
Dissertation submitted in fulfilment of the requirements for the degree of
Doctor of Sciences of the Vrije Universiteit Brussel

DISCOPAR-KILIMO: A LOW-CODE
DEVELOPMENT ENVIRONMENT
Geared Towards Smart Agriculture
Applications

Isaac Nyabisa Oteyo
January 2024

Promotors:
Prof. Dr. Elisa Gonzalez Boix, Vrije Universiteit Brussel
Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel
Dr. Angel Luis Scull Pupo, Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

DisCoPar-Kilimo: A Low-Code
Development Environment

Geared Towards Smart Agriculture Applications

Isaac Nyabisa Oteyo

Dissertation submitted in fulfilment of the
requirements for the degree of Doctor of Sciences of the Vrije

Universiteit Brussel

January 26, 2024

Jury:
Prof. Dr. Elisa Gonzalez Boix, Vrije Universiteit Brussel (promotor)
Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel (promotor)

Dr. Angel Luis Scull Pupo, Vrije Universiteit Brussel (promotor)
Prof. Dr. Ann Nowe, Vrije Universiteit Brussel (chair)

Prof. Dr. Abdellah Touhafi, Vrije Universiteit Brussel (secretary)
Prof. Dr. Robert Hirschfeld, University of Potsdam, Germany

Prof. Dr. Engineer Bainomugisha, Makerere University, Uganda

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Laboratory

c© 2023 Isaac Nyabisa Oteyo

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel/fax: +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN: 9789464948059

NUR: 958/965/989

THEME: UMZ

The work in this dissertation has been funded by a PhD fellowship of the
VLIR-UOS - Grant number KE2017IUC037A101.

All rights reserved. No part of this publication may be produced in any
form by print, photo-print, microfilm, electronic or any other means with-
out permission from the author.

Abstract

Smart agriculture applications (SAAs) improve farming activities in mod-
ern farms. Today, designing and implementing SAAs is difficult and costly.
Typically, SAAs orchestrate distributed components deployed in micro-
controllers, smartphones, and cloud services. Implementing SAAs requires
highly skilled engineers as it entails carefully handling distribution to en-
able the different parts of the system to communicate. However, “skilled
developers are hard to find”. Moreover, the network infrastructure in ru-
ral areas is limited and unreliable, resulting in inexistent or intermittent
connections. This thesis aims to simplify the implementation of SAAs and
study software techniques to enable domain experts to implement them.

Smart agriculture applications are often constructed using conven-
tional programming languages that require software development knowl-
edge, which domain experts usually do not have. Low-code development
environments (LCDEs) have emerged as an alternative for users lacking
technical expertise. The LCDEs offer visual programming environments
with “ready-to-use” components, making software development accessi-
ble to all technical skill levels. However, certain limitations hinder the
widespread usage of LCDEs to develop SAAs. First, the state-of-the-art
LCDEs lack components for specifying edge computations on devices in-
stalled in the environment (e.g., crop fields and farms) and assume that
sensors gather data and send it to the cloud or server. Second, there are
no components to support coordinating the communication between the
different parts that compose SAAs, e.g., coordinating the communication
between the edge and mobile components. Lastly, the output of the com-
putations done on the devices installed in the environment must be sent
to other components on the mobile phones or servers over communica-
tion networks, which can fail. The existing LCDEs have limited support
for handling failures between the components composing SAAs when the

i

networks become intermittent or unavailable.
In this dissertation, we first identify four categories of components that

aim to facilitate the development of SAAs using a low-code development
environment. The components encompass functionalities to observe and
monitor prevailing environmental conditions, support computation on the
devices installed in the environment, i.e., computation at the edge, coordi-
nate the communication between the different components that compose
SAAs, and effectively handle partial network failures. We prototype the
four component categories by extending a low-code development environ-
ment, DisCoPar, with “ready-to-go” components for SAAs. The resulting
low-code development environment, which we named DisCoPar-Kilimo,
adopts a flow-based programming environment where applications are rep-
resented as interconnected nodes that transmit data to one another. The
nodes represent software components that perform specific computational
tasks in the application. The components are presented in a palette from
which domain experts can pick and use them to construct software. The
key contributions of this dissertation consist of a set of properties and
readily deployable components for building SAAs. Technically, we also
contribute DisCoPar-Kilimo, a domain-specific low-code development en-
vironment for implementing SAAs.

To assess the effectiveness of DisCoPar-Kilimo, we employed a scenario-
based approach and successfully implemented seven representative smart
agriculture scenarios on it. Four of these scenarios were based on the
identified properties, while the remaining three were derived from ex-
isting literature and our experiences with agricultural extension workers
(i.e., farmers) in Kenya. The implemented scenarios demonstrate how
DisCoPar-Kilimo can be used to construct SAAs and its flexibility in im-
plementing SAAs. From the implemented scenarios, DisCoPar-Kilimo can
be used intuitively by domain experts as it hides away application develop-
ment issues like memory management and coordinating communication,
which can take considerable time to configure manually. In conclusion,
DisCoPar-Kilimo is unique and can be considered a first in new and future-
generation LCDEs for SAAs.

