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Abstract

The increase in internet-connected devices, including smartphones and
IoT systems, has changed the landscape of distributed systems. To en-
sure availability, data is often replicated between servers or systems at the
edge using a local-first approach. This improves performance but intro-
duces challenges as different copies of data need to be kept up-to-date.
Conflict-free Replicated Data Types (CRDTs) can be used to ensure the
convergence of replicated data, without the need for manual conflict reso-
lution strategies. Replicas can diverge temporarily, but once updates stop
they will eventually converge.

During our research, we identified four main challenges related to the
use of CRDTs. First, memory management is complicated due to the ac-
cumulation of metadata tracking causality between operations. Secondly,
there is limited support for dynamic networks, which is essential for local
networks when peers can join and leave. Third, the reliance on Reliable
Causal Broadcasting in many CRDT designs can lead to unnecessary de-
lays. Operations will be buffered until all causal dependencies are met,
even if those dependencies are not logically related. Fourth, existing sup-
port for the composition and nesting of CRDTs is inflexible and limited,
forcing ad-hoc implementations.

This dissertation investigates and develops solutions to these concerns
using Flec — a framework we developed for building eventually consis-
tent applications — as a laboratory for experimenting with novel CRDT
designs and techniques. Flec offers a modular approach for developing
CRDTs through an open implementation that reifies the replication and
convergence process.

To address the unbounded accumulation of metadata, we first intro-
duce a technique that leverages communication acknowledgements to ea-
gerly determine causal stability, enabling early metadata removal. We
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then adapt this mechanism to support networks where new peers can
dynamically join, and show how peers can obtain correct states asyn-
chronously.

Secondly, we propose an extension to pure operation-based CRDTs
that improves their responsiveness. By allowing pending operations stored
in the RCB buffer to be partially applied before all causal dependencies
have arrived, the reactivity of replicas is enhanced.

Finally, we propose Nested Pure Operation-Based CRDTs, a novel
framework for building nested replicated data structures. Our approach
allows CRDTs to support composition without semantic changes or struc-
tural limitations.

We validate our contributions by implementing a range of novel struc-
tured RDTs within Flec. Each chapter includes a validation section that
substantiates our proposed techniques and extensions. The results demon-
strate the effectiveness of our approach, which we believe forms a step
forward in enabling the usage of CRDTs in a wide variety of applications.



Samenvatting

De groei van apparaten verbonden met het internet, waaronder smart-
phones en IoT-systemen, heeft het landschap van gedistribueerde syste-
men veranderd. Om beschikbaarheid te garanderen, worden gegevens
vaak gerepliceerd tussen servers of systemen aan de rand via een local-
first benadering. Dit verbetert prestaties, maar brengt uitdagingen met
zich mee omdat verschillende kopieën van gegevens up-to-date moeten
worden gehouden. Conflict-free Replicated Data Types (CRDT’s) kun-
nen worden gebruikt om de convergentie van gerepliceerde gegevens te
garanderen. Replica’s kunnen tijdelijk van elkaar verschillen, maar zodra
updates stoppen zullen ze uiteindelijk convergeren.

We hebben tijdens ons onderzoek vier belangrijke uitdagingen geïdenti-
ficeerd met betrekking tot het gebruik van CRDTs. Ten eerste is geheugen-
beheer gecompliceerd door de accumulatie van meta-data die causaliteit
tussen operaties vastlegt. Ten tweede is er beperkte ondersteuning voor
dynamische netwerken waar peers kunnen toetreden en vertrekken. Ten
derde kan de afhankelijkheid op Reliable Causal Broadcasting (RCB) in
veel CRDTs tot onnodige vertragingen leiden. Operaties worden gebufferd
tot dat alle causale afhankelijkheden zijn toegepast, zelfs als die afhanke-
lijkheden niet logisch gerelateerd zijn. Ten vierde is de bestaande on-
dersteuning voor het combineren van CRDTs inflexibel, waardoor ad-hoc
implementaties nodig zijn.

Dit proefschrift onderzoekt oplossingen voor deze problemen met be-
hulp van Flec - een framework die we hebben ontwikkeld voor het bouwen
van eventueel consistente applicaties - als laboratorium voor het experi-
menteren met CRDT-ontwerpen en technieken. Flec biedt een modulaire
aanpak voor het ontwikkelen van CRDT’s door middel van een open im-
plementatie.
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Om de onbegrensde accumulatie van meta-data aan te pakken, in-
troduceren we eerst een techniek die communicatiebevestigingen gebruikt
om snel causale stabiliteit te bepalen, waardoor meta-data vroegtijdig
verwijderd kan worden. Vervolgens wordt deze techniek aangepast om
dynamische netwerken te ondersteunen en laten we zien hoe nieuwe peers
asynchroon een correcte staat kunnen verkrijgen.

Ten tweede stellen we een uitbreiding voor op pure operation-based
CRDT’s die hun reactievermogen verbetert. Door toe te staan dat pending
operaties die zijn opgeslagen in de RCB buffer gedeeltelijk kunnen worden
toegepast voordat alle causale afhankelijkheden zijn gearriveerd, wordt de
reactiviteit van replica’s verbeterd.

Tenslotte stellen we geneste, pure operation-based CRDT’s voor, een
nieuw framework voor het bouwen van geneste, gerepliceerde structuren.
Met onze aanpak kunnen CRDT’s compositie ondersteunen zonder seman-
tische veranderingen of structurele beperkingen.

We valideren onze bijdragen door een reeks gestructureerde RDT’s te
implementeren binnen Flec. Elk hoofdstuk bevat een validatiesectie die
onze voorgestelde technieken onderbouwt en aantoont dat onze bijdragen
het gebruik van CRDTs vereenvoudigt.
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Chapter 1

Introduction

Since the advent of computer networks in the late 1960s, distributed pro-
gramming has become a large field within computer science. Distributed
computing allows the execution of complex tasks by using the collective
power of different computing machines. Over the years, the importance
of distributed programming has increased significantly as the number and
variety of interconnected devices have exploded due to advancements in
Internet technologies, cloud computing, and the miniaturisation of hard-
ware.

With the increase in interconnected devices, we have also witnessed
a large increase in the volume of data generated and shared among dis-
tributed systems. This has created a demand for robust and scalable
distributed systems that manage data across various locations without
sacrificing performance. Modern distributed applications range from col-
laborative word processing software to decentralised data management
systems that ensure data integrity and consistency across global networks.

This dissertation focuses on programming support for developing ro-
bust and distributed systems. These systems have challenges and com-
plexities that do not exist in non-distributed environments, such as the
need for coordination mechanisms to prevent conflicts and ensure smooth
operation.
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1.1 Replicated Systems

Distributed systems often rely on data replication to enhance reliability,
availability, and performance by duplicating data across multiple nodes.
By maintaining multiple copies of data or services, replicated systems
can provide high availability and fault tolerance, as any individual node’s
failure does not compromise the overall system’s functionality. Replication
can also lower system latency, as data can be placed closer to clients,
improving access times.

Despite their advantages, replicated systems are challenging to design
as data needs to be kept consistent. Without proper mechanisms to syn-
chronise replicas, discrepancies can arise, leading to unreliable system be-
haviour. Different strategies exist and can range from strong consistency
models, where all replicas reflect the same state at all times, to eventual
consistency models, where replicas may temporarily diverge but are guar-
anteed to converge over time. The CAP theorem [Bre00, GL02] provides
a framework for understanding the trade-offs that different strategies may
bring.

The CAP Theorem. CAP stands for Consistency, Availability, and
Partition Tolerance, and the theorem states that a distributed system
can only simultaneously achieve two out of these three properties. The
theorem defines the three properties as follows:

• Consistency (C): Every read receives the most recent write or an
error.

• Availability (A): Every request receives a response (non-error), re-
gardless of the system state.

• Partition Tolerance (P): The system continues to operate despite
arbitrary partitioning due to network failures.

Given these constraints, designers of replicated systems must make
trade-offs based on the specific requirements and characteristics of their
applications. For instance, a distributed system handling financial trans-
actions may prioritise consistency and partition tolerance, ensuring that
all nodes reflect the latest data, even if it means sacrificing availability
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during network partitions. Conversely, social media platforms may priori-
tise availability and partition tolerance, allowing users to continue posting
and reading updates (such as tweets and threads) even if some parts of the
platform are not synchronised; e.g., it is perfectly fine that different users
observe updates in different orders. In practice, any modern application
needs to be partition tolerant, and as such, developers will need to choose
between consistency and availability.

1.2 Replicated Data Types

Early work in distributed systems focused on ensuring (strong) consistency
by sacrificing availability through consistency protocols [Lam78, Gra78,
OO14]. However, work such as Bayou [TTP+95] and Dynamo [DHJ+07]
showed that it was possible to build scalable fault-tolerant distributed
systems guaranteeing weaker forms of consistency, such as eventual con-
sistency (EC).

Bayou introduced programming abstractions that allowed developers
to determine when conflicts occurred during concurrent updates and pro-
vided constructs to deal with such problems. Dynamo took an approach
where all modifications were always accepted; however, the developers
had to deal with potential conflicts when accessing data, either with ba-
sic strategies provided by Dynamo (e.g., last-writer-wins) or by manually
encoding a conflict resolution strategy.

Operational Transformation (OT) [EG89] was an alternative approach
explored to ensure state convergence in replicated systems, and EC as an
extension. The approach used transformation functions to modify arriv-
ing operations so that their intended effects would be preserved without
conflicts when applied together with other concurrent operations. How-
ever, many OT mechanisms have since been proven incorrect [DPFGB23]
and, as such, the approach has mostly been abandoned.

Recent work investigates high-level replicated data types (RDTs), data
structures that are replicated across devices, such as Conflict-free Repli-
cated Data Types (CRDTs) [SPBZ11a] and cloud types [BFLW12]. CRDTs
are of special interest because they support an extension to EC called
Strong Eventual Consistency (SEC), where a system is defined so that
conflicts cannot arise. SEC adds the guarantee of state convergence to EC,
i.e. if two replicas of the data type have received the same updates, they
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will be in the same state. As a result, developers do not need to implement
custom conflict resolution schemes, and no synchronisation is needed to
resolve conflicts, yielding lower latency and better performance/scalability
[KPSJ19, Sha17, Pre18].

In this work, we investigate implementation aspects for CRDTs, and
as such, we will give a brief overview of the historical context.

Early Adoption of CRDTs. Before their formal introduction, CRDTs
were already explored in various forms, although under different names.
Baquero et. al [BM99] explored replicated data types which were essen-
tially state-based CRDTs. Treedoc [PMSL09] was introduced as a Com-
mutative Replicated Data Type, and the approach follows the design of
Operation-Based CRDTs. The authors of these works realised the re-
lation between the different works and together introduced Conflict-free
Replicated Data-Types in the 2011 comprehensive study [SPBZ11a].

Early on, Riak [Klo10] emerged as one of the first commercial adopters,
and incorporated CRDTs into their distributed key-value store. Several
CRDT designs were also integrated into the Akka framework as part of
its distributed data features. The work in both of these platforms enabled
developers to build highly available geo-distributed applications.

In parallel, research projects such as the SyncFree European Project
led to the development of novel geo-replicated databases such as Antidot-
eDB [Ant]. AntidoteDB incorporated novel techniques that allowed it to
work more efficiently than previous solutions, and it has since become an
incubator for new CRDT research.

However, most of the focus then was on devising correct specifications
for CRDTs. While some of these designs were picked up by different
systems, they were mostly implemented in an ad-hoc fashion. This limited
the availability of CRDT to other platforms, as the approaches were not
designed with portability in mind.

Around 2018, a paradigm shift formed, where user-centric collabora-
tive applications gained attention. In collaborative applications, multiple
users may work together on the same document, and as such, concurrent
operations are common. CRDTs proved to be a natural use-case for such
environments, and work such as JSON CRDTs [KB17] were ideal for the
complexity of collaborative environments.
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A push for Local-First. Following the foundational work with JSON
CRDTs, Automerge was released as a library designed to enable real-time
collaboration across applications where users can modify data concur-
rently and offline, with changes automatically merging without conflicts.
Together with other libraries such as Yjs [Yjs], a new Local-first software
principle was born, with CRDTs as a technical foundation.

Local-first software [KWvHM19] forms a set of principles for software
for giving users back the ownership of their data by allowing its offline
storage. The core idea is that users should be able to work on their data
without the need for communication through external servers and be able
to collaborate across multiple devices. In general, the principles aim to
improve data security, privacy, and long-term preservation. Local-first
software has seen a large surge in interest in the industry over the past
few years, with new software implementations and frameworks integrating
the paradigm, such as ElectricSQL [Ele] and CosmosDB [Cos].

1.3 Problem statement

We observe that the adoption of CRDTs in distributed systems is still
limited by several challenges. Current CRDT designs are not universally
applicable; they often struggle to integrate with existing systems and plat-
forms and rely on ad-hoc or rigid approaches for replication, memory
management, and composition.

In this dissertation, we study programming language implementation
techniques for systematically handling the aforementioned concerns in
CRDTs. Our work aims to decrease the hurdles developers face before
they can extend or even implement existing solutions. We categorise the
identified issues into three categories:

Replication and distribution concerns. CRDTs are replicated data
structures and, as such, have to deal with typical distribution prob-
lems, such as concurrency, partial failures, and the lack of global
clocks. CRDT designs are typically expressed as specifications, mak-
ing certain assumptions about the environment they are used in.
Often, however, these assumptions may not reflect reality, or key
information on how to implement them into software is lacking. For
example, some designs assume a fixed number of replicas, blocking
them from being used in dynamic environments where the number
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of nodes is not fixed. In other cases, CRDTs require causal delivery
guarantees, which may impose a too high burden on devices with
limited memory resources. Concretely, implementors must develop
their own techniques to deal with various replication and distribu-
tion aspects because no systematic approaches exist to handle these
concerns.

Memory management. Due to the concurrent nature of CRDTs, keep-
ing track of the order and causality of operations is essential. This
is typically done through causal metadata, such as vector clocks
or unique identifiers. If not managed properly, this metadata can
build up in a system, leading to memory resource problems. Due to
the distributed nature of systems, no shared memory space can be
garbage-collected, and memory management becomes non-trivial.

Existing work [BZP+12, BAS14, Pre18, RJKL11] explores how CRDTs
can avoid metadata or how it can be removed through garbage col-
lection mechanisms. For example, the pure operation-based CRDT
framework [BAS17] provides a systematic way to minimise resource
usage through redundancy relations. The approach, however, relies
on a causal delivery middleware for all operation delivery. While
this simplifies design, it may introduce unneeded delays in opera-
tion application (i.e. making the CRDTs less reactive). Addition-
ally, the pure operation-based CRDT specifications do not detail
how it should be implemented, leaving implementors to deal with
the replication and distribution concerns.

Composition and nesting. Most applications rely on complex, struc-
tured data for their operations. For example, in a collaborative
drawing tool, the replicated state may need to contain a list of
drawn objects, along with the properties of each of these objects.
However, the composition of CRDTs is a largely unexplored and non-
trivial problem. The main challenge is ensuring that SEC is upheld
within nested structures, as the convergence mechanisms used for
singular CRDTs are not designed for composition [SPBZ11a, Pre18,
WMM20, WQK+23]. Current approaches focus mainly on static
composition (where the structure of replicated objects cannot be
changed at runtime) or limit composition to predefined CRDT types
[KB17, NJDK16, LSB+19]. Without support for custom CRDTs,
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creating complex structures tailored to application requirements be-
comes impossible.
As such, we identify that there is no systematic approach for creating
dynamically nestable structures with general-purpose CRDTs.

1.4 Our Approach

In this dissertation, we devise and implement a CRDT framework that
addresses development concerns caused by the aforementioned problems.
Our approach to ease the construction, design, and implementation of
CRDTs follows two main ideas:

A Systematic Approach to CRDT Designs. Many innovative CRDT
designs are hampered through an ad-hoc design approach, where the
designs cannot easily be combined with existing techniques, and as
such, implementing solutions for the aforementioned problems be-
comes a complicated task. We aim to explore a systematic approach
for dealing with concerns such as memory management, reactivity,
composition and nesting, and more. The goal is to provide a frame-
work for abstracting these details away from individual data types
so that they do not need to be reimplemented per data type.

An Open Implementation Approach to CRDT Development.
Inspired by open implementations such as CLOS [GWB91],
where developers can modify language behaviour from within
the language, we aim to design a CRDT middleware as an open
implementation to test solutions and design extensions for CRDTs.
By opening up the core replication framework of the middleware,
we can provide flexible interfaces that can be used to modify and
tweak the capabilities of CRDT designs. We aim to allow our
implementations to closely follow formal specifications and be
ported to other frameworks and systems. It should also simplify
the experimentation of novel constructions and extensions, opening
the exploration of different design choices.

1.5 Contributions

This dissertation presents the following main contributions:
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Eager Causal Stability in CRDTs. We introduce a novel mechanism
to eagerly determine causal stability, improving causal metadata re-
moval. Our approach allows for a faster metadata cleanup process
and allows systems to have a lower memory consumption. Addi-
tionally, application implementors can fine-tune these processes, al-
lowing for a balance between network resource usage and memory
consumption in their systems.

A Join Model for CRDTs in Dynamic Networks. We study the chal-
lenges of employing CRDTs in dynamic network environments and
propose a join model to support dynamic networks where new nodes
can join at any moment. Our approach ensures new nodes can ac-
quire a correct replication state, allowing them to participate effec-
tively in the replicated system.

Improved Reactivity for CRDTs. We study the challenges introduced
by the enforcement of causal ordering in many CRDT designs. We
show that causal ordering may lead to less reactive CRDTs, as opera-
tions may be delayed needlessly. We propose an approach to improve
the reactivity of frameworks relying on causal ordering through the
reification of the buffered operations. In particular, we apply it
as an extension to the pure operation-based CRDT framework and
evaluate its effectiveness.

Nestable Pure Operation-Based CRDTs. We explored a structured
approach for designing nested CRDTs based on the pure operation-
based CRDT framework. We introduce nested pure operation-based
CRDTs and show how several common nested data structures can
be designed and modelled in the framework. To support our work,
we validate our approach by extending our pure operation-based
framework in Flec to include support for nested pure operation-
based CRDTs and implementing a portfolio of commonly nested
data structures.

To support our research, we developed an artefact named Flec, which
we present as our technical contribution. The Flec programming frame-
work facilitates the implementation of distributed programming with CRDTs.
By integrating the advantages of TypeScript and the Ambient-Oriented
programming model [DVCM+06, CMGB+07], Flec provides a versatile so-
lution for addressing the complexities inherent in distributed computing.
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Flec offers an open, extensible programming interface for implementing
CRDTs, which allows it to be used as a laboratory for experimenting with
CRDTs. Throughout the next chapters, Flec is used to implement, test,
and validate our conceptual contributions.

1.5.1 Supporting Publications

• Flec: a versatile programming framework for eventually
consistent systems. Jim Bauwens and Elisa Gonzalez Boix. 7th
Workshop on Principles and Practice of Consistency for Distributed
Data - PaPoC ’20 (April 2020) [BGB20a]

This paper introduces the initial version of Flec, our open frame-
work for implementing and experimenting with CRDTs in Type-
Script. We detail the framework’s extensibility and explain how it
can be used in various system settings. In Chapter 3, we describe
an extended version of the original Flec, which forms the basis for
all of our implementations.

• Memory Efficient CRDTs in Dynamic Environments. Jim
Bauwens and Elisa Gonzalez Boix. 11th International Workshop on
Virtual Machines and Intermediate Languages - VMIL ’19 (October
2019) [BGB19]

This workshop paper introduces our initial work on dynamic net-
works. It introduces the dynamic join model and details how garbage
collection can be improved in such environments. The concepts of
this paper are the basis for Chapter 4.

• From Causality to Stability: Understanding and Reducing
Meta-Data in CRDTs. Jim Bauwens and Elisa Gonzalez Boix.
17th International Conference on Managed Programming Languages
and Runtimes - MPLR ’20 (November 2020) [BGB20b]

Extending on our workshop paper, this publication brings an im-
proved design for the memory management approach in dynamic
networks. It provides an extended evaluation through implementa-
tion in Flec, which we also detail in Chapter 4.
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• Improving the Reactivity of Pure Operation-Based CRDTs.
Jim Bauwens and Elisa Gonzalez Boix. 8th Workshop on Princi-
ples and Practice of Consistency for Distributed Data (April 2021)
[BGB21]

This paper explores problems related to CRDT reactivity and pro-
poses a solution by extending the pure operation-based CRDT frame-
work. The extension reifies the causal RCB buffer and allows imple-
mentors to reason about the effects of buffered operations through
novel redundancy relations. We provide an implementation of this
work in Flec, validate how it can improve reactivity, and detail how
improved reactivity leads to memory management improvements.
This work provides the core for Chapter 5.

• Nested Pure Operation-Based CRDTs. Jim Bauwens and Elisa
Gonzalez Boix. In 37th European Conference on Object-Oriented
Programming (ECOOP 2023). Leibniz International Proceedings in
Informatics (LIPIcs), Volume 263, pp. 2:1-2:26, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2023) [BGB23]

This publication describes our approach to nested CRDTs by for-
mally extending the pure operation-based CRDT framework. The
paper validates the extension through a verified implementation in
VeriFx. We additionally provide a full-fledged implementation in
Flec and a portfolio of nested data types. This work provides the
core for Chapter 6.

1.6 Dissertation Outline

Chapter 2: Context and Motivation. This chapter provides the con-
text for our work, starting with the description of the most rele-
vant consistency models. We explain the different tradeoffs between
strong and weak models and end with a focus on Strong Eventual
Consistency. We then move to CRDTs, where we look at the differ-
ent families, and explore in what cases can be used. Finally, we give
an overview of the state-of-the-art in CRDT design and implemen-
tations, and what current solutions may exist that address concerns
from the aforementioned problems.
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Chapter 3: Flec: a Programming Framework for EC Systems.
This chapter explores our technical contribution, Flec. We detail
how it can be used for building concurrent and distributed pro-
gramming and explain how it adheres to the Ambient-Oriented pro-
gramming paradigm. We then explore Flec’s CRDT framework and
how CRDTs can be implemented and used in the framework. We
detail in full the extensible API, which will be used to implement
the designs introduced in later chapters.

Chapter 4: A Dynamic Join Model for CRDTs. This chapter looks
into our dynamic join model and the eager causal stability exten-
sions. We explain the need for such improvements and introduce
our models. We provide algorithmic specifications for our approach
and how these can be implemented in the Flec framework. We finish
with an evaluation of the approach.

Chapter 5: Improving the Reactivity of CRDTs. This chapter dis-
cusses the downsides of using reliable causal broadcasting and how
it may impact the reactivity of CRDTs. We introduce a systematic
approach to improve the reactivity of CRDT designs and describe it
as an extension of the pure operation-based CRDT framework.

Chapter 6: Nestable Pure Operation-Based CRDTs. This chapter
introduces nested pure operation-based CRDTs, a systematic ap-
proach to the composition of CRDTs. We provide a formal descrip-
tion of the extension, and implement the design both in VeriFx and
Flec. The VeriFx implementation is used to verify the correctness
of our approach, and the Flec implementation is used to benchmark
performance. The benchmarks show that our approach performs
well when compared to a state-of-the-art framework.

Chapter 7: Conclusion. This chapter concludes this dissertation and
provides an overview of our contributions and approach. We discuss
the limitations and describe what future work may bring.
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Chapter 2

Context and Motivation

In this chapter, we provide context for our research and motivate the need
for systematic CRDT programming techniques. We first give an overview
of several types of consistency that can be achieved in distributed systems,
what requirements are needed to achieve different consistency levels, and
how they are typically used. Following this, we zoom into Strong Eventual
Consistency (SEC) and CRDTs. We overview the different strategies that
can be used to design and implement such data types. Finally, we look at
the state-of-the-art CRDT implementations and the difficulties developers
might face when dealing with the problems we identified in Chapter 1.

2.1 Consistency in Replicated Systems

As mentioned in Section 1.1, data replication across distributed compo-
nents is a common strategy serving two main purposes: ensuring data
availability in the face of partial system failures and improving system
performance, for example, by lowering latencies by placing data closer to
users. When users access or modify information in a computer system,
they expect it to provide up-to-date content and that successive accesses
return data corresponding to previous modifications. For example, in
banking systems, the withdrawal of money from an account is expected
to be directly reflected in the balance of that account.

Ensuring replicas to be consistent in distributed and replicated sys-
tems is a complex task, mainly due to the possibility of concurrent up-
dates to such systems. Consistency models precisely define what is and
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is not expected, specifying the consistency expected between system com-
ponents and the operations applied to those components. Tanenbaum
[TvS06] defines consistency models as a contract between processes and
the data store. It says that if processes agree to obey certain rules, the
store promises to work correctly. Normally, a process that performs a
read operation on a data item, expects the operation to return a value
that shows the results of the last write operation on that data. Systems
designers may choose to use particular consistency models to ensure dif-
ferent guarantees in various parts of their system.

Strong consistency models ensure the highest form of guarantees in
distributed systems but require synchronisation, which can induce high
latencies. On the other hand, Weaker consistency models relax certain
guarantees and do not have the same demanding system requirements.
The following sections delve into various consistency models, their practi-
cal applications, and the level of consistency they can guarantee.

2.1.1 Strong Consistency Models

Strong consistency models guarantee a consistent view of all writes (data
mutations) to a system. Any read (data access) must behave in the same
way for any user on any part of the system, which is typically achieved by
enforcing a total order for all events (such as reads and writes).

Serializability [BHG86] is a strong consistency model for database sys-
tems, where the execution of transactions must correspond to a specific
serial ordering of those transactions. This means that all sets of concur-
rent transactions must be given a fixed order and executed in this order
on every system component.

Linearizability [HW90] is another strong consistency model that guar-
antees that for each write, all subsequent read operations will reflect that
update or any later ones. All writes must be executed atomically (i.e.,
they cannot be interrupted by other system operations), and the execu-
tion order for all operations must correspond to their real-time invocation.

Coordination is required among all components of a distributed sys-
tem to achieve strong consistency. In a replicated system, this means
synchronisation between all replicas through a protocol, e.g., such as the
two-phase commit protocol typically employed in distributed transactions.
This requirement may impact system availability in systems prone to fail-
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ures or with a high number of replicas, corresponding to the CAP theorem
(as defined in Chapter 1).

Systems where accuracy and data uniformity are critical will typically
use strong consistency. For example, most financial systems, such as bank-
ing and stock trading platforms, rely on strong consistency to ensure that
all transactions are correctly recorded and consistent across the system.
This prevents issues such as double spending or inconsistent records.

2.1.2 Weak Consistency Models

Weak consistency is a family of relaxed consistency models that does not
guarantee immediate visibility of updates to all processes. It allows some
operations on replicated data to be seen out of order or delayed and, as
a result, offers greater flexibility and performance benefits compared to
stricter consistency models.

2.1.2.1 Causal Consistency

Causal consistency is a weak consistency model that guarantees that all
replicas must execute causally dependent operations in the same order.
For instance, if a particular operation A happens before operation B, then
this order must be maintained across all replicas.

This consistency model is useful in scenarios where a total ordering of
all operations is unnecessary, but the sequence of causally related events
needs to be respected. For example, social media platforms may not need
a fixed total order for all events in their system, as many events are un-
related. Causal order, however, is necessary to ensure that, for example,
post replies do not appear before their parent posts.

While causal consistency removes the need for coordination in a dis-
tributed system, enhancing system availability and performance as a re-
sult, it can lead to diverged replicas if concurrent operations are not given
a fixed order. For this reason, additional logic is required to handle concur-
rent operations. Often, this is achieved by combining causal consistency
with the Eventual Consistency model, described below.
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2.1.2.2 Eventual Consistency

The Eventual Consistency (EC) model describes a weak form of consis-
tency where the state of replicas in a distributed system can temporarily
diverge. It guarantees that if no new updates are made to a system, even-
tually, all replicas will converge to the same state that reflects the latest
updates [Vog08, DHJ+07]. Systems that implement the EC model can
ensure high availability, as they do not need to wait for synchronisation to
terminate before allowing operations to be applied. The model, however,
does not specify how EC must be achieved. It be achieved through conflict
resolution mechanisms or even by dropping all operations.

