
Nested Pure Operation-Based CRDTs1

Jim Bauwens !2

Software Languages Lab, Vrije Universiteit Brussel, Belgium3

Elisa Gonzalez Boix !4

Software Languages Lab, Vrije Universiteit Brussel, Belgium5

Abstract6

Modern distributed applications increasingly replicate data to guarantee high availability and optimal7

user experience. Conflict-free Replicated Data Types (CRDTs) are a family of data types specially8

designed for highly available systems that guarantee some form of eventual consistency. Designing9

CRDTs is very difficult because it requires devising designs that guarantee convergence in the10

presence of conflicting operations. Even though design patterns and structured frameworks have11

emerged to aid developers with this problem, they mostly focus on statically structured data; nesting12

and dynamically changing the structure of a CRDT remains to be an open issue.13

This paper explores support for nested CRDTs in a structured and systematic way. To this end,14

we define an approach for building nested CRDTs based on the work of pure operation-based CRDTs,15

resulting in nested pure operation-based CRDTs. We add constructs to control the nesting of CRDTs16

into a pure operation-based CRDT framework and show how several well-known CRDT designs can17

be defined in our framework. We provide an implementation of nested pure operation-based CRDTs18

as an extension to the Flec, an existing TypeScript-based framework for pure operation-based19

CRDTs. We validate our approach, 1) by implementing a portfolio of nested data structures, 2)20

by implementing and verifying our approach in the VeriFx language, and 3) by implementing a21

real-world application scenario and comparing its network usage against an implementation in the22

closest related work, Automerge. We show that the framework is general enough to nest well-known23

CRDT designs like maps and lists, and its performance in terms of network traffic is comparable to24

the state of the art.25

2012 ACM Subject Classification Software and its engineering → Consistency; Computer systems26

organization → Distributed architectures; Software and its engineering → Synchronization; Software27

and its engineering → Middleware; Software and its engineering → Reflective middleware28

Keywords and phrases CRDTs, replication, pure operation-based CRDTs, composition, nesting29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

Funding Fonds Wetenschappelijk Onderzoek - Vlaanderen: FWOSB9031

1 Introduction32

To ease the development of geo-distributed applications, much research has studied the33

concept of replicated data types (RDTs). An RDT exposes to programmers an interface akin34

to that of a sequential data type while incorporating mechanisms to keep data consistent35

across replicas [9, 22, 14]. Conflict-Free Replicated Data Types [22, 21, 19] (CRDTs) are36

the most well-known family of replicated data types. CRDTs guarantee strong eventual37

consistency (SEC) [22] that adds to eventual consistency the guarantee of state convergence,38

i.e. if two replicas of the data type have received the same updates, they will be in the same39

state. This implies that replicas converge without synchronisation or conflicts because they40

reach the same state as soon as they have observed the same operations.41

Designing new RDTs that guarantee convergence is a complex task. Only for data42

types for which all operations commute (e.g., counters), one can easily construct a CRDT43

(since regardless of the ordering in which operations are applied, the resulting state will be44

equivalent). A common approach to designing CRDTs is to use causal ordering for non-45

© J. Bauwens and E. Gonzalez Boix;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jim.bauwens@vub.be
mailto:egonzale@vub.be
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Nested Pure Operation-Based CRDTs

concurrent operations and handle conflicts between non-commutative concurrent operations46

[19, 13, 3]. Many current designs handle those conflicts in an ad-hoc way crafted for each data47

type, often relying on specific meta-data to track causality and relations. For example, some48

CRDT designs (e.g., OR-Set) use tombstones to ensure that removal operations commute49

[22]. However, for many CRDT types, this meta-data grows unboundedly. Moreover, it is50

very difficult to modify existing designs (e.g., add operations to the data type, or modify the51

design to work with different networking assumptions). Pure operation-based CRDTs [3] aim52

to solve those issues and propose an approach for building operation-based CRDTs based on53

a Partial Ordered Log (PO-Log) of operations. The approach exposes causal information54

from the underlying communication middleware which can be used to enable the removal of55

redundant meta-data. While pure operation-based CRDTs provide a structured framework56

to build CRDTs, it is designed to build CRDTs for flat data structures.57

In this work, we focus on the issues raised by composing CRDTs, e.g., when CRDTs58

are nested or more than one CRDT is combined into a new one. Composing CRDTs is59

non-trivial, as the convergence property of a CRDT design is made to hold for a single60

CRDT but does not necessarily hold when several CRDTs are composed into a new one.61

Recent work has explored what concurrency semantics can be utilised for composing designs62

[19] and several specific implementations exist [15, 16, 18]. Existing approaches, however,63

mainly follow a state-based design, in which any information on applied operations is lost64

during the merging process. This may result in non-sensible designs for nested CRDTs and65

hampers the development of CRDTs where the operation history needs to be used to improve66

the merging algorithm. For example, recent work [25] explores the design of a distributed67

file system CRDT that uses nested structures for storing filesystem metadata. They argue68

that to properly support authentication primitives, all semantically related authentication69

information needs to be combined and considered in the merging semantics.70

Operation-based techniques, on the other hand, are better suited for replicating nested71

data structures as information on applied operations can be used to determine the optimal72

ordering for concurrent operations. In the context of nested structures, this means that73

it is less complex to relate different operations or even separate them when deciding what74

nested semantics for non-commutative concurrent operations are needed. To the best of75

our knowledge, no uniform (structured) approach exists for designing and implementing76

nested CRDTs, where CRDT designers can easily coordinate the interaction between nested77

structures, as part of the concurrency semantics of the replicated structure. In this paper,78

we introduce a general approach to nesting and composing pure operation-based CRDTs79

and propose a framework for implementing pure operation-based nested CRDTs. For this,80

we extend the pure operation-based CRDT framework [3] with support for nested CRDT81

structures. We implement our approach by extending an existing pure operation-based82

CRDT framework written in TypeScript called Flec [4], where we develop a portfolio of83

nested data structures. We demonstrate the correctness of our approach using a VeriFx84

implementation where we verify that the structures always remain strong eventually consistent.85

Finally, we implement a distributed file system based on Vanakieva et al. [25] to assess the86

performance of our approach in comparison to a state-of-the-art JSON CRDT implementation,87

Automerge [15].88

To summarise, we introduce the following contributions:89

A general approach for the design and implementation of nested CRDTs, building on the90

work of pure operation-based CRDTs.91

A full-fledged TypeScript implementation of our approach which includes a portfolio of92

existing and novel pure operation-based CRDTs.93

J. Bauwens and E. Gonzalez Boix 23:3

A validation of the correctness of our nested pure operation-based framework and a94

portfolio of CRDTs built on this framework.95

A performance evaluation showing that our approach has reduced network usage when96

compared to Automerge [15].97

2 Background98

In this section, we provide the necessary background to understand the contributions of99

this work. Baquero et al. [2] introduced the pure operation-based framework for designing100

CRDTs in a structured way while avoiding performance issues related to the unbound101

growth of meta-data. They build on the idea of relying on Reliable Causal Broadcast [8]102

(RCB) middleware to ensure causal ordering for non-concurrent operations (along with103

reliable delivery) [22, 2]. Instead of manually encoding causality information as meta-data to104

operations, the framework exposes causality information stored within the RCB middleware105

to CRDT implementors. More concretely, the framework employs a partially ordered log106

of operations (PO-Log) constructed with the causality information of the underlying RCB107

middleware. The state of the data structure can be computed by observing this log, and the108

log can be compacted to ensure that memory does not grow unboundedly. Figure 1 shows109

an example of a PO-Log of an Add-Wins (AW-Set) set replica (in a system of three replicas).110

It contains four add operations, which form the state {A,B,C}, depicted in grey. Three of111

these operations include causality information from the underlying RCB middleware, i.e.112

they carry a vector clock.113

Algorithm 1 shows the distributed algorithm describing the interaction between the RCB114

middleware and the pure operation-based CRDT framework. Each replica contains has a115

particular state (si for replica i), representing its PO-Log. The operation(o) method is called116

by client applications (e.g. by a CRDT implementation using the pure operation-based117

framework) when an operation o should be applied. It ensures that operations are broadcasted118

to other replicas and annotated with a logical timestamp on delivery (t in the algorithm119

description). It does this by invoking the broadcast method from the RCB layer, which120

broadcasts the operation with the associated timestamp meta-data to all other replicas. On121

delivery of these operations (and after all causal dependencies are met), the RCB layer will122

invoke the deliver(t, o) method from the pure operation-based framework, where the log (si)123

will be modified if needed.124

The framework introduces the concept of causal redundancy to keep the log compact.125

The idea is that a particular operation may make existing operations in the log redundant, or126

that the arriving operation may be redundant itself. Rules for this can be defined by using127

two binary redundancy relations, R and R_. R_ defines whether an arriving operation128

add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

{ A, B, C }

Figure 1 The internal state of an AW-Set. One operation is causally stable, and as such does not
contain a timestamp. Together, the operations form the state {A,B,C}.