Samenvatting

Slimme landbouwapplicaties (SAA’s) worden gebruikt om de landbouwac-
tiviteiten in moderne boerderijen te verbeteren. Vandaag de dag is het
ontwerpen en implementeren van SAA’s moeilijk en duur. Typisch zijn
SAA’s systemen die gedistribueerde componenten in microcontrollers,
smartphones en cloudservices orkestreren. Er zijn hoogopgeleide inge-
nieurs nodig om SAA’s te implementeren, omdat er zorgvuldig met (net-
work) distributie moet worden omgegaan om de verschillende onderdelen
waaruit het systeem is opgebouwd met elkaar te laten communiceren. Bek-
wame ontwikkelaars zijn echter “moeilijk te vinden”. Verder is de netwerk-
infrastructuur in op het platteland beperkt en onbetrouwbaar, wat er voor
zorgt dat er vaak geen of haperende verbindingen zijn. Dit proefschrift
beoogt de implementatie van SAA’s en softwaretechnieken te bestuderen
om domeinexperts in staat te stellen ze te implementeren.

SAA’s worden vaak opgebouwd met behulp van tekstuele PL’s die ken-
nis van softwareontwikkeling vereisen, kennis die domeinexperts vaak mis-
sen. Low-code ontwikkelomgevingen (LCDE’s) zijn opgedoken als alter-
natief voor gebruikers zonder technische expertise. LCDE’s bieden visuele
programmeeromgevingen met “kant-en-klare” componenten, waardoor
softwareontwikkeling toegankelijker wordt voor alle technische vaardighei-
dsniveaus. Er zijn echter een aantal limitaties die de verspreiding van
LCDE’s voor de ontwikkeling van SAA’s in de weg staan. Ten eerste mis-
sen de nieuwste LCDE’s componenten voor het specificeren van berekenin-
gen op apparaten die in de omgeving zijn gëınstalleerd (bijvoorbeeld
boerderijen). Ten tweede zijn er geen componenten voor het coördineren
van de communicatie tussen apparaten in de omgeving. Tot slot is er
beperkte ondersteuning voor het afhandelen van storingen tussen de ver-
schillende componenten wanneer netwerken onbeschikbaar worden.

In dit proefschrift identificeren we vier categorieën van componen-

iii

ten gericht op het faciliteren van de ontwikkeling van SAA’s met behulp
van een LCDE. De componenten omvatten functionaliteiten voor het ob-
serveren van omgevingscondities, het ondersteunen van berekeningen op
apparaten die gëınstalleerd zijn in de omgeving, het coördineren van de
communicatie tussen de verschillende componenten en tot slot het effectief
afhandelen van netwerkstoringen. We prototypen vier componentencate-
gorieën door een bestaande LCDE, DisCoPar, uit te breiden met “kant-en-
klare” componenten die zijn afgestemd op SAA’s. De resulterende LCDE,
die we DisCoPar-Kilimo hebben genoemd, gebruikt een flow-gebaseerde
programmeeromgeving waar applicaties worden voorgesteld als onder-
ling verbonden bouwblokken die gegevens naar elkaar kunnen verzenden.
De bouwblokken vertegenwoordigen softwarecomponenten die specifieke
rekentaken uitvoeren in de toepassing. De componenten worden gepresen-
teerd in een palet waaruit domeinexperts kunnen kiezen en ze gebruiken
om software te bouwen. De belangrijkste bijdrage van dit proefschrift is
de identificatie van de essentiele eigenschappen en gemakkelijk inzetbare
componenten die nodig zijn voor het bouwen van SAA’s. Op technisch
gebied dragen we bij met DisCoPar-Kilimo, een domeinspecifieke LCDE
voor het implementeren van SAA’s.

Om de effectiviteit van DisCoPar-Kilimo te beoordelen, hebben we een
op scenario’s gebaseerde validatiemethode toegepast en met succes zeven
representatieve slimme landbouwscenario’s erop geïmplementeerd. Vier
van deze scenario’s waren gebaseerd op de geïdentificeerde eigenschappen,
terwijl de overige drie waren afgeleid uit bestaande literatuur. De geïmple-
menteerde scenario’s laten zien hoe DisCoPar-Kilimo kan worden gebruikt
om SAA’s te bouwen en hoe flexibel het is om SAA’s te implementeren.
Uit de gëımplementeerde scenario’s blijkt dat DisCoPar-Kilimo intuïtief
kan worden gebruikt door domeinexperts, omdat het problemen bij het on-
twikkelen van toepassingen, zoals geheugenbeheer en het coördineren van
communicatie, die veel tijd kunnen kosten om handmatig te configureren,
verbergt. Als conclusie kan gesteld worden dat DisCoPar-Kilimo uniek is
en beschouwd kan worden als de eerste in zijn soort van een nieuwe en
toekomstige generatie LCDE’s voor SAA’s.