Strong Eventual Consistency Strong Eventual Consistency (SEC)
[SPBZ11b] is an extension of Eventual Consistency, where EC is guar-
anteed through strong convergence. Strong convergence enforces that re-
gardless of the order in which operations arrive, if a set of replicas have
received the same operations, they must be in the same state. This implies
that systems implementing SEC do not need to synchronise to converge;
receiving operations are enough for all systems to be in the same state.
SEC can be achieved by implementing a system that guarantees causal
consistency and that all concurrent operations are commutable. CRDTs
are examples of such implementations, and the following section will ex-
plore them in detail.

2.2 Conflict-Free Replicated Data Types

As highlighted by the introduction, this dissertation focuses on improving
programming support for CRDT implementations. As such, we will now
provide the background on CRDTs required to follow our contributions.

Conflict-Free Replicated Data Types (CRDTs) are a family of data
structures that guarantee strong eventual consistency by ensuring conflict-
freedom for all operations [SPBZ11a, Pre18]. The core idea of CRDTs is
to provide a replicated data type that exhibits an API similar to that of a
sequential data type while guaranteeing eventual state convergence under
concurrent operations. Updates can be applied locally at a replica, and
the changes will eventually be propagated to all other replicas. This means
that the state of two replicas will eventually become equivalent when they
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have received the same operations, regardless of the order in which they
arrive.

2.2.1 Concurrency Semantics and Propagation Protocols

As mentioned before, replicas may receive operations in different orders.
However, in the semantics of most sequential data structures, applying
two operations in different orders can lead to different results.

For example, a set data structure traditionally supports add and re-
move operations. These operations do not commute, as can be demon-
strated by simply comparing the two different possible orderings of an
add and remove applied to an empty set:

1. set <- add(X)
2. set <- remove(X)

This will result in a set without item X. The following will result in a set
with item X:

1. set <- remove(X)
2. set <- add(X)

As such, we cannot directly use normal sequential data structures as repli-
cated data structures, as replicas might diverge when operations are re-
ceived in different orders. A set CRDT implementation will need concur-
rency semantics to ensure that all replicas apply operations in the same
order to obtain the same state. Concurrency semantics are used to specify
how CRDTs should deal with concurrency. Since there are many ways to
resolve concurrent operations, a sequential data structure can have various
concurrent CRDT variants that implement different concurrency seman-
tics. For example, replicated sets will typically be available with add-wins
and remove-wins semantics.

There exist two large families of approaches to design CRDTs: operation-
based and state-based [BM99, PMSL09, SPBZ11a, Pre18]. Operation-
based approaches ensure that all potentially conflicting operations com-
mute. Replicas propagate all locally applied operations to all other repli-
cas, where they will be processed and applied to the state. State-based
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approaches ensure that updates to a replica can only monotonically in-
crease the state (as a join-semilattice). Replicas can share this state and
merge it through a specially designed function. In the following sections,
we describe both approaches in more detail and discuss the implications
of their designs.

2.2.1.1 State-Based CRDTs

State-based CRDTs (or CvRDTs) are CRDTs where the state forms a join-
semilattice, and local updates monotonically increase the state [SPBZ11a,
Pre18]. Besides local updates, a state-based CRDT can also be updated
by merging in states from other replicas. The merge operation of a state-
based CRDT must be designed to be commutative, associative, and idem-
potent, ensuring that replicas converge to the same state regardless of the
order in which updates and merges occur.

A

B

C

op TO-BE-MERGED

{STATE A}

Figure 2.1: A representation of the state-based CRDT replication process.

Figure 2.1 shows the typical replication protocol in a system using
state-based CRDTs. In the example, the system exists out of three repli-
cas: A, B, and C. An operation op is applied to replica A. At some point,
replica A will broadcast its state to the other replicas. This state is the
full state of A, containing the effects of the applied operation op, and any
other operations that may have been applied previously. Replicas B and
C will merge this state together with their own. They might also update
the state concurrently and broadcast it to the other replicas at some other
point.

Note that it is not critical if a broadcasted state fails to arrive at
a replica (e.g., due to packet loss), as the next time it receives a state,
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the new state will also contain the effects of the previous state update.
The framework or middleware implementing state-based CRDTs has to
decide when to broadcast state updates to other replicas. Depending on
the system, the update rate must be fine-tuned to limit network resource
usage.

Delta-Based CRDTs. A downside to state-based approaches is that
replicas must broadcast the full application state. When the state grows to
a certain size, state propagation may stress system and network resources.
Delta-state CRDTs[ASB14, Pre18] are an optimised form of state-based
CRDTs. Instead of sending the entire state during synchronisation, delta-
state CRDTs only broadcast the changes or deltas. These deltas are the
minimal information (e.g., the modified subset of the state) required to
update other replicas about the changes made. This approach reduces
the amount of data transferred during synchronisation, making it more
efficient.

Algorithm 1: State-Based PN-Counter, based on design from
[SPBZ11a].
statei: . i is the unique replica id
posCi(id)→ number . every unset id maps to 0
negCi(id)→ number

queryi getValue() : number
(
∑

(r,p)∈posCi
p)− (

∑
(r,n)∈negCi

n)
updatei inc(n: number)

posCi[i] := posCi[i] + n . n must be positive
updatei dec(n: number)

negCi[i] := negCi[i] + n . n must be positive
mergei (statej)

for (r, n) ∈ posCj do
posCi[r] := max(posCi[r], n)

end
for (r, n) ∈ negCj do

negCi[r] := max(negCi[r], n)
end
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A State-Based Counter CRDT. To illustrate a state-based design,
consider a state-based counter. Algorithm 1 shows the specification for
a state-based Positive-Negative (PN) counter CRDT [SPBZ11a]. A PN-
counter behaves similarly to a sequential counter data structure, repre-
senting a numeric value that can be incremented and decremented.

To achieve a mergeable state where concurrent increments (or decre-
ments) do not get lost, increments and decrements are tracked for each
replica. The current counter value for a replica can be computed by sum-
ming all increments and subtracting all decrements. Concretely, the state
of a replica is defined through two maps1, one for or tracking increments
(posC) and one for decrements (negC), where the keys are replica IDs
(we assume that each replica has a unique identifier). To increment or
decrement the state of a replica, the update functions inc or dec can be
used, respectively. For increments, the value in the posC map at key i will
be incremented, where i is the ID of the updated replica. For decrements,
the value in negC will be incremented.

When merging the state of two replicas, the posC and negC maps are
merged by taking the maximum value per key. This ensures that a replica
will always merge the highest (and thus latest) values from every replica,
regardless if they are increments or decrements. To query the actual value
of a particular replica, all the values in posC will be summed (i.e., all the
increments of each replica), and then all the values from negC will be
subtracted (i.e., all the decrements of each replica).

2.2.1.2 Operation-Based CRDTs

Operation-based CRDTs (or CmRDTs) handle synchronisation through
the propagation of operations rather than states. Each replica applies lo-
cal updates and broadcasts these operations to other replicas. The main
principle behind operation-based CRDTs is that operations must be de-
signed to be commutative so that they can be applied in any order leading
to the same state [SPBZ11a, BAS14, BZP+12, Pre18].

In state-based CRDTs, operations can be idempotent; by design, merg-
ing the same state twice will not cause any issues. With operation-based

1The original specification from [SPBZ11a] utilises a vector instead of a map, as the
authors assume that replica ID is a numeric value, starting at 0, and incremented for
each new replica. We use a map instead and assume that the identifier can be any type
of value.
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CRDTs, this is not the case; applying an operation twice should lead to
another state. This means that a system using operation-based CRDTs
needs to ensure that all operations are delivered without duplication. This
is typically achieved through a middleware providing reliable delivery2.

A

B

C

op

opfx

TO-BE-APPLIED

opfx

Figure 2.2: A representation of the operation-based CRDT replication
process.

Figure 2.2 shows the typical replication process in a system using
operation-based CRDTs. In the example, the system exists out of three
replicas: A, B, and C. An operation op is issued to replica A.

Before the operation is effectively applied, it can be transformed, e.g.
mutated to include some metadata that may be necessary for ensuring
commutativity. Many operation-based CRDTs will transform an opera-
tion by attaching a unique identifier or causal metadata to it (e.g. such
as the Observed-Removed Set [SPBZ11a]). In operation-based CRDTs,
we say the transformed operation opfx is generated, applied locally (also
known as at source), and propagated to the other replicas (also known as
downstream).

An Operation-Based Counter CRDT. We now revisit the counter
CRDT example using an operation-based approach. Algorithm 2 shows
the specification of an operation-based counter. The design relies directly
on the commutativity of the addition operation. The state only consists
of the counter value itself, and updating it involves invoking the inc or dec
operations. These operations will propagate (typically through broadcast-
ing) the update operations to other replicas (as well as apply it locally).

2All operations from a particular replica need to arrive in the same order that they
were sent, and with at-most-once (a.k.a. exactly-once) semantics [TvS06, BJ87]
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Algorithm 2: Operation-Based Counter.
statei: valuei: number
queryi getValue() : number

valuei
updatei inc(n: number)

broadcast inc(n) . At source generator
updatei dec(n: number)

broadcast inc(-n) . At source generator
receivei inc(n: number)

valuei := valuei + n . Downstream effector

On reception of an operation, it will be applied to the replica state. Unlike
the state-based approach, we do not need special logic for decrements and
can implement them as negative increments.

2.2.1.3 Complex Operation-Based CRDTs

Designing new CRDTs that guarantee convergence is a complex task. Only
for data types for which all operations commute, as is the case with a
counter, can a CRDT be easily constructed since the resulting state will
be equivalent regardless of the ordering in which operations are applied.
As mentioned above, concurrency semantics are used to ensure that all
concurrent operations commute [Pre18, RJKL11, BAS17]. These concur-
rency semantics are typically highly specific to particular CRDT designs.
Many CRDTs (e.g. OR-Sets, MV-Registers, U-Sets, RGA, ...) imple-
ment their concurrency semantics through the use of unique identifiers
and metadata [SPBZ11a, BZP+12, RJKL11, Pre18]. We will illustrate
this approach by detailing the design of the Observed-Wins Set (OR-
Set) CRDT [SPBZ11a], which ensures add-wins concurrency semantics.
Add-wins semantics implies that concurrent add operations will always be
applied after any remove operations.

An Operation-Based Set CRDT. The OR-Set achieves commutativ-
ity of operations by generating a unique identifier for every newly added
item, making every add unique. From the user’s point of view, nothing
changes: the client code interacts with the OR-Set using regular add and
remove operations (which, as explained in Section 2.2.1, do not commute).
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Algorithm 3: Operation-Based Observed-Removed Set, based
on design from [SPBZ11a].
state: entries: Map(id → value), tombstones: Map(id → bool)
query getSet()
{entries[i] | ∀i ∈ keys(entries)}

update add(value)
broadcast add(value, generateUniqueId())

update remove(value)
broadcast remove(value, {i|∀i : entries[i] = value})

receive add(value, id)
if does not exist: tombstones[id] then

entries[id] := value;
else

delete tombstones[id];
end

receive remove(value, ids)
for id in ids do

if exist: entries[id] then
delete entries[id];

else
tombstones[id] := true;

end
end
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However, at the implementation level, every time an element is added to
the set, a (hidden) unique identifier is stored with it.

Algorithm 3 shows the specifications for the OR-Set. If an element is
added twice, the set will logically only contain it once, but internally, the
add update function will have generated two unique identifiers.

When an item is removed, replicas instruct others to remove only
the items with the identifiers they have observed before. If the replica
receiving the remove has not yet observed a certain identifier, it will keep
track of the removed identifier as a tombstone and effectively delay the
operation until after the add is received. This ensures that in the case
of concurrent add and remove operations, the add will always be ordered
before the remove, resulting in a commutative data type.

In a nutshell, the unique identifiers in OR-Sets have essentially two
purposes: 1) encoding the happened-before relation of operations [Lam78];
e.g. remove operations that do not include a certain identifier must have
happened before adds with that identifier, and 2) providing add-wins se-
mantics for concurrent operations, i.e., concurrent adds will win over con-
current removes.

[BZP+12] proposed the Optimized OR-Set, which removes the need for
tombstones by relying on a Reliable Causal Broadcasting (RCB) [BJ87]
middleware. RCB ensures causal ordering for non-concurrent operations
(along with reliable delivery), which makes it ideal for operation-based
CRDTs. In the context of OR-Set CRDTs, causal delivery will always
ensure that all removes come after their corresponding adds, eliminating
the need for unique IDs and tombstones.

2.3 Pure Operation-Based CRDTs

Following the Optimized OR-Set [BZP+12], Baquero et al.[BAS14, BAS17]
propose to reify and use the causality information from a Reliable Causal
Broadcast [BJ87] (RCB) middleware. To this end, they introduced the
Pure Operation-Based framework embodying such an implementation strat-
egy. Their approach allows a structured way to encode concurrency se-
mantics and ensure the causal ordering for non-concurrent operations
(along with reliable delivery) [SPBZ11a, BAS14]. The framework em-
ploys a partially ordered log of operations (PO-Log) constructed with the
causality information of the underlying RCB middleware. The state of
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the data structure can be computed by observing this log and the log can
be compacted to ensure that memory does not grow unboundedly.

2.3.1 Replication and Memory Management

Algorithm 4 describes the interaction between the RCB middleware and
the pure operation-based CRDT framework. Each replica contains a
particular state (si for replica i), representing its PO-Log. The opera-
tion(o) method is called (e.g. by a CRDT implementation using the pure
operation-based framework) when an operation o should be applied. It en-
sures that operations are broadcasted to other replicas and annotated with
a logical timestamp on delivery (t in the algorithm description). It does
this by invoking the broadcast method from the RCB layer. On delivery
of these operations, the RCB layer will invoke the deliver(t, o) method
from the pure operation-based framework after all causal dependencies
operations have been received.

The framework introduces the concept of causal redundancy to keep
the log compact. The idea is that a particular operation may make exist-
ing operations in the log redundant or that the arriving operation may be
redundant itself. Two binary redundancy relations define rules determin-
ing this: R and R_. R_ defines whether an arriving operation makes
existing entries in the log redundant, and R defines if a newly arriving op-
eration should be stored in the log. The concrete CRDT implementation
needs to provide the definitions for these relations, which will be checked
upon delivery as shown in Algorithm 4.

The framework can also determine when operations are causally stable,
i.e., they have been observed on all replicas, and trim causal information
for their log entries. Baquero et al. [BAS17] define causal stability as
follows:

Definition 2.3.1 (Causal Stability) A timestamp τ , and a correspond-
ing message, is causally stable at node i when all messages subsequently
delivered at i will have timestamp t > τ .

This implies that new operations can never be concurrent with causally
stable operations, and as such, their causal metadata (such as timestamps)
is no longer needed. The RCB layer can determine causal stability by
comparing the vector clocks of incoming messages and decide whether a
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particular timestamp has been observed by all nodes. Whenever a partic-
ular timestamp is causally stable, the stable function will be invoked by
the RCB layer, and the framework will compact stable operations that are
returned by the stabilize function. It does this by replacing (removing)
the associated timestamp with the bottom (null) element. Similarly to
the redundancy relations, the stabilize function has to be provided by
any CRDT implementation built on the framework.

Algorithm 4: (Simplified) distributed algorithm for a replica
i showing the interaction between the RCB middleware and the
pure op-based CRDT framework. Based on design from [BAS17].
state: si := ∅
on operationi(o) :

broadcasti(o)
on deliveri(t, o) :

si := (si \ {(t′, o′) | (t′, o′) ∈
si · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o) ��R si}

on stablei(t) :
stabilizei(t, si)[(⊥, o)/(t, o)]

2.3.2 A Pure-Operation Based Set

We now show a pure operation-based set, which, similar to the OR-Set,
implements add-wins concurrency semantics. Table 5.1 details the imple-
mentation and is grouped as follows: (1) functions that are used by the

add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

{ A, B, C }

Figure 2.3: The internal state of an AW-Set. One operation is causally
stable and, as such, does not contain a timestamp. Together, the opera-
tions form the state {A,B,C}.
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framework and that dictate the interaction between new operations and
entries in the log, and (2) procedures that can be invoked by the user for
state serialisation or mutations.

The R relation for the add-wins set defines that the clear and remove
operations will never be stored in the log. R_, on the other hand, defines
that an arriving operation o will make any stored operations (in the log)
redundant if and only if the stored operation o′ causally happened before
the arriving operation (i.e. t′ < t) and the arriving operation is acting
on the same set element, or the arriving operation is a clear (i.e., which
removes all happened-before elements). For example, a remove(X) will
make a previous add(X) redundant, and a clear operation will remove
all previous log entries. The combination of both rules ensures that add
operations will always ’win’ from concurrent operations. The implemen-
tation of stabilize defines that all causally stable operations will be
stripped from their timestamps (to preserve memory consumption). Ad-
ditionally, the log will only contain distinct add operations at any point
in time. To query the state, a query function can extract each added ele-
ment from the log (as shown in the toList function) and serialise it into
an actual set data structure.

Figure 2.3 shows how the PO-Log of an Add-Wins (AW-Set) set replica
(in a system of three replicas) might look. It contains four add operations,
which form the state {A,B,C}, depicted in grey. Three of these operations
include causality information from the underlying RCB middleware, i.e.
they carry a vector clock. The final add(A) operation has been stripped
from causality information, as the operation is causally stable.

Table 2.1: Semantics for the add-wins pure-op set, based on the approach
in [BAS17].

(t, o) R s = op(o) = (clear ∨ remove)
(t′, o′) R_ (t, o) = t′ < t ∧ (op(o) = clear ∨ arg(o ) =

arg(o′))Pu
re

stabilize(t, s) = s

toSet(s) = {v | (_, [op=add,arg=v]) ∈ s}
add(e) = operation([op=add, arg=e])

U
se
r

remove(e) = operation([op=remove, arg=e])
clear() = operation([op=clear])
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add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

R_
R_

<2,2,1> rem(B) R

add(A)

<1,2,1> add(C)

{ A, C }=> rem(B)

a. b.

Figure 2.4: The internal states of an AW-Set, after receiving a remove
(rem) operation, and after the operation has been applied.

Figure 2.4 illustrates the internal state and the PO-Log of the AW-Set
depicted in Figure 2.3 after receiving a remove(B) operation (depicted in
the a. box) and after the operation has been applied (depicted in the b.
box). Initially, the log consists of an operation which is causally stable
(the add(a)), and three other operations which are not yet stable. Look-
ing at the vector clocks, we can observe that the log has two concurrent
operations, both of which add element B. When the arriving remove(B) is
checked against these stored operations, both previous add(B) operations
will be marked as redundant by the R_ relation (as the operations have
the same key, and are causal predecessors). Additionally, the arriving op-
eration itself is immediately marked as redundant by the R relation of
the AW-Set semantics (all remove and clear operations are immediately
redundant) and as such, it will not be added to the log. The box denoted
by b. shows the final result of applying remove(B): no entries for adding
element B remain, and the removal operation itself was not added to the
log. Thus, the replica state becomes {A, C}.

Remove-Wins Semantics. Table 2.2 shows the Remove-Wins Set (RW-
Set) CRDT specification in the pure operation-based CRDT framework
[BAS17]. It provides remove-wins concurrency semantics, meaning that
add operations will always be ordered before concurrent remove opera-
tions.

Unlike with the AW-Set, the RW-Set stores remove operations in the
PO-Log, as concurrent add operations that should be made redundant
by the remove can arrive at any point in time. This is exactly what is
defined by the R relation: any arriving add operation will be immediately
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Table 2.2: Semantics for the remove-wins pure-op set, based on approaches
from [BGB20b, BAS17].

(t, o) R s = op(o)=add ∧∃(t′, [op=remove,
arg=arg(o)]) ∈ s · t ∼ t′

(t′, o′) R_ (t, o) = (t′ < t ∧ (op(t′) = add ∨ arg(o) =
arg(o′)) ∨ ((t′ < t ∨ t ∼ t′)∧ op(o) =
remove ∧ op(o′) = add ∧ arg(o) =
arg(o′))Fr

am
ew

or
k

stabilizei(t, s) = {(t′, o) | ∀(t′, o) ∈ s · t 6= t′}
∪{∀(⊥, [op=add,arg=e]) |
(t′, [op=add,arg=e]) ∈ s · t = t′}

toSet(s) = {v | (_, [op=add,arg=v]) ∈ s}
add(e) = operation([op=add, arg=e])

U
se
r

remove(e) = operation([op=remove, arg=e])
clear() = operation([op=clear])

redundant if there is a remove in the log for the same element. The R_
relation follows this by defining that any previous add operation, stored
in the log, will become redundant if a following or concurrent remove
operation arrives for the same element. We also remove any add operations
if a causally following add on the same element arrives to avoid needless
duplication of add records. To keep the PO-Log compact, the RW-Set 1)
removes all remove operations from the log when they become causally
stable, and 2) removes all timestamps from causally stable add operations.

2.4 State of the Art of CRDT Implementations

In this section, we discuss the state-of-the-art CRDT implementations and
designs to put our contributions in context.

2.4.1 Approaches to Replication and Distribution

As mentioned in Chapter 1, much work focuses on designs and speci-
fications for CRDTs. Initially, many implementations focused on geo-
distribution, but with the advent of local-first applications, we have wit-
nessed a shift in implementation approaches. This section explores various
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implementations and their distributed design and ends with an overview
of the open problems that motivate our work.

Local-First. Among local-first software approaches, the most popular
CRDT implementations are Automerge [Aut] and Yjs [Yjs]. Automerge
is based on an implementation of JSON CRDTs [KB17] and targets web-
based platforms where copies of data are stored directly on end-user sys-
tems. It implements a system where JSON-like documents can be mu-
tated and safely shared without any possibility of conflicts. However,
Automerge does not include a built-in distribution layer; system designers
are responsible for implementing the replication mechanism. This allows
the framework to be used in various settings over various connectivity
mediums.

As a concrete example, consider dynamic networks. Automerge en-
ables new nodes to construct their initial state by receiving a serialised
copy of the state of one of the other replicas. Subsequent updates can then
be shared with the new node. However, this approach burdens system de-
velopers to manage concurrent updates during the node initialisation in
an ad-hoc way.

Yjs is a similar framework targeting web-based applications that en-
able generic shared documents. It has a distribution layer, based on the
YATA CRDT framework [NJDK16], that can replicate data over WebRTC
and other protocols. The framework can easily be adapted to work with
different network protocols. While YATA does support dynamic networks,
the approach does not scale with large networks. When a node (re-)joins
the network, online replicas will attempt to send any missing updates. In
the case of a new node, this would be the entire state of the replica. As
every replica will apply this procedure, the network may be flooded with
duplicate operations and states.

Geo-Replication. When looking at geo-replicated systems, Antidot-
eDB [ATB+16, Ant] and, more recently, Azure CosmosDB [GPGP18, Cos]
offer industry-strength solutions. AntidoteDB [ATB+16] is a comprehen-
sive geo-distributed key-value store that uses CRDTs to ensure availabil-
ity, low latency, and partition tolerance. AntidoteDB offers various CRDT
types for developers to use as data values. It employs Cure, a distributed
storage system implemented in Erlang, to guarantee causal consistency
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and atomicity. Erlang’s message-passing system enables modular replica
discovery and operation/state propagation. Although AntidoteDB sup-
ports dynamic network reconfiguration [LSB+19], detailed descriptions of
the used approach are not found in published literature.

Azure Cosmos DB is a NoSQL database that uses CRDTs as part
of its core type system. While it lacks clear publications on its internal
functioning, documentation highlights that it mostly relies on Last-Write-
Wins (LWW) mechanisms in combination with custom conflict resolution
policies, more akin to cloud types [BFLW12].

Language-Centric Approaches. Lasp[MVR15], like AntidoteDB, re-
lies on Erlang for its distribution capabilities. It provides a general-
purpose CRDT framework that is directly accessible from Erlang to prop-
agate state changes to connected nodes through Riak DT. While nodes can
dynamically join, state-based replicas can only obtain a full state if oper-
ations have been applied before. Operation-based CRDTs will be missing
any operations applied before the join, and the system developer will need
to implement manual techniques to ensure proper synchronisation.

Other approaches, such as ConSysT [EKMS19], provide programming
language abstractions for specifying consistent levels. They allow devel-
opers to safely mix and define their system’s requirements. The result is
a mixed consistency approach that not only relies on CRDTs but can also
adapt to different synchronisation models.

Triumvirate [Myt19] provides a DSL tailored towards the implementa-
tions of distributed rich internet applications. It supports a suite of RDT
to represent distributed state and additionally allows for the distribution
of programming logic across servers and clients.

Overview: All in all, the overviewed approaches and most other designs
[RJKL11, WUM10, Klo10] generally take an ad-hoc approach to replica-
tion and distribution aspects. This may make it harder to reuse and ex-
tend such systems. Earlier work on Group Communication Systems (GCS)
[Gol92, ADKM92] notes the importance of supporting dynamic environ-
ments in replicated environments and proposed mechanisms to this end.
However, we observe that the concepts introduced by GCS have not been
adapted for CRDT-based systems; there are no systematic approaches for
the handling of dynamic networks. Additionally, as mentioned in the in-
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troduction, the hard requirement for reliable causal broadcasting by the
majority of frameworks, middleware, and libraries for CRDTs hampers
the reactivity of such systems [BFG+12].

2.4.2 Memory Management in CRDTs

While CRDT designs do not rely on synchronisation to impose an ordering
between operations in the system, many CRDT designs track the causality
of operations. As explained previously in Section 2.2.1.3, this is often done
by tagging operations with some metadata, either through direct logical
clocks or values that represent the causal origin of the operations in some
way. For example, OR-Set CRDTs (Section 3.3.2) tag values with (hidden)
unique identifiers and tombstones. This ensures that basic causality can
be tracked between operations, as concurrent operations will not contain
the unique identifiers of operations that they have not observed.

Logging such metadata can be problematic as it may grow unbound-
edly if not removed. Garbage collecting useless data from eventually con-
sistent (EC) systems is not trivial, as different system parts may be in
different states. One of the major problems of garbage collection in EC
systems is the lack of fixed synchronisation between replicas that can be
used to determine when data becomes garbage.

Specific approaches have been proposed to address this issue directly
in the CRDT designs [BZP+12, RJKL11]. For example, Lasp [MVR15]
uses optimised OR-Sets, though some metadata removal mechanisms are
disabled when replicas are offline. While effective, these techniques are
mostly specific to certain CRDT designs and cannot be trivially applied
to other designs.

The Pure Operation-Based CRDT framework [BAS17], on the other
hand, provides general-purpose techniques through the reification of causal
clocks in the form of a partially ordered log. This introduces a systematic
approach to the handling of memory management. Sadly, mainstream
frameworks have yet to adopt pure operation-based CRDTs and, as such,
do not benefit from this approach.

Yjs [NJDK16] implements a time-based garbage collection scheme.
This approach imposes a bound on when concurrent operations can be
applied, which helps deduce which causal metadata can be safely removed.
However, this approach has limitations in offline settings or when the sys-
tem experiences significant latencies. The original YATA paper [NJDK16]
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discusses an alternative approach that closely aligns with the techniques
introduced by the Pure Operation-Based CRDT framework. However, to
the best of our knowledge, this alternative approach has not been inte-
grated into Yjs due to concerns regarding the potential network overhead.

Automerge makes use of a log to keep track of all applied operations.
This approach can be practical for keeping a complete history of changes
applied to a document. Although it preserves a full historical record, the
continuous accumulation of changes may lead to excessive memory usage,
which requires careful consideration by system developers.

Overview: While various techniques have been developed to manage
memory in CRDTs, each comes with its trade-offs and limitations. Ef-
fective memory management remains a critical aspect for the implemen-
tation of CRDT systems to ensure both efficiency and scalability. The
Pure Operation-Based CRDT framework introduces a systematic way to
reason about the causality of operations and, as a result, simplifies CRDT
design. It provides an important inspiration for our work, where we set
forth to provide systematic solutions to most of the described problems.

2.4.3 Composition and Nesting in CRDTs

Most research in replicated data types has focused on creating a port-
folio of conflict-free data structures such as counters, sets, and linked
lists [SPBZ11a, WUM10, RJKL11, BZP+12, Sha17, Pre18]. However, the
composition and nesting of those CRDTs have received less attention.

The composition of predefined replicated structures is possible in a
few frameworks like Automerge [KB17], AntidoteDB and Lasp [MVR15].
While Automerge and AntidoteDB allow arbitrary nesting of lists and
maps, they offer limited flexibility in merging semantics, as custom CRDTs
cannot be used. Lasp supports functional transformations over existing
CRDTs in the language, enabling some level of composition. The approach
is dataflow-centric, meaning that structure must be imposed through func-
tional operations and destructors. This process is complex and error-prone
if large and complex structures must be created.