CVIT 2016

23:4 Nested Pure Operation-Based CRDTs

makes existing entries in the log redundant, and R defines if a newly arriving operation129

should be stored in the log. The definitions for these relations need to be provided by the130

concrete CRDT implementation. The framework can also determine when operations are131

causally stable, i.e., they have been observed on all replicas, and trim causal information132

for their log entries. Since new operations can never be concurrent with causally stable133

operations, their causal meta-data (such as timestamps) is thus no longer needed. The RCB134

layer can determine causal stability by comparing the vector clocks of incoming messages135

and decide whether a particular timestamp must have been observed by all nodes. Whenever136

a particular timestamp is causally stable, the stable function will be invoked by the RCB137

layer, and the framework will compact stable operations that are returned by the stabilize138

function. It does this by replacing (removing) the associated timestamp with the bottom139

(null) element. This can also be seen in Figure 1, where the add(A) operation has been140

stripped from causality information. Similarly to the redundancy relations, the stabilize141

function has to be provided by any CRDT implementation built on the framework.142

Algorithm 1 (Simplified) distributed algorithm for a replica i showing the interaction
between the RCB middleware and the pure op-based CRDT framework.

state: si := ∅
on operationi(o) :

broadcasti(o)
on deliveri(t, o) :

si := (si \ {(t′, o′) | (t′, o′) ∈ si · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o)��R si}
on stablei(t) :

stabilizei(t, si)[(⊥, o)/(t, o)]

Table 1 shows the implementation for an AW-Set CRDT in the pure operation-based143

framework. The table is grouped as follows: (1) functions that are used by the framework144

and that dictate the interaction between new operations and entries in the log, and (2)145

procedures that can be invoked by the user for state serialisation or mutations.146

The R relation for the add-wins set defines that the clear and remove operations will147

never be stored in the log. R_, on the other hand, defines that an arriving operation o148

will make any stored operations (in the log) redundant if and only if the stored operation149

o′ causally happened before the arriving operation (i.e t′ < t) and the arriving operation is150

acting on the same set element, or the arriving operation is a clear (i.e., which removes151

all happened-before elements). For example, a remove(X) will make a previous add(X)152

redundant; and a clear operation will remove all previous log entries. The combination of153

both rules ensures that add operations will always ’win’ from concurrent operations. The154

implementation of stabilize defines that all causally stable operations will be stripped155

from their timestamps (to preserve memory consumption). Additionally, the log will only156

contain distinct add operations at any point in time. To query the state, a map function can157

extract each element from these operations (as shown in the toList function) and serialise158

it into an actual set data structure.159

Figure 2 illustrates the internal state and the PO-Log of the AW-Set depicted in Figure 1160

after receiving a remove(B) operation (depicted in the a. box) and after the operation has161

been applied (depicted in the b. box). Initially, the log consists of an operation which is162

causally stable (the add(a)), and three other operations which are not yet stable. Looking at163

the vector clocks, we can observe that the log has two concurrent operations, both of which164

add element B. When the arriving remove(B) is checked against these stored operations, both165

J. Bauwens and E. Gonzalez Boix 23:5

Table 1 Semantics for the add-wins pure-op set, based on the approach in [3].

(t, o) R s = op(o) = (clear ∨ remove)
(t′, o′) R_ (t, o) = t′ < t ∧ (op(o) = clear ∨ arg(o) = arg(o′))Pu

re

stabilize(t, s) = s

toList(s) = {v | (_, [op=add,arg=v]) ∈ s}
add(e) = operation([op=add, arg=e])

U
se
r

remove(e) = operation([op=remove, arg=e])

add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

R_
R_

<2,2,1> rem(B) R

add(A)

<1,2,1> add(C)

{ A, C }=> rem(B)

a. b.

Figure 2 The internal states of an AW-Set, after receiving a remove (rem) operation, and after
the operation has been applied.

previous add(B) operations will be marked as redundant by the R_ relation (as the operations166

have the same key, and are causal predecessors). Additionally, the arriving operation itself is167

immediately marked as redundant by the R relation of the AW-Set semantics (all remove168

and clear operations are immediately redundant) and as such, it will not be added to the169

log. The box denoted by b. shows the final result of applying remove(B): no entries for170

adding element B remain, and the removal operation itself was not added to the log. Thus,171

the replica state becomes {A, C}.172

3 Nesting Pure Operation-Based CRDTs173

Currently, it is not possible to reason about nested structures within the pure operation-based174

CRDT framework. Redundancy relations only work on a flat level, and any logic to traverse175

hierarchical/nested structures would have to be manually bolted on top of the framework in176

an ad-hoc way.177

As there is no native support for this functionality, nested designs built with the current178

framework require developers to store nested operations in a flattened form in the main log.179

To evaluate and apply the contents of the log, developers would need to either fully combine180

the logic of the nested and main top-level CRDT or encode the nested CRDT semantics181

in the query functions. In the former case, the redundancy relations and query functions182

would have to manage all concurrency rules for all needed nested strategies. This greatly183

complicates the design of such structures and makes them more prone to errors. In the latter184

case, only the query functions would need to be touched, but they would have to implement185

all redundancy logic from scratch. A programmer could delegate operations to separate186

components for the nested CRDTs, but in the end, this implies a reimplementation of the187

delivery of operations in the query function logic while this should be kept in the framework.188

In this work, we propose a novel nested pure operation-based CRDT framework that189

enables the systematic construction of nested data structures building on the ideas of Baquero190

CVIT 2016

23:6 Nested Pure Operation-Based CRDTs

et al [2]. We explore a framework that allows developers to combine and nest existing pure191

operation-based CRDTs and provides constructs for the development of novel CRDTs. In192

particular, we focus on designs where nested structures can dynamically change at runtime,193

i.e., data structures that grow and shrink during the lifetime of an application, such as maps194

and lists, where values can be CRDTs. Our approach offers developers novel framework195

constructs to define the relationship between parent and child CRDT. The framework then196

handles all replication aspects regarding the delivery of operations in the data-structure197

hierarchy, ensuring that causal ordering is respected and that nested children are recursively198

reset when needed. In the following section, we will focus on the CRDT framework level and199

detail our extensions to pure operation-based CRDTs to support nesting.200

3.1 Extending the Pure Operation-Based Framework201

In this work, we model a nested data structure as a nested hierarchy where children can be202

identified by a particular key and deeply nested children by an absolute path (list of keys)203

relative to the topmost data structure (the root CRDT). To support nested data structures,204

we introduce three extensions to the pure operation-based framework:205

An internal data structure to keep track of nested CRDTs (i.e., the children of a CRDT).206

An update propagation mechanism for nested CRDTs that delivers the applied operations207

ensuring that the concurrency semantics of parent data structures are upheld.208

A reset mechanism for nested CRDT operations that ensures that the concurrency209

semantics of children’s data structures are upheld.210

Each of these extensions is essential to ensure the correctness of replicated data types. In211

the following sections, we elaborate on them and motivate why they are needed.212

3.1.1 Keeping Track of Nested Data Structures213

Objects or data structures that have nested children typically refer to children by some key.214

Our approach assumes that children have a unique identifier by which they can be accessed215

(i.e., queried and updated). As nested children can also contain other nested elements, an216

absolute path can be constructed to identify a particular nested data structure, starting from217

the root (top-most) data structure.218

At the implementation level, a CRDT developer can decide in what manner key lookup219

works by providing an implementation of a particular handler function (getChild) that is220

used for lookup. The framework then provides a mechanism that allows absolute paths on a221

replicated structure to identify nested data structures that need to be queried or updated.222

3.1.2 Updating Individual Nested CRDTs223

When an operation needs to be applied to a nested child, the concurrency semantics of224

parent data structures must be upheld. Operations cannot just be immediately applied to225

the nested structure alone, as concurrent operations can be applied to the parent node which226

affects the key which points to the nested structure. For example, with a hash map, an entry227

could be concurrently updated, while it is being removed.228

In our approach, when an update is applied to a particular child element, we will first issue229

special update operations to every parent node. These update operations signal the parent230

CRDTs that a nested operation is going to be applied and that it should be compared to231

existing log entries using redundancy relations. For example, when building an update-wins232

J. Bauwens and E. Gonzalez Boix 23:7

replicated hash map, it is important to ensure that update operations win over remove233

operations (on the same key). At times, the update operation itself may be immediately234

redundant, and as such, there is no need to propagate the operation further to a nested child.235

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(Hi!)

{ Hello, Hi! }

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(Hi!)

{ Hello, Hi! }

<0,2,1> upd(B,) <0,2,1> set(Hey)

=> upd(B, set(Hey))

R_
R_

upd(A,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

{ Hello, Hey }

<0,2,1> upd(B,)

<0,2,1> set(Hey)

Update-Wins Map Multi-Value Register
1. 2.

3.

Figure 3 Three stages of the internal state of a hash-map with update-wins semantics containing
nested Multi-Value registers: 1) initial state, 2) arrival of an update (upd) operation, and 3) final
state after applying the operation.

