]. In principle, the challenges posed by Byzantine faults are orthogonal to the approach
in this paper. A solution that combines our approach (to enforce access control on the data on the
application-level), with a technique such as the one by Yactine et al. [2021] on the implementation
level would yield a Byzantine fault tolerant SRDT. However, since SRDTs require a central authority,
in their current form there is no need for Byzantine fault tolerance to maintain eventual consistency.

7.5 Limitations and Future Work

The approach outlined in this paper can serve as a foundation for building advanced security
features for RDTs. We brie�y discuss the main limitations and possible avenues for future work.

7.5.1 Central Authority. One of the main limitations compared to other work on RDTs is the
assumption of a single leader. Whereas RDTs are frequently used because they support decent-
ralisation, there is also a need for RDTs in centralised designs. For example, in academia there is
AutoCouch, a JSON CRDT framework which combines Automerge with CouchDB to support o�ine
availability in client-server web applications [Grosch et al. 2020]. In industry, a central authority is
already available and often desired. A prime example is Figma, a collaborative web application for
user interface design (acquired in 2022 by Adobe for around $20 billion [Adobe 2022]), which uses
CRDTs for o�ine availability and con�ict resolution, while explicitly omitting decentralisation.
They note that: “Even if you have a client-server setup, CRDTs are still worth researching because they

provide a well-studied, solid foundation to start with.” [Wallace 2019] A full peer-to-peer implement-
ation of SRDTs is interesting, but requires additional research (e.g., possibly to relax the security
guarantees), and is outside the scope of this paper.

7.5.2 Arrays. There are unsolved semantic issues when applying access control to arrays, e.g., to
access only a part of an array. The problem is that the contents of the array can change at any
moment in time, including when a client is o�ine. Questions arise such as how the accessible
parts of an array are represented on a client (e.g., are non-accessible entries removed and indices
remapped?), and how to deal with retractions of access, e.g., when an object in an array is moved
from an accessible part to a non-accessible part. How the programming model should be adapted
to solve or avoid these semantic issues is an open problem. Rather than ignoring these issues, for
now SRDTs cannot contain arrays. Note that SRDTs can still be used to build collections of items,
but using an object’s �elds as opposed to an automatically indexed array.

7.5.3 Extended Policy Language. We deliberately kept the policy language small by o�ering only
simple permissions (read or write). Real-world security policies specify privileges that currently
cannot be expressed in the policy language, such as role hierarchies [Sandhu 1998], DENY privileges,
and inter-�eld constraints [Oostvogels et al. 2017].

7.5.4 Expanded Set of Policy A�ributes. The current security policy language disallows privileges
to depend on data in the RDT because this causes unresolved semantic di�culties. More speci�cally,
an update to an RDT �eld whose value is used in a security policy could cause a client (including
the one who updated the �eld) to lose access to �elds. How to deal with retractions of access is an
open issue. Additionally, malicious users may try to widen the scope of their privileges by writing
to �elds that are used in the security policy. A solution can be a part of a larger e�ort towards
Attribute-Based Access Control, where a security policy may depend on run-time data, resources,
system environment, connection, and administrative decisions [Servos and Osborn 2017].

7.5.5 Static Enforcement. Clients are expected to dynamically check whether they are allowed to
write to �elds of an SRDT. Including such a security check (e.g., as a library call) is undesirable
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because it mixes the enforcement of security policies and application logic. Practical solutions
should statically enforce the security policy, e.g., via a type system that rejects programs that write
to read-only �elds. Similar to the original work on JSON CRDTs [Kleppmann and Beresford 2017],
we leave the speci�cation of a data schema as future work.

7.5.6 Schema Migration. Support for schema migration and updates to the security policy of an
already deployed SRDT are open problems.

7.5.7 Compound Changes. The language features supported by ReplicaLang are hampered by
the lack of support for writing compound data structures to �elds, or moving subtrees in an RDT.
Recent work by Kleppmann et al. [2022] adds these features for JSON CRDTs, but our formalism
cannot yet verify these features’ security.

7.5.8 State-based RDTs. SRDTs assume an underlying operations-based RDT like Automerge [Auto-
merge Contributors 2023] or Yjs [Jahns and Yjs Contributors 2023]. Future work can apply the
results to state-based or delta-based [Rinberg et al. 2022] implementations as well, though 2 chal-
lenges need to be addressed. First, for state-based RDTs, computing “state deltas” at the leader
to verify that all changed �elds were permitted to be written to. Second, designing a consistency
mechanism which merges a partial state (namely, the part of the state that is in the projected data
of some client) with the complete state at the leader.

8 CONCLUSION

This paper proposes SRDTs, a data type that speci�es role-based access control for RDTs. This is
an important step towards practical implementations of RDTs for applications with extra security
constraints such as business applications, especially when parts of the application are ran in
unsecured environments such as ordinary web browsers. Concretely we identi�ed 3 problems,
namely (1) Replicated Data Leaks, where sensitive data is inadvertently replicated to clients which
should not have that data, (2) Data Contagion, where modi�cations of a client to a local replica
will be merged with the replicas of other clients as well regardless of whether those changes
were permitted, and �nally, (3) the Lack of O�ine Policy Enforcement, where any enforcement
mechanism must be available o�ine.
To overcome the identi�ed problems, SRDTs demonstrate a combination of Role-Based Access

Control and o�ine-available JSON data to securely replicate said data over a network. To prevent
Replicated Data Leaks, a leader de�nes multiple projections to exclude any data for which a client
with a particular role does not have read privileges. To prevent Data Contagion, a leader acts
as an intermediary between all clients to prevent malicious writes (that do not conform to the
security policy) from reaching other clients. Finally, to enable O�ine Policy Enforcement, each
client receives an excerpt of the global security policy which contains the privileges that apply to
their role, such that it can be enforced locally.

An operational semantics of SRDTs was implemented in PLT Redex. We validated this speci�ca-
tion via formal proofs that verify that SRDTs do not su�er from the identi�ed problems, and that
the underlying properties of RDTs (such as eventual consistency) are una�ected. Furthermore, we
used randomised testing to experimentally check the absence of the identi�ed problems, which
uncovered multiple bugs and 1 security problem that existed in earlier versions of the formal
speci�cation.
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The full executable implementation of the formal speci�cation in Redex (Section 4) is available as a
software artifact [Renaux et al. 2023]. This speci�cation was used for the randomised testing of
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Section 6. Furthermore, we provide an easy to use command-line interface (not discussed in this
paper) to interact with SRDTs (e.g., via the running example of Section 3). The artifact is available
on Zenodo via the following link: https://doi.org/10.5281/zenodo.8310917.
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