Recently, novel approaches have arrived for the implementation of im-
plementation of Composed CRDTs [WMM20]. They provide a systematic
approach to composition on top of the pure-operation CRDT framework,
though only allow static structures where the structure cannot be modi-
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fied at runtime. Currently, this approach is being extended [WQK+23] to
support the general nesting of pure operation-based CRDTs. This work
was developed concurrently with our research and offers many similarities
to the nesting framework which we will present in this dissertation.

Security and Authorisation. Flexible composition techniques are not
only essential for managing data structures but also for tracking meta-
data related to security and authorisation in a system. Previous work on
eventually consistent (EC) data stores has highlighted the challenges of
applying general authentication and security techniques to weakly consis-
tent systems [RB94, LC18]. One significant challenge is preventing data
tampering while maintaining availability, an unresolved issue particularly
relevant to programming languages.

Ensuring trust in EC systems is complex. The ACGreGate framework
by Weber et al. [WB18] addresses this by proposing a CRDT structure
designed to store and propagate authorisation policies within a weakly
consistent system. This approach ensures that authorisation metadata
is correctly replicated and enforced across the system, maintaining both
security and availability.

While CRDT frameworks like Automerge and Lasp offer some support
for composition and nesting, there remains a significant gap in addressing
security and authorisation within these systems. Ensuring that authori-
sation metadata is consistently and correctly replicated is crucial for the
trustworthiness of EC systems, highlighting the need for further research
and development in this area.

Overview: Mainstream libraries and frameworks allow developers to
use nested and composed CRDTs but are limited to particular sets of
CRDTs, and developers cannot configure their own concurrency seman-
tics for nested structures. Only recent work has investigated systematic,
non-ad-hoc approaches to nesting and composition, which we believe are
crucial to enable more widespread usage of CRDTs and tackle implemen-
tation concerns such as security.
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2.5 Conclusion

In this chapter, we reviewed the state-of-the-art in CRDT programming
and the required background for this dissertation. We explored various
approaches to CRDT design and highlighted the impact of different design
choices on the guarantees for replicated systems.

Many state-of-the-art implementations exist that address specific pro-
gramming concerns we highlighted. However, most of these solutions rely
on an ad-hoc approach or are limited to specific CRDT framework designs.
Continued research is essential to develop robust, scalable, and, most im-
portantly, flexible and systematic CRDT designs and frameworks.

We identify that the Pure Operation-CRDT framework provides a con-
cise approach to developing and implementing CRDTs. In this framework,
replication and memory concerns are abstracted away from the concrete
semantics of data structures. This allows for clean and clear implementa-
tions, minimising accidental complexity and the changes required to cor-
rect mistakes in CRDT designs. In the following chapters, we will build
on the ideas of the Pure Operation-CRDT framework to provide system-
atic solutions to the concerns that we expressed in our problem statement,
namely that many designs use ad-hoc approaches to replication, memory
management, and composition. The next chapter will first detail Flec,
our implementation framework, which is used as a laboratory for CRDT
experimentation.
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Chapter 3

Flec: a Programming
Framework for Eventually
Consistent Systems

CRDT research has primarily focused on providing formal specifications of
different data types (e.g. OR-Sets, replicated growable arrays, embeddable
counters and more) [SPBZ11a, RJKL11, BGYZ14, ZBPH14, BAL16], but
fewer work has focused on embedding CRDT in actual language imple-
mentations [MVR15, KB17]. Developers using existing libraries need to
handle many distribution aspects themselves, such as how to discover new
network acquaintances and how they will cope with a dynamically chang-
ing system [BGB19]. This greatly raises the barrier to utilising CRDTs.

We built Flec, a versatile programming framework for eventually con-
sistent systems, as a laboratory for experimenting with CRDTs. Flec offers
a modular and extensive approach for developing and using CRDTS more
easily. Key features of Flec include:

• A flexible networking framework that is adaptable to different net-
working protocols, simplifying the integration of CRDTs across var-
ious environments.

• A Meta Object Protocol (MOP [KdRB91]) provides an API expos-
ing the inner workings of CRDTs, facilitating the creation of new
CRDT variants by allowing developers to intercept and adapt the
replication process at relevant points. For example, a CRDT im-
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plementor can use this API to intercept operation propagation and
modify their behaviour.

• From a technical viewpoint, our implementation is TypeScript-based,
a modern language chosen for its portability and wide platform sup-
port. This makes Flec an effective tool for experimenting with and
creating new replicated data structures in real-world applications.

Overall, Flec aims to lower the barrier to utilising CRDTs in appli-
cation development, providing a comprehensive and adaptable framework
for researchers and developers. We use it as the foundation for the work
described in this dissertation, with all implementations working on top of
Flec.

3.1 The Flec Programming Framework

JavaScript VM

CRDT RCB

Platform

Pure Operation-Based 
CRDTs

M
O
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Reference Management
Actor-based Concurrency
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Figure 3.1: Flec architectural overview.
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Figure 3.1 gives a general overview of the Flec Programming Frame-
work. Flec and its components are implemented in TypeScript, a typed
superset of JavaScript. This allows the framework to run on various plat-
forms that support a JS-runtime, such as Web Browsers and IoT devices.

The core of Flec is a component named TSAT, which is a layer that
incorporates concepts of ambient-oriented programming for TypeScript
[CMGB+07, DVCM+06] for distributed programming with objects. In
ambient-oriented programming, developers have an actor-based program-
ming model where actors can communicate and coordinate over dynamic
networks.

Flec is engineered to be network agnostic and allows communication
pipelines to be implemented using any underlying transport mechanism.
Depending on what platform Flec is running on, the exact means of trans-
portation can be different: web browsers could be using WebSockets or
WebRTC, on embedded devices (such as the ESP32, a lightweight, power-
efficient integrated system-on-a-chip platform) it could be over pure TCP
sockets.

Other significant components are the Reliable Causal Broadcasting
(RCB) layer for ensuring causal and reliable delivery guarantees, the
CRDT layer for generic CRDT implementations, and the Pure Operation-
Based CRDT framework. They are tightly coupled together through the
MOP, which allows flexible modifications to the replication system, and
rely on the TSAT layer for distribution capabilities. These components
will be described in detail in later sections of this chapter.

3.2 Ambient-Oriented Programming Programming
in TSAT

As mentioned, TSAT follows the ambient-oriented programming (AMOP)
paradigm [CMGB+07] that allows for the simplified development of dis-
tributed applications. Following the principles of this paradigm, TSAT
features an actor-like message-passing system that can work over a net-
work in a distributed setting. This section describes how TSAT provides
concurrent and distributed programming constructs through non-blocking
message passing between actors and the synchronisation primitives that
can be used to coordinate asynchronous operations.

39



CHAPTER 3. FLEC: A PROGRAMMING FRAMEWORK FOR
EVENTUALLY CONSISTENT SYSTEMS

3.2.1 Concurrent Programming

TypeScript is a typed superset of JavaScript, a prototype-based object-
oriented programming language. JavaScript runtimes use an event-loop
execution model, which processes events and manages the queueing of
tasks and their eventual execution. Events in this model are typically
handled asynchronously, through callbacks, promises, or async/await.

Flec/TSAT extends this with support for actor-based concurrency,
where objects are owned by actors. Within a single-actor environment, ob-
jects can be referenced by other objects through direct references, as is the
default in TypeScript. Access to objects residing in other actors is done
via far references [MMF01]. While communication via direct references
is synchronous, communication via far references is always asynchronous.
In this section, we explain the concurrent programming model of TSAT
through a PingPong application.

3.2.1.1 Actors in TSAT

Actors in TSAT define a single thread of execution and act as a container
for objects. Actors communicate with other actors through asynchronous
message passing. Each actor has a mailbox (a message queue), and an
internal processing thread atomically processes messages from the mail-
box. Actors define a behaviour object that specifies their interfaces, i.e.
the set of messages that an actor understands. When creating an actor,
a far reference to the behaviour is returned so that other actors can send
messages to it.

Listing 3.1 shows how a ping actor can be created with TSAT by in-
voking the method newActorWithBehaviour on a TSAT context. The
method’s first argument dictates the actor’s name; the second argument
should be the type class used to construct the behaviour object, which
in TSAT extends the ActorBehaviour class. In the example, we create
the ActorABehaviour class. Providing an anonymous (unnamed class) as
behaviour is also possible. If an actor behaviour defines an init method,
this method will be invoked on the successful initialisation of the actor.
In our case, init prints a hello world message on initialisation. The be-
haviour also defines a ping method that prints a message and returns
a string pong. The newActorWithBehaviour method returns a far ref-
erence to the behaviour of this class, which is an instance of the Far-
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Listing 3.1: Code snippet of a ’Ping Pong’ application showing actor cre-
ation in TSAT.

1 const ctx = new TSAT("vma");
2

3 let actorA = ctx.newActorWithBehaviour("Actor A", class
ActorABehaviour extends ActorBehaviour {

4 init() {
5 console.log("[A] Hello, World!");
6 }
7

8 ping() : string {
9 console.log("[A] Received a Ping, returning a pong");

10 return "pong";
11 }
12 });

Ref<ActorABehaviour> class. Other actors can use the far reference to
send asynchronous messages to the actor. It is possible to supply extra
arguments to the newActorWithBehaviour method; these will be passed
(by copy) to the init function as arguments.

3.2.1.2 Asynchronous computations

We will now elaborate on the message-passing semantics of far references
by extending the previous example.

Listing 3.2: Code snippet of a ’Ping Pong’ application that shows asyn-
chronous message sends.

1 ctx.newActorWithBehaviour("Actor B", class extends ActorBehaviour
{

2 async init(actorA) {
3 console.log("[B] Sending a ping");
4 let result = await actorA.ping();
5 console.log("[B] Received a response:", result)
6 }
7 }, actorA);
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In Listing 3.2 we show the creation of a new actor, Actor B. On ini-
tialisation, this actor uses the far reference of Actor A to send a ping
message. Sending a message to a far reference returns immediately, never
blocking the actor. However, there are scenarios where it is necessary to
collect the result of asynchronous messages. This is accomplished using
promises, which are objects that act as placeholders for the future results
of asynchronous computations [YBS86].

TSAT integrates these asynchronous computations with an extended
version of JavaScript promise objects. Consequently, all message invoca-
tions return such promises.

In our example, the ping method returns a promise. Actor B will
await this promise to get the computation result and subsequently print
it. The await operator, part of the JavaScript standard, allows function
execution to pause until the promise is resolved.

In TypeScript, a promise is a fundamental concept for handling asyn-
chronous operations. It represents a value that may not yet be available
but will be resolved in the future. A promise can be in one of three states:
pending, resolved, or rejected. While pending, the operation is ongoing.
Once completed, the promise is either resolved with a value (if successful)
or rejected with a reason (if failed).

Promises in TypeScript are strongly typed, allowing developers to
specify the type of value that a Promise will resolve with. For example, a
Promise that resolves with a number can be typed as Promise<number>.
Promises can be consumed using the .then() method, which registers call-
backs to receive the Promise’s eventual value. Additionally, the .catch()
method can be used to handle errors.

3.2.2 Chainable Promises in TypeScript and TSAT

TSAT extends on TypeScript promises by allowing them to be chained
with the ChainablePromise<T> class type. Any operation on a far ref-
erence will always return a chainable promise. Chainable promises allow
operations to be directly applied to promises without needing to wait for
them to be resolved. The operation will be buffered and applied to the
promise once resolved. Applying an operation on a promise will return a
new chainable promise that will be resolved once the buffered operation
is applied and resolved.
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Listing 3.3: Code snippet demonstrating promise chaining.
1 let res : ChainablePromise<string> = ref.ping("ABC");
2 res.charAt(0).then(char => {
3 console.log(`The first char of the string equals ${char}`);
4 });

Listing 3.3 shows an example code snippet that sends a ping to a far ref-
erence. The asynchronous result of the operation is a string, which means
that in TSAT the operation will return a ChainablePromise<string>. As
explained, it is possible to immediately execute operations on the promise,
as is done in the example by calling charAt(0) on the promise. This op-
eration will be buffered until the ping is resolved, after which it will be
applied to the result. Finally, the charAt operation itself will return a
new ChainablePromise<string>, allowing for successive chaining of op-
erations. In our case, we attach a resolution callback on the promise that
logs the result with then method.

3.2.2.1 Async/Await

JavaScript and TypeScript provide support to simplify working with
promises by means of async/await that provides a more convenient and
readable way to handle asynchronous operations. An async function in
TypeScript is a function that implicitly returns a promise. Inside an
async function, you can use the await keyword to pause the execution of
the async function until a promise is resolved. If the promise is resolved,
the function continues with the resolved value. If the promise is rejected,
an error is thrown, which can be caught using try-catch blocks within the
async function.

Instead of chaining multiple .then() and .catch() methods, a developer
can write sequential code. Instead of nesting callbacks, you can await
multiple promises in a series, executing each statement after the previous
asynchronous operation. It is important to note that the event loop is
not blocked when an async function is paused. Async functions are im-
plemented through co-routines, where control will passed to other parts
of the system.
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Listing 3.4: Code snippet demonstrating promise chaining combined with
an await statement.

1 let char = await res.charAt(0);
2 console.log(`The first char of the string equals ${char}`);

TSAT allows chainable promises to be used with the standard async/await
syntax. Listing 3.4 shows the previous code example, modified to use
await instead of an explicit then operation with callback. In this case,
the log will only be called once the promise is resolved. This simplifies the
code and improves its readability.

3.2.2.2 Parameter Passing Semantics

When sending a message to a far reference, arguments are either passed
by copy or passed by reference, depending on the type. All TypeScript
primitives (e.g., strings, numbers, booleans, ...) are always passed by copy.
Object types can be passed by copy if they implement the Isolate type,
which forces the types to be serialisable. All other objects will be passed
by reference, where the method that handles the message will obtain a
far reference to the passed object. The TSAT type system ensures that
it is impossible to send a (non-isolate) object to a function that does not
expect a far reference.

3.2.3 Distributed Programming

Besides being the unit of concurrency in Flec/TSAT, actors are also the
unit of distribution. Actors can communicate with other actors from other
networked devices through asynchronous messages in the same way they
would with local actors. Figure 3.2 conceptually shows how objects can be
referenced by far references. Far references can cross virtual machine (VM)
and device boundaries. In this section, we describe how actors can discover
other actors hosted on other devices in a network, i.e., TSAT service
discovery, and how the programming model deals with partial failures of
devices.
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Figure 3.2: Far reference can point to objects on local or remote actors.

3.2.3.1 Service discovery

TSAT implements ambient acquaintance management [DVCM+06] from
AMOP and incorporates constructs to export (i.e. publish) objects in
the network and to subscribe to exported objects from different actors
(running on the same or different machines). Exporting uses the export
method on an actor or actor behaviour object. Objects are exported
with a particular tag name. Tag names are strings used by actors to
identify and discover objects and obtain far references to the discovered
objects. Exported objects can be discovered using the discover method
on an actor or actor behaviour object. The method takes the tag name
of objects that need to be discovered, their expected type, and a callback.
TSAT ensures that only objects with the specified type can be discovered
to enforce the type safety of all operations.

In Listing 3.5, we revisit the ping-pong application, except that actors
are automatically discovered in the network. Particularly, we instantiate
a new actor with initialises and export a new PingPong object. Instead of
defining the ping-pong behaviour in the actor itself, we instead separate
its logic to a PingPong class. The PingPong class, defined in Listing 3.7,
implements two methods: ping and getCounter. ping accepts a string
input and will log the operation, increment a counter, and return the
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Listing 3.5: Code snippet showing a TSAT actor exporting a PingPong
object on the network.

1 ctx.newActor("Actor A", (actor) => {
2 console.log("[A] Exporting PingPong");
3 actor.export(new PingPong(), "PingPong");
4 });

Listing 3.6: Code snippet showing a TSAT actor discovering a PingPong
object and sending a message to its far reference.

1 ctx.newActor("Actor B", (actor) => {
2

3 actor.discover(PingPong, "PingPong", async (ref: FarRef<
PingPong>) => {

4 console.log("[B] Discovered PingPong, sending a ping");
5

6 let reply = await ref.ping("B");
7 console.log(`[B] Got reponse: ${reply}`)
8

9 let logger = new Logger("[B][Logger]");
10 let val = await ref.getCounter(logger);
11 console.log(`[B] Got counter value: ${val}`)
12 });
13

14 });
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Listing 3.7: PingPong Class.
1 class PingPong {
2 counter: number = 0
3

4 ping(name: string) : string {
5 console.log(`[P] Got ping from ${name}`);
6 this.counter++;
7

8 return "pong";
9 }

10

11 getCounter() : number {
12 return this.counter;
13 }
14 }

string "pong". getCounter will return the value of the counter. The
newly instantiated object is exported with the "PingPong" tag.

In Listing 3.6, we show how another actor is discovering published
objects with the "PingPong" tag. A discovery callback can be registered
with the discover method on an actor or actor behaviour object. Every
time a new object on the network is discovered with the "PingPong" tag
and the PingPong type, the callback will be called with a far reference to
the discovered object. The callback sends ping messages to any discovered
object and waits for its response. Once it has received, it will send a
getCounter message to obtain a count of the number of ping messages
sent.

3.2.3.2 Delivery Guarantees

Far references are designed to remain functional even when a system has
partial failures, e.g., when certain system nodes might be disconnected.
When TSAT attempts to deliver a message but detects that the recipient
node is offline, it notifies all far references pointing to the node to buffer all
messages. TSAT will regularly check the connection state and attempt to
restore the connection. If this is successful, it will notify all far references
to release their buffered messages.
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TSAT ensures at-most-once delivery guarantees (also known as exactly-
once delivery) [TvS06]. As such, messages are guaranteed to be delivered
(in a correctly functioning system, when there are no partial failures)
without duplication.

3.2.4 Networking and Communication Channels

TSAT will establish network communications with other TSAT instances
that it discovers over the network. This allows applications to communi-
cate with other actors running on remote machines. TSAT introduces the
concept of channels, where different communication mechanisms can be
used to link instances. Section 3.2.4 lists the available channel types for
TSAT.

By default, Flec uses a P2P approach over TCP/UDP for network dis-
covery, similar to the AMOP AmbientTalk language. This means it broad-
casts instance information (which includes metadata of exported objects)
using UDP multicasting/broadcasting and listens for such broadcasted in-
formation from other peers in the network. If a TSAT instance receives
broadcasted information from other peers, it will register the instance in
its remote instance table. It then checks the remote instance’s metadata
to see if any of the exported objects matches a tag (and type) that any
of the local actors is trying to discover. If so, it will establish a TCP
connection with the remote instance and construct a far reference for the
newly discovered object. This reference will then be passed as an argu-
ment to the discovery callbacks for all the actors who are subscribed to
the associated tag

TSAT features a channel for MQTT [HTSC08] as this network trans-
port layer is popular in IoT systems. Listing 3.8 shows how TSAT can
be configured to use this channel type. First, an instance of the MQTT
channel type is instantiated, with the broker URI set to mqtt://mqtt-
broker.local:1883. The channel will maintain a connection with the
specified broker and use it for peer discovery and message sending. It is
registered in Flec by using the addChannel method on the TSAT context
object.

Using a different channel type does not require changes to the appli-
cation code. All TSAT functionality will remain the same, regardless of
the transport system used. It is even possible to register several chan-
nels simultaneously, have TSAT communicate and discover peers concur-
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Table 3.1: Channel Types.

TSAT: Supported Channel Types
P2PChannel Provides a TSAT channel that communicates over

TCP and UDP. Peer discovery happens through
UDP multicasts/broadcasts, P2P message send-
ing through TCP to discovered peers.

MQTTChannel Provides a communication channel over MQTT.
Allows TSAT to connect to an MQTT broker for
discovery and message sending.

WebChannel (prototype) Initial version of a channel that uses WebSockets
with a certain server for peer discovery, and We-
bRTC for direct P2P message sending.

Listing 3.8: Code snippet showing MQTT configuration in TSAT
1 import { MQTTChannel } from "./MQTTChannel";
2 const mqtt = new MQTTChannel("mqtt://mqtt-broker.local:1883";);
3 tsatCtx.addChannel(mqtt);

rently through different communication mechanisms. These details are
abstracted away for application developers; their code only needs to rea-
son about exporting and discovering objects with tags.

TSAT has initial support for a channel which uses WebSockets and
WebRTC as transport layers. These technologies will allow Flec to be
usable in the context of web browser-based applications.

3.2.4.1 Custom Channels

Following the philosophy of ’Flec as a laboratory,’ we provide an API for
implementing and experimenting with different communications technolo-
gies. The API allows for the implementation of new channels that use
custom communication mechanisms or transport layers. To achieve this,
a custom class has to be implemented (extending the Channel class) that
provides primitives for 1) direct message sending, 2) message broadcast-
ing, and 3) network event handling.
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Table 3.2: Core Channel Interface.

TSAT: Core Channel Interface
Message Sending Methods
sendMessage(msg: Msg, dest:
FarReference)

Invoked when TSAT wants to send a
message msg to destination dest. The
channel is expected to forward the mes-
sage to the proper remote instance. The
method should return false if the mes-
sage can not be sent in case of a network
disconnection.

broadcastTag(tag: Tag, ref:
FarReference)

Invoked when TSAT wants to broadcast
information on an exported object. The
channel is expected to announce the ob-
ject using its tag and provide a far ref-
erence to any remote instance that is
trying to discover the object.

Status Polling
getLocalId() : string Should return an identifier for the lo-

cal instance. The identifier should be
unique between all instances on the
same channel.

getStatus () :
ConnectionStatus

Returns the current connection status
of the channel (connected or discon-
nected). Uses by TSAT to know when
it should buffer messages .

Event Handling Methods
setMsgReceivedCB(cb:
ChanMsgReceivedCB)

Register an event handler for incoming
messages.

setTagReceivedCB(cb:
ChanTagReceivedCB)

Register an event handler for incoming
tag broadcasts.

setNameUpdatedCB(cb:
ChanNameUpdatedCB)

Register an event handler for the dis-
covery of new peers on the network.

setChanChangedCB(cb:
ChanChanChangedCB)

Register an event handler for connec-
tion status changes.
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Section 3.2.4 lists methods of the abstract Channel class that need to
be implemented. Direct message support can be implemented using the
sendMessage method, which takes a message and a far reference as the
destination. The channel object should serialise the message appropriately
for the channel and relay it to the correct peer based on the information
from the far reference object. To ensure unique identifications of peers
within a channel, getLocalId should be implemented to return a unique
identifier per Channel/VM instance. For example, in a P2P network, a
unique identifier can be created using the IP address of the channel socket
server.

Broadcast message support, which is mainly used for discovering ob-
jects on a channel, can either use the main direct message channel itself or
another communication mechanism. It should be implemented by defining
the broadcastTag method. As an example of a possible channel config-
uration, the P2P channel uses UDP multi-casting for message broadcasts
and TCP sockets for direct messages.
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3.3 CRDT and Replication in Flec

Flec provides an extensible programming interface for developing and us-
ing CRDTs. As explained in Section 2.2, CRDTs are the most well-known
family of strong, eventually consistent (SEC) data types. It relies on
the underlying TSAT framework for discovering and communicating with
replicas in a distributed dynamic network. Flec provides constructs for
generic state-based, operation-based, and pure-operation-based CRDTs.
These are built on an open implementation, where internal framework
details can be accessed and modified through a Meta-Object-Protocol
(MOP) layer, which reifies most distribution and replication mechanisms.
Since many CRDTs rely on causal ordering to simplify the design of CRDT
implementations, Flec integrates a reliable causal broadcasting [Lam78]
layer and reifies key interaction points as part of the open implementa-
tion.

3.3.1 Core Replication Algorithm

Flec’s CRDT framework provides abstractions for replica discovery and
data replication. The framework uses TSAT’s discovery and communica-
tion over far-references.

Section 3.3.1 summarises the interface provided by the Core CRDT
API. These can be used to implement custom CRDTs and form the basis
for state-based, operation-based, and pure-operation-based CRDT frame-
works.

Algorithm 5: performOperation in the Core CRDT API.
Input: an operation o, with arguments args
this.doOperation(o, args);
foreach replica in replicas do

replica← doOperation(o, args);
end

The performOperation is the operation that is responsible for propa-
gating operations to other replicas. Algorithm 5 shows a simplified pseu-
docode representation of the internal logic.
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Table 3.3: Core CRDT Interface in Flec.

Flec Core CRDT Interface
Initialisation Methods
goOnline(actor, tagName) Register the CRDT with an actor to en-

able its discovery by other peers on the
network using the specified tag name.

Event Handling Methods
onOperation(op, args) Invoked whenever a new update arrives

(both from a local and remote source).
onLoaded() Invoked when a new CRDT object fin-

ishes initialising.
onNewReplica(ref, refs) Invoked when a new CRDT replica is

discovered.
setUpdateCallback(cb) Register an event handler that will be

invoked when the CRDT state has been
updated.

Command Interface
performOperation(op, args) Performs an operation on the receiver

CRDT object. op is an enumerable
type, and together with the args vari-
able, it represents the operation that
has to be applied. It will cause the
onOperation method to be invoked
first locally and then remotely (by
means of message propagation).

generateUniqueId() Generate a new network unique ID.

53



CHAPTER 3. FLEC: A PROGRAMMING FRAMEWORK FOR
EVENTUALLY CONSISTENT SYSTEMS

It starts by invoking the doOperation locally and then asynchronously
applying it to all discovered replicas. The arrow operator (←) represents
a message send to the internal far reference for the remote replica.

3.3.1.1 Guarantees

Flec, by default, ensures that all operations from a particular Actor are
transferred in FIFO order, with exactly-once arrival semantics. Flec as-
sumes a fail-and-recover failure model by default, where messages that
cannot be delivered will be buffered until the recipient node returns on-
line. It is possible to change this configuration with timeouts and resource
leasing. However, we will assume this model for the following sections and
chapters. Regarding CRDTs, this means that all operations from a certain
replica will always arrive in the order that they were sent, operations will
never be duplications, and as long as nodes are functioning correctly, all
operations will be replicated to all replicas.

3.3.1.2 Implementing a State-Based Counter CRDT in Flec

We will now detail the core CRDT API through the state-based Positive-
Negative Counter (PN-Counter) [SPBZ11a] explained previously. Recall
from the specification in Section 2.2.1.1 that a PN-Counter is a replicated
counter, which can be incremented and decremented.

Using a PN-Counter in Flec. Before we go into detail about im-
plementing the PN-Counter CRDT, we show how it can be used by an
application built on top of Flec, in listing Listing 3.9. We first initialise
a new actor, which will store our replica. We then create a new PN-
Counter replica by initiating the PNCounter class, and make the replica
available on the network by using the goOnline primitive. goOnline in-
structs the actor to make the replica available under a particular tag name
(MyCounter in this case). Any other replicas in the network that share
the tag name will automatically be linked to the new replica. We then
add a callback handler to the replica, which ensures that any new updates
will be logged to the console. Finally, we perform several updates on the
replica and then propagate its state to all discovered replicas (that share
the same tag name).
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Listing 3.9: Code snippet showing the use of a PN-Counter CRDT in Flec.
1 ctx.newActor("MyActor", (actor) => {
2

3 let replica = new PNCounter();
4

5 replica.goOnline(actor, "MyCounter");
6 replica.setUpdateCallback(rep => {
7 console.log("[Counter - A] Updated to:", rep.getValue());
8 })
9

10 replica.inc();
11 replica.inc(10);
12

13 replica.propagateState();
14 });

Implementing a PN-Counter in Flec. Internally, PN-Counter repli-
cas keep track of negative counters (for all decrements) and positive coun-
ters (for all increments) per replica. When the state of one replica is
merged with another, the resulting state will have the maximum counter
value for every replica counter. The value of the counter can be com-
puted by summing all positive counter values and subtracting all negative
counter values.

Listing 3.10 shows the implementation of the PN-Counter CRDT in
Flec. We start by extending the CRDT<StateOperations> class. The
CRDT class is a generic class that accepts a type parameter for defining
the operations that replicas can receive. Recall from Section 2.2.1.1 that
state-based CRDTs have a merge function for merging replica state. We
specify this in the StateOperations enum type.

The class declares the map data structures that will be used for the
positive and negative counters. The keys of these maps will be the replica
id’s; the values will be the associated counters.