To illustrate how an update is applied in our approach, consider Figure 3 showing a hash236

map with update-wins semantics containing nested Multi-Value registers in three different237

stages. A Multi-Value register (MV-Register) [22] is a replicated register that, when faced238

with concurrent updates, will store all concurrent values. Updates that (causally) follow239

will replace previous values. This is in contrast to other replicated registers, for example,240

the Last-Writer-Wins (LWW) CRDT register [22] that always keeps a single value. When241

faced with concurrent updates, an LWW-Register will use an arbitrary method for picking242

a single update (such as picking the update from the replica with the highest network id).243

The first box (denoted by 1) shows the internal state and the PO-Log for the hash map and244

the register associated with the key ’B’. As explained, every update applied to the nested245

register has an associated update in the parent log. In this case, two concurrent updates246

were applied to the nested register, resulting in the state {Hello, Hi!}.247

The second box shows the state when an update(B, set(Hey)) is applied to the hash248

map. This update has a timestamp (<0,2,1>) which is concurrent with some operations249

(<2,0,1>, <1, 0, 1>), but causally follows others (<0, 1, 1>, ..). The update itself is applied250

to the hash map, making one of the existing update entries redundant, i.e., the one with251

vector clock <0,1,1>, as it concerns the same key and has a non-concurrent timestamp.252

As the update operation itself is not redundant, its nested operation can be applied to the253

nested register. The set(Hey) is then applied to the nested register, making also one set254

operation redundant in the register, i.e., the one with vector clock <0,1,1>. Note that there255

is another pair of concurrent operations in both the map and register that will not be made256

redundant, and thus are kept in the log. The third box shows the state and the log after257

applying update(B, set(Hey)) resulting in the updated state {Hello, Hey}.258

CVIT 2016

23:8 Nested Pure Operation-Based CRDTs

3.1.3 Maintaining Consistency of Children by Targeted Causal Resets259

Applying redundancy checks on update operations ensures that the concurrency semantics of260

parents are upheld. However, they do not ensure that the concurrency semantics of children261

are upheld. In fact, the update mechanism ensures that redundancy relations are respected262

at each level of the CRDT, but these redundancy checks never cross hierarchical boundaries.263

This is problematic if a particular key is removed, but the remove operation is concurrent264

with one or more, but not all, previously applied operations (for example, remove operation265

c is concurrent with b, operation b is concurrent with a, but operation c causally follows266

operation a). This means that a key and associated child cannot be removed completely, as267

the child received some redundant operations (by the removal, e.g., operation a) and others268

that are not redundant (e.g., operation b).269

To solve this issue, we introduce a novel nested redundancy relation Rn that allows nested270

children to be reset to a particular logical timestamp (inclusive or exclusive of concurrent271

operations). Using this relation, redundancy rules can be implemented that define hierarchical272

relations between log entries.273

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(World)

{ Hello, World }

<0,2,1> del(B) reset <0,2,1>; conc=0

=> del(B)

R_

1.
R Rn

upd(A,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

{ Hello }

2.

Figure 4 Example of a nested redundancy relation that selectively resets nested children, triggered
by the deletion of a key. As the arriving delete (del) operation is concurrent with an update (upd)
that arrived earlier, the nested child needs to be partially reset.

Figure 4 illustrates the use of the Rn relation in an update-wins hash map containing274

nested Multi-Value registers. The first box (denoted by 1) shows the internal state and the275

PO-Log for the hash map, and the register associated with the key ’B’ when a delete(B)276

operation arrives. As this operation is concurrent with one of the earlier updates in the map,277

and the map follows update-wins semantics, the key itself cannot be removed. The entry278

with a preceding vector clock <0,1,1>, however, will be marked redundant by the existing279

R_ relation. At this point, the register associated with key B has partially redundant data,280

and as such needs to be updated to respect the remove operation. To this end, the Rn281

relation can be used to reset all operations in the nested register that are previous to the282

delete operation. In the case of the example, the set of the value ’Hi!’ (denoted in red in the283

figure) will be made redundant and removed from the register log. The second box shows the284

state and the log after applying the delete(B) operation in which all redundant operations285

are removed from the entire hierarchy, and the state of the register is updated to {Hello}.286

In the following section, we provide a more formal specification of our approach and287

extensions to the pure operation-based framework and describe example implementations for288

update-wins and delete-wins hash maps.289

J. Bauwens and E. Gonzalez Boix 23:9

3.2 Formalised Semantics for Extended Functionality290

We now describe our approach as an extension of the formal model of a pure operation-based291

CRDTs framework (cf. Section 2). Algorithm 2 describes the distributed algorithm for our292

novel nested pure operation-based framework specifying the interaction between the RCB293

middleware and the framework. The original Algorithm 1 used the i variable to denote a294

particular replica. In our extended model, Algorithm 2 compounds this with a list variable p,295

which denotes the path to the CRDT, relative to its parent. The top-most data structure is296

denoted as root. For example, {root, bob, favourite_colours} could be a path that refers to297

a favourite_colours object associated with the key ’bob’ in a map.298

Compared to the original pure operation-based design, Algorithm 2 features new primitives299

for broadcasting and delivering nested operations:300

broadcast_nestedi,p(o): broadcasts nested operations ensuring that the operation will301

be delivered to all replicas (reliably and in causal order). In our design, a broadcast can302

only be triggered from the top-most data structure, as such p will always be root.303

deliver_nestedi,p(t, o): called when an operation o is delivered (e.g. after it was304

previously broadcasted) on a replica i at path p with causal clock t.305

nested_operationi(p, o): called when a nested operation o needs to be applied at path306

p.307

Recall from Section 3.1.2 that when an operation is applied to a nested child, at each308

level of the parent hierarchy an update operation needs to be applied so that all redundancy309

rules can be activated. In the algorithm, the implementation of nested_operation ensures310

that an operation is packaged in an update operation and broadcasted using broadcast_-311

nested. These broadcasted operations are received by the top-level data structure (root)312

using deliver_nested. deliver_nested will then try to deliver the operation to the child313

data structure specified by the path. At each level of the path, it will apply the update314

operation, check if the operation is not redundant, and if not, recursively descend into315

the hierarchy until the path only consists of one final child. It will then apply the actual316

operation to the last nested data structure using the non-nested deliver callback. Our317

approach extends the original deliver function with our novel nested redundancy relation:318

an implementation can use Rn to select what timestamps should become redundant for which319

nested children. Children are then (recursively) reset using the reset function, which takes320

a timestamp t and a variable conc that denotes whether the reset is exclusive (only entries321

that happened-before) or exclusive (including all concurrent entries).322

In the following section, we explore how an actual nested CRDT can be built using our323

proposed extensions.324

3.3 Nested Pure Operation-Based Maps325

In this section, we illustrate our framework by describing the design of two novel nested map326

CRDTs: an update-wins map (UW-Map) and a remove-wins map (RW-Map).327

Table 2 shows the semantics for the update-wins map (UW-Map) in our pure operation-328

based framework which were informally described in the examples in Section 3.1. The design329

of the UW-Map CRDT is inspired by the add-wins Set CRDT [3, 5], with some modifications330

to take care of its nested nature [19]. The R relation for the UW-Map defines that delete331

operations will never be stored in the log (i.e., they are immediately redundant). They332

will, however, make any existing operation in the log redundant if they happened before333

(R_). This ensures that keys can be deleted. Note that the R_ relation also makes update334

CVIT 2016

23:10 Nested Pure Operation-Based CRDTs

Algorithm 2 Distributed algorithm (for a replica i) showing the interaction between the
RCB middleware and the pure operation-based CRDT framework.

state: si,p := ∅
state: childreni,p

on operationi(o) :
broadcasti,root(o)

on nested_operationi(p, o) :
broadcast_nestedi,root(update(p, o))

on deliver_nestedi,p(t,update((child, ∅), o) :
deliveri,p(t, update(child))
delivern,child(t, o) if (t, update(child))��R si,p

on deliver_nestedi,p(t,update((child, p), o)) if p 6= ∅ :
deliveri,p(t, update(child))
deliver_nestedn,child(t, update(p, o)) if

(t, update(child))��R si,p

on deliveri(t, o) :
si,p := (si,p \ {(t′, o′) | ∀(t′, o′) ∈ si,p · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o)��R si,p}
reseti,child(t, 0) | ∀child ∈ childreni,p · (child, 0) Rn (t, o)
reseti,child(t, 1) | ∀child ∈ childreni,p · (child, 1) Rn (t, o)

on stablei,p(t) :
si,p := stabilizei,p(t, si,p)[(⊥, o)/(t, o)]
stablei,child(t) | ∀child ∈ childreni,p

on reseti,p(t, conc) :
si,p := si,p \ {(t′, o′) | ∀(t′, o′) ∈ si,p · ((t′ ≺ t) ∨ (conc 6= 0 ∧ t′ ‖c t))}
reseti,child(t, conc) | ∀child ∈ childreni,p

operations with the same key that happened before be redundant. This makes the data335

structure a bit more efficient. Finally, the Rn relation for UW-Map defines that all nested336

operations that happened before any delete need to be recursively reset (i.e. removed). As337

this remove should be exclusive, i.e., no concurrent entries should be removed, we additionally338

encode that conc should be zero.339

Table 2 Update-wins pure operation-based map, with support for nested CRDTs.