The inc and dec implement the increment and decrement logic respec-
tively. They modify the counter value in the counter maps based on the
unique id of the replica (obtained with this.id). getValue() computes
the actual counter value by summing and decrementing all the values in
the corresponding maps.
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Listing 3.10: Code snippet showing the implementation of a state-based
PN-Counter CRDT in Flec.

1 enum StateOperations { Merge };
2

3 export class PNCounter extends CRDT<StateOperations> {
4 positiveCounters : Map<string, number> = new MapWithDefault(0);
5 negativeCounters : Map<string, number> = new MapWithDefault(0);
6

7 onOperation(op, args) {
8 if (op == StateOperations.Merge) this.merge(args[0], args[1]);
9 }

10

11 merge(p, n) {
12 p.forEach(([id, value]) => this.positiveCounters.set(id, Math.

max(value, this.positiveCounters.get(id))));
13 n.forEach(([id, value]) => this.negativeCounters.set(id, Math.

max(value, this.negativeCounters.get(id))));
14 }
15

16 inc(n: number = 1) {
17 const val = this.positiveCounters.get(this.id);
18 this.positiveCounters.set(this.id, val + n);
19 }
20

21 dec(n: number = 1) {
22 const val = this.negativeCounters.get(this.id);
23 this.negativeCounters.set(this.id, val + n);
24 }
25

26 getValue() {
27 let result = 0;
28 this.positiveCounters.forEach(counter => result += counter);
29 this.negativeCounters.forEach(counter => result -= counter);
30 return result;
31 }
32

33 propagateState() {
34 this.performOperation(StateOperations.Merge, [ Array.from(this

.positiveCounters), Array.from(this.negativeCounters) ]);
35 }
36 }
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A propagation method is provided that will broadcast the state to all
known replicas by invoking the built-in performOperation method with
the counter values. The counter values are transformed from a map into
an array containing key/value pairs, to ensure that the values are sent to
remote replicas by copy, rather than by far reference.

Then, we implement the onOperation method and specify that if we
receive a merge request, we need to apply the merge method. The ar-
guments for the merge method will be the positive and negative counter
values. The merge method computes the maximum counter values for
every counter per replica and updates the state accordingly.

3.3.2 Operation-Based CRDT Layer

Flec provides an Operation-Based CRDT layer on top of the Core CRDT
Framework. It provides features such as Reliable Causal Broadcasting
(RGB), computation of causal stability for automated garbage collection,
and automated state serialisation.

Section 3.3.2 lists the extended API interface of the Operation-Based
CRDT class. CRDTs built on top of the API do not need to be aware of the
implementation details of the causal stability algorithms and extensions
to it.

Intended Audience: Implementors vs Extenders. In Section 3.3.2,
we categorise methods based on their intended audience. We have meth-
ods categorised under For CRDT Implementors, and under For Frame-
work Extenders. With CRDT implementors, we mean developers imple-
menting standard operation-based CRDTs. They do not need any specific
middleware behaviour and can rely on the default behaviour provided by
Flec. With framework extenders, we mean developers introducing new
concepts into Flec, such as delivery middleware extensions, changes to
garbage collection algorithms, and more. Of course, CRDT implemen-
tors can use the methods for framework extenders if needed, but this
should only be required in rare cases. We will use both types of methods
throughout this dissertation to extend the framework and provide CRDT
implementations.
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Table 3.4: Operation-Based CRDT Interface in Flec.

Operation-Based CRDT Interface (class: OpCRDT)
Event Handling Methods (For CRDT Implementors)
onOperation(clock, op, args) Invoked whenever a new update arrives.

This version provides a logical clock
from the RCB layer as an argument and
will always be executed in causal order.
This method is intended for CRDT im-
plementors wanting to implement a par-
ticular CRDT.

gcStable() Invoked after a new operation is ap-
plied and when a CRDT implementa-
tion may want to remove causally sta-
ble operations.

Event Handling Methods (For Framework Extenders)
onBufferedOperation(clock, op,
args)

Invoked when a new operation has ar-
rived but is put in the RCB buffer as
causal dependencies are missing.

doOperation(clock, op, args,
isLocal)

Low-level operation that handles
all incoming messages and ensures
they are processed in causal order.
This method has a default imple-
mentation which is responsible for
the invocation of onOperation and
onBufferedOperation.

Command Interface (For CRDT Implementors)
isCausallyStable(clock) Can be used to check if a certain clock

is causally stable.
disableCausalDelivery() Optionally disable causal delivery if not

required.
Command Interface (For Framework Extenders)
setStable(id, iClock) Notify the underlying RCB layer that

the individual clock iClock for a replica
with id id is causally stable. This will
update all locally stored clocks for all
replicas and trigger the metadata re-
moval mechanisms.

getBufferData() Get a copy of the entries in the RCB
buffer.
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3.3.2.1 Replication Algorithm

We now further detail the replication algorithm employed by our frame-
work based on the aforementioned interface of the op-based CRDT layer.
For the sake of brevity, we only list the essential logic for extending the
RCB framework with support for causal stability messages.

Algorithm 6: performOperation for operation-based CRDTs.
Input: an operation o, with arguments args
localClock.increment();
var clock := localClock.copy();
this.doOperation(clock, o, args);
foreach replica in replicas do

replica← doOperation(clock, o, args);
end

In contrast to Algorithm 5, the performOperation method for operation-
based CRDTs is modified to add logical timestamps to replicated opera-
tions, as can be seen in Algorithm 6. It starts by incrementing the local
logical clock of the replica to which it is being applied. Then, the op-
eration is applied locally and then propagated to all replicas. Note that
the code creates a copy of the original clock, as Flec cannot ensure proper
serialisation of objects when shared between local actors. This could mean
that a receiving actor could inadvertently modify the clock. As such, we
ensure that we always pass a copy of the clock. This has been fixed in the
development version of Flec, which supports passing objects as explicate
isolates [CMGB+07], which ensures that only copies or far references are
passed to local actors.

3.3.2.2 Implementing an Operation-Based Replicated Counter

We now discuss the implementation of an operation-based counter CRDT,
based on the specification listed in Section 2.2.1.2. Listing 3.11 details the
implementations of an operation-based Counter in Flec. In lines 3-6, we
first define the Counter interface of the CRDT, i.e. that a counter has
increment and decrement operations. At line 8, we define our OpCounter
class by extending the generic OpCRDT class provided by Flec. The OpCRDT
class takes a generic type argument for specifying the replica interface,
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Listing 3.11: Code snippet showing the implementation of an operation-
based counter CRDT in Flec.

1 import { OpCRDT } from "./flec/opcrdt";
2

3 interface Counter {
4 Inc(n: number),
5 Dec(n: number)
6 }
7

8 export class OpCounter extends OpCRDT<Counter> {
9 handler: Counter;

10 value : number;
11

12 constructor() {
13 super();
14 this.value = 0;
15

16 this.handler = {
17 Inc: n => this.value += n,
18 Dec: n => this.value -= n,
19 }
20 }
21

22 inc(n: number = 1) {
23 this.performOperation("Inc", [n]);
24 }
25

26 dec(n: number = 1) {
27 this.performOperation("Dec", [n]);
28 }
29

30 getValue() {
31 return this.value;
32 }
33

34 }
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which in our case is the Counter interface. By specifying the type inter-
face, Flec will ensure the conformity of the handler functions at the type
level.

In contrast to the state-based PN-Counter implementation, where we
need to manually implement the merge function for the counter state,
only individual operations must be defined. This is done at line 16, where
we define the operation handlers. Lines 22 and 26 implement the public
interface for the CRDT class; this is what is exposed to end-user code
and what will be used to apply local updates. The methods simply invoke
performOperation, which ensures the replication of the operations as
defined in Algorithm 6. Flec ensures the type safety of these functions; it
is not possible to call performOperation for operations other than those
defined in the type interface (Inc and Dec in this case). Finally, the
getValue method returns the current state of the replica.

3.3.3 Pure Operation-Based CRDT API

Flec provides a Pure Operation-Based CRDT framework implemented on
top of the Operation-Based CRDT API. The extended API is listed in
Table 3.5, which follows the specification seen in Section 2.3.1. The redun-
dancy relations, R and R_, can be defined for CRDT implementations
by implementing the isPrecedingOperationRedundant, isConcurren-
tOperationRedundant, and isArrivingOperationRedundant methods.
These methods will be invoked when operations arrive, and their return
value will dictate if particular operations need to be stored in the log. Op-
erations (arriving or stored in the log) are represented through the POLo-
gEntry class as defined in Section 3.3.3. This class provides an extensive
interface that allows access to crucial information related to operations,
such as the argument list and logical timestamps. We will now detail how
these APIs can be used to implement concrete CRDTs.

3.3.3.1 Implementing a Pure Operation-Based Set CRDT

This section shows how to implement an add-wins pure operation-based
CRDT in Flec. The implementation is based on the specification for
the pure-op AW-Set shown in Section 2.3.2. Similar to operation-based
CRDTs, the set of operations that can be applied must be defined in an
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Table 3.5: Pure Operation-Based CRDT Interface in Flec.

Pure Operation-Based CRDT Interface (class: PureOpCRDT)
Event Handling Methods (For CRDT Implementors)
isPrecedingOperationRedundant,
isConcurrentOperationRedundant

Encodes the R_ (or R0, R1) binary re-
lation(s); defining if existing log entries
become redundant by a new operation.
Alternatively, isRedundantByOper-
ation unifies both methods.

isArrivingOperationRedundant Encodes the R binary relation (i.e., is a
new operation redundant by an already
existing log entry).

onLogEntryStable Performs an action when an operation
becomes stable.

onRemoveLogEntry Performs an action when a particular
item is removed from the log (for ex-
ample, if it was marked redundant by
isRedundantByOperation).

onAddLogEntry Performs an action when a new opera-
tion arrives in the log.

Command Interface (For CRDT Implementors)
getLog Returns a list containing all current log

entries.
getConcurrentEntries Gets all concurrent log entries for an

operation.
Syntactic Sugar
perform.XX(args) Syntactic sugar for

performOperation(op, args).
For example, this.perform.add("A")
corresponds to
this.performOperation("add",
"A"). Flec enforces at the type level
that the specified operation corre-
sponds with the type of the CRDT.
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Table 3.6: PO-Log Entry API in Flec.

PO-Log Entry Interface (class: POLogEntry)
Queries
is(opType) Returns if the entry represents an oper-

ation of a certain type. For example,
entry.is("add") can be used to check if the
entry is an add operation. Flec enforces at
the type level that opType corresponds with
the possible operation types of the CRDT.

hasSameArgAs(entry, idx) Can be used to compare if the arguments to
an operation correspond with the arguments
of another log entry.

addProperty(key, value) Add custom metadata to a log entry.
getProperty(key) Get custom metadata from a log entry.
Causal Dependencies
precedes(entry) Returns if the entry causally precedes another

entry.
isConcurrent(entry) Returns if the entry is concurrent to another

entry.
follows(entry) Returns if the entry causally follows another

entry.
isStable() Returns if the entry has a logical timestamp

that is causally stable.
Identity
getOrigin() Returns the id of the replica that is the origin

of the log entry.
getUniqueId() Returns a string that uniquely identifies the

log entry.
Syntactic Sugar
isXXX() Syntactic sugar for is("XXX") For example,

isAdd() corresponds to is("add").
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interface. This is shown in Listing 3.13, with the SetOperation interface
declaring the add, remove, and clear methods.

In Listing 3.12, we define the AWSet class for our CRDT, which ex-
tends the PureOpCRDT class using SetOperation interface. Following this,
the abstract IsPrecedingOperationRedundant and isArrivingOpera-
tionRedundant from the PureOpCRDT class are implemented, defining the
behaviour of the AW-Set. Finally, the toSet, add, remove, and clear
methods provide the CRDT with its public interface. We will detail the
implementation of these methods below.

Concurrency Semantics. The set’s redundancy relations are imple-
mented using the IsPrecedingOperationRedundant and isArrivingOp-
erationRedundant methods, corresponding to the R_ and R relations,
respectively. The relationships between log entries are defined through the
.is, .precedes, .follows, .isConcurrent and .hasSameArgsAs meth-
ods from the POLogEntry class.

User Interface. Lines 15-22 show the implementation of the toSet
method, which iterations over the log and serialises the state of the CRDT
to a Set object. This is useful for end-users who may want to query the
local state. Because the redundancy methods already filter out all remove
and clear operations and all redundant add operations, we can simply
copy all log values directly into the set object.

Finally, in lines 29-40, the mutator methods are implemented. They
signal the RCB layer using perform (which is syntactical sugar for per-
formOperation) that a particular operation has been applied, and the
RCB layer will propagate and apply it on all other replicas in the system.

3.3.3.2 A Remove-Wins Pure Operation-Based Set

For completeness, we provide the implementation of the RW-Set, as de-
fined in Section 2.3.2, in Appendix B.

3.4 Conclusion

In this chapter, we provided an in-depth exploration of the Flec program-
ming framework, its integration with TypeScript, and the facilitation of
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Listing 3.12: Pure operation-based AW-Set implementation.
1 type SetEntry = POLogEntry<SetOperation>;
2

3 export class AWSet extends PureOpCRDT<SetOperations> {
4 protected isPrecedingOperationRedundant(existing: SetEntry,

arriving: SetEntry, isRedundant: boolean) {
5 return arriving.isClear() ||
6 existing.hasSameArgAs(arriving);
7

8 }
9

10 protected isArrivingOperationRedundant(arriving: SetEntry) {
11 return arriving.isRemove() ||
12 arriving.isClear();
13 }
14

15 public toSet() : Set<string> {
16 let set = new Set<string>();
17

18 this.getLog().forEach(entry => {
19 set.add(entry.args[0])
20 });
21

22 return set;
23 }
24

25 public contains(element) : boolean {
26 return this.toSet().has(element);
27 }
28

29 public add(element) {
30 this.perform.add(element);
31 }
32

33 public remove(element) {
34 this.perform.remove(element);
35 }
36

37 public clear() {
38 this.perform.clear();
39 }
40 }
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Listing 3.13: SetOperation Type Interface.
1 interface SetOperations {
2 add(element: string);
3 remove(element: string);
4 clear();
5 }

distributed programming through TSAT and CRDTs. By integrating the
advantages of TypeScript and the Ambient-Oriented Programming Model,
Flec emerges as a versatile solution for addressing the complexities inher-
ent in distributed computing. We demonstrate how Flec offers an exten-
sible programming interface for implementing CRDTs, intending to lower
the barriers to utilising CRDTs in application development. This chap-
ter’s concepts and practical applications provide a foundation for exploring
more advanced distributed systems using Flec. In the following chapters,
Flec is applied as a laboratory for experimenting with CRDTs, allowing
us to test and validate our contributions.
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Chapter 4

Efficiently Supporting
Dynamic Networks

In this chapter, we focus on the challenges that arise with Conflict-free
Replicated Data Types (CRDTs) operating within dynamic network en-
vironments. Dynamic networks are systems in which nodes can join and
leave at will without reconfiguring the entire networked system. We look
at two key aspects: distribution and memory management for CRDTs in
dynamic networks.

As mentioned in Section 2.4.1, CRDT designs (such as [SPBZ11a] and
[BAS17]) typically assume a fixed network structure, which limits the ap-
plicability of CRDTs in modern distributed applications that often require
dynamic scalability. For instance, collaborative platforms like Google
Docs or e-commerce applications like Amazon involve unpredictable users
or devices, necessitating a more adaptable approach to CRDTs in dynamic
networks. Several CRDT-based systems rely on a centralised approach
with a membership protocol [LPS10, LHCW18], where join and leaves are
coordinated through a single server.

Earlier work on Group Communication Systems [Gol92, ADKM92]
have explored support for the handling of dynamic networks in the context
of eventually consistent environments, where nodes have an eventually
consistent view of which other nodes are present in the group. To bring
similar support for dynamic networks to CRDT platforms, without relying
on central coordination, two main challenges must be addressed. First,
no well-defined approaches or mechanisms exist for sharing existing states
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and operations with new nodes. This is essential to ensure new nodes can
properly participate in a network and eventually converge. For example, if
nodes with operation-based CRDT replicas miss updates that were applied
before they joined, they may end up in a faulty state that never converges.
It is not enough to simply share a copy of the state from one node to new
nodes, as concurrent modifications may occur during the joining process.

Secondly, traditional approaches for managing and removing meta-
data in CRDTs also rely on systems that assume fixed networks (see Sec-
tion 2.4.2). For example, approaches that rely on causal stability for re-
moving metadata, such as the Pure Operation-Based Framework [BAS17],
do not take into account that the number of known nodes might change.

We introduce a join model that determines how new nodes can acquire
the correct state and participate in an existing network without relying
on a centralised server. Additionally, we provide a memory management
scheme to improve metadata removal in such environments.

We conclude this chapter by evaluating our implementation and bench-
marking the memory usage of replicated sets under various metadata re-
moval techniques, including our proposed method. We demonstrate that
our approach speeds up the metadata removal process and proactively
identifies when an operation can no longer be concurrent, reducing mem-
ory usage more efficiently than previous methods.

4.1 Definitions and Assumptions

In this chapter, we assume a full-mesh peer-to-peer system (as supported
by Flec) for our designs. As such, all peers have the same responsibilities
and can communicate directly with each other.

We define a node in the system as a VM or machine that hosts a CRDT
replica. We employ the term network as the set of nodes hosting a replica
for one CRDT. We assume that every node in the network holds a single
replica of a CRDT. In the case that a node disconnects, we assume this
to be a transient failure [TvS06] and expect that the node will eventually
recover and return to the network (following the assumptions made by
Flec in Section 3.2.3.2). In other words, we assume a fail-and-recover
failure model.
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We also assume that the communication layer buffers messages that
cannot be delivered when nodes are temporarily disconnected (again, fol-
lowing the asynchronous communication model of Flec).

Furthermore, we assume that eventually, all messages arrive, i.e., re-
liable communication with no message lost or duplication, e.g., TCP/IP,
and that there are no byzantine failures, i.e., no malicious nodes. We
expect that the middleware relies on acknowledgement messages to en-
sure message delivery and processing, which is a reasonable expectation,
as TCP/IP and similar protocols also use handshakes and acknowledge-
ments to ensure in-order delivery of messages.

4.2 A Dynamic Join Model for CRDTs

In this section, we define our dynamic join model for CRDTs, a model
in which nodes hosting CRDT replicas can dynamically join an existing
network. We will first detail our approach informally through an example
setup and then provide a specification in pseudo-code.

In our join model, when a node (the joining node) wants to join a
network, it has to do so by initiating contact with a single node (the join
node), which is already part of the network (and hosts a replica). This can
be seen in Figure 4.1 where the white N node sends a join request message
to the grey node A. Grey nodes represent nodes that are fully part of the
network. Dashed lines between nodes represent a ’knows’ relation. In our
example, nodes A, B, and C all know each other and form the existing
network, and they are all acquaintances of each other.

N

A

B
C

join
request

knows relation
message

Figure 4.1: Step 1: A node requests to join a network.

When a node receives a join request, it responds by sending network
information about its acquaintances to the joining node and then adding
the new node to its known nodes. The shared network information should
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contain all the details and information the new node needs to initiate
communication with the other nodes (such as IP addresses).

The joining node will start communication with all nodes in the net-
work and request to link to them (see Figure 4.2). Existing nodes will
respond by acknowledging the link request, passing their current logical
clocks to the joining node, and adding the joining node to their acquain-
tance list. Once the joining node is in the acquaintance list of some nodes,
it may receive updates (of applied operations) from these nodes. The join-
ing node has to buffer these operations until after it has received acknowl-
edgements from all nodes in the network and a copy from the state of the
join node.

N

A

B
C

linklink

Figure 4.2: Step 2: The new node contacts all other nodes in the network.

Once the joining node has received acknowledgements from all nodes,
it will request the join node for its state (visualised in Figure 4.3). It
requests this together with the merged clock that it received with all the
acknowledgements from all the other nodes in the network. This allows
the join node to process the request in causal order, as it’s essential that
the join node first receives any operation that may have been concurrent
with the linking process. Once this is the case, the join node will send its
state to the joining node, where the joining node will store the state. All
buffered operations on the joining node that are contained in this state
are then discarded, and the remaining buffered operations will be applied
in causal order. At this point, the joining node is a full-fledged member
of the network.

4.2.1 Concurrent Joins

It is possible that while a node is in the process of joining a network,
concurrently, another (new) node will attempt to join as well. To support
this case in our approach, join nodes must relay all link requests from
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N

A

B
C

state
request

Figure 4.3: Step 3: The new node performs a state request once it has
been fully acknowledged.

joining nodes to other joining nodes. To this end, consider the scenario
shown in Figure 4.4, where node N is sending a join request to node A and
concurrently node O is sending a join request to node C. Following the
above protocol, O will receive the network state from node C. However,
this state may still lack information about node N. Similarly, the network
state that node N receives may lack information on node O. As both nodes
may not be aware of each other they will not be able to link with each
other as-is.

N

A

B
C

join O

join

Figure 4.4: Two nodes perform simultaneously join requests to different
nodes in the network.

N

A

B
C

O
link

link

link

Figure 4.5: Node A forwards a link message from node O to node N.
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As such, in the example in Figure 4.5, node A forwards a link request
from node O to node N (the new node being handled by A). Similarly,
node O will eventually receive a forwarded link request from N.

By forwarding the link requests, nodes that join concurrently will al-
ways receive link requests from each other before they can finalise joining
the network. The nodes handling the join request (e.g. A and C in Fig-
ure 4.4) will reject state requests from new nodes if they have not handled
additionally forwarded links, e.g. a node is only allowed to finalise its join
if it has connected to all nodes from the network state plus later forwarded
link messages.

4.2.2 Dynamic Join Algorithm

We now provide an algorithmic specification for the Dynamic Join Model.
Algorithm 7 and 8 detail the extensions that are needed to support dy-
namic networks, which extends on the existing CRDT replication algo-
rithm described in Section 2.3.1 (Algorithm 4).

State variables. We first define the variables needed to support our
join mechanism. They are listed at the start of Algorithm 7, and provide
the following functionality:

• currMode: used to track the current joining state of the replica.
It can be either joining or operational;

• lnkNodes: a list which tracks acquaintances (known nodes in the
network);

• pndNodes: a list which tracks the nodes to which the current node
is linking (but has not yet received an acknowledgement for).

• joiningNodes: tracks all nodes for which the current node is the
joining node.

• joinNode: the node that is responsible for coordinating the join
process of the current node.

• opBuffer: a list containing all operations that are received while
the node is in the joining mode and not yet fully operational.
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Algorithm 7: Core Dynamic Join Algorithm.
Data: global currMode := JOINING;
Data: global joinNode := NONE;
Data: global opBuffer := [];
Data: global lnkNodes := [];
Data: global pndNodes := [];
Data: global joiningNodes := [];
on init(node) :

joinNode := node; nodes := joinNode ← reqJoin;
lnkNodes.add(joinNode);
foreach n in nodes do

n← reqLink;
pndNodes.add(n);

end
on reqJoin :

lnkNodes.add(sender);
joiningNodes.add(sender);
return lnkNodes;

on reqLink :
lnkNodes.add(sender);
sender ← ackLink(clock);
foreach node in joiningNodes do

node← reqLink as sender;
end

on ackLink(clock) :
mergeClock(clock);
pndNodes.remove(sender);
lnkNodes.add(sender);
if pndNodes is empty then

state := joinNode← reqState(clock);
currMode := OPERATIONAL;
foreach [t, o] in opBuffer do

self ← deliver(t, o);
end

end
on reqState(clock) with causal delivery:

joiningNodes.remove(sender);
lnkNodes.add(sender);
return state;
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Operation delivery during the join process. As mentioned previ-
ously, while a node is joining, it must buffer all arriving operations. To
this end, the deliver method from the existing CRDT framework, which
is called when an operation arrives (from the local or a remote replica),
is aliased to core-deliver (as shown in Algorithm 8). The deliver
method is then overwritten with a new method from our join mechanism
that buffers all operations in the opBuffer list as long as the node is not
fully operational. Once the node is fully operational, operations will no
longer be buffered but will be delivered through core-deliver.

Algorithm 8: Dynamic Join Algorithm Delivery Hook.
alias existing deliver(t, o) → core-deliver(t, o)
overwrite deliver(t, o) :

if currMode != OPERATIONAL then
opBuffer.push([t, o]);

else
core-deliver(t, o);

end

Initialisation. On initialisation (on init), the init method will add its
join node to its lnkNodes (acquaintances) list and send a reqJoin request
to the join node. The join node handles the reqJoin request by adding
the joining node to the joiningNodes list and returning the lnkNodes
list. The joining node will initiate contact with the nodes from this list by
sending them a reqLink message and adding them to the pndNodes list.

Linking. Nodes that receive a reqLink message will store the joining
node (references by the keyword sender in the algorithm) in its lnkN-
odes list, and acknowledge the request by responding with the ackLink
message. These messages will also carry the logical clocks of the corre-
sponding node. As explained earlier, link requests must be forwarded to
any joining nodes. This is done by iterating over the joiningNodes list
and forwarding the message. We specify that the message is forwarded as
sender to ensure that the sender variable will still point to the original
sender when received. When a joining node receives the ackLink mes-
sage, it will first merge the clock from the responding node with its own
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clock. Then, the node is removed from the pndNodes list and added to
the lnkNodes list, making it a full acquaintance.

State retrieval. When all nodes have responded to the reqLink mes-
sages (i.e. the pndNodes list is empty), the state from the join node is
requested by sending a reqState message. This message must be deliv-
ered through the RCB layer so that the join node processes it in causal
order, to avoid any gaps in the retrieved state. The join node will remove
the joining node from its joiningNodes list, add it to the acquaintance
list, and return the state. The joining node will apply the state and any
operations that have been buffered. In the algorithm, we assume that the
state contains the clock of the join node and that deliver will only deliver
any operations that are not present in this state (by means of comparing
the clock of the state and buffered operations).

4.2.3 Implementing our Dynamic Join Model in Flec

To extend Flec with our join model, we benefit from the open model of the
Operation-Based CRDT interface (see Section 3.3.1 and Section 3.3.2) and
implement the above algorithm by extending the onOperation, doOpera-
tion and onNewReplica methods. The join protocol can be implemented
by overriding and extending these methods, as described in the specifica-
tion above. The full implementation details are described in Appendix C.

Section 4.2.3 provides a summary of the internal methods used by our
implementation, and can be used by framework implementors to design
new extensions.

4.3 Improved Metadata Removal with Eager Sta-
bility Determination

As mentioned in Section 2.3, the Pure-operation-based CRDT framework
uses two mechanisms for metadata removal and memory management.
The first is through redundancy relations, where logical relations are used
to compare arriving operations with entries in the log. Redundant en-
tries are removed from the log, and immediately redundant operations are
never stored. The second is through the determination of causal stability.
For operations that have causally stable timestamps, no new concurrent
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Table 4.1: Dynamic Network Hooks for the Operation-Based CRDT API
in Flec.

Dynamic Network Extensions (class: OpCRDT)
Event Handling Methods (For Framework Extenders)
onReqJoin Handles join requests from nodes, cor-

responding to the reqJoin handler in Al-
gorithm 8.

onReqLink Handles link requests from nodes, cor-
responding to the reqLink handler in
Algorithm 8.

onReqState Handles state requests from nodes, cor-
responding to the reqState handler in
Algorithm 8.

Command Interface (For Framework Extenders)
getNetwork Returns a list with known acquain-

tances (as far references). Used by
onJoin.

getState Returns the full replica state of the
node, such as the PO-Log and logical
clocks.

setupState Applies a received state to the current
replica, corresponding to the output of
getState.
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operations can arrive. As a result, the timestamps for the operation can
be removed, and the operation can be compacted further.

For a node to determine that a logical timestamp is causally stable,
it has to have information about all the clocks of other nodes in the net-
work (following Definition 2.3.1). Typically, a node receives updated clock
information when operations are received from other nodes. However, if
certain nodes stop issuing updates for an extended period of time, this
information will become stale. As a result, it may become impossible to
determine causal stability.

We propose to take advantage of the RCB layer’s reliable delivery
mechanism to determine causal stability eagerly without needing to wait
for updates from all nodes. When an operation is applied to a replica,
the underlying replication mechanism will ensure that it is (eventually)
broadcasted to all other replicas. Reliable delivery requires all receiving
replicas to acknowledge the reception of the operation, as shown in Figure
4.6.

In our approach, we take advantage of this design: if acknowledge-
ments have been received from all replicas, it follows that no new oper-
ations can be concurrent to it and as a result, the operation is causally
stable. As such, using this method, nodes that issue operations are able
to determine causal stability for these operations if they have received
acknowledgements from all nodes. To share this knowledge with other
nodes, we propose to send this information to other nodes periodically,
asynchronously as stability messages(as can be seen in Figure 4.7).

This strategy allows for determining causal stability even when some
replicas are not issuing updates. This benefits situations where memory
might be scarce but introduces additional network overhead as stabil-
ity messages must be propagated. To enable a flexible trade-off between
memory consumption and network overhead, developers can control the
intervals at which stability messages are sent. Between the intervals, our
approach will simply rely on the RCB middleware’s causality information
to deduce causal stability, expanding on the pure-op framework’s existing
meta-data removal capabilities.

4.3.1 Eager Stability in Dynamic Environments

The approach described above does not yet assume a dynamic environ-
ment. We will now describe how causal stability can be correctly deter-
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A

B

CACK

Figure 4.6: Acknowledgements used by the RCB layer to ensure reliable
delivery.

A

B

CStable!

Figure 4.7: Letting other replicas know that an operation is stable.

mined in dynamic networks, combining the techniques from the previous
sections.

To determine causal stability, we need causality information from all
nodes. When a network changes in size, the meaning of what all nodes
compose changes. If operations are issued while a node is joining, ensuring
that casual stability is consistently determined over all nodes is crucial.

We propose an extension to the RCB layer to handle these cases di-
rectly. When a join node adds a new joining node to its acquaintances
list, it must notify the RCB layer to expand its logical clocks with an
entry for the new node. As a result, the causal stability determination
mechanism on the join node will only determine causal stability if it has
causal information for all nodes, which now include the new node.

Other nodes on the network will receive these expanded vector clocks
as part of operations updates (or eager stability messages) from other
nodes. If a node detects that a message from another node has a logical
clock with an entry for an unknown node, it must expand its own clocks
to contain this new entry. Consequently, it can only determine causal
stability if it receives causal information from the node related to the new
entry.

When a node joins a network, at any point in time, there will be at
least one node (the join node) that knows the joining node. As a result, all
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nodes that issue operations concurrently while another node is joining will
always receive a minimum of one message from another node that contains
an expanded logical clock before they can determine causal stability.

4.4 Implementing Eager Stability Determination
in Flec

In this section, we describe the extensions to Flec needed for causal stabil-
ity determination using our proposed strategy. Flec implements reliable
delivery (through the RCB layer) for the operation-based CRDT frame-
work, so we can easily piggyback on these properties.

As mentioned in Section 3.3.2, the framework provides abstractions
that allow developers to propagate and receive operations while abstract-
ing away the details of RCB and stability determination mechanisms. We
now further detail the extended replication algorithm. For the sake of
brevity, we only list the essential logic for extending the RCB framework
with support for causal stability messages.

4.4.1 Extending the Replication Mechanism

Algorithm 9: Extended performOperation implementation.
Input: an operation o, with arguments args
localClock.increment();
var clock := localClock.copy();
this.doOperation(clock, o, args);
foreach replica in replicas do

replica← doOperation(clock, o, args);
end
when all operations are reliably delivered do

this.notifyStable(clock);
end

Recall from Section 3.3.2.1 the performOperation method from the
operation-based CRDT API in Flec. This method applies an operation
on a replica, typically invoked by concrete CRDT implementations, and
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ensures it is to all other replicas, as shown in Algorithm 6. Algorithm 9
extends performOperation with support for causal stability messages.

In Algorithm 6 and 9, the method starts by incrementing the local
logical clock of the replica it is being applied. The operation is then
applied locally and subsequently propagated to all replicas. Algorithm 9
provides an extension with a conditional test that invokes notifyStable
with a copy of the clock of the operation when all messages have been
reliably delivered.

Algorithm 10: notifyStable implementation.
Input: a logical clock clock
Data: global pendingStable := False;
Data: global stableCounter := 0;
Data: global stableMsgInterval := 10;
Data: global pendingClock;
var notifyClock := localClock.copy();
notifyClock.setClockAt(clock.getId(), clock.localV alue);
this.setStable(clock.getId(), clock.localV alue);
pendingStable := ((this.stableCounter++) mod
stableMsgInterval) != 0 ;
if pendingStable == True then

pendingClock := notifyClock;
else

performStableMsg(notifyClock);
end

Broadcasting stability messages. Algorithm 10 describes the imple-
mentation of the notifyStable method, which is invoked by perform-
Operation after reliable delivery of an operation to all replicas. noti-
fyStable will mark the local clock of the associated operation as sta-
ble through an invocation to setStable. Recall from Section 3.3.2 that
setStable will trigger our framework’s internal metadata removal mech-
anisms by updating all the locally stored clocks for replicas.

Following this, all replicas must be notified that the clock value is
stable, which we do through stability messages. Our approach allows
these notifications to be delayed by a particular interval (defined by the
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number of operations). This enables fine-grained control of the tradeoff
between eager metadata removal and network resource usage.

The notifications are broadcasted through the performStableMsg helper
function, as defined in Algorithm 11. Stability messages are delivered
through the RCB layer to ensure they are ordered after all operations
that were concurrent with the stable operation. This avoids cases where
stability messages arrive before the other concurrent operations, which
could lead to inconsistencies. While stability messages need to respect
causal order, they do not need to be delivered reliably, as losing stability
messages is not a critical problem. In our concrete Flec implementation,
we instruct the receiving replica that no acknowledgement is needed for
stability messages to avoid useless network consumption.

When a remote replica receives a stability message, setStable will
be used to mark the associated clock as stable. This is the only required
handling for stability messages, as the underlying clock changes will trigger
all existing metadata removal algorithms from the framework, and no
other invocations to event handlers will be needed.

Algorithm 11: performStableMsg implementation.
Input: a logical clock clock
foreach replica in replicas do

replica← doOperation(clock, STABLE, []);

Tuning stability messages. To enable better control over when sta-
bility messages are sent, we provide an additional method performPend-
ingStableMsg that can be invoked by CRDT implementors. This method
will force any pending stability messages to be sent. This allows developers
to use custom heuristics to trigger the stability messages in combination
with the message interval. The implementation details can be seen in Al-
gorithm 12. Note that our framework will never call this function; it is
only provided to give developers extra flexibility.
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Algorithm 12: performPendingStableMsg implementation.
if pendingStable then

performStableMsg(pendingClock);
pendingStable := False;

4.5 Evaluation of Eager Stability Metadata Re-
moval

In this section, we validate our extended framework with eager stability
determination by running several performance experiments on Flec that
aim to answer the following questions:

• RQ1: what is the benefit of stability messages on the log size of
replicas?

• RQ2: what overhead does the use of stability messages incur?

• RQ3: what is the impact of using the log size as a heuristic for
triggering the stability messages?

4.5.1 Experiments

We ran our experiments on a notebook machine with the following hard-
ware specifications and software versions:

CPU 2,7 GHz Quad-Core Intel Core i7 (I7-8559U)
Memory 16 GiB
OS macOS 13.6
Node.js v21.0
TypeScript v5.3

For our experimental setup, we are running several Flec actors on the
machine, with the instances configured as replicas of each other, hosting
a set data structure. The exact number of instances is dependent on
the experiment. Flec is running on top of Node.js and is compiled using
TypeScript. We then repeatedly perform operations on each replica and,
depending on the experiment, either measure their log sizes or analyse
the log contents. Our results are not platform-specific since we evaluate
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the log size rather than memory usage. This allows us to evaluate the
different extensions clearly.

In particular, in our experiments, we benchmark the Remove-Wins set
(RW-Set) as described in Section 3.3.3.2. An RW-Set cannot solely rely on
the redundancy mechanisms of pure operation-based CRDTs and requires
compaction through causal stability to limit its log size, making it ideal
for our experiments. We perform the evaluation by comparing Flec with
our eager stability approach mechanism in disabled mode and then with
the mechanism turned on.

4.5.2 Methodology

Algorithm 13 shows the core logic for benchmarking. For every bench-
mark, we configure the properties of the set replicas (this happens in
setupReplicas), enabling/disabling stability messages, tweaking the size
of the message interval, or setting up a log-size dependent trigger. A total
of TOTAL_ROUNDS * ROUND_SIZE items will be added to the set
replicas, where the source replica (the replica to which the set operation
is directly applied) is changed every round. After every add operation,
statistics regarding the first replica’s log size will be measured.

Since the analysis code and CRDT implementations are deterministic,
we do not need to perform multiple measurements. All the numbers from
the experiments can be exactly reproduced, so there is no need for multiple
runs from which confidence intervals are computed.

4.5.3 Assessing Meta-Data Removal for the Pure Op-Based
Framework without Eager Stability

For our first test, we examine the behaviour of the vanilla pure-op RW-
Set implementation, where no eager stability is used, to set a baseline for
the following experiments. We test a system with 2, 4, and 8 replicas.
As our methodology explains, we repeatedly keep adding items to the set
replicas. To ensure that every replica eventually performs an update and
that we can determine causal stability, the source node for the operations
is switched every 100 operations. For example, the first 100 operations
will be performed on set 0, the next 100 on set 1, and we will return to
set 0 once we pass the last set. Every operation on one replica will be
propagated to the other replicas in the system.
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Algorithm 13: Core logic for RW-Set benchmarking.
Data: sets
var current_set := 0;
var step := 0;
setupSets();
while step < TOTAL_ROUNDS * ROUND_SIZE do

sets[current_set] ← add("element" . step);
takeMeasurements();
if step mod ROUND_SIZE == 0 then

current_set := ( current_set + 1) mod
NUMBER_OF_SETS;

end
sleep(STEP_TIME);

end

We show the results of our test in Figure 4.8. The plot shows a clear
zig-zag pattern in the results: only for every 100 operations, when the
source replica is switched and an update has been pushed from the new
source replica, can the CRDT remove elements from the logs. This is
because only at that point does new causality information about earlier
operations become available, which may be enough for some replicas to de-
termine causal stability. This also explains the initial slope in the graphs:
a replica can only start determining stability once it has received updates
from all other replicas. The graph shows that this happens for the first
replica after the 101st operation in a system with 2 replicas. This is after
the 301st and 701st operation for systems with four and eight replicas,
respectively. From that point on, every 100 operations the system can de-
termine causal stability for operations issued ((NR_OF_REPLICAS−
1)∗100) to ((NR_OF_REPLICAS−2)∗100) operations earlier, which
implies that the log will always be at least the size of the number of
operations issued afterwards.

Note, however, there is an apparent exception to that trend in
the graph: there is a slightly larger dip in the log size every
(NR_OF_REPLICAS − 2) switches. To understand what exactly is
going on, we plot a dissected view of the log for the system with 4 replicas
in Figure 4.9. Each colour in the graph represents the source set for a
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Figure 4.8: Numbers of entries in log of a pure-operation based Remove-
Wins set, as operations are being applied to the sets in the system. For
every 100 operations, the source replica is changed. Measurements taken
for a system with 2, 4, and 8 replicas.

particular entry in the log. For example, a light blue entry means the log
contains an entry for which its operation originated in set 1. For set repli-
cas 0, 2, and 3, it takes 300 operations before the items can be removed
from the log; for set 1, it only takes 200 operations.

Figure 4.9: Numbers of entries in log of a pure-operation based Remove-
Wins set, as operations are being applied to the sets in the system. For
every 100 operations, the source node is changed. Measured in a system
with 4 replicas. The colours represent the source of the entries in the logs.

The apparent exception is that since set 1 directly follows set 0 (which
we are measuring), set 0 only needs causal information from sets 2 and
3 to determine causal stability for the operations issued by set 1. This
information becomes available after the next two replica switches. For
all the other replicas, there is always one extra node in between. For
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example, for operations from set 3, we first have to go through sets 0, 1,
and 2 before enough causal information is available.

Conclusion: These experiments show a large impact on the log size
when replicas do not regularly push out updates, one that grows with
the number of replicas in the system. The results confirm the missed
memory optimisation opportunities from which the vanilla causal stability
algorithm used in pure-op CRDTs suffers.

4.5.4 Assessing the Benefits of Stability Messages

To answer RQ2, we conduct an experiment to validate (in terms of log
size) the benefits of a pure operation-based framework with eager stability
determination.

In particular, we compare three different setups of our framework:

• RW-Set replicas without any stability messages, meaning the frame-
work only relies on causality information of propagated messages to
deduce causal stability (no acks).

• RW-Sets replicas with our extension for stability messages; interval
set to 10 operations (int=10).

• RW-Sets replicas with our extension for stability messages; interval
set to 50 operations (int=50).

In all of these setups, we use four replicas, which means that each
experiment is performed under circumstances identical to those from the
previous section.

Figure 4.10 shows the result of this experiment. A clear drop in the
log size can be observed when utilising stability messages, demonstrating
their effectiveness. A smaller jigsaw pattern is visible, with drops every
10 or 50 operations, depending on the setup. There is no initial slope be-
cause stability messages are more frequent and do not depend on multiple
replicas communicating.

The log still shows a slight build-up of operations when using stability
messages; this is due to the nature of the benchmarking setup. To properly
explain this behaviour, we plot the log sizes of all replicas in Figure 4.11.
Concretely, it shows log sizes for the int=50 case. Because we switch
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Figure 4.10: Comparison of the number of entries in the log of a pure
operation-based Remove-Wins set in a system of 4 replicas, with no ad-
ditional stability messages, stability messages every 10 operations, and
stability messages every 50 operations. For every 100 operations, the
source node is changed.

replica every 100 operations and only send stability messages after an
interval of 50 messages (meaning, after 51, 101, 151... operations), the
last 50 operations from the previous iteration will remain in the log.

Figure 4.11: Detailed view at the number of entries in log of a pure-
operation based Remove-Wins set in a system with 4 replicas and stability
messages every 50 operations.

Figure 4.12 shows the results of an experiment with the same three
setups but in which we change the source node every 200 operations. The
initial slope of the RW-Set without stability messages has doubled, while
the two instances with causal stability messages remain stable. The ex-
periments confirm that our approach brings large memory improvements.
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Figure 4.12: Same comparison as in Figure 4.10, but with the difference
that the source node is changed every 200 operations.

Conclusion: These experiments answer RQ1 by showing a great bene-
fit with the use of stability messages. The results show that our approach
brings improvements when compared to the pure operation-based CRDT
framework.

4.5.5 Assessing the Network Overhead

In this section, we assess the network overhead that our approach incurs,
in order to answer RQ2. As described in Section 4.3, we use stability
messages for announcing causal stability, resulting in increased network
usage (as in bandwidth consumption). Figure 4.13 shows the total number
of messages sent when using the same initial setup as in the previous
experiment (following Figure 4.10). As shown in the graph, the overhead
decreases when increasing the interval, i.e. the longer the interval is, the
less overhead. This illustrates the trade-off between network (i.e. the
number of stability messages sent to the network) and memory usage (i.e.
the size of the log).

In our implementation we utilise separate messages per replica, mean-
ing that the total number of messages (including those for propagating
operations) in a system is relative to both the number of operations ap-
plied and to the number of replicas. Figure 4.14 shows the result of the
previous experiment repeated but with 8 replicas instead of 4. Instead of
showing the total number of messages sent, we now show the difference in
the total number of messages sent in our approach when compared to the
baseline of no stability messages. As expected, when compared to the pre-
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Figure 4.13: Comparison of the total number of sent messages for a pure-
operation based Remove-Wins set in a system of 4 replicas, but with no
additional stability messages, stability messages every 10 operations, and
stability messages every 50 operations. For every 100 operations, the
source node is changed.

vious experiment, the overhead has increased as more stability messages
have to be sent to different replicas.

This extra overhead is unavoidable in networks where replicas can only
talk directly with each other. In networks where multicasting is possible,
the overhead and message sending can be dropped dramatically as all
replicas can be addressed in one go.

Conclusion: This experiment answers RQ2, confirming that there is a
network overhead when using eager stability determination but that it
may be acceptable as a tradeoff with the improved memory consumption.

4.5.6 Assessing the Benefits of Using Log Size as a Heuris-
tic for Stability Messages

Finally, to answer RQ3, we assess the impact of using the log size as a
heuristic for triggering the stability messages, in addition to the interval-
based approach. This approach may be useful to cope with the build-up
of stability messages that was observed in the previous experiments (as
shown in Figure 4.11). Additionally, it can be used by developers to
improve the tradeoff between network and memory usage.
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Figure 4.14: Comparison of the number of additional messages sent in
a pure operation-based Remove-Wins set across a system of 8 replicas,
evaluating the impact of stability messages sent every 10 operations and
every 50 operations against a baseline with no stability messages. The
source node is changed every 100 operations.

Figure 4.15 shows the effect of using the log size as a heuristic when en-
abled for the RW-Set. Again, we are using the same setup as the previous
sections but with the following additions:

• In the instance where the interval is set to 10 operations, we put the
trigger on 15 log entries.

• In the instance where the interval is set to 50 operations, we put the
trigger on 75 log entries.

In the graph, we observe that the log can still grow to be larger than
the trigger limit. The reason for this is that replicas can only broadcast
stability messages for operations that they initiated. Consequently, repli-
cas may reach their limit by receiving operations of other replicas, and
they will not be able to remove these entries until they receive stability
messages. Figure 4.16 shows this more clearly as it depicts the case where
the trigger is set to 75 (and the interval is 50).

Conclusion: To conclude, our experiments show that allowing custom
heuristics, such as a trigger on the log size, can improve memory efficiency
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Figure 4.15: Same comparison as in Figure 4.10, but with the difference
that nodes will additionally try to trigger stability messages if the number
of entries log exceeds a certain size (75 entries for the system with int=50
and 15 entries for the system with int=10). For every 100 operations, the
source node is changed.

and allow developers to fine-tune the tradeoffs according to the data type.
In general, as all replicas will receive updates and eventually hit the trigger
limit, they will push out stability updates. The overall log size drops to
about half of the consumption of what it was in previous experiments
without this heuristic, with limited build-up.

4.6 Notes on Related Work

Dynamic Networks. As explained in Section 2.4.2, several existing
libraries such as Yjs [Yjs] and Lasp [MVR15] do provide support for dy-
namic networks, but to the best of our knowledge, have not described the
work in publications. Recently, a novel join mechanism was explored by
Younes [You22], which takes a very similar approach to our work. New
nodes can join a network by contacting existing members. Similar to our
mechanism, they will then obtain the initial network information, contact
other members, and slowly obtain a full state. The approach also allows
nodes to leave through a coordination mechanism. The leaving node noti-
fies all network nodes and then waits until this request is causally stable.
The work is made available as part of a PhD dissertation and is expected
to be published soon.

Eager Stability. Early work from [WB84] describes a replicated log
that uses logical timestamps to track the causal of operations and opti-
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Figure 4.16: A detailed look at the number of entries in the log of a
pure operation-based Remove-Wins set, in a system with 4 replicas and
stability messages every 50 operations and when the number of entries in
the log exceeds 75. For every 100 operations, the source node is changed.

mises the amount of data that needs to be shared. They compare their
approach to related work, argue that a lack of updates may be problem-
atic, and reason about periodic updates and the tradeoff between using
logical clocks to optimise the log and the resulting communication over-
head.

4.7 Conclusion

In this chapter, we have studied the challenges of employing Conflict-
free Replicated Data Types (CRDTs) in dynamic network environments.
More particularly, we propose a join model to allow a dynamic number
of replicas and introduce a novel mechanism to eager determine causal
stability, improving causal metadata removal.

Our join model enables support for CRDTs in dynamic networks,
where peers can join at any moment. The model ensures that new nodes
can acquire a correct replication state, allowing them to participate ef-
fectively in the replicated system. Our memory management techniques
allow for a faster metadata cleanup process and allow systems to have a
lower memory consumption. Additionally, we enable system implemen-
tors to fine-tune these processes, allowing for a balance between network
resource usage and memory consumption.
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We demonstrated both approaches as extensions built on Flec and eval-
uated the memory management techniques through several experiments.
In conclusion, we show that our approach improves CRDTs’ adaptability
to dynamic networks and optimises their efficiency.
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Chapter 5

Improving the Reactivity of
CRDTs

Previously, we explored how to support networks with a dynamic amount
of replicas. We showed how we could additionally improve memory re-
sources by eagerly removing causal metadata. As part of our approach,
we relied on RCB middleware to ensure causal ordering and reliable deliv-
ery. This is in line with most CRDT approaches and designs, such as the
Pure operation-based CRDTs framework, where the causal ordering of op-
erations is a given. Using an RCB layer typically simplifies the definition
of concurrency semantics, metadata usage and removal.

However, while the benefits of using an RCB middleware are large,
relying on causal ordering may not always be desirable, as it may hamper
the reactivity of operation-based CRDTs [BFG+12]. When operations
arrive out of causal order (e.g., before other operations that happened
before), the RCB middleware buffers them until all causal predecessors
arrive. Since the happened-before relation does not always imply an actual
dependency between operations, operations may needlessly be buffered
by the RCB middleware. This results in a less responsive CRDT, where
replicas may have to wait for unrelated updates from other replicas before
they can apply already received updates. This, in turn, will hamper user
experience as applications may suffer from unnecessary delays. Equally
important, waiting can also impact removing redundant log entries in pure
operation-based CRDTs, leading to higher memory consumption.
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We propose extending the pure operation-based CRDT framework
with novel redundancy relations that reify information operations stored
in the causal buffer (i.e., operations with missing causal dependencies).
This would allow CRDT implementors to react to operations with miss-
ing dependencies without waiting for those dependencies to arrive and
improve the reactivity of CRDTs where possible.

5.1 The Need for Reactive CRDTs

To demonstrate the implications of RCB on the delivery of operations,
consider a sequence of operations applied to three set replicas: A, B,
and C. Figure 5.1 visualises the connectivity between the replicas. Black
lines denote bidirectional connectivity between replicas, and dotted lines
show temporal network failures. In this case, updates are not propagated
between replicas A and B.

A B

C

Figure 5.1: Network connectivity between set replicas.

Assume that the replicas host two different CRDTs, both with add-
wins semantics: a pure operation-based add-wins set (confirming to the
definition in Section 2.3.2) and an operation-based OR-Set CRDT (con-
firming to the definition in Section 2.2.1.3). Recall that an OR-Set CRDT
does not require RCB middleware, as it uses tombstones and unique IDs
to track causality.

Consider the following sequence of operations applied to both CRDTs:

1. Add(X) on replica C
2. Add(Y) on replica C
3. Add(Z) on replica B
4. Remove(X) on replica C

Table 5.1 shows the operations applied to the pure op-based Add-Wins
set, while Table 5.2 shows the operations applied to the OR-Set CRDT.
We apply the operations to the replicas in the following order:
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Table 5.1: A sequence of operations applied to the three add-wins pure
operation-based set replicas. Replica X :: Op(y) denotes the applica-
tion of an operation Op with arguments y on Replica X. The last remove
does not have any immediate effect on A, as A is waiting for B before it
will apply any other operation from C.

Operation Replica A Replica B Replica C
{} {} {}

Replica C :: Add (X)
Replica C :: Add (Y)

{X,Y} {X,Y} {X,Y}
Replica B :: Add(Z)

{X,Y} {X,Y,Z} {X,Y,Z}
Replica C :: Remove(X)

{X,Y} {Y,Z} {Y,Z}

Table 5.2: A sequence of operations applied to the three classic OR-Set
replicas. Replica X :: Op(y) denotes the application of an operation
Op with arguments y on Replica X. The last remove is applied immedi-
ately on set A.

Operation Replica A Replica B Replica C
{} {} {}

Replica C :: Add (X)
Replica C :: Add (Y)

{X,Y} {X,Y} {X,Y}
Replica B :: Add(Z)

{X,Y} {X,Y,Z} {X,Y,Z}
Replica C :: Remove(X)

{Y} {Y,Z} {Y,Z}
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1. First, the elements X and Y are added to replica C. This update is
propagated to all other replicas, and their state is updated.

2. Following this, the element Z is added to replica B. This update is
only sent to replica C, as there is a disconnection between replicas
A and B.

3. Finally, replica C removes item X, which will be observed by replicas
A and B, as replica C is connected to other replicas.

In the case of the OR-Set, the item will be immediately removed on
all replicas. In the case of the add-wins pure operation-based set, the
operation will not be applied on replica A, as the RCB middleware will
buffer the operation. The RCB middleware detects from the causality
information it received along with the operation (from replica C) that A
has not yet received one or more operations from B. In practice, this means
that only after the connectivity issue between A and B is resolved, and
replica A receives and applies the Add(Z) operation from B, the remove
operation from replica C will be applied.

The OR-Set is more reactive than the Add-Wins set as it does not rely
on RCB, but its implementation is still ad-hoc and more complex: unique
identifiers need to be generated for every operation, and tombstones have
to be kept to ensure that remove operations commute. We aim to bring
higher reactivity to pure operation-based CRDTs without relying on ad-
hoc techniques. This will improve the user experience of applications that
rely on such CRDTs without affecting correctness and allow for improved
compaction of the PO-Log.

5.2 Improving the Reactivity of Pure Operations-
Based CRDTs

To improve the reactivity of operation-based CRDTs utilising RCB in a
generic, systematic way, we propose that the buffer of the RCB middleware
where these pending messages are held is made accessible (i.e. reified) to
CRDT implementors as part of the framework interface. In the context of
a pure operation-based CRDT, this buffer can then be used to construct
a reified-pending-messages log (RPM-Log). The RPM-Log, like the main
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PO-Log, is partially ordered and will contain gaps of missing causal de-
pendencies. The RPM-Log complements the existing partially-ordered log
(PO-Log) and the compacted sequential state to represent the full CRDT
state. Queries on the CRDT state can be computed through entries from
both logs and the compacted state. Furthermore, entries in the main PO-
Log and the compacted state can be made redundant by entries from the
RPM-Log. When the missing dependencies for entries in the RPM-Log
arrive, the entries will be moved to the main PO-Log. Note that, however,
entries in the RPM-Log cannot be made redundant as long as they have
not yet been moved to the main PO-Log, as concurrent operations that
might be affected by the operation may yet arrive.

This approach has some additional benefits in terms of memory man-
agement, in addition to increasing the reactivity of CRDTs. Since entries
from the RPM-Log can cause entries from the main log to become redun-
dant, it can be used for decreasing memory consumption whenever inter-
mediate disconnections are common. It may be hard to determine causal
stability when disconnections are common, as not all replicas will be re-
sponsive. By observing the RPM-Log, potentially redundant information
can already be removed from the main log even if causal dependencies are
missing.

In the next section, we detail our approach as an extension of the pure
operation-based CRDT framework. We illustrate the applicability of the
approach through Add-Wins and Remove-Wins sets. Following this, we
describe how we implemented our strategy and the extended sets in Flec.

5.2.1 Extending Semantic Log Compaction with RPM-Log
Support

As explained in Section 2.3.1, pure operation-based CRDTs utilise a mech-
anism named causal redundancy to prune operations from the log when-
ever they become causally redundant. We extend causal redundancy with
a new binary relationship Rβ that defines the relation between log entries
that live in the RCB buffer (e.g. the RPM-Log segment) and the original
main log. More concretely, the relation defines which operations from the
non-buffered log become redundant when new entries arrive in the RCB
buffer.

The interactions between the RCB layer and the pure operation-based
framework are listed in Algorithm 14, which builds on the original al-
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Algorithm 14: Distributed algorithm (for a replica i) show-
ing the interaction between the RCB middleware and the pure
operation-based CRDT framework.
state: si := ∅
on operationi(o) :

broadcasti(o)
on deliveri(t, o) :

si := (si \ {(t′, o′) | ∀(t′, o′) ∈
si · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o) ��R si}

on bufferi(t, o) :
si := si \ {(t′, o′) | ∀(t′, o′) ∈ si · (t′, o′) Rβ (t, o)}

on stablei(t) :
stabilizei(t, si)[(⊥, o)/(t, o)]

gorithm listed in Section 2.3. Recall that when an operation is applied
locally, it will be broadcast to all replicas. In the original definition, re-
ceived operations are handled by deliver, always in causal order. In our
approach, we reify the behaviour of the RCB layer by exposing a buffer
function, which gets invoked when received operations are put in the RCB
buffer due to missing causal dependencies. We then use both deliver and
buffer for querying the R, R_ and Rβ relations to check what log en-
tries become redundant (and modify the state accordingly) and if the new
operation is redundant itself. If the new operation has no missing causal
dependencies and is not redundant, it will be added to the log (along with
its logical timestamp). Note that the redundancy relations only affect
entries in the PO-Log and that the RPM-Log is never modified. Entries
are only removed from the RPM-Log when all causal predecessors have
arrived.