(t, o) R s = op(o) = delete
(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o) = arg(o′)

(child, conc) Rn (t, o) = conc = 0 ∧ op(o) = delete ∧ arg(o) = child

Fr
am

ew
or
k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update, arg=[p, o])

U
se
r

delete(c) = operation([op=delete, arg=e])

An alternative to update-wins is ensuring that delete operations are ordered after concur-340

rent updates, leading to a map with remove-wins semantics. Note that there are different341

ways to implement a CRDT from a sequential data type as there is no one solution for342

dealing with concurrent updates. Nevertheless, it is important to offer different variants343

to the end-user, as some concurrent semantics may be preferred over others in particular344

applications.345

Table 3 shows the implementation of such a remove-wins map (RW-Map) in our framework.346

It is structured similarly to the AW-Map but has some additional complexity as the log347

needs to retain all delete operations until they are causally stable. The Rn relation encodes348

that all previous or concurrent nested updates need to be removed (to ensure remove-wins349

J. Bauwens and E. Gonzalez Boix 23:11

Table 3 Remove-wins pure operation-based map, with support for nested CRDTs.

(t, o) R s = op(o) = update
∧ (∃ (t′, o′) ∈ s·arg(o) = arg(′o)∧op(o′) = delete∧t ‖c t′)

(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o) = arg(o′) ∧ op(o) = delete
(child, conc) Rn (t, o) = op(o) = delete ∧ arg(o) = childFr

am
ew

or
k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update, arg=[p, o])

U
se
r

delete(c) = operation([op=delete, arg=e])

semantics).350

In this design of an RW-Map, in theory, update operations do not need to be stored in351

the log as these updates are stored in the nested children. However, only the last update352

operation for a particular child is kept (since previous update operations are removed from353

the log as they are redundant) As such, storing the update operations in the log can be354

useful to check if a particular child has a value, without having to query the nested children.355

When storing these entries poses a problem memory-wise, they can trivially be removed with356

no impact on the behaviour of the data type.357

The implementation of these map CRDTs demonstrates that supporting nested structures358

can be tackled in a structured and easy way. Our framework handles all logic related to359

nesting and update propagation, aiming to provide an easy-to-use interface. Additionally,360

hierarchical redundancy rules can be encoded using the Rn relation, ensuring that concurrency361

semantics are upheld at any level.362

3.4 Discussion363

We believe that our approach simplifies the design of replicated nested CRDTs, and with it,364

we aim to reduce their implementation complexity. With the presented methodology, one365

can think of every CRDT with nesting support as a flat CRDT, which needs to support366

one additional operation, namely update. For example, a map is similar to a set of keys367

with an associated value. In a set, we can add and remove keys. Using some rules we can368

make the set add-wins or remove-wins, and with a bit of extra work, we can define how an369

update operation could be ordered against concurrent add and remove. This could be the370

core design of a Map. Our framework will make sure that every nested operation, e.g. a371

nested operation to a child of the map, is first represented as an update operation for the372

parent CRDT. The parent CRDT (e.g. the map) does not need to know anything about373

the nested content of this update, it is simply trying to make sure that this update will be374

properly ordered between the additions and removals of keys. This alone, however, is not375

enough to ensure convergence, i.e. that the algorithm is functional and correct. Depending376

on the arrival order of an update in combination with other concurrent operations, the377

associated nested operation may have been applied to some replicas and not to others. To378

ensure that the nested state converges, the algorithm sometimes might need to apply some379

cleanup procedures, which is precisely where the nested redundancy relation comes into play.380

In section 5.1 we formally prove that this is the case for our approach and our implemented381

designs.382

CVIT 2016

23:12 Nested Pure Operation-Based CRDTs

4 Implementation383

We implemented our novel nested pure operation-based approach in Flec [4, 6], an extensible384

programming framework and middleware for CRDTs written in TypeScript. Flec incorporates385

the concepts of ambient-oriented programming [10, 12], to discover and communicate with386

replicas in a distributed dynamic network. Since it has support for pure operation-based387

CRDTs and RCB for causal delivery, Flec is the ideal platform for implementing our approach.388

In this section, we describe the extensions and modifications to Flec that are required to389

support nested pure operation-based CRDTs.390

4.1 Nesting in Flec391

To support the implementation of pure operation-based CRDTs, Flec provides an open392

framework with the following operations:393

isPrecedingOperationRedundant and isConcurrentOperationRedundant: en-394

code the R_ (or R0, R1) binary relation(s) defining if existing log entries become395

redundant by a new operation. Alternatively, isRedundantByOperation unifies both396

methods.397

isArrivingOperationRedundant: Encodes the R binary relation (i.e., is a new398

operation redundant by an already existing log entry).399

onLogEntryStable: performs an action when an operation becomes stable.400

onRemoveLogEntry: performs an action when a particular item is removed from the401

log (for example if it was marked redundant by isRedundantByOperation).402

onAddLogEntry: performs an action when a new operation arrives in the log.403

To build an actual CRDT data type, developers have to implement these methods,404

following the semantics of the datatype. While onLogEntryStable, onRemoveLogEntry, and405

onAddLogEntry are not required to implement the CRDT semantics, they can help optimise406

a pure operation-based CRDT to use a native data structure for causally stable entries. The407

log, entries, and optional native data compacted structures can be queried using the following408

methods:409

getLog: gets all current log entries.410

getState: gets all current log entries, the compact native state, and the current logical411

timestamp for the replica.412

getConcurrentEntries: gets all concurrent log entries for an operation.413

In this work, we extend the framework with the following new hooks and operations to414

implement nested pure operation-based designs:415

setChildInitialiser: is a method that will be used to initialise new children, using416

child-specific constructs (e.g. if you want children to be AW-Sets, the initialiser will417

return a new AW-Set).418

doesChildNeedReset: encodes the Rn binary relation (i.e., from what timestamps do419

children need a partial reset).420

performNestedOp: performs a nested operation and broadcasts it to other replicas.421

addChild: register a CRDT as a child to a parent, for a particular key.422

resolveChild: override the default internal child bookkeeping and instruct the framework423

on how to resolve a particular child CRDT based on a name (this will disable addChild).424

J. Bauwens and E. Gonzalez Boix 23:13

4.2 Implementing Nested CRDTs in Flec425

We now illustrate the extended Flec by means of the RW-Map CRDT described in Table 3.426

Listing 1 and Listing 2 show the core of the implementation of RW-Map CRDT in Flec.427

Lines 4 to 8 in Listing 1 define the CRDT constructor, which is used to initialise the values428

property that contains all nested children. Additionally, an initialiser can be specified that429

sets the initial (start) value for children. For example, if a map with a nested AW-Set is430

needed, the initializer will initialize a new AW-Set CRDT. Lines 14-16 in Listing 1 show the431

update function which can be used to apply nested operations on children (by CRDT client432

code). Any operation on a child is indicated by specifying a particular path, and the update433

to be applied. Using performNestedOp this operation will be propagated to the child and434

all replicas. The actual semantics can be seen in Listing 2 which shows the implementation435

of the redundancy relations and children referencing.436

437
1 export class RRWMap extends PureOpCRDT <MapOps > {438

2 values : Map <string , NestedCRDT >;439

3440

4 constructor (initializer : () => NestedCRDT) {441

5 super ();442

6 this. values = new Map ();443

7444

8 this. setChildInitialiser (initializer);445

9 }446

10 ...447

11 // User functions448

12 ...449

13450

14 public update (path , ... args) {451

15 this. performNestedOp (" update ", path , args);452

16 }453

17 }454455

Listing 1 The implementation of an RW-Map in Flec, using the described extensions (A).

Lines 20 to 22 in Listing 2 show the implementation of the resolveChild method which456

allows the underlying Flec framework to reference children, stored in the values property.457

The rest of the listing shows how the RW-Map implements redundancy relations to achieve458

remove-wins semantics: the RW-Map provides an implementation for isPrecedingOper-459

ationRedundant to implement the R_ relation: any operation in the log is redundant if460

it has happened before a newly arriving operation, and if they are acting upon the same461

child. It also implements isArrivingOperationRedundant to define the R relation: any462

arriving update is not applied if a concurrent delete is stored in the log. Finally, by providing463

an implementation for doesChildNeedReset we specify that when a delete arrives for a464

particular child, the child will be reset. The reset_concurrent flag is set to true to indicate465

that even concurrent updates to the child should become redundant.466

467
1 protected isPrecedingOperationRedundant (existing : MapEntry , arriving468

: MapEntry , isRedundant : boolean) {469

2 return arriving . isDelete () && existing . hasSameArgAs (arriving);470

3 }471

4472

5 protected isArrivingOperationRedundant (arriving : MapEntry) {473

6 const concurrentDeletes = this. getConcurrentEntries (arriving).474

7 filter (e => e.entry. isDelete () && e.entry. hasSameArgAs (475

arriving));476

8477

9 return concurrentDeletes . length > 1;478

10 }479

11480

CVIT 2016

23:14 Nested Pure Operation-Based CRDTs

12 protected doesChildNeedReset (child , arriving : MapEntry) {481

13 return {482

14 condition : arriving . isDelete () && arriving .args [0] ==483

child ,484

15 reset_concurrent : true485

16 };486

17 }487

18488

19 // Resolve child CRDTs489

20 protected resolveChild (name: string) {490

21 return this. values .get(name);491

22 }492493

Listing 2 The implementation of an RW-Map in Flec, using the described extensions (B).

5 Validation494

To validate our work, we conduct three experiments. First, verify the correctness of our495

proposed framework and nested pure op-based maps. Secondly, we implement the concepts496

in a real programming framework and finally, we compare it to another framework featuring497

similar concepts.498

5.1 Verification with VeriFx499

In order to verify our approach, we have re-implemented the core of our nested pure operation-500

based CRDTs in VeriFx [11]. VeriFx is a programming language for replicated data types501

with automated proof capabilities that allow users to implement replicated data types in a502

high-level language and express correctness properties that are verified automatically. VeriFx503

internally uses an SMT theorem prover to search for counterexamples for each property504

that needs to be upheld. It also enables the transpilation of the data types to mainstream505

languages (e.g. Scala and JavaScript).506

Correctness means that strong eventually consistent data types can be built with the507

framework and that they exhibit the strong convergence property which requires that replicas508

need to have received the same operations to be in the same state (regardless of the order in509

which the operations have been received). Shapiro et al. showed in [22] that operation-based510

CRDTs guarantee strong convergence if all concurrent operations commute. In our case, this511

implies checking the effects of all redundancy relations. Proving the correctness is, however,512

slightly trickier in our case, as we are dealing with a recursive design. SMT solvers, such513

as Z3 used by VeriFx, do not deal well with recursive and nested data structures, as they514

might not be able to find a solution in a finite time. To verify our approach, we thus combine515

VeriFx proofs with structural induction, which limits the recursion depth needed to verify516

our design:517

Base case: we implemented a ’perfect’ resettable pure operation-based CRDT in VeriFX518

that can model both a flat CRDT or a CRDT containing children. The CRDT logs all519

operations in a single flattened log (e.g., one log for all potentially nested structures).520

Items in the log can be reset by a parent when requested. No redundancy rules are521

applied. This design ensures that we can represent a ’correct’ nested structure (in terms522

of SMT assumptions) without needing a recursive model. We use a VeriFx proof to ensure523

convergence of this ’perfect’ CRDT.524

Induction step: a particular nested CRDT can be implemented on top of our VeriFx525

implementation and set to use perfect nestable CRDTs as children. With this approach,526

J. Bauwens and E. Gonzalez Boix 23:15

VeriFx can then be used to prove that our approach is correct for one level of nesting, for527

all pairs of operations.528

By combining the base case and induction step, we prove using structural induction that529

our framework remains correct for any nestable structure.530

531
1 proof FUWMap_update_update_converges {532

2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2533

: VersionVector , o1: SimpleOp , o2: SimpleOp) {534

3 (t1. concurrent (t2) && map. children . contains (k1) && map.535

children . contains (k2) &&536

4 map.polog. forall ((e: TaggedOp [FMapOp])=>537

((e.t. before (t1) || e.t. concurrent (t1538

))539

5 && (e.t. before (t2) || e.t. concurrent (t2)540

)))) =>: (541

6542

7 map. update (t1 , k1 , o1). update (t2 , k2 , o2)543

8 ==544

9 map. update (t2 , k2 , o2). update (t1 , k1 , o1)545

10)546

11 }547

12 }548549

Listing 3 Convergence update-update.

550
1 proof FUWMap_update_delete_converges {551

2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2552

: VersionVector , o1: SimpleOp) {553

3 (t1. concurrent (t2) && map. children . contains (k1) &&554

4 map.polog. forall ((e: TaggedOp [FMapOp])=>((e.t. before (t1) || e.555

t. concurrent (t1)) && (e.t. before (t2) || e.t. concurrent (t2)556

)))) =>: (557

5 map. update (t1 , k1 , o1). delete (t2 , k2)558

6 ==559

7 map. delete (t2 , k2). update (t1 , k1 , o1)560

8)561

9 }562

10 }563564

Listing 4 Convergence update-delete.

565
1 proof FUWMap_delete_delete_converges {566

2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2567

: VersionVector , o1: SimpleOp , o2: SimpleOp) {568

3 (t1. concurrent (t2) && map. children . contains (k1) && map. children .569

contains (k2) && map.polog. forall ((e: TaggedOp [FMapOp])=>((e.t.570

before (t1) || e.t. concurrent (t1))571

4 && (e.t. before (t2) || e.t. concurrent (t2))572

))) =>: {573

5574

6 map. delete (t1 , k1). delete (t2 , k2) == map. delete (t2 , k2). delete575

(t1 , k1)576

7 }577

8 }578

9 }579580

Listing 5 Convergence delete-delete.

As an example, Listings 3, 4, and 5 show the VeriFx proof logic that was used to check the581

behaviour of concurrent operations on an update-wins map implemented with our framework.582

We define that any pair of correct operations that are concurrent and applied to a correct583

state should commute. The operations and state are correct if the operations (causally)584

CVIT 2016

23:16 Nested Pure Operation-Based CRDTs

CRDT Semantics
UW-Map Update-wins map where values can be CRDTs. Update win from

concurrent deletes.
RW-Map Remove-wins map where values can be CRDTs. Deletes win from

concurrent updates.
RW-Map (mod) Modular version of the remove-wins map that allows more efficient

memory usage.
AW-Map A variant of the update-wins Map where keys are managed by an

add-wins set.
AW-Set An add-wins set where values can be CRDTs.
DW-List A delete-wins linked list where elements can be CRDTs.
ImmutableCRDT A map with immutable keys, which behaves similarly to structs in C.
Table 4 Implemented nested CRDT types.

follow or are concurrent with all other operations that were applied previously to the state585

(e.g. everything in the log). For this definition, we assume the usage of RCB (which is the586

case with the pure operation-based CRDT framework), so that we know that everything587

in the log must be concurrent or happened-before. In other words, the logic encodes the588

correctness properties that should always hold in our framework, i.e. that if all operations589

on the map commute and the nested operations are applied to correct CRDTs (in our case,590

all nested operations are applied to a ’perfect’ CRDT), that the map is correct.591

We use the automatic VeriFx prover to verify these properties hold given the implemented592

designs. Internally, the VeriFx SMT engine will look for valid solutions that satisfy the593

negation of our definitions, it will search for any case where the correctness properties are594

violated. Since no counterexamples (valid solutions for the negation of properties) were found595

after exhausting all search options, we can then constitute that our framework model is valid596

according to the correctness properties.597

Using this approach, we have verified our map designs, validating both the concurrency598

semantics of our proposed CRDTs and proving that our novel framework functions correctly.599

The benefit of our verification approach is that to validate the correctness of any nestable600

CRDT (built on our framework), one only needs to encode proofs for the operations on a flat601

level. All needed nesting aspects of the proof will automatically be inherited from our VeriFx602

implementation. The full source code for our VeriFx implementation, including proofs and603

implemented models, is included as an artifact.604

5.2 Portfolio of Nested CRDTs in Flec605

To show the flexibility and applicability of our approach, we have implemented several com-606

monly used data structures as novel nested pure operation-based CRDTs in Flec, summarised607

in Table 4. As shown in the previous section, we have map implementations with update-wins608

and remove-wins semantics. Maps form the basis for many other data structures and thus609

are essential to any replication framework. They have been verified using their VeriFx-based610

implementations and have been used in more complex data structures since.611

We have implemented two other maps: one modified map (based on the remove-wins612

map) that optimises some structures to have better memory resource usage, and another613

map where keys are managed by an add-wins set. Finally, we have a delete-wins list that can614

be used to store values in sequential order. Similarly to other sequential replicated structures615

J. Bauwens and E. Gonzalez Boix 23:17

such as RGAs [13], a linked list is used internally.616

The source code for the update-wins map, remove-wins map and delete-wins list imple-617

mentations can be found as part of the included artifact.618

5.3 Use-Case: A Mixed CRDT-Based Distributed Filesystem619

To validate our approach in a real-world application scenario, we implemented a distributed620

file system based on the work of [25] in our Flec implementation. This application is also621

used later in Section 5.4 to compare our approach to state-of-art.622

Flec does not only support pure operation-based CRDTs, it has many general-purpose623

constructs for building any replicated data type. As such, it comes with a portfolio of (non-624

pure-op) general CRDTs. While our extensions to Flec were focused on pure operation-based625