This algorithm only describes the RCB middleware’s interaction with
the pure operation-based framework. We will now describe how actual
CRDTs are built on top of our now reactive pure operation-based CRDT
framework.

5.2.2 Reactive Pure Operation-Based Sets

Table 5.3 shows an implementation for the pure operation-based add-wins
set (AW-Set) CRDT using our approach. It is based on the original pure
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Table 5.3: Modified semantics for the Add-Wins pure-op set, supporting
RPM-Log (based on approach in [BAS17]).

(t, o) R s = op(o) = (clear ∨ remove)
(t′, o′) R_ (t, o) = t′ < t ∧ (op(o) = clear ∨ arg(o ) =

arg(o′))
(t, o) Rβ (tβ, oβ) = t < tβ ∧ (op(oβ) = clear ∨ arg(oβ ) =

arg(o))Fr
am

ew
or
k

stabilize(t, s) = s

toSet(s, sβ) = {v | (_, [op=add,arg=v]) ∈
s} ∪ {v | (_, [op=add,arg=v]) ∈ sβ}

add(e) = operation([op=add, arg=e])U
se
r

remove(e) = operation([op=remove, arg=e])

operation-based add-wins set, as described in Section 2.3.2. The table
is grouped as follows: (1) functions that are used by the pure operation-
based framework that dictates the interaction between new operations and
entries in the log, and (2) functions that can be invoked by the user for
state serialisation or mutations.

In the case of the AW-Set, Rβ is equivalent to R_, i.e. a (causally)
older operation is redundant if it shares the same arguments with a newer
operation, or if the newer operation is a clear operation. As Rβ also
encodes semantics for newer operations (albeit for buffered operations), it
will typically be equivalent to R_ for most data types.

The toSet1 function is extended to take the RPM-Log segment into
account (sβ, the RPM-Log, is passed as an extra dependency). The fully
evaluated state is the union of both the main and the RPM-Log. Finally,
add and remove are applied and broadcasted to all replicas (following the
definition in Algorithm 14 in Section 2.3.2).

Table 5.4 shows a modified reference implementation for the pure-op
Remove-Wins set (RW-Set) CRDT using our approach, extending on the
original design as shown in Section 2.3.2. Again, Rβ is equivalent to R_.
However, unlike the AW-Set version, toSet cannot simply take all the
adds from sβ operation as it needs to account for possible removes that

1In the original pure operation-based paper by [BAS17] this would be the
eval(elems, ...) function.
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Table 5.4: Modified semantics for the RW-Wins pure-op set, supporting
RPM-Log (based on approach in [BGB20b, BAS17]).

(t, o) R s = op(o) = clear ∨ (op(o)=add
∧∃(t′, [op=remove,
arg=arg(o)]) ∈ s · t ∼ t′)

(t′, o′) R_ (t, o) = (t′ < t ∧ ((op(o) = clear ∧ op(t′) =
add) ∨ arg(o) = arg(o′)) ∨ (t ∼ t′∧
op(o) = remove ∧ op(o′) = add ∧
arg(o) = arg(o′))

(t, o) Rβ (tβ, oβ) = R_Fr
am

ew
or
k

stabilizei(t, s)* = {(t′, o) | ∀(t′, o) ∈ s · t 6= t′}
∪{∀(⊥, [op=add,arg=e]) |
(t′, [op=add,arg=e]) ∈ s · t = t′}

toSet(s, sβ) = {v | (_, [op=add,arg=v]) ∈
s} ∪ {v | (t, [op=add,arg=v]) ∈ sβ ∧
∀(t′, [op=remove,arg=v]) ∈ sβ · t′ < t}

add(e) = operation([op=add, arg=e])

U
se
r

remove(e) = operation([op=remove, arg=e])
(o′ ∼ o) denote concurrent operations

*We assume that stabilize is only called for a timestamp
when all concurrent operations are stable as well.
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may invalidate the add. All adds containing concurrent or newer remove
for a particular element will be filtered out.

5.3 Implementation in Flec

In this section, we describe the implementation of our approach in Flec.
We show the code extensions required for reifying buffered operations and
the methods we expose for implementing reactive CRDT designs.

As shown in Section 3.3.2 from Section 3.3.2, the operation-based
CRDT interface in Flec exposes a hook onBufferedOperation that gets
called when operations are buffered by the RCB layer. We make use of
this hook to implement two new constructs for the pure operation-based
CRDT interface in Flec, detailed in Section 5.3, extending on Table 3.5
from Section 3.3.3.

Table 5.5: Reactive Pure Operation-Based CRDT API in Flec.

Reactive Extensions (class: PureOpCRDT)
Event Handling Methods (For CRDT Implementors)
isRedundantByBufferedOperation Encodes the Rβ binary relation (i.e. do

existing log entries become redundant
by a new buffered operation).

newBufferedOperation Perform an action when a new opera-
tion arrives in the RPM-Log.

Listing 5.1 shows our default implementation of onBufferedOpera-
tion which we use to add reactive functionality to Flec. When an oper-
ation is buffered by the RCB layer, our code will reify the operation as a
POLogEntry object, an object that represents a log entry. As a first step,
the hook will then invoke newBufferedOperation with the entry object
as argument. This allows CRDT implementations to react to the arrival
of said buffered operation in a way that is consistent with the handling
of non-buffered operations (which are also represented as POLogEntry ob-
jects). We then, as shown from lines 5-10, iterate over the PO-Log, and
invoke isRedundantByBufferedOperation for every log entry. Depend-
ing on the return value, log items may be removed if deemed redundant,
following the behaviour of the Rβ relation. The removeEntry will be
called for any entry that is removed, following the existing behaviour of
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Listing 5.1: A code extension to the pure op-based framework in Flec that
enables reification of buffer data.

1 onBufferedOperation(clock: VectorClock, op: O, args: any[]){
2 const entry = new POLogEntry<O>(clock, op, args);
3 this.newBufferedOperation(entry);
4

5 for (let i=this.log.length-1; i>=0; i--) {
6 let e = this.log[i];
7 if (this.isRedundantByBufferedOperation(e, entry, false))

{
8 this.removeEntry( this.log[i], entry );
9 delete this.log[i];

10 }
11 }
12 this.log = this.log.filter(e => typeof e !== "undefined");
13 }

the framework when causally arriving operations make log entries redun-
dant.

5.3.1 Implementing Reactive Sets in Flec

This section describes the implementation of the reactive add-wins and
remove-wins sets (as defined in Table 5.3 and 5.4) using the reactive pure
operation-based CRDT framework in Flec. Listing 5.2 shows the core
implementation of the reactive add-wins set.

The implementations of isRedundantByLog and isRedundantByOp-
eration are a 1-on-1 mapping with the described semantics for the R and
R_ relations shown in Table 5.3. isRedundantByBufferedOperation,
which implements the Rβ relation, is set to point to the method of isRe-
dundantByOperation as its semantics are equivalent. Finally, in toSet,
the main log (denoted by s in the table) and the RPM-Log (buffered) log
(denoted by sβ in the table) are combined to determine the full state of
the set.

Listing 5.3 shows the implementation for the reactive RW-Set, follow-
ing the semantics in Table 5.4. Compared to the reactive AW-Set, extra
code is needed to prune causally stable operations. When an entry from
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Listing 5.2: Reactive AW-Set implementation in Flec.
1 export class ReactiveAWSet extends PureOpCRDT<SetOperations> {
2

3 // Defines R_
4 isRedundantByOperation(existing: SetEntry, arriving: SetEntry,

isRedundant: boolean) {
5 return existing.precedes(arriving) && ( arriving.isClear()

|| existing.hasSameArgAs(arriving) );
6 }
7

8 //Defines Rbeta
9 isRedundantByBufferedOperation = this.isRedundantByOperation;

10

11 // Defines R
12 isRedundantByLog(entry: SetEntry) {
13 return entry.isRemove() ||
14 entry.isClear();
15 }
16

17 public toSet() {
18 const set = new Set();
19

20 this.getLog().forEach(e => set.add(e.args[0]));
21

22 this.getBufferedLog().forEach(e => {
23 if (e.isAdd())
24 set.add(entry.args[0]);
25 });
26

27 return set;
28 }
29

30 add(e) { this.perform.add(e); }
31 remove(e){ this.perform.remove(e); }
32 clear(e) { this.perform.clear(e); }
33 }
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the log becomes stable, setEntryStable (line 27-32) will remove it from
the log and place it in a small compacted set. newOperation and new-
BufferedOperation (line 34-35) make sure that this local compacted set
stays up to date when the log changes. The toSet method (line 37-51)
is also a bit more complex for the RW-Set, as it has to take the com-
pacted set, the PO-Log and the RPM-Log into account while respecting
the semantics of the data structure.

Listing 5.3: Reactive RW-Set implementation in Flec.
1 export class ReactiveRWSet extends PureOpCRDT<SetOperation> {
2 compactState: Set<string> = new Set();
3

4 // Encodes the R relation
5 isArrivingOperationRedundant(entry : SetEntry ) {
6 return entry.isAdd() &&
7 !!this.log.find(e => e.isRemove() &&
8 e.hasSameArgAs(entry) &&
9 e.isConcurrent(entry));

10 }
11

12 // Partially encodes R_ for happened-before entries
13 isPrecedingOperationRedundant(
14 existing: SetEntry, arriving: SetEntry) {
15 return existing.hasSameArgAs(arriving);
16 }
17

18 // Partially encodes R_ for concurrent entries
19 isConcurrentOperationRedundant(
20 existing: SetEntry, arriving: SetEntry) {
21 return arriving.isRemove() &&
22 existing.isAdd() &&
23 existing.hasSameArgAs(arriving);
24 }
25

26 // Encodes Rbeta
27 isRedundantByBufferedOperation = this.isRedundantByOperation;
28 ... continued on the next page ...
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29 // Compact entries when stable
30 setEntryStable(entry : SetEntry) : boolean {
31 if (entry.isAdd())
32 this.compactState.add(entry.args[0]);
33

34 return true;
35 }
36

37 // Ensure compacted state is kept up-to-date
38 newOperation = (entry: SetEntry) =>
39 this.compactState.delete(entry.args[0]);
40

41 newBufferedOperation = this.entry;
42

43 toSet() {
44 const set = new Set(this.compactState);
45

46 this.getLog().forEach(entry => {
47 if (entry.isAdd())
48 set.add(entry.args[0])
49 });
50

51 const sb = this.getBufferedLog();
52 sb.forEach(entry => {
53 if (entry.isAdd() && !sb.find(e => e.isRemove() && (e.

isConcurrent(entry) || e.follows(entry))))
54 set.add(entry.args[0]);
55

56 return set;
57 }
58

59 add(e) { this.perform.add(e); }
60 remove(e){ this.perform.remove(e); }
61 }
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5.4 Validation

In this section, we validate our extended framework with reactive CRDTs
through a performance experiment on Flec. Our objective is to deter-
mine whether our approach effectively improves the reactivity of CRDTs
and to quantify the difference between reactive and non-reactive CRDTs.
Concretely, we aim to answer the following questions:

• RQ1: does our approach introduce additional overhead when delays
are negligible?

• RQ2: does our approach remove unneeded delays and improve
CRDT reactivity?

5.4.1 Experiments

We conducted our experiments on a notebook machine with the same
configuration listed in the previous chapter’s evaluation (Section 4.5).
The setup involves running multiple Flec actors on the machine, with in-
stances configured as replicas hosting a set data structure. Flec operates
on Node.js and is compiled using TypeScript.

We configure a system with three AW-Set replicas (A, B, and C). We
perform two experiments, each evaluated on the system with our reactivity
extensions enabled and with the extensions disabled (i.e., the standard
approach).

5.4.2 Assessing the Overhead of Our Approach

To answer RQ1, we perform an experiment in which we perform a sequence
of operations on the replicated sets in a system with no latencies. We
configure all replicated sets to have the same initial state of 100 unique
items. As we are using the pure operation-based CRDT framework, this
implies that the PO-Log of all replicas contain 100 entries.

Every 250ms, we perform a remove operation on replica C until no
items remain. Simultaneously, we add unique items to replica A every
250ms, with a maximum of 20 added items. All operations are instantly
propagated between all replicas.

The experiment is conducted twice: once with non-reactive sets and
once with reactive sets. Figure 5.2 illustrates the number of items in the
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Figure 5.2: Log size of replica B over time. Measurements taken for a
system with reactive AW-Set CRDTs and standard (non-reactive) AW-
Set CRDTs. There is no delay between replicas A and B.

log of replica B over time for both configurations. We can observe an
initial plateau where the number of entries stays stable, corresponding
to the concurrent add and remove operations. After 5 seconds, the add
operations stop, and the number of log entries starts dropping (as the only
remaining operations are removes).

We observe that there is no difference in the number of log entries
between both approaches. This is expected, as there are no latencies in
the system which delay the delivery of causally dependent operations.
This answers RQ1; our approach does not introduce additional overhead
when a system is not experiencing delivery delays.

5.4.3 Assessing Improved Reactivity with Our Approach

To answer RQ2, we perform a second experiment where we make a slight
modification to the system setup: we introduce a 5-second latency for
updates between replicas A and B. This follows the setting we showed in
Section 5.1 with Figure 5.1.

We perform the exact same experiment as previously. As there is no
fixed latency between replicas A and C, operation propagation is immedi-
ate between them. Consequently, all remove operations issued by replica A
will have the add operations from replica C as causal dependency. Again,
the experiment is conducted twice: once with non-reactive sets and once
with reactive sets. Figure 5.3 illustrates the number of items in the log of
replica B over time for both configurations.
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Figure 5.3: Log size of replica B over time. Measurements taken for a
system with reactive AW-Set CRDTs and standard (non-reactive) AW-Set
CRDTs. Operations between replicas A and B are delayed by 5 seconds.

For non-reactive sets, the log size of replica B remains fixed for the
first 5 seconds as the remove operations from replica C are buffered in the
RCB layer, waiting for missing dependencies from replica A. Once the add
operations from replica A arrive, the removes are released and delivered to
the CRDT middleware. The log size stays fixed for an additional 5 seconds
(250ms x 20 add operations), as every remove is counteracted with an add.
After 5 seconds (10 seconds since the start of the experiment), when the
add operations cease, the log size decreases as all removals are processed.
At this point, all arriving removes have no causal dependencies from other
replicas and can be immediately applied.

For the reactive sets, removals are applied immediately since their
effects can be computed without waiting for causal dependencies, as all
the operations are on different unique elements, e.g., there no is no data
dependency. This is visible in the log size, where an immediate drop is
visible. With this experiment, we demonstrate that our approach allows
CRDTs to achieve higher reactivity when causal dependencies for arrived
operations are delayed.

5.5 Conclusion

In this chapter, we demonstrate how causal ordering, used in the majority
of CRDT frameworks, can lead to less reactive CRDTs. We propose a
mechanism to improve the reactivity of CRDTs by reifying the operation
buffer of the RCB layer. Our approach is applicable to CRDT frameworks
that rely on reliable causal broadcasting.
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Specifically, we apply it to a pure operation-based CRDT framework,
through a novel redundancy relation Rβ that allows the comparison of
buffered operations with operations stored in the PO-Log. We implement
our approach in Flec, by extending on the open pure operation-based
CRDT implementation. We then describe and implement extended ver-
sions of the Add-Wins and Remove-Wins sets within the extended pure
operation-based CRDT framework.

We performed an evaluation that shows the effectiveness of our ap-
proach. By comparing a normal AW-Set and a reactive AW-Set in our
Flec implementation, we show that reactive CRDTs can achieve higher
throughput than non-reactive versions in a system experiencing delays.
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Chapter 6

Nestable Pure
Operation-Based CRDTs

This chapter explores support for nesting and composing CRDTs in a
structured and systematic way. Composing CRDTs is non-trivial, as the
convergence properties for CRDT designs are made to hold for single
CRDTs and do not necessarily hold when several CRDTs are composed
into a new one.

As mentioned in Section 2.4.3, recent work exploring the composi-
tion of CRDTs mainly follows a state-based design.This may result in
non-sensible designs for nested CRDTs and hampers the development of
CRDTs where the operation history needs to be used to improve the merg-
ing algorithm. Operation-based techniques, on the other hand, are better
suited for replicating nested data structures as information on applied
operations can be used to determine the optimal ordering for concurrent
operations. This means it is less complex to relate different operations or
even separate them when deciding what nested semantics are needed for
non-commutative concurrent operations.

In this chapter, we explore a structured approach for designing and
implementing nested CRDTs. CRDT designers can easily coordinate the
interaction between nested structures as part of the replicated structure’s
concurrency semantics.

For this, we propose Nested Pure Operation-Based CRDTs, extending
the pure operation-based CRDT framework, as described in Section 2.3,
with support for nested CRDT structures. We implement nested pure
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operation-based CRDTs as an extension to Flec. We validate our ap-
proach by implementing a portfolio of nested data structures and verifying
it in the VeriFx language. Finally, we implement a distributed file system
based on Vanakieva et al. [YYRB21] to assess the performance of our ap-
proach in comparison to a state-of-the-art JSON CRDT implementation,
Automerge [KB17]. We show that the framework is general enough to
nest well-known CRDT designs like maps and lists, and its network traffic
performance is comparable to the state of the art.

6.1 Nesting Pure Operation-Based CRDTs

Currently, it is not possible to reason about nested structures within the
pure operation-based CRDT framework. Redundancy relations only work
on a flat level, and any logic to traverse hierarchical/nested structures has
to be manually bolted on top of the framework in an ad-hoc way. More
concretely, this requires developers to store nested operations in a flattened
form in the main log. To evaluate and apply the log’s contents, developers
would need to either fully combine the logic of the nested and main top-
level CRDT or encode the nested CRDT semantics in the query functions.
In the former case, the redundancy relations and query functions would
have to manage all concurrency rules for all needed nested strategies. This
greatly complicates the design of such structures and makes them more
prone to errors. In the latter case, only the query functions would need to
be touched, but they would have to implement all redundancy logic from
scratch. A programmer could delegate operations to separate components
for the nested CRDTs, but this would ultimately imply reimplementing
the delivery of operations in the query function logic, which should be
kept in the framework.

In this section, we rethink nested pure operation-based CRDTs to
enable the systematic construction of nested data structures. We aim
to allow developers to combine and nest existing pure operation-based
CRDTs and provide constructs for developing novel nested CRDTs. In
particular, we focus on designs where nested structures can dynamically
change at runtime, i.e., data structures that grow and shrink during an
application’s lifetime, such as maps and lists, where values can be CRDTs.
Our approach’s core idea is to offer developers constructs to define the re-
lationship between parent and child CRDT. The framework then handles

114



6.1. NESTING PURE OPERATION-BASED CRDTS

all replication aspects regarding operations delivery in the data-structure
hierarchy, ensuring that causal ordering is respected and that nested chil-
dren are recursively reset when needed.

6.1.1 Extending the Pure Operation-Based Framework

This section describes our approach as an extension to the pure operation-
based CRDT framework. We model a nested data structure as a nested
hierarchy where children can be identified by a particular key and deeply
nested children by an absolute path (list of keys) relative to the topmost
data structure (the root CRDT). To support nested data structures, we
introduce three extensions to the pure operation-based framework:

• An internal data structure to keep track of nested CRDTs (i.e., the
children of a CRDT).

• An update propagation mechanism for nested CRDTs that delivers
the applied operations ensuring that the concurrency semantics of
parent data structures are upheld.

• A reset mechanism for nested CRDT operations that ensures that
the concurrency semantics of children’s data structures are upheld.

Each of these extensions is essential to ensure the correctness of repli-
cated data types. In the following subsections, we elaborate on them and
motivate why they are needed through several examples. In Section 6.1.2,
we provide a more formal specification of our approach and extensions to
the pure operation-based framework and describe example implementa-
tions for update-wins and delete-wins hash maps.

6.1.1.1 Keeping Track of Nested Data Structures

Objects or data structures that have nested children typically refer to
children by some key. Our approach assumes that children have a unique
identifier by which they can be accessed (i.e., queried and updated). As
nested children can also contain other nested elements, an absolute path
can be constructed to identify a particular nested data structure, starting
from the root (top-most) data structure.

At the implementation level, a CRDT developer can decide in what
manner key lookup works by providing an implementation of a particular
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handler function (getChild) that is used for lookup. The framework then
provides a mechanism that allows absolute paths on a replicated structure
to identify nested data structures that need to be queried or updated.

6.1.1.2 Updating Individual Nested CRDTs

When an operation is applied to a nested child, it is crucial that the
concurrency semantics of parent data structures are upheld. Operations
cannot be applied directly to children, as concurrent operations could be
applied to parent nodes, some of which may even affect the keys pointing
to the nested children. For example, with a hash map, an entry could be
concurrently modified while it is being removed. In our approach, when an
update is applied to a particular child element, we will first issue special
update operations to every parent node. These update operations signal
the parent CRDTs that a nested operation will be applied and that the
operation should first be compared to existing log entries using redundancy
relations.

To illustrate our update mechanism, consider an update-wins repli-
cated hash map. In this case, it is important to ensure that update opera-
tions win over remove operations (on the same key). At times, the update
operation itself may be immediately redundant, and as such, there is no
need to propagate the operation further to a nested child.

As an example, consider Figure 6.1 showing a hash map with update-
wins semantics containing nested Multi-Value1 registers in three different
stages. The first box (denoted by 1) shows the internal state and the
PO-Log for the hash map and the register associated with the key ’B’. As
explained, every update applied to the nested register has an associated
update in the parent log. In this case, two concurrent updates were applied
to the nested register, resulting in the state {Hello, Hi!}.

The second box shows the state when an update(B, set(Hey)) is
applied to the hash map. This update has a timestamp (<0,2,1>) which
is concurrent with some operations (<2,0,1>, <1, 0, 1>), but causally

1A Multi-Value register (MV-Register) [SPBZ11a] is a replicated register that, when
faced with concurrent updates, will store all concurrent values. Updates that (causally)
follow will replace previous values. This is in contrast to other replicated registers, for
example, the Last-Writer-Wins (LWW) CRDT register [SPBZ11a] that always keeps
a single value. When faced with concurrent updates, an LWW-Register will use an
arbitrary method for picking a single update (such as picking the update from the
replica with the highest network id).
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upd(A,  )

<0,1,1> upd(B,  )

<1,0,1> upd(B,  )

<2,0,1> upd(C,  )

[ A:   , B:   , C:    ]

<1,0,1> set(Hello)

<0,1,1> set( Hi! )

{ Hello, Hi! }

upd(A,  )

<0,1,1> upd(B,  )

<1,0,1> upd(B,  )

<2,0,1> upd(C,  )

[ A:   , B:   , C:    ]

<1,0,1> set(Hello)

<0,1,1> set( Hi! )

{ Hello, Hi! }

<0,2,1> upd(B,  ) <0,2,1> set(Hey)

=> upd(B, set(Hey))

upd(A,  )

<1,0,1> upd(B,  )

<2,0,1> upd(C,  )

[ A:   , B:   , C:    ]

<1,0,1> set(Hello)

{ Hello, Hey }

<0,2,1> upd(B,  )

<0,2,1> set( Hey )

Update-Wins Map Multi-Value Register
1.

2.

3.

Figure 6.1: Three stages of the internal state of a hash-map with update-
wins semantics containing nested Multi-Value registers: 1) initial state, 2)
arrival of an update (upd) operation, and 3) final state after applying the
operation.
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follows others (<0, 1, 1>, ..). The update itself is applied to the hash map,
making one of the existing update entries redundant, i.e., the one with
vector clock <0,1,1>, as it concerns the same key and has a non-concurrent
timestamp. As the update operation itself is not redundant, its nested
operation can be applied to the nested register. The set(Hey) is then
applied to the nested register, making also one set operation redundant
in the register, i.e., the one with vector clock <0,1,1>. Note that there is
another pair of concurrent operations in both the map and register that
will not be made redundant, and thus are kept in the log. The third box
shows the state and the log after applying update(B, set(Hey)) resulting
in the updated state {Hello, Hey}.

6.1.1.3 Maintaining Consistency of Children by Targeted Causal
Resets

While applying redundancy checks on update operations ensures that the
concurrency semantics of parents are upheld, it does not ensure that the
concurrency semantics of children are upheld. In fact, the update mech-
anism ensures that redundancy relations are respected at each level of
the CRDT, but these redundancy checks never cross hierarchical bound-
aries. This is expected as the redundancy rules are made for primitive,
non-nested structures.

Consider a hash map with nested children; it is possible that a remove
operation on the parent map is concurrent with some (but not all) oper-
ations on a child. The removal operation may make some, but not all, of
the associated update operations redundant. The redundant updates will
be removed at the parent level through the normal redundancy rules, but
an additional mechanism would be needed to reflect the removal of the
nested operations associated with the updates.

For this, we introduce a novel nested redundancy relation Rn that
allows nested children to be reset to a particular logical timestamp (inclu-
sive or exclusive of concurrent operations). With this relation, redundancy
rules can be implemented to define hierarchical relations between log en-
tries.

Figure 6.2 illustrates the use of our novel Rn relation in our running
example of the update-wins map with nested Multi-Value registers. The
first box (denoted by 1) shows the internal state and the PO-Log for the
hash map, and the register associated with the key ’B’ when a delete(B)
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upd(A,  )

<0,1,1> upd(B,  )

<1,0,1> upd(B,  )

<2,0,1> upd(C,  )

[ A:   , B:   , C:    ]

<1,0,1> set(Hello)

<0,1,1> set( Hi! )

{ Hello, Hi! }

<0,2,1>  del( B  ) reset <0,2,1>; conc=0

=> del( B )

R_

1.
R Rn

upd(A,  )

<1,0,1> upd(B,  )

<2,0,1> upd(C,  )

[ A:   , B:   , C:    ]

<1,0,1> set(Hello)

{ Hello }

2.

Figure 6.2: Example of a nested redundancy relation that selectively resets
nested children, triggered by the deletion of a key. As the arriving delete
(del) operation is concurrent with an update (upd) that arrived earlier,
the nested child needs to be partially reset.
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operation arrives. As this operation is concurrent with one of the ear-
lier updates in the map, and the map follows update-wins semantics, the
key itself cannot be removed. The entry with a preceding vector clock
<0,1,1>, however, will be marked redundant by the regular R_ relation.
At this point, the register associated with key B has partially redundant
data, and as such needs to be updated to respect the remove operation.
To this end, the introduced Rn relation can be used to reset all operations
in the nested register that are previous to the delete operation. In the case
of the example, the set of the value ’Hi!’ (denoted in red in the figure)
will be made redundant and removed from the register log. The second
box shows the state and the log after applying the delete(B) operation
in which all redundant operations are removed from the entire hierarchy,
and the state of the register is updated to {Hello}.

6.1.2 Formalised Semantics for Extended Functionality

We now describe our approach as an extension of the formal model of a
pure operation-based CRDTs framework (cf. Section 2.3). Algorithm 15
describes the distributed algorithm for our novel nested pure operation-
based framework specifying the interaction between the RCB middleware
and the framework, extending Algorithm 4 from Section 2.3.

Notes on notation: Recall that we used the i variable in Algorithm 4
to denote a particular replica. For example, si refers to the state
of replica i. In the extended definition, we compound this with
a list variable p, which denotes the path to the CRDT relative to
its parent. The top-most data structure is denoted as root. For
example, {root, bob, favourite_colours} could be a path that refers
to a favourite_colours object associated with the key ’bob’ in a map.
As such, we use s{root,bob,favourite_colours} to refer to the state of this
object.