CRDTs, part of the nesting support we added can also be used in conjunction with general626

non-pure operation-based CRDTs to develop real-world applications.627

When composing (traditional) CRDTs, operations on a (parent) root node typically trigger628

several operations that will be applied to internal (nested) CRDTs. For a single operation,629

these sub-operations need to be applied atomically, they cannot be viewed as independent630

and should not automatically replicate to nested children of replicated CRDTs. This is in631

contrast with our main approach where an update is applied via a particular sub-path. To632

ensure compatibility with this approach in the framework, nested children can detect the633

context in which operations are applied. If a nested CRDT has a parent, and an operation is634

applied directly from that parent (and not via a nested update), the operation will not be635

broadcasted to other replicas. Instead, it is assumed that the (top-)parent operation will be636

broadcasted, resulting in the same nested update path on other replicas.637

We now discuss the overall data structures and operations of the distributed file system.638

Listings 6–8 in the appendix show the core of the implementation. It has been modified to639

hide some minor boilerplate code, type definitions, and a lot of operation handling code,640

but it contains the essentials. Listing 6 shows the main body of the DistributedFS class,641

which implements the core functionality of the CRDT. By extending the SimpleCRDT class it642

automatically inherits all the distribution and CRDT functionality from Flec (along with643

our extensions). Lines 5-21 define the required data structures for the distributed file system644

that keep track of metadata for files, groups and users. To this end, we define three maps,645

and each map on its own contains records (in the form of ImmutableCRDT) containing646

other CRDTs for storing the metadata of particular files, groups and users. For example,647

the files data structure is defined using an RW-Map and contains filesystem meta-data648

related to access rights, ownership, and data content. The data types we use for the registers649

(AccessRightF, UserID, ...) are basic types constructed from primitive types such as numbers650

or strings and can be stored directly in the registers. AccessRightF is a numerical value651

that we index as a bit-vector to store our permission flags (similar to POSIX systems). We652

provide an additional TypeScript class, AccessRight, that provides a high-level abstraction653

to this bit-vector, but concretely we store numerical values in the CRDT register. Lines654

24-28 define the onLoaded method which associates the aforementioned three maps with655

their parent CRDT. In line 30, the setHandler method defines all operation handlers which656

implement the semantics of the CRDT.657

Listing 7 shows the implementation of the CreateFile operation in more detail. Listing 8658

shows code that exposes some of the CRDT API to the local user, for performing some basic659

actions which are used by the test method in Listing 9 to show local usage of the file system660

functionality. Flec will ensure that all operations are properly replicated and distributed. In661

general, most of the code is similar to that of sequential data structures, and the API is not662

CVIT 2016

23:18 Nested Pure Operation-Based CRDTs

much more complex. This is in line with the goal of our framework: an easy-to-use interface663

for building CRDTs where developers can immediately benefit from a middleware that does664

all the heavy lifting.665

5.4 Evaluation of Network Traffic in Comparison With Automerge666

To compare our approach with state of the art, we implemented the same distributed667

filesystem in Automerge v1.0.1 [15] and evaluated the differences in network traffic between668

our Flec implementation and the Automerge implementation.669

It is not possible to select the individual concurrency semantics for nested objects with670

Automerge, as is possible with our extension to Flec. As such, the implementation has a671

slight difference in concurrency semantics when compared to the original design [25] and our672

implementation. For example, while the distributed filesystem (DFS) specification describes673

update-wins concurrency semantics for the user list, the Automerge implementation uses674

remove-wins concurrency semantics. Functionality-wise, it has the same features. In fact, in675

our implementations, both the Automerge and Flec versions have the same API.676

Automerge itself does not provide a network layer but instead provides an API that allows677

you to query (Automerge) documents for changes, and if any changes exist, you can propagate678

these over any networking channel that your application depends on. On the receiving end,679

you can insert these changes back into Automerge, which can merge the received information680

in the local state. Automerge itself uses a state-based approach, where only the required681

changes (deltas) are propagated instead of the full state, to conserve network bandwidth.682

0

2000

4000

6000

8000

10000

12000

1 101 201 301 401 501 601 701 801 901 1001

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic from source node
Flec traffic from source node

Automerge Flec

Figure 5 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. In every operation, a file is created and written.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 101 201 301 401 501 601 701 801 901

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Total cumulative Automerge network traffic

Other nodes Source node

Figure 6 Total cumulative networking traffic (in bytes/op) from all nodes for Automerge. In
every operation, a file is created and written.

For the experiments, we used a virtual network for both Automerge and Flec, which683

J. Bauwens and E. Gonzalez Boix 23:19

allows us to reproduce benchmarks and results with little non-determinism. We set up a684

system with 5 nodes (ad-hoc, peer-to-peer), and issue a thousand operations per experiment.685

5.4.1 Experiment A: File Creation and Writing686

For the first benchmark, each operation exists out of file creation and file modification. We687

applied these operations a thousand times to a deployed distributed file system, once using688

the Flec implementation and once with the Automerge implementation.689

Figure 5 shows the network traffic originating from the source node (the node where the690

operations are applied), for both implementations. As both our approach and Automerge691

share the essential updates, the results are fairly stable and linear. Automerge will always692

send small updates containing the state delta (which means the newly modified file) and our693

extension to Flec sends the operations itself. While Automerge uses a binary representation694

for the update payload, the payload itself is still heavier than the non-optimized JSON695

payload used in Flec.696

The visualisation hides some essential information, however. Automerge uses an additional697

protocol that allows replicas to propagate updates among each other. This means that not698

only the source node will share information, but also other nodes that received the new699

updates if they believe that other replicas may be missing information. Figure 6 highlights700

the additional traffic, showing that it makes up a significant portion of the total network701

traffic. In Flec updates are only sent directly from a source node to a destination node, and702

as such, there is no additional network usage.703

5.4.2 Experiment B: User, Group, and File Creation, and Configuration704

0

2000

4000

6000

8000

10000

12000

14000

1 101 201 301 401 501 601 701 801 901 1001

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic from source node
Flec traffic from source node

Automerge Flec

Figure 7 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. Every operation creates a new user, a new group, and a new file. The user is added to the
group, and the file is created with the new user as the owner. Finally, the file is written.

For the second experiment, in each operation, we create a new user, and a new user group,705

add the user to the new group, create a new file (with the new user as owner), and write to706

this file. This extra complexity leads to some interesting results. As seen in Figure 7 the707

Automerge measurements stop at around ∼100 operations. This is because the additional708

gossip traffic starts growing exponentially (see Figure 9) and causes the entire system to halt.709

We are not exactly certain what causes this problem, but we did not observe this issue with710

CVIT 2016

23:20 Nested Pure Operation-Based CRDTs

0

20000

40000

60000

80000

100000

120000

1 11 21 31 41 51 61

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Total network traffic

Automerge Flec

Figure 8 Total network traffic (in bytes/op) for both Automerge and Flec. Every operation
creates a new user, a new group, and a new file. The user is added to the group, and the file is
created with the new user as the owner. Finally, the file is written.

the previous experiment, only when we applied more complex operations. We believe that711

this is not correct behaviour from Automerge but have not been able to identify the root712

cause of the bug yet. The behaviour is consistent and reappears with each run. To be able713

to evaluate this example anyway, we will only focus on the initial measurements before the714

exponential explosion. Based on Figure 7 we can see that Automerge has a lower network715

overhead on the source node when compared to Flec. When looking at the total traffic,716

however (Figure 8), we can see that Automerge still utilizes more bandwidth. The reason for717

this is that as we are sending many operations, other replicas start propagating updates as718

well, resulting in the source node itself sending fewer updates (as it is relieved from work).719

5.4.3 Experimental Evaluation: Conclusion720

With this experimental evaluation, we showed that our approach is comparable to state-of-the-721

art CRDT frameworks, even though Flec and our extensions have not yet been optimised for722

non-experimental use. While additional optimisations can be applied to the pure operation-723

based CRDT framework and our nested framework extension, these results are promising724

and show that our approach is viable in real-world scenarios.725

We now discuss some of the potential threats to the validity of our experimental evaluation726

and why our benchmark methodology and conclusions are not invalidated by these threats.727

T: The number of replicas used in our benchmarks (5) is potentially too low.728

The results of the experiments show that this number is fair, as it allows us to observe729

interesting differences between both benchmarked platforms. For example, in Figure 6.,730

we can see that the total traffic generated by Automerge in experiment A quickly exceeds731

the traffic of our approach, but we can still compare results in a reasonable way.732

T: The chosen experiments are not realistic.733

The operations are tailored to induce complicated internal behaviour of the replicated734

data type, which we expect to also occur doing normal and realistic tasks. Of course,735

in a realistic setting such operations may not be applied repeatedly, but in the context736

of our evaluation we wanted to evaluate behaviour under repeated, continual usage737

J. Bauwens and E. Gonzalez Boix 23:21

0

500000

1000000

1500000

2000000

2500000

3000000

1 11 21 31 41 51 61 71 81 91

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic

Traffic from source node Trafic from other nodes

Figure 9 Total network traffic for Automerge for the previous experiment, highlighting an issue
with exponential growth after a certain number of operations.

while testing many different parts of the CRDT framework as well. However, the total738

amount of operations used in the benchmarks could be achieved over a small period in a739

real deployment, and therefore it is important that a distributed filesystem system can740

handle such load. The operations used aim to use nesting to its full extent, in a realistic741

application case (a distributed file system). We, therefore, believe that the benchmarks742

are suitable for evaluating our approach.743

T: The benchmarks only compare results with one other related work.744

While comparing with extra platforms could improve the evaluation, we do not believe745

that this invalidates or diminishes our results. Automerge is a state-of-the-art framework746

for replicated data structures, with a lot of usages, and therefore a proper framework to747

compare against and evaluate whether our proposed approach has viability.748

6 Related Work749

The bulk of research in replicated data types has focused on devising a portfolio of conflict-free750

data structures such as counters, sets, and linked lists [22, 24, 20, 7, 21, 19]. However, the751

composition and nesting of CRDT have drawn little attention so far. The composition of752

replicated structures is possible in a few frameworks like Automerge [15] and Lasp [17]. While753

Automerge allows programmers to arbitrarily nest linked lists and maps in a document, it754

doesn’t allow for much flexibility regarding the actual merging semantics. Lasp supports755

functional transformations over existing CRDTs provided in the language, which allows a756

composition to some extent. However, when the current portfolio of CRDTs falls short in757

those frameworks, developers need to design the desired nested data structure from scratch.758

This requires rethinking the data structure completely such that all operations commute and759

manually implement conflict resolution for concurrent non-commutative operations, which is760

hard and error-prone [22, 15, 1].761

Weidner et al. [23] explore ways to compose and de-compose pure operation-based CRDTs.762

They introduce techniques for creating novel CRDTs based on existing (de-composed) CRDTs763

with a static structure. They do not aim to provide a solution for creating general nested764

data structures, but instead, propose constructs to define the semi-direct product of op-based765

CVIT 2016

23:22 Nested Pure Operation-Based CRDTs

CRDTs. This means that instead of nesting and maintaining individual semantics, novel766

semantics are introduced to create a combination of several CRDTs, leading to an entirely767

new, non-nested CRDT. In our approach, nested data structures can change dynamically768

during runtime, using maps, lists, and sets.769

Preguiça in [19] explains several possible nesting semantics for operation-based CRDTs.770

To support a wide variety of CRDTs as nested values in different settings, it will be necessary771

for the CRDTs to be able to partially reset themselves to an initial state before a particular772

timestamp. Typically, this means that this reset has to be recursive and that nested sub-773

CRDTs will need to be reset as well. Without a disciplined approach, combining ad-hoc774

CRDTs will be hard. The benefit of using a log-based approach, which we are proposing, is775

that such recursive resets can be supported at the framework level, in a unified way, without776

needing to modify the semantics of CRDTs.777

Operation-based and state-based CRDTs are two approaches to guarantee SEC that share778

an equivalence to some extent. While both approaches can be emulated as each other [22], it779

depends on the application or system in use which approach might be more suitable. It is780

typically a tradeoff choice, between waiting for the right moment to make a state merge, or781

rather propagating operations continuously. It should be possible to emulate our approach782

(and pure operation-based CRDTs in general) as a state-based design, but making it efficient783

might be problematic as one would need to keep track of extra meta-data related to the784

applied operations (in order to maintain individual semantics between nested components).785

This information comes for free in an operation-based CRDT approach; as the operations786

themselves are directly propagated.787

7 Conclusion788

Conflict-Free Replicated Data Types (CRDTs) are useful programming tools to replicate data789

in a distributed system as they guarantee that eventually, all replicas end up in the same790

state. In this paper, we explore a structured approach for designing nested CRDTs based791

on the ideas of pure operation-based CRDTs. We propose a novel framework for building792

nested pure operation-based CRDTs and show how several common nested data structures793

can be designed and modelled in the framework. We validate our approach by extending an794

existing pure operation-based framework written in TypeScript, Flec, to include support for795

nested pure operation-based CRDTs and implement a portfolio of commonly nested data796

structures. This portfolio includes novel add-wins and remove-wins pure operation-based797

CRDTs, implemented following our framework. Additionally, we demonstrate the flexibility798

of the framework by implementing a distributed filesystem model using these techniques. We799

used an SMT-based implementation to verify the correctness of our approach. Finally, showed800

that our approach produces competitive results compared to Automerge, a state-of-the-art801

framework.802

References803

1 P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based crdts by delta-mutation.804

CoRR, abs/1410.2803, 2014. arXiv:1410.2803.805

2 C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based crdts operation-based.806

In Kostas Magoutis and Peter Pietzuch, editors, Distributed Applications and Interoperable807

Systems, pages 126–140, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.808

3 C. Baquero, P. S. Almeida, and A. Shoker. Pure operation-based replicated data types. CoRR,809

abs/1710.04469, 2017. arXiv:1710.04469.810

http://arxiv.org/abs/1410.2803
http://arxiv.org/abs/1710.04469

J. Bauwens and E. Gonzalez Boix 23:23

4 J. Bauwens and E. Gonzalez Boix. Flec: A versatile programming framework for eventually811

consistent systems. In Proceedings of the 7th Workshop on Principles and Practice of Consist-812

ency for Distributed Data, PaPoC ’20, New York, NY, USA, 2020. Association for Computing813

Machinery. doi:10.1145/3380787.3393685.814

5 Jim Bauwens and Elisa Gonzalez Boix. Improving the reactivity of pure operation-based815

crdts. In Proceedings of the 8th Workshop on Principles and Practice of Consistency for816

Distributed Data, PaPoC ’21, New York, NY, USA, 2021. Association for Computing Machinery.817

doi:10.1145/3447865.3457968.818

6 Jim Bauwens and Elisa Gonzalez Boix. From causality to stability: Understanding and819

reducing meta-data in crdts. In Proceedings of the 17th International Conference on Managed820

Programming Languages and Runtimes, MPLR ’20, page 3–14, New York, NY, USA, 2020.821

Association for Computing Machinery. doi:10.1145/3426182.3426183.822

7 Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Val-823

ter Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. arXiv preprint824

arXiv:1210.3368, 2012.825

8 K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM Trans.826

Comput. Syst., 5(1):47–76, January 1987. URL: http://doi.acm.org/10.1145/7351.7478,827

doi:10.1145/7351.7478.828

9 S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types for eventual consistency.829

In Proceedings of the 26th European Conference on Object-Oriented Programming, ECOOP’12,830

page 283–307, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-31057-7_831

14.832

10 T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix., J. Dedecker, and W. De Meuter. Ambienttalk:833

Object-oriented event-driven programming in mobile ad hoc networks. In XXVI International834

Conference of the Chilean Society of Computer Science (SCCC’07), pages 3–12, Iquique, Chile,835

2007. doi:10.1109/SCCC.2007.12.836

11 Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. Verifx: Correct replicated data837

types for the masses, 2022. URL: https://arxiv.org/abs/2207.02502, doi:10.48550/ARXIV.838

2207.02502.839

12 J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-oriented840

programming in ambienttalk. In Dave Thomas, editor, ECOOP 2006 – Object-Oriented841

Programming, pages 230–254, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.842

13 R. Hyun-Gul, J. Myeongjae, K. Jin-Soo, and L. Joonwon. Replicated abstract data types:843

Building blocks for collaborative applications. Journal of Parallel and Distributed Computing,844

71(3):354 – 368, 2011.845

14 G. Kaki, S. Priya, KC Sivaramakrishnan, and S. Jagannathan. Mergeable replicated data846

types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360580.847

15 M. Kleppmann and A. R. Beresford. A conflict-free replicated json datatype. IEEE Transactions848

on Parallel & Distributed Systems, 28(10):2733–2746, oct 2017. doi:10.1109/TPDS.2017.849

2697382.850

16 R. Klophaus. Riak core: Building distributed applications without shared state. In ACM851

SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages 14:1–14:1, New852

York, NY, USA, 2010. ACM. doi:10.1145/1900160.1900176.853

17 Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed, Coordination-854

free Programming. In 17th Int. Symp. on Principles and Practice of Declarative Programming,855

PPDP ’15, pages 184–195, 2015.856

18 Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-to-peer857

shared editing on extensible data types. pages 39–49, 11 2016. doi:10.1145/2957276.2957310.858

19 N. Preguiça. Conflict-free replicated data types: An overview, 2018. arXiv:1806.10254.859

20 Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated Abstract Data860

Types: Building Blocks for Collaborative Applications. Journal of Parallel and Distributed861

Computing, 71(3):354–368, 2011.862

CVIT 2016

https://doi.org/10.1145/3380787.3393685
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3426182.3426183
http://doi.acm.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1109/SCCC.2007.12
https://arxiv.org/abs/2207.02502
https://doi.org/10.48550/ARXIV.2207.02502
https://doi.org/10.48550/ARXIV.2207.02502
https://doi.org/10.48550/ARXIV.2207.02502
https://doi.org/10.1145/3360580
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/1900160.1900176
https://doi.org/10.1145/2957276.2957310
http://arxiv.org/abs/1806.10254