Algorithm 15 features the following new primitives for broadcasting
and delivering nested operations:

• broadcast_nestedi,p(o): broadcasts nested operations ensuring
that the operation will be delivered to all replicas (reliably and in
causal order). In our design, a broadcast can only be triggered from
the top-most data structure, as such p will always be root.
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Algorithm 15: Distributed algorithm (for a replica i) show-
ing the interaction between the RCB middleware and the pure
operation-based CRDT framework.
state: si,p := ∅
state: childreni,p

on operationi(o) :
broadcasti,root(o)

on nested_operationi(p, o) :
broadcast_nestedi,root(update(p, o))

on deliver_nestedi,p(t,update((child, ∅), o) :
deliveri,p(t, update(child))
delivern,child(t, o) if (t, update(child))��R si,p

on deliver_nestedi,p(t,update((child, p), o)) if p 6= ∅ :
deliveri,p(t, update(child))
deliver_nestedn,child(t, update(p, o)) if
(t, update(child))��R si,p

on deliveri(t, o) :
si,p := (si,p \ {(t′, o′) | ∀(t′, o′) ∈
si,p · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o)��R si,p}
reseti,child(t, 0) | ∀child ∈ childreni,p · (child, 0) Rn (t, o)
reseti,child(t, 1) | ∀child ∈ childreni,p · (child, 1) Rn (t, o)

on stablei,p(t) :
si,p := stabilizei,p(t, si,p)[(⊥, o)/(t, o)]
stablei,child(t) | ∀child ∈ childreni,p

on reseti,p(t, conc) :
si,p := si,p \ {(t′, o′) | ∀(t′, o′) ∈ si,p · ((t′ ≺ t) ∨ (conc 6= 0 ∧ t′ ‖c t))}
reseti,child(t, conc) | ∀child ∈ childreni,p
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• deliver_nestedi,p(t, o): called when an operation o is delivered
(e.g. after it was previously broadcasted) on a replica i at path p
with causal clock t.

• nested_operationi(p, o): called when a nested operation o needs
to be applied at path p.

Recall from Section 6.1.1.2 that when an operation is applied to a
nested child, at each level of the parent hierarchy, an update operation
needs to be applied so that all redundancy rules can be checked. In the
algorithm, the implementation of nested_operation ensures that an op-
eration is packaged in an update operation and broadcasted using broad-
cast_nested. These broadcasted operations are received by the top-level
data structure (root) using deliver_nested. deliver_nested will then try
to deliver the operation to the child data structure specified by the path.
At each level of the path, it will apply the update operation, check if the
operation is not redundant, and if not, recursively descend into the hier-
archy until the path only consists of one final child. It will then apply the
actual operation to the last nested data structure using the non-nested
deliver. Our approach extends the original deliver method with our novel
nested redundancy relation: an implementation can use Rn to select what
timestamps should become redundant for which nested children. Children
are then (recursively) reset using the reset function, which takes a times-
tamp t and a variable conc that denotes whether the reset is exclusive
(only entries that happened-before) or exclusive (including all concurrent
entries).

6.1.3 Nested Pure Operation-Based Maps

In this section, we illustrate our framework by describing the design of
two novel nested map CRDTs: an update-wins map (UW-Map, informally
described in Section 6.1.1) and a remove-wins map (RW-Map).

Table 6.1 shows the semantics for the UW-Map in our pure operation-
based framework. The design of the UW-Map CRDT is inspired by the
add-wins Set CRDT [BAS17, BGB21], with some modifications to take
care of its nested nature. The R relation for the UW-Map defines that
delete operations will never be stored in the log (i.e., they are immedi-
ately redundant). The R_ relation will make any existing operation in
the log redundant if it happened before. This ensures that keys can be
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deleted. Note that the R_ relation also makes update operations with
the same key that happened before be redundant. This makes the data
structure a bit more efficient. Finally, the Rn relation for UW-Map de-
fines that all nested operations that happened before any delete need to
be recursively reset (i.e. removed). As this remove should be exclusive,
i.e., no concurrent entries should be removed, we additionally encode that
conc should be zero.

Table 6.1: Update-wins pure operation-based map, with support for
nested CRDTs.

(t, o) R s = op(o) = delete
(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o ) = arg(o′)

(child, conc) Rn (t, o) = conc = 0 ∧ op(o) = delete ∧ arg(o) =
child

Fr
am

ew
or
k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update,
arg=[p, o])

U
se
r

delete(c) = operation([op=delete, arg=e])

Table 6.2: Remove-wins pure operation-based map, with support for
nested CRDTs.

(t, o) R s = op(o) = update ∧ (∃ (t′, o′) ∈ s · arg(o) =
arg(′o) ∧ op(o′) = delete ∧ t ‖c t

′)
(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o ) = arg(o′) ∧ op(o) = delete

(child, conc) Rn (t, o) = op(o) = delete ∧ arg(o) = childFr
am

ew
or
k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update,
arg=[p, o])

U
se
r

delete(c) = operation([op=delete, arg=e])

An alternative to update-wins is ensuring that delete operations are
ordered after concurrent updates, leading to a map with remove-wins se-
mantics. Table 6.2 shows the implementation of such a remove-wins map
(RW-Map) in our framework. It is structured similarly to the AW-Map
but has some additional complexity as the log needs to retain all delete
operations until they are causally stable. The Rn relation encodes that
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all previous or concurrent nested updates need to be removed (to ensure
remove-wins semantics).

In this design of an RW-Map, in theory, update operations do not
need to be stored in the log as these updates are stored in the nested
children. However, only the last update operation for a particular child is
kept (since previous update operations are removed from the log as they
are redundant) As such, storing the update operations in the log can be
useful to check if a particular child has a value, without having to query
the nested children. When storing these entries poses a problem memory-
wise, they can trivially be removed with no impact on the behaviour of
the data type.

6.1.4 Discussion

The implementation of the nested map CRDTs demonstrates that sup-
porting nested structures can be tackled in a structured way. Our frame-
work handles all logic related to nesting and update propagation, aiming
to provide an easy-to-use interface. Additionally, hierarchical redundancy
rules can be encoded using the Rn relation, ensuring that concurrency
semantics are upheld at any level.

We believe that our approach simplifies the design of replicated nested
CRDTs, and with it, we aim to reduce their implementation complex-
ity. With the presented methodology, one can think of every CRDT with
nesting support as a flat CRDT, which needs to support one additional
operation, namely update. For example, a map is similar to a set of keys
with an associated value. In a set, we can add and remove keys. Using
some rules we can make the set add-wins or remove-wins, and with a bit
of extra work, we can define how an update operation could be ordered
against concurrent add and remove. This could be the core design of a
Map. Our framework will make sure that every nested operation, e.g. a
nested operation to a child of the map, is first represented as an update op-
eration for the parent CRDT. The parent CRDT (e.g. the map) does not
need to know anything about the nested content of this update, it is sim-
ply trying to make sure that this update will be properly ordered between
the additions and removals of keys. This alone, however, is not enough
to ensure convergence, i.e. that the algorithm is correct. Depending on
the arrival order of an update in combination with other concurrent op-
erations, the associated nested operation may have been applied to some
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replicas and not to others. To ensure that the nested state converges,
the algorithm sometimes might need to apply some cleanup procedures,
which is precisely where the nested redundancy relation comes into play.
In Section 6.3.1 we formally prove that this is the case for our approach
and our implemented designs.

6.2 Implementation

In this section, we describe the implementation of our novel nested pure
operation-based approach in Flec. We focus on the extensions to Flec
required to support nested pure operation-based CRDTs. We expose our
work as extensions of the operation-based CRDT API, as described in
Table 3.5 from Section 3.3.2. Section 6.2 summarises the constructs that
were added to support our implementation.

6.2.1 Implementing Nested CRDTs in Flec

We now illustrate the extended Flec by means of the RW-Map CRDT
described in Table 6.2. Listing 6.1 and Listing 6.2 show the core of the
implementation of RW-Map CRDT in Flec. Lines 4 to 8 in Listing 6.1
define the CRDT constructor, which is used to initialise the values prop-
erty that contains all nested children. Additionally, an initialiser can be
specified that sets the initial (start) value for children. For example, if a
map with a nested AW-Set is needed, the initializer will initialize a new
AW-Set CRDT. Lines 14-16 in Listing 6.1 show the update function which
can be used to apply nested operations on children (by CRDT client code).
Any operation on a child is indicated by specifying a particular path, and
the update to be applied. Using performNestedOp this operation will be
propagated to the child and all replicas. The actual semantics can be seen
in Listing 6.2 which shows the implementation of the redundancy relations
and children referencing.

Lines 20 to 22 in Listing 6.2 show the implementation of the re-
solveChild method which allows Flec to reference children, stored in the
values property. The rest of the listing shows how the RW-Map imple-
ments redundancy relations to achieve remove-wins semantics: the RW-
Map provides an implementation for isPrecedingOperationRedundant
to implement the R_ relation: any operation in the log is redundant if
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Table 6.3: Nesting Operation-Based CRDT Interface in Flec.

Nesting Extensions (class: PureOpCRDT)
Event Handling Methods (For CRDT Implementors)
doesChildNeedReset Encodes the Rn binary relation (i.e.,

from what timestamps do children need
a partial reset).

Command Interface (For CRDT Implementors)
performNestedOp performs a nested operation and broad-

casts it to other replicas.
setChildInitialiser Method that will be used to initialise

new children, using child-specific con-
structs (e.g. if you want children to
be AW-Sets, the initialiser will return
a new AW-Set).

addChild Register a CRDT as a child to a parent,
for a particular key.

Command Interface (For Framework Extenders)
resolveChild Used internally to resolve nested

CRDTs. Can be used to override the
default internal child bookkeeping and
change how the the framework resolves
child CRDTs (this will disable add-
Child).
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Listing 6.1: The implementation of an RW-Map in Flec, using the de-
scribed extensions (A).

1 export class RRWMap extends PureOpCRDT<MapOps> {
2 values: Map<string, NestedCRDT>;
3

4 constructor(initializer: () => NestedCRDT) {
5 super();
6 this.values = new Map();
7

8 this.setChildInitialiser(initializer);
9 }

10 ...
11 // User functions
12 ...
13

14 public update(path, ...args) {
15 this.performNestedOp("update", path, args);
16 }
17 }
18
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Listing 6.2: The implementation of an RW-Map in Flec, using the de-
scribed extensions (B).

1 protected isPrecedingOperationRedundant(existing: MapEntry,
arriving: MapEntry, isRedundant: boolean) {

2 return arriving.isDelete() && existing.hasSameArgAs(arriving);
3 }
4

5 protected isArrivingOperationRedundant(arriving: MapEntry) {
6 const concurrentDeletes = this.getConcurrentEntries(arriving).
7 filter(e => e.entry.isDelete() && e.entry.hasSameArgAs(

arriving));
8

9 return concurrentDeletes.length > 1;
10 }
11

12 protected doesChildNeedReset(child, arriving: MapEntry) {
13 return {
14 condition : arriving.isDelete() && arriving.args[0]

== child,
15 reset_concurrent: true
16 };
17 }
18

19 // Resolve child CRDTs
20 protected resolveChild(name: string) {
21 return this.values.get(name);
22 }

it has happened before a newly arriving operation, and if they are acting
upon the same child. It also implements isArrivingOperationRedun-
dant to define the R relation: any arriving update is not applied if a
concurrent delete is stored in the log. Finally, by providing an implemen-
tation for doesChildNeedReset we specify that when a delete arrives for
a particular child, the child will be reset. The reset_concurrent flag is
set to true to indicate that even concurrent updates to the child should
become redundant.
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6.3 Validation

To validate our nested pure-operation based CRDT approach, we con-
duct three experiments. First, we verify the correctness of our proposed
framework and nested pure op-based maps. Secondly, we implement the
concepts in a real programming framework and finally, we compare it to
another framework featuring similar concepts.

6.3.1 Verification with VeriFx

In order to verify our approach, we have re-implemented the core of our
nested pure operation-based CRDTs in VeriFx [DPFGB23]. VeriFx is a
programming language for replicated data types with automated proof
capabilities that allow users to implement replicated data types in a high-
level language and express correctness properties that are verified auto-
matically. VeriFx internally uses an SMT theorem prover to search for
counterexamples for each property that needs to be upheld. It also en-
ables the transpilation of the data types to mainstream languages (e.g.
Scala and JavaScript).

Correctness means that CRDTs built with the framework exhibit the
strong convergence property. As explained in Section 2.1.2.2, this requires
that replicas need to have received the same operations to be in the same
state (regardless of the order in which the operations have been received).
Shapiro et al. showed in [SPBZ11a] that operation-based CRDTs guaran-
tee strong convergence if all concurrent operations commute. In our case,
this implies checking the effects of all redundancy relations. Proving the
correctness is, however, slightly trickier in our case, as we are dealing with
a recursive design. SMT solvers, such as Z3 used by VeriFx, do not deal
well with recursive and nested data structures, as they might not be able
to find a solution in a finite time. To verify our approach, we thus combine
VeriFx proofs with structural induction, which limits the recursion depth
needed to verify our design:

• Base case: we implemented a ’perfect’ resettable pure operation-
based CRDT in VeriFX that can model both a flat CRDT or a
CRDT containing children. The CRDT logs all operations in a sin-
gle flattened log (e.g., one log for all potentially nested structures).
Items in the log can be reset by a parent when requested. No redun-
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Listing 6.3: Convergence update-update.
1 proof FUWMap_update_update_converges {
2 forall(map: FUWMap, k1:String, k2: String, t1: VersionVector, t2

: VersionVector, o1: SimpleOp, o2: SimpleOp) {
3 ( t1.concurrent(t2) && map.children.contains(k1) && map.

children.contains(k2) &&
4 map.polog.forall((e:TaggedOp[FMapOp])=>

((e.t.before(t1) || e.t.concurrent(t1))
5 && (e.t.before(t2) || e.t.concurrent(t2)

)))) =>: (
6

7 map.update(t1, k1, o1).update(t2, k2, o2)
8 ==
9 map.update(t2, k2, o2).update(t1, k1, o1)

10 )
11 }
12 }

dancy rules are applied. This design ensures that we can represent
a ’correct’ nested structure (in terms of SMT assumptions) with-
out needing a recursive model. We use a VeriFx proof to ensure
convergence of this ’perfect’ CRDT.

• Induction step: a particular nested CRDT can be implemented on
top of our VeriFx implementation and set to use perfect nestable
CRDTs as children. With this approach, VeriFx can then be used
to prove that our approach is correct for one level of nesting, for all
pairs of operations.

By combining the base case and induction step, we prove using struc-
tural induction that our framework remains correct for any nestable struc-
ture.

As an example, Listings 6.3, 6.4, and 6.5 show the VeriFx proof logic
that was used to check the behaviour of concurrent operations on an
update-wins map implemented with our framework. We define that any
pair of correct operations that are concurrent and applied to a correct
state should commute. The operations and state are correct if the oper-
ations (causally) follow or are concurrent with all other operations that
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Listing 6.4: Convergence update-delete.
1 proof FUWMap_update_delete_converges {
2 forall(map: FUWMap, k1:String, k2: String, t1: VersionVector, t2

: VersionVector, o1: SimpleOp) {
3 (t1.concurrent(t2) && map.children.contains(k1) &&
4 map.polog.forall((e:TaggedOp[FMapOp])=>((e.t.before(t1) || e.t

.concurrent(t1)) && (e.t.before(t2) || e.t.concurrent(t2)))))
=>: (

5 map.update(t1, k1, o1).delete(t2, k2)
6 ==
7 map.delete(t2, k2).update(t1, k1, o1)
8 )
9 }

10 }

Listing 6.5: Convergence delete-delete.
1 proof FUWMap_delete_delete_converges {
2 forall(map: FUWMap, k1:String, k2: String, t1: VersionVector, t2

: VersionVector, o1: SimpleOp, o2: SimpleOp) {
3 (t1.concurrent(t2) && map.children.contains(k1) && map.children.

contains(k2) && map.polog.forall((e:TaggedOp[FMapOp])=>((e.t.
before(t1) || e.t.concurrent(t1))

4 && (e.t.before(t2) || e.t.concurrent(t2)))
)) =>: {

5 map.delete(t1, k1).delete(t2, k2) == map.delete(t2, k2).
delete(t1, k1)

6 }
7 }
8 }
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were applied previously to the state (e.g. everything in the log). For
this definition, we assume the usage of RCB (which is the case with the
pure operation-based CRDT framework), so that we know that everything
in the log must be concurrent or happened-before. In other words, the
logic encodes the correctness properties that should always hold in our
framework, i.e. that if all operations on the map commute and the nested
operations are applied to correct CRDTs (in our case, all nested operations
are applied to a ’perfect’ CRDT), that the map is correct.

We use VeriFx to verify these properties hold given the implemented
designs. Internally, the VeriFx SMT engine will look for valid solutions
that satisfy the negation of our definitions, it will search for any case where
the correctness properties are violated. Since no counterexamples (valid
solutions for the negation of properties) were found after exhausting all
search options, we can then constitute that our framework model is valid
according to the correctness properties.

Using this approach, we have verified our map designs, validating both
the concurrency semantics of our proposed CRDTs and proving that our
novel framework functions correctly. The benefit of our verification ap-
proach is that to validate the correctness of any nestable CRDT (built on
our framework), one only needs to encode proofs for the operations on a
flat level. All needed nesting aspects of the proof will automatically be
inherited from our VeriFx implementation.

6.3.2 Portfolio of Nested CRDTs in Flec

To show the flexibility and applicability of our approach, we have im-
plemented several commonly used data structures as novel nested pure
operation-based CRDTs in Flec, summarised in Table 6.4. As shown in
the previous section, we have map implementations with update-wins and
remove-wins semantics. Maps form the basis for many other data struc-
tures and thus are essential to any replication framework. They have been
verified using their VeriFx-based implementations and have been used in
more complex data structures since.

We have implemented two other maps: one modified map (based on the
remove-wins map) that optimises some structures to have better memory
resource usage, and another map where keys are managed by an add-wins
set. Finally, we have a delete-wins list that can be used to store values in
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Table 6.4: Implemented nested CRDT types.

CRDT Semantics

UW-Map Update-wins map where values can be CRDTs.
Update win from concurrent deletes.

RW-Map Remove-wins map where values can be CRDTs.
Deletes win from concurrent updates.

RW-Map (mod) Modular version of the remove-wins map that al-
lows more efficient memory usage.

AW-Map A variant of the update-wins Map where keys are
managed by an add-wins set.

AW-Set An add-wins set where values can be CRDTs.

DW-List A delete-wins linked list where elements can be
CRDTs.

ImmutableCRDT A map with immutable keys, which behaves simi-
larly to structs in C.

sequential order. Similarly to other sequential replicated structures such
as RGAs [RJKL11], a linked list is used internally.

6.3.3 Use-Case: AMixed CRDT-Based Distributed Filesys-
tem

To validate our approach in a real-world application scenario, we imple-
mented a distributed file system based on the work of [YYRB21] in Flec.
This application is also used later in Section 6.3.4 to compare our approach
to state-of-art.

As mentioned in Section 3.3.2, Flec comes with a portfolio of generic
CRDTs, mostly pure operation-based CRDTs. While our extensions to
Flec are focused on pure operation-based CRDTs, part of the added
nesting support can also be used in conjunction with general non-pure
operation-based CRDTs to develop real-world applications.

When composing traditional CRDTs, operations on a (parent) root
node typically trigger several operations that will be applied to internal
(nested) CRDTs. For a single operation, these sub-operations need to
be applied atomically, they cannot be viewed as independent and should
not automatically replicate to nested children of replicated CRDTs. This

133



CHAPTER 6. NESTABLE PURE OPERATION-BASED CRDTS

is in contrast with our main approach where an update is applied via a
particular sub-path. To ensure compatibility with this approach in the
framework, nested children can detect the context in which operations
are applied. If a nested CRDT has a parent, and an operation is applied
directly from that parent (and not via a nested update), the operation
will not be broadcasted to other replicas. Instead, it is assumed that the
(top-)parent operation will be broadcasted, resulting in the same nested
update path on other replicas.

We now discuss the overall data structures and operations of the dis-
tributed file system.

Appendix A shows the core of the implementation. It has been mod-
ified to hide some minor boilerplate code, type definitions, and a lot of
operation handling code, but it contains the essentials. Listing A.3 shows
the main body of the DistributedFS class, which implements the core
functionality of the CRDT. By extending the OpCRDT class it automatically
inherits all the distribution and CRDT functionality from Flec (along with
our extensions).

Lines 5-21 define the required data structures for the distributed file
system that keep track of metadata for files, groups and users. To this
end, we define three maps, and each map on its own contains records (in
the form of ImmutableCRDT) containing other CRDTs for storing the
metadata of particular files, groups and users. For example, the files
data structure is defined using an RW-Map and contains filesystem meta-
data related to access rights, ownership, and data content. The data
types we use for the registers (AccessRightF, UserID, ...) are basic types
constructed from primitive types such as numbers or strings and can be
stored directly in the registers. AccessRightF is a numerical value that
we index as a bit-vector to store our permission flags (similar to POSIX
systems). We provide an additional TypeScript class, AccessRight, that
provides a high-level abstraction to this bit-vector, but concretely we store
numerical values in the CRDT register. Lines 24-28 define the onLoaded
method which associates the aforementioned three maps with their parent
CRDT. In line 30, the setHandler method defines all operation handlers
which implement the semantics of the CRDT.

Listing A.4 shows the implementation of the CreateFile operation in
more detail, and Listing A.5 shows code that exposes some of the CRDT
API to the local user, for performing some basic actions which are used
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by the test method in Listing A.6 to show local usage of the file system
functionality. Flec will ensure that all operations are properly replicated
and distributed. In general, most of the code is similar to that of sequen-
tial data structures, and the API is not much more complex. This is in
line with the goal of our framework: an easy-to-use interface for building
CRDTs where developers can immediately benefit from a middleware that
does all the heavy lifting.

6.3.4 Evaluation of Network Traffic in Comparison With
Automerge

To compare our approach with state of the art, we implemented the same
distributed filesystem in Automerge v1.0.1 [KB17] and evaluated the dif-
ferences in network traffic between our Flec implementation and the Au-
tomerge one.

Note that it is not possible to select the individual concurrency seman-
tics for nested objects with Automerge, as is possible with our extension
to Flec. As such, the Automerge implementation has a slight difference in
concurrency semantics when compared to the original design [YYRB21]
and our implementation. For example, while the distributed filesystem
(DFS) specification describes update-wins concurrency semantics for the
user list, the Automerge implementation uses remove-wins concurrency
semantics. Functionality-wise, it has the same features. In fact, in our
implementations, both the Automerge and Flec versions have the same
API.

As explained in Section 2.4.1, Automerge is network agnostic and does
not provide a network layer; instead it provides an API that allows you
to query (Automerge) documents for changes. If any changes exist, you
can propagate these over any networking channel that your application
depends on. On the receiving end, you can insert these changes back into
Automerge, which can merge the received information in the local state.
Automerge itself uses a state-based approach, where only the required
changes (deltas) are propagated instead of the full state, to conserve net-
work bandwidth.

For the experiments, we used a virtual network for both Automerge
and Flec, which allows us to reproduce benchmarks and results with little
non-determinism. We set up a system with 5 nodes (ad-hoc, peer-to-peer),
and issue a thousand operations per experiment.
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Figure 6.3: Network traffic (in bytes/op) originating from the source node
for both Automerge and Flec. In every operation, a file is created and
written.
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Figure 6.4: Total cumulative networking traffic (in bytes/op) from all
nodes for Automerge. In every operation, a file is created and written.
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6.3.4.1 Experiment A: File Creation and Writing

For the first benchmark, each operation exists out of file creation and file
modification. We applied these operations a thousand times to a deployed
distributed file system, once using the Flec implementation and once with
the Automerge implementation.

Figure 6.3 shows the network traffic originating from the source node
(the node where the operations are applied), for both implementations.
As both our approach and Automerge share the essential updates, the
results are fairly stable and linear. Automerge will always send small
updates containing the state delta (which means the newly modified file)
and our extension to Flec sends the operations itself. While Automerge
uses a binary representation for the update payload, the payload itself is
still heavier than the non-optimized JSON payload used in Flec.

The visualisation hides some essential information, however. Automerge
uses an additional protocol that allows replicas to propagate updates
among each other. This means that not only the source node will share
information, but also other nodes that received the new updates if they
believe that other replicas may be missing information. Figure 6.4 high-
lights the additional traffic, showing that it makes up a significant portion
of the total network traffic. In Flec updates are only sent directly from
a source node to a destination node, and as such, there is no additional
network usage.

6.3.4.2 Experiment B: User, Group, and File Creation, and
Configuration

For the second experiment, in each operation, we create a new user, and
a new user group, add the user to the new group, create a new file (with
the new user as owner), and write to this file. This extra complexity leads
to some interesting results. As seen in Figure 6.5 the Automerge mea-
surements stop at around ∼100 operations. This is because the additional
gossip traffic starts growing exponentially (see Figure 6.7) and causes the
entire system to halt. We are not exactly certain what causes this prob-
lem, but we did not observe this issue with the previous experiment, only
when we applied more complex operations. We believe that this is not
correct behaviour from Automerge, but we were not able to identify the
root cause of the bug. The behaviour is consistent and reappears with
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Figure 6.5: Network traffic (in bytes/op) originating from the source node
for both Automerge and Flec. Every operation creates a new user, a new
group, and a new file. The user is added to the group, and the file is
created with the new user as the owner. Finally, the file is written.
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Figure 6.6: Total network traffic (in bytes/op) for both Automerge and
Flec. Every operation creates a new user, a new group, and a new file.
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as the owner. Finally, the file is written.

138



6.3. VALIDATION

0

500000

1000000

1500000

2000000

2500000

3000000

1 11 21 31 41 51 61 71 81 91

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic

Traffic from source node Trafic from other nodes

Figure 6.7: Total network traffic for Automerge for the previous experi-
ment, highlighting an issue with exponential growth after a certain number
of operations.

each run. To be able to evaluate this example anyway, we will only fo-
cus on the initial measurements before the exponential explosion. Based
on Figure 6.5 we can see that Automerge has a lower network overhead
on the source node when compared to Flec. When looking at the total
traffic, however (Figure 6.6), we can see that Automerge still utilizes more
bandwidth. The reason for this is that as we are sending many operations,
other replicas start propagating updates as well, resulting in the source
node itself sending fewer updates (as it is relieved from work).

6.3.4.3 Conclusion

With this experimental evaluation, we showed that our approach is compa-
rable to state-of-the-art CRDT frameworks, even though Flec and our ex-
tensions have not yet been optimised for non-experimental use. While ad-
ditional optimisations can be applied to the pure operation-based CRDT
framework and our nested framework extension, these results are promis-
ing and show that our approach is viable in real-world scenarios.
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6.4 Notes on Related Work

As explained in Section 2.4.3, the composition of replicated structures is
possible in a few frameworks like Automerge [KB17] and Lasp [MVR15].
While Automerge allows programmers to arbitrarily nest linked lists and
maps in a document, it doesn’t allow for much flexibility regarding the ac-
tual merging semantics, as shown by the implementation of the distributed
filesystem in Section 6.3.3. Lasp supports functional transformations over
existing CRDTs provided in the language, which allows a composition to
some extent. However, when the portfolio of CRDTs falls short in those
frameworks, developers need to design the desired nested data structure
from scratch.

Weidner et al. [WMM20] introduce techniques for creating novel
CRDTs based on existing (de-composed) CRDTs with a static structure.
In our approach, nested data structures can change dynamically during
runtime, using maps, lists, and sets.

Preguiça et al. explain in [Pre18] several possible nesting semantics
for operation-based CRDTs and discuss the need for CRDTs to support
partial resets. Our approach follows this idea and introduces a recursive
reset mechanism to the pure operations-based CRDT framework. This
allows for systematically using any CRDT as nested values for structured
CRDTs without modifying their semantics.

6.5 Conclusion

This chapter explored a structured approach for designing nested CRDTs
based on the pure operation-based CRDT framework. We propose a novel
framework for building nested pure operation-based CRDTs and show
how several common nested data structures can be designed and mod-
elled in the framework. We validate our approach by extending our pure
operation-based framework in Flec to include support for nested pure
operation-based CRDTs and implement a portfolio of commonly nested
data structures. Concretely, this chapter introduces the following contri-
butions:

• A general approach for designing and implementing nested CRDTs,
building on the work of pure operation-based CRDTs.
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• A full-fledged implementation of our approach in Flec, including a
portfolio of existing and novel pure operation-based CRDTs.

• A validation of the correctness of our nested pure operation-based
framework and a portfolio of CRDTs built on this framework through
VeriFx.

• A performance evaluation of an application scenario showing that
our approach has reduced network usage when compared to Au-
tomerge [KB17].

While our work focuses on the pure operation-based CRDT framework,
we have shown through the distributed file-system example, which com-
bines classic operation-based CRDTs with pure operation-based CRDT
structures, that our work is general enough to be used in various other
settings. We believe it should be possible to emulate our approach as a
state-based design, although an efficient design may be hard to achieve.