23:24 Nested Pure Operation-Based CRDTs

21 M. Shapiro. Replicated Data Types. In Ling Liu and M. Tamer Özsu, editors, En-863

cyclopedia Of Database Systems, volume Replicated Data Types, pages 1–5. Springer-864

Verlag, July 2017. URL: https://hal.archives-ouvertes.fr/hal-01578910, doi:10.1007/865

978-1-4899-7993-3_80813-1.866

22 M. Shapiro, N Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Convergent867

and Commutative Replicated Data Types. Technical Report 7506, INRIA, 2011.868

23 Matthew Weidner, Heather Miller, and Christopher Meiklejohn. Composing and decomposing869

op-based CRDTs with semidirect products. August 2020. arXiv:2004.04303, doi:10.1145/870

3408976.871

24 Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot-Undo: Distributed Collaborative872

Editing System on P2P Networks. IEEE Trans. on Parallel and Distributed Systems, 21(8):1162–873

1174, August 2010.874

25 Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and Annette Bieniusa. Access875

control conflict resolution in distributed file systems using crdts. In Proceedings of the 8th876

Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’21, New877

York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3447865.3457970.878

A DFS Code Listings879

This appendix contains code listings with portions from our distributed filesystem test880

implementation. A legend for the used types can be found in Table 5.881

Class / Type Description
RWWMap Nested Remove-Wins Map CRDT.
RUWMap Nested Update-Wins Map CRDT.
ImmutableCRDT ImmutableCRDT map. Nested CRDT map that works as

a C struct.
Register<T> LLW-Register CRDT, containing a primitive value of type

T.
AccessRightF Alias of the ’Number’ type, represents a bit vector with

access flags.
AccessRight Abstraction over AccessRightF, never stores in a CRDT,

just used for easy modification of the access right bit vec-
tors.

SimpleCRDT Abstract CRDT class in Flec, for creating operation-based
CRDTs.

GroupID / UserID / FileID Aliases for strings that represent UUIDs.
Table 5 Legend for the TypeScript classes and types used in the DFS implementation.

882
1 export class DistributedFS extends SimpleCRDT < FSOperation > {883

2 handler : FSOperation ;884

3 ...885

4886

5 files = new RRWMap (t => new ImmutableCRDT ({887

6 access_right_owner : new Register < AccessRightF >() ,888

7 access_right_group : new Register < AccessRightF >() ,889

8 access_right_other : new Register < AccessRightF >() ,890

9 file_owner : new Register <UserID >() ,891

10 file_group : new Register <GroupID >() ,892

11 file_data : new Register <string >()893

12 }));894

13895

https://hal.archives-ouvertes.fr/hal-01578910
https://doi.org/10.1007/978-1-4899-7993-3_80813-1
https://doi.org/10.1007/978-1-4899-7993-3_80813-1
https://doi.org/10.1007/978-1-4899-7993-3_80813-1
http://arxiv.org/abs/2004.04303
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3447865.3457970

J. Bauwens and E. Gonzalez Boix 23:25

14 groups = new RRWMap (t => new ImmutableCRDT ({896

15 group_users : new AWSet (), // must be RW897

16 created : new Register <flag >()898

17 }));899

18900

19 users = new RUWMap (t => new ImmutableCRDT ({901

20 is_admin : new Register <flag >()902

21 }));903

22 ...904

23905

24 onLoaded () {906

25 this. addChild ("files", this.files);907

26 this. addChild ("users", this.users);908

27 this. addChild (" groups ", this. groups);909

28 }910

29911

30 setHandler () {912

31 const me = this;913

32 this. handler = {914

33915

34 ChangeOwner (userId : UserID , newOwnerId : UserID , fileId : NodeID916

) { ... },917

35 ChangeGroup (userId : UserID , newGroupId : GroupID , fileId :918

NodeID) { ... },919

36 ChangeOwnerPermission (userId : UserID , newPerm : AR , fileId :920

NodeID) { ... },921

37 ChangeGroupPermission (userId : UserID , newPerm : AR , fileId :922

NodeID) { ... },923

38 ChangeOtherPermission (userId : UserID , newPerm : AR , fileId :924

NodeID) { ... },925

39 ...926

40 CreateUser (with_admin_rights : boolean , id: string) { /* ... */927

},928

41 CreateGroup () { /* ... */ },929

42 AssignUserToGroup (authorId : UserID , groupId : GroupID , userId :930

UserID) { ... },931

43 CreateFile (userId : UserID , groupId : GroupID , fileId : NodeID) {932

... see listing below ... },933

44 WriteFile (userId : UserID , fileId : NodeID) { ... },934

45 ...935

46 update (key: string) { }936

47 }937

48 }938

49 }939940

Listing 6 The general structure of the DFS nested CRDT, highlighting the main nested children
that contain the filesystem meta-data.

941
1 setHandler () {942

2 const me = this;943

3944

4 this. handler = {945

5 ...946

6947

7 CreateFile (userId : UserID , groupId : GroupID , fileId : NodeID) {948

8 const user = me.users. lookup (userId) as any;949

9 const group = me. groups . lookup (groupId) as any;950

10951

11 if (group && user && group. group_users . contains (userId)) {952

12 console .log(" adding file");953

13954

14 me.files . update ([{ key: fileId , op: " update " },955

15 { key: " file_owner ", op: "write" }], userId);956

16 me.files . update ([{ key: fileId , op: " update " },957

17 { key: " file_group ", op: "write" }], groupId);958

18959

CVIT 2016

23:26 Nested Pure Operation-Based CRDTs

19 const isAdmin = user. is_admin .is(FLAG_TRUE);960

20 const access_owner = new AccessRight (isAdmin , true , true);961

21 const access_group = new AccessRight (isAdmin , true , false);962

22 const access_other = new AccessRight (isAdmin , true , false);963

23964

24 this.files. update ([{ key: fileId , op: " update " },965

25 { key: " access_right_owner ", op: "write" }], access_owner .966

toEnum ());967

26 this.files. update ([{ key: fileId , op: " update " },968

27 { key: " access_right_group ", op: "write" }], access_group .969

toEnum ());970

28 this.files. update ([{ key: fileId , op: " update " },971

29 { key: " access_right_other ", op: "write" }], access_other .972

toEnum ());973

30 }974

31 },975

32 ...976

33 };977

34 }978

35 ...979980

Listing 7 Structure of the operation handling code for the DFS. Included is the code for the
CreateFile callback, which can either be invoked locally or as a result of a replicated operation.

981
1 CreateUser (with_admin_rights : boolean) {982

2 const id = this. getUID ();983

3 this. performOp (" CreateUser ", [with_admin_rights , id]);984

4 return id;985

5 };986

6987

7 CreateGroup () {988

8 const id = this. getUID ();989

9 this. performNestedOp (" update ", [{ key: " groups ", op: " update " },990

10 { key: id , op: " update " },991

11 { key: " created ", op: "write" }], [FLAG_TRUE]);992

12 return id;993

13 };994

14995

15 CreateFile (userId : UserID , groupId : GroupID) {996

16 const id = this. getUID ();997

17 this. performOp (" CreateFile ", [userId , groupId , id]);998

18 return id;999

19 }1000

20 ...10011002

Listing 8 User API for local mutations to DFS CRDT, allowing simple modification of the DFS
meta-data.

1003
1 test () {1004

2 const userId = this. CreateUser (true);1005

3 const groupId = this. CreateGroup ();1006

41007

5 this. performOp (" AssignUserToGroup ", [userId , groupId , userId]);1008

61009

7 const fileId = this. CreateFile (userId , groupId);1010

8 this. performOp (" WriteFile ", [userId , fileId]);1011

91012

10 }10131014

Listing 9 Example test code for the DFS CRDT, which creates a new admin user, a new group,
adds the user to a group, and then creates and writes a file with this new user.

	1 Introduction
	2 Background
	3 Nesting Pure Operation-Based CRDTs
	3.1 Extending the Pure Operation-Based Framework
	3.1.1 Keeping Track of Nested Data Structures
	3.1.2 Updating Individual Nested CRDTs
	3.1.3 Maintaining Consistency of Children by Targeted Causal Resets

	3.2 Formalised Semantics for Extended Functionality
	3.3 Nested Pure Operation-Based Maps
	3.4 Discussion

	4 Implementation
	4.1 Nesting in Flec
	4.2 Implementing Nested CRDTs in Flec

	5 Validation
	5.1 Verification with VeriFx
	5.2 Portfolio of Nested CRDTs in Flec
	5.3 Use-Case: A Mixed CRDT-Based Distributed Filesystem
	5.4 Evaluation of Network Traffic in Comparison With Automerge
	5.4.1 Experiment A: File Creation and Writing
	5.4.2 Experiment B: User, Group, and File Creation, and Configuration
	5.4.3 Experimental Evaluation: Conclusion

	6 Related Work
	7 Conclusion
	A DFS Code Listings