To conclude, we presented a novel approach to nested pure operation-
based CRDT framework, which allows for the systematic implementation
of structured CRDTs. We believe that our work forms an important con-
tribution that will help design and create complex local-first and geo-
distributed applications.
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Chapter 7

Conclusion

This dissertation introduced a CRDT framework for systematically han-
dling important concerns regarding distribution and replication, memory
management, and nesting and composition of data structures. This chap-
ter concludes this dissertation by summarising our key contributions and
discussing the limitations of our approach.

7.1 Restating Our Approach

In this research, we argue the need for a systematic approach to ease
the design and implementation of CRDTs. We build Flec, an extensible
CRDT framework implementation to support our exploration of system-
atic designs. Flec provides an open implementation that allows it to be
used as a laboratory for experimenting with CRDTs.

This thesis studied what concerns can be addressed directly in a frame-
work and what aspects need to be exposed to the data type itself. Con-
cretely, we explore and design solutions for the following problems:

Lack of support for dynamic networks. In Chapter 4, we discussed
how most CRDT specifications are defined for fixed networks, i.e.,
networks where the number of participants is fixed. We argue that
this assumption greatly limits the potential of CRDTs in dynamic
environments where new participants can join freely. This is, for
example, an important aspect of local-first software, where users can
collaborate without requiring a centralised server for coordination
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among devices, and new devices can participate at any moment in
time.

We propose a mechanism to enable the use of CRDTs in dynamic
networks. The mechanism uses a protocol through which new nodes
can coordinate with the existing nodes in a network to obtain a cor-
rect state. Our approach is not tied down to any particular CRDT
design and provides a systematic way to deal with dynamic networks.

Slow Metadata Removal. In Chapter 4, we also discuss memory man-
agement issues. We show how existing approaches for metadata
removal depend on updates from other nodes to determine causal
stability. This is problematic, as such updates are not always guar-
anteed, especially in dynamic networks where nodes are often offline.

We introduce an approach to eagerly determine causal stability by
piggybacking on reliable delivery guarantees. The approach only
requires modifications to the reliable delivery mechanisms and is
not specific to any CRDT data type.

Unreactive CRDTs. Chapter 5 reviewed the effects of causal delivery
on CRDT designs and showed how it may lead to CRDTs with
reduced reactivity; i.e., they might delay operations needlessly.

We introduce an approach that improves the reactivity of CRDT
designs that rely on causal delivery by the reification of buffered op-
erations. We apply this approach to the pure operation-based CRDT
framework, where the buffer is exposed through a new redundancy
relation. This allows existing CRDT designs to be extended without
their core semantics needing to be modified.

Limited Support for Complex Data-Structures. In Chapter 6, we
review the composition of CRDT types. Typically, end-users are
limited to the usage of restrictive types and are unable to nest arbi-
trary CRDTs with custom convergence semantics.

We introduce a framework for the dynamic nesting and composi-
tion of CRDTs, and apply our approach to the pure operation-based
CRDT framework. Our approach allows for the systematic imple-
mentation of new nested CRDTs and the use of existing CRDTs
within nested structures without any modifications.
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Overall, we show that our approach enables the implementation of
solutions that can be systematically applied to existing CRDT designs
and frameworks.

7.2 Contributions

In this section, we restate and summarise our contributions:

Eager Causal Stability in CRDTs. A novel mechanism to eagerly de-
termine causal stability, improving causal metadata removal. The
approach allows for a faster metadata cleanup process and allows
systems to have a lower memory consumption. We implemented our
approach in Flec and evaluated the memory management techniques
through several experiments. We show that our approach improves
the metadata removal rate and optimises the efficiency of CRDTs.

A Join Model for CRDTs in Dynamic Networks. A join model to
support dynamic networks, where new nodes can join at any mo-
ment. Our approach ensures new nodes can acquire a correct repli-
cation state, allowing them to participate effectively in the replicated
system. We describe how our model can be integrated into systems
without requiring modifications to CRDT designs and validate our
approach by implementing it in Flec.

Improved Reactivity for CRDTs. We proposed an approach to im-
prove the reactivity of frameworks relying on causal ordering through
the reification of the buffered operations. We implemented our
design in Flec, along with reactive versions of the Add-Wins and
Remove-Wins sets. We compared normal and reactive sets in our
implementation and showed that reactive CRDTs can achieve higher
throughput than non-reactive versions in a system experiencing de-
lays.

Nestable Pure Operation-Based CRDTs. We introduced nested pure
operation-based CRDTs and showed how several common nested
data structures can be designed and modelled in the framework.
We validated our approach by extending our pure operation-based
framework in Flec to include support for nested pure operation-
based CRDTs and implement a portfolio of commonly nested data
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structures. Through an evaluation we show that the performance of
our approach is comparable to Automerge, a state-of-the-art CRDT
library.

7.2.1 Technical Contributions

Throughout our dissertation, we use Flec, our open CRDT implementa-
tion framework for TypeScript. Flec provides the following features:

TSAT: TSAT provides the Ambient-Oriented Programming Paradigm
(AMOP) to Flec. It enables the implementation of concurrent and
distributed programming.

RCB Middleware: Flec has built-in support for an extensible Reliable
Causal Broadcasting middleware. Through an MOP, the behaviour
of the middleware can be extended or modified.

CRDT Framework: Flec provides an extensive and open CRDT frame-
work for implementing and using CRDTs. It handles all replica-
tion and distribution aspects through the TSAT and RCB compo-
nents. The framework can be extended through an extensive MOP,
as demonstrated by the implementation sections of the various chap-
ters of this dissertation. While we provide constructs to build state-
based and operation-based CRDTs, our largest contribution is our
extended pure operation-based CRDT layer.

Portfolio of CRDTs: We provide a portfolio of lists, sets, counters, reg-
isters, maps, and other common data structures, implemented as
CRDTs on top of Flec. A subset of the implementations are based
on existing approaches, extended to support the extensions from our
work, while others are novel designs.

7.3 Discussion

In this section, we discuss potential limitations to our contributions.

7.3.1 Dynamic Join Model

In Chapter 4, we introduce the dynamic join model, which enables the
use of CRDTs in networks where nodes can dynamically join. Currently,
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we assume that all failures are transient and that partial failures will
eventually be resolved. As a result, we do not model nodes dynamically
leaving a network.

To handle the leaving of nodes, we foresee that a new synchronisation
protocol will be required to ensure agreement on what nodes participate
in a network. However, the exact method will depend on the possible
tradeoffs.

For example, in IoT networks, additional explicit synchronisation steps
might be too expensive. A potential solution in this case would be to mark
nodes as dead in the vector clocks. When these clocks are eventually
propagated to other nodes and reach causal stability, additional clean-up
processes might be initiated. In geo-replicated systems, where networks
have a large bandwidth, occasional coordination might not be expensive.
As such, leaves could be handled through explicit coordination, e.g., with
locks.

7.3.2 Eager Causal Stability

Our approach for Eager Causal Stability, as defined in Chapter 4, relies
on extending the reliable delivery mechanisms of the delivery middleware.
Currently, we include the full logical clocks in delivery acknowledgements.
When a network grows, and consequently the number of nodes, the over-
head of including such clocks will also grow.

To optimise resource usage, we foresee that the node sending the ac-
knowledgement could attach an optimised version of the clock [ASB14].
For example, a subset of the logical clock, which can be determined by
calculating a delta between the local clock and the operation clock, could
be used. This would limit the size of the attached clock to the difference
in clock values between nodes.

7.3.3 Nested Pure Operation-Based CRDTs

Our approach to Nested Pure Operation-Based CRDTs does not allow
using CRDTs as keys to nested structures. We decided not to implement
support for this behaviour as there are different interpretations of how key
equality should be designed. It is possible to emulate this functionality
by creating a structure that tracks both keys and values separately as
lists and then using specialised query functions to associate the keys with
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values. While this approach is highly inefficient, it could provide a basis
for more efficient and native implementations in the future.

7.4 Future Work

In this section, we discuss potential extensions and future directions of
work.

7.4.1 Reactive CRDTs

In Chapter 5, we extend the pure operation-based CRDT framework and
introduce the Rβ relation that tackles the redundancy of operations in the
main log by evaluating buffered operations.

In future work, we would like to explore if operations from the buffer
could be made redundant before all their causal dependencies have been
delivered. This would bring an extra improvement in the reactivity of
the CRDTs, but implementing this can lead to subtle problems if not
done carefully. Unlike with the PO-Log, items do not arrive in causal
order. This means that extra causal bookkeeping may be needed to track
operations - possibly undoing the extra benefit.

7.4.2 Automatic Generation of Redundancy Relations

In this dissertation, we introduced several extensions to the pure operation-
based CRDT framework through novel redundancy relations. We observed
that datatype semantics were encoded several times in different ways in
the specification of CRDT designs.

In future work, we would like to investigate the automatic generation
of redundancy relations based on annotated sequential implementations.
For example, we could annotate a sequential set implementation to specify
that concurrent removes will always be ordered after adds when used in
replicated settings, resulting in remove-wins concurrency semantics. The
compiler could then use these annotations to automatically deduce redun-
dancy relations, causal compaction rules, and query functions. This would
ensure consistent behaviour between all rules and allow our framework to
apply optimisations where possible.
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7.4.3 Distributed Garbage Collection through Consensus

In Chapters 4 and 5, we explored various techniques for eagerly compact-
ing our data structures and removing unneeded metadata. We generally
adopted a conservative approach, aiming to minimise network overhead.
For future work, we propose exploring a system that performs background
synchronisation to enable the active removal of redundant metadata, al-
lowing developers to define a trade-off between network and memory us-
age.

In our current approach, Flec relies on background ping messages to
determine node availability. We believe this approach could be expanded
by implementing a consensus algorithm, such as Paxos [Lam98], to syn-
chronise the state of nodes immediately. Each message issued by the
consensus algorithm could serve a dual purpose, both as a check for node
availability and as part of the synchronisation process. We envision that
the rate at which the consensus algorithm is executed could be adapted
to optimise network communication usage.

7.4.4 Multi-Log Pure Operation-Based CRDTs

Currently, pure operation-based CRDTs use a PO-Log to track opera-
tions. Theoretically, this log can be viewed as a CRDT itself. It might
be interesting to explore designs where the log is reified as a CRDT and
experiment to see if it can be structured differently.

In particular, we believe it is worth investigating the possibility of
combining several PO-Logs into a single CRDT to create multi-log pure
operation-based CRDTs. We envision CRDTs where the operation log
consists of several CRDT PO-Log segments. Operations could be tagged
with metadata, which determines the destination segment. Segments
could be dropped or moved to other replicas, depending on the situation.

As a concrete use case for multi-log pure operation-based CRDTs,
consider an example where messages could be tagged with authentication
information. When user permissions are revoked and authentication meta-
data modified, segments could be dropped to reflect the change. It would
also be possible to scope redundancy relations based on authentication
levels.
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7.4.5 Smart Concurrency Semantics Through NLP

CRDT-based approaches are appealing for collaborative text editing sys-
tems as they incorporate strategies to ensure concurrent updates cannot
conflict. However, these strategies often result in unexpected behaviour
from the end-user’s perspective, e.g. they may lead to duplicate words
and grammatically incorrectly merged sentences. Future work could in-
vestigate the use of deterministic natural language processing (NLP) algo-
rithms to improve the concurrency semantics of collaborative text editing
systems that rely on CRDTs, with the aim of providing a better end-user
experience [BDPGB23]. A CRDT could use NLP hints to steer the process
of merging concurrent/conflicting operations when editing a document.

When there is no clear merging approach based on the NLP output,
the framework should fall back to standard concurrency semantics. A
systematic design for this could be implemented following techniques like
those proposed for multi-log CRDT.

7.4.6 Comparison of Flec to Mainstream Frameworks

We aim to conduct a comprehensive comparison of Flec to mainstream
frameworks in more realistic workloads. To this end, we will use the
Yahoo! Cloud Serving Benchmark (YCSB) [CST+10] benchmark platform
which is widely used for evaluating databases and offers a standardised
framework for applying different workloads.

We have implemented a Java-based Flec backend for YCSB, which en-
ables communication with Flec instances (either local or remote) running
a newly developed key-value database service. This service is based on our
nested pure operation-based CRDT framework and utilises update-wins
maps CRDTs for the database tables and records, and last-writer-wins
record CRDTs for fields. These can however be substituted with other
CRDT types as needed.

So far, we can run all YCSB workloads on Flec, and the results look
promising. The remaining work consists of running the benchmarks in
different configurations and comparing the results with the performance
of other database systems.
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7.5 Closing Remarks

In this dissertation, we presented a systematic and open approach to the
implementation and design of CRDTs. We introduced Flec, a framework
that offers a modular approach to developing CRDTs through an open
implementation that reifies the replication and convergence process.

We introduced a mechanism to eagerly determine causal stability, en-
abling early metadata removal in a systematic way. We then adapt this
mechanism to support networks where new peers can dynamically join
and show how peers can obtain correct states asynchronously.

Next, we introduced an extension to pure operation-based CRDTs that
improves responsiveness by allowing pending operations stored in the RCB
buffer to be partially applied before all causal dependencies have arrived.

Finally, we proposed Nested Pure Operation-Based CRDTs, a frame-
work for building nested replicated data structures. Our approach allows
CRDTs to support composition without semantic changes or structural
limitations.

All these techniques and mechanisms were implemented on top of Flec.
To conclude, our designs come together to form a reference CRDT frame-
work implementation, where the implementation closely follows the pro-
vided specifications. We believe that our approach is a step forward in
enabling the use of general-purpose CRDTs in a wide variety of applica-
tions.
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Appendix A

DFS Code Listings

This appendix contains code listings with portions from our distributed
filesystem test implementation. A legend for the used types can be found
in Table A.1.

Table A.1: Legend for the TypeScript classes and types used in the DFS
implementation.

Class / Type Description
RWWMap Nested Remove-Wins Map CRDT.
RUWMap Nested Update-Wins Map CRDT.

ImmutableCRDT ImmutableCRDT map. Nested CRDT
map that works as a C struct.

Register<T> LLW-Register CRDT, containing a
primitive value of type T.

AccessRightF Alias of the ’Number’ type, represents a
bit vector with access flags.

AccessRight

Abstraction over AccessRightF, never
stores in a CRDT, just used for easy
modification of the access right bit vec-
tors.

OpCRDT Abstract CRDT class in Flec, for creat-
ing operation-based CRDTs.

GroupID / UserID / FileID Aliases for strings that represent UUIDs.
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Listing A.1: Access right class representations.
1 class AccessRight {
2 constructor(public admin: boolean, public read: boolean,

public write: boolean) {}
3

4 static fromEnum(v : AccessRightF) {
5 return new AccessRight((v & 0b100) > 0,
6 (v & 0b010) > 0,
7 (v & 0b001) > 0);
8 }
9

10 toEnum() : AccessRight {
11 return ((this.admin ? 0b100 : 0) | (this.read ? 0b010 : 0)

| (this.write ? 0b001 : 0)) as unknown as AccessRight;
12 }
13 }
14

15 enum AccessRightF {
16 UNone = 0b000,
17 UR = 0b010,
18 UW = 0b001,
19 URW = 0b011,
20 ANone = 0b100,
21 AR = 0b110,
22 AW = 0b101,
23 ARW = 0b111,
24 }
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Listing A.2: DFS CRDT Interface.
1 interface FSOperation {
2 ChangeOwner(userId: UserID, newOwnerId: UserID, fileId: NodeID

),
3 ChangeGroup(userId: UserID, newGroupId: GroupID, fileId:

NodeID),
4

5 ChangeGroupPermission(userId: UserID, newPermission:
AccessRightF, fileId: NodeID),

6 ChangeOwnerPermission(userId: UserID, newPermission:
AccessRightF, fileId: NodeID),

7 ChangeOtherPermission(userId: UserID, newPermission:
AccessRightF, fileId: NodeID),

8

9 CreateFile(userId: UserID, groupId: GroupID, fileId: NodeID),
10 WriteFile(userId: UserID, fileId: NodeID),
11 DeleteFile(userId: UserID, fileId: NodeID),
12

13 CreateUser(with_admin_rights: boolean, id: string),
14 CreateGroup(),
15

16 AssignUserToGroup(authorId: UserID, groupId: GroupID, userId:
UserID),

17

18 update(key: string)
19 }
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Listing A.3: The general structure of the DFS nested CRDT, highlighting
the main nested children that contain the filesystem meta-data.

1 export class DistributedFS extends OpCRDT<FSOperation> {
2 handler: FSOperation;
3 ...
4

5 files = new RRWMap(t => new ImmutableCRDT({
6 access_right_owner: new Register<AccessRightF>(),
7 access_right_group: new Register<AccessRightF>(),
8 access_right_other: new Register<AccessRightF>(),
9 file_owner: new Register<UserID>(),

10 file_group: new Register<GroupID>(),
11 file_data: new Register<string>()
12 }));
13

14 groups = new RRWMap(t => new ImmutableCRDT({
15 group_users: new AWSet(), // must be RW
16 created: new Register<flag>()
17 }));
18

19 users = new RUWMap(t => new ImmutableCRDT({
20 is_admin: new Register<flag>()
21 }));
22 ...
23

24 onLoaded() {
25 this.addChild("files", this.files);
26 this.addChild("users", this.users);
27 this.addChild("groups", this.groups);
28 }
29 ... continued on the next page ...
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30 setHandler() {
31 const me = this;
32 this.handler = {
33

34 ChangeOwner(userId: UserID, newOwnerId: UserID, fileId:
NodeID) { ... },

35 ChangeGroup(userId: UserID, newGroupId: GroupID, fileId:
NodeID) { ... },

36 ChangeOwnerPermission(userId: UserID, newPerm: AR, fileId:
NodeID) { ... },

37 ChangeGroupPermission(userId: UserID, newPerm: AR, fileId:
NodeID) { ... },

38 ChangeOtherPermission(userId: UserID, newPerm: AR, fileId:
NodeID) { ... },

39 ...
40 CreateUser(with_admin_rights: boolean, id: string) { /* ...

*/ },
41 CreateGroup() { /* ... */ },
42 AssignUserToGroup(authorId: UserID, groupId: GroupID, userId

: UserID) { ... },
43 CreateFile(userId: UserID, groupId: GroupID, fileId: NodeID)

{ ... see listing below ... },
44 WriteFile(userId: UserID, fileId: NodeID) { ... },
45 ...
46 update(key: string) { }
47 }
48 }
49 }
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Listing A.4: Structure of the operation handling code for the DFS. In-
cluded is the code for the CreateFile callback, which can either be invoked
locally or as a result of a replicated operation.

1 setHandler() {
2 const me = this;
3

4 this.handler = {
5 ...
6

7 CreateFile(userId: UserID, groupId: GroupID, fileId: NodeID) {
8 const user = me.users.lookup(userId) as any;
9 const group = me.groups.lookup(groupId) as any;

10

11 if (group && user && group.group_users.contains(userId)) {
12 console.log("adding file");
13

14 me.files.update([{ key: fileId, op: "update" },
15 { key: "file_owner", op: "write" }], userId);
16 me.files.update([{ key: fileId, op: "update" },
17 { key: "file_group", op: "write" }], groupId);
18

19 const isAdmin = user.is_admin.is(FLAG_TRUE);
20 const access_owner = new AccessRight(isAdmin, true, true);
21 const access_group = new AccessRight(isAdmin, true, false);
22 const access_other = new AccessRight(isAdmin, true, false);
23

24 this.files.update([{ key: fileId, op: "update" },
25 { key: "access_right_owner", op: "write" }], access_owner.

toEnum());
26 this.files.update([{ key: fileId, op: "update" },
27 { key: "access_right_group", op: "write" }], access_group.

toEnum());
28 this.files.update([{ key: fileId, op: "update" },
29 { key: "access_right_other", op: "write" }], access_other.

toEnum());
30 }
31 },
32 ...
33 };
34 }
35 ...
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Listing A.5: User API for local mutations to DFS CRDT, allowing simple
modification of the DFS meta-data.

1 CreateUser(with_admin_rights: boolean) {
2 const id = this.getUID();
3 this.performOp("CreateUser", [with_admin_rights, id]);
4 return id;
5 };
6

7 CreateGroup() {
8 const id = this.getUID();
9 this.performNestedOp("update", [{ key: "groups", op: "update"

},
10 { key: id, op: "update" },
11 { key: "created", op: "write" }], [FLAG_TRUE]);
12 return id;
13 };
14

15 CreateFile(userId: UserID, groupId: GroupID) {
16 const id = this.getUID();
17 this.performOp("CreateFile", [userId, groupId, id]);
18 return id;
19 }
20 ...

Listing A.6: Example test code for the DFS CRDT, which creates a new
admin user, a new group, adds the user to a group, and then creates and
writes a file with this new user.

1 test() {
2 const userId = this.CreateUser(true);
3 const groupId = this.CreateGroup();
4

5 this.performOp("AssignUserToGroup", [userId, groupId, userId])
;

6

7 const fileId = this.CreateFile(userId, groupId);
8 this.performOp("WriteFile", [userId, fileId]);
9

10 }
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Appendix B

A Remove-Wins Pure
Operation-Based CRDT

In this appendix chapter, we explore our implementation of a pure operation-
based remove-wins set (RW-Set) CRDT implemented in Flec, following
the specification in Section 2.3.2.

The implementations of isRedundantByLog and isRedundantByOp-
eration are a 1-on-1 mapping with the described semantics for the R
and R_ relations described in Section 2.3.2. When an entry from the
log becomes stable, setEntryStable (line 16-19) will remove it from the
log and place it in a small compacted set compactState. The method
newOperation makes sure that the local compacted set stays up to date
when the log changes. The toSet method returns a serialised state for
the replica by combining the compacted set with the data from the main
log.
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CRDT

Listing B.1: RW-Set implementation in Flec.
1 export class RWSet extends PureOpCRDT<SetOperations> {
2 compactState: Set<string> = new Set();
3

4 protected isArrivingOperationRedundant(entry : SetEntry) {
5 return entry.isAdd() && !!this.log.find(e => e.isRemove()

&& e.hasSameArgAs(entry) && e.isConcurrent(entry));
6 }
7 protected isPrecedingOperationRedundant(existing: SetEntry,

arriving: SetEntry, isRedundant: boolean) {
8 return existing.hasSameArgAs(arriving);
9 }

10 protected isConcurrentOperationRedundant(existing: SetEntry,
arriving: SetEntry, isRedundant: boolean) {

11 return arriving.isRemove() && existing.isAdd() && existing
.hasSameArgAs(arriving);

12 }
13

14 setEntryStable(entry : SetEntry) : boolean {
15 if (entry.isAdd()) this.compactState.add(entry.args[0]);
16 return true;
17 }
18 newOperation = (entry: SetEntry) => this.compactState.delete(

entry.args[0]);
19

20 toSet() {
21 const set = new Set(this.compactState);
22 this.getLog().forEach(entry => {
23 if (entry.isAdd())
24 set.add(entry.args[0])
25 });
26 return set;
27 }
28 add(element){
29 this.perform.add(element);
30 }
31 remove(element) {
32 this.perform.remove(element);
33 }
34 }

162



Appendix C

Implementation Details for
Eager Stability
Determination

In this appendix chapter, we explore our implementation of the operation-
based framework with eager stability determination from Chapter 4.

Our pure operation-based framework with eager stability determina-
tion is implemented on top of Flec, extending on the definitions specified
in Table 3.5. Listing C.1 shows the general structure of the pure operation-
based CRDT implementation in Flec, with general code redacted.

The PureOpCRDT class keeps track of several state variables, the
most important being the log. The log is updated when non-redundant
operations arrive at a replica. To this end, the onOperation method is
overridden. Listing C.2 shows how onOperation updates the log. The
onOperation method is called every time the RCB layer has to deliver an
operation, which can originate either from a local or remote performOp-
eration invocation.

The onOperation method relies on results of the abstract isRedun-
dantByOperation and isRedundantByLog methods to determine what
entries are added or removed from the log. These methods define the
redundancy relations for pure operation-based CRDTs and must be im-
plemented by the CRDT implementor. An example of this can be seen in
Appendix B where we implement an RW-Set using the framework.
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Listing C.1: Structure of the PureOpCRDT class, used to implement pure-
operation based CRDTs.

1 export abstract class PureOpCRDT<O> extends OpCRDT<O> {
2 // CRDT state
3 log : POLogEntry<O>[] = [];
4 compact = {};
5
6 // CRDT network
7 network = [];
8 joinNode: FarRef<this>;
9

10 // used to set stability trigger level
11 logCompactSize : number = 100;
12
13 constructor () { ... }
14
15 // Handle replica joins
16 onNewReplica(ref: FarRef<this>, refs) { ... }
17 onReqJoin (...){ ... }
18 onReqLink (...){ ... }
19 onReqState(...){ ... }
20 getState (...){ ... }
21 getNetwork(...){ ... }
22 setupState(...){ ... }
23
24
25 // Handle new operations
26 onOperation(clock: VectorClock, op: O, args: any[]) { ... }
27
28 // Manage cleanup of causally stable entries
29 getConcurrentEntries(entry: POLogEntry<O>) { ... }
30 markStable (){ ... }
31 compactStable(){ ... }
32 gcStable () { ... }
33 cleanup () { ... }
34 setGCParams(logSize: number, intervalSize) { ... }
35
36
37 // Hooks for implementors of pure-op based CRDTs
38 protected setEntryStable( entry: POLogEntry<O> ) : boolean { ... };
39
40 protected removeEntry( entry: POLogEntry<O>) {};
41 protected newOperation(entry: POLogEntry<O>) {};
42
43 protected isRedundantByOperation (...) { ... };
44 protected isPrecedingOperationRedundant (...) { ... };
45 protected isConcurrentOperationRedundant(...) { ... };
46 protected isRedundantByBufferedOperation(...) { ... };
47 protected isArrivingOperationRedundant (...) { ... };

164



Listing C.2: The onOperation method is used to process received opera-
tions.

1 onOperation(clock: VectorClock, op: O, args: any[]) {
2 let entry = new POLogEntry<O>(clock, op, args);
3

4 this.newOperation(entry);
5 let isRedundant = this.isRedundantByLog(entry);
6

7 for (let i=this.log.length-1; i>=0; i--) {
8 let e = this.log[i];
9 if (this.isRedundantByOperation(e, entry, isRedundant)) {

10 this.removeEntry( this.log[i] );
11 delete this.log[i];
12 }
13 }
14

15 this.log = this.log.filter(e => typeof e !== "undefined");
16

17 if (!isRedundant) {
18 this.log.push(entry);
19 }
20

21 this.cleanup();
22 }
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Listing C.3: Methods allowing instrumentation of the cleanup process.
1 cleanup() {
2 if (this.log.length === this.logCompactSize)
3 this.performPendingStableMsg();
4 }
5

6 setGCParams(logSize: number, intervalSize) {
7 this.logCompactSize = logSize;
8 this.setStableMsgInterval(intervalSize);
9

10 this.cleanup();
11 }

Listing C.4 shows how the framework marks and compacts causally
stable log entries. The gcStable method is invoked by the RCB layer
whenever some operations are processed. It ensures that periodically all
causally stable log entries are marked as stable (markStable) and eventu-
ally compacted (compactStable). As such, it ensures that an entry will
only be removed once all concurrent entries are stable as well.

A final aspect of our pure-operation based CRDT implementation is
the cleanup method, which is invoked at the end of onOperation as can
be seen in Listing C.2.

The cleanup method checks the size of the log, and if it is higher than
a certain limit it will ask the RCB layer to send any pending stability
messages (employing performPendingStableMsg()).
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Listing C.4: The logic used to mark and compact causally stable log
entries.

1 markStable(){
2 let stableItems = false;
3

4 this.log.forEach(e => {
5 if (this.isCausallyStable(e.clock)) {
6 e.setStable();
7 stableItems = true;
8 }
9 });

10

11 return stableItems;
12 }
13

14 compactStable(){
15 this.log.filter(e => e.isStable && this.getConcurrentEntries(e

)
16 .map(e=>e.entry.stable)
17 .reduce((a,b)=> a && b, true))
18 .forEach(e => {
19 if (this.setEntryStable(e))
20 delete this.log[this.log.indexOf(e)];
21 });
22

23 this.log = this.log.filter(e => typeof e !== "undefined");
24 }
25

26 gcStable() {
27 if (this.markStable())
28 this.compactStable();
29 }
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