Acknowledgement

This journey began over half a decade ago, with several people coming
into play. First, I would like to thank my promotors, colleagues, friends,
and family. I want to thank my promotors, Professor Dr. Elisa Gonzalez
Boix, Professor Dr. Wolfgang De Meuter, and Dr. Angel Luis Scull Pupo,
for their guidance over the years. Wolf, thank you for the short meeting
on April 13, 2017, in Nairobi. That meeting changed the course of my
academic journey. Elisa, thank you for steering me in the right direction
throughout this research period. Most importantly, thank you for picking
me up from the airport in Zaventem in September 2017, giving me a quick
tour and introduction to Brussels, and finally delivering me to the “Cuba
house” in Brussels, which eventually became my second home. Thank
you, Scull, for the countless meetings that we had in the evenings and
during the weekends on my work.

Moreover, I would like to thank all current SOFTies and ex-SOFTies,
especially the DISCOers (DIStribution and COncurrency) people, for all
the feedback you provided in every research presentation of my work. I
thank the secretaries of our department, who were always ready to help me
not only with academic matters but also with visa- and residency-related
matters every year. Thank you, Brigitte! Lara (not at SOFT anymore),
thanks for all your patience, keen listening, and prompt action on my
requests.

I want to sincerely thank the members of my jury (Prof. Dr. Ann
Nowe, Prof. Dr. Abdellah Touhafi, Prof. Dr. Robert Hirschfeld, and
Prof. Dr. Engineer Bainomugisha) for the time that you spent reading
this dissertation, your suggestions and feedback to improve its final ver-
sion – the version whose acknowledgement you are reading now. Thanks
to the entire team (simply the “legumes” people) at the Legume Cen-
tre of Excellence in Food and Nutritional Security (LCEFoNs) for all the

v

support, from writing the project to securing funds from VLIR–UOS and
giving me a chance to pursue this study under the project. Thanks to
Prof. Dr. Stephen Kimani and your counterpart in the North for being
great stewards for the project “número cuatro”.

Many thanks to all my friends and teachers who contributed to my
education from the early years of my academic life till now. You are too
many to name individually, but I am thankful for the knowledge and hu-
man values you taught me. Also, I would like to thank Olga Lydia Hernan-
dez Castañeda, Patrick Vanderheere, and Cirelda Hernandez Castañeda
who made me part of their family in Brussels. Thanks for bringing to-
gether a small gang (myself, Scull, Camilo, Yunior, Freddie, Jose Luis,
etc.) to your house. I want to thank every member of my big (and ex-
tended) family, especially my parents (all who, in one way or another, call
me their child) and all my siblings (everyone who fits the title of brother,
sister, nephew, and niece) in every way that applies for all the support you
have accorded me during the entire time of the study. Lastly, I would like
to thank Ann and our “small gang”, especially for allowing me to spend
considerable time away from your lives and patiently waiting for me to
pursue my academic endeavours.

This work was funded by a PhD scholarship of the VLIR–UOS to
promote global North and global South collaboration.

Contents

1 Introduction 1
1.1 Smart Agriculture Applications 3

1.1.1 Developed vs Developing Regions 3
1.1.2 Implementing Smart Agriculture Applications 4

1.2 Problem Statement . 5
1.3 Our Approach . 6
1.4 Contributions . 8

1.4.1 Supporting Publications 8
1.5 Dissertation Outline . 10

2 State of the Art of Smart Agriculture Applications 13
2.1 Smart Agriculture Processes 13
2.2 Driver Scenarios for Smart Agriculture 15

2.2.1 Sensing Farm Conditions 15
2.3 Properties for Smart Agriculture Applications 22
2.4 State-of-the-Art of Smart Agriculture Applications 23

2.4.1 Applications that Support Sensing 24
2.4.2 Applications that Support Computation at the Edge 25
2.4.3 Applications that Support Handling Partial Failures 25
2.4.4 Discussion . 26

2.5 State-of-the-Art of Low-Code Development Environments . 26
2.5.1 Notation Used in Flow-Based VPLs 28
2.5.2 Review of Existing Low-Code Environments 30

2.6 Conclusion . 33

3 DisCoPar 35

vii

3.1 Architectural Overview of DisCoPar 35
3.1.1 DisCoPar Layers . 37

3.2 DisCoPar Visual Programming Environment 38
3.2.1 DisCoPar Components 38
3.2.2 Graph Validation . 44
3.2.3 Handling Partial Failures 45

3.3 DisCoPar by Example . 45
3.4 Conclusion . 48

4 DisCoPar-Kilimo 51
4.1 Our Approach in a Nutshell 51
4.2 Architectural Overview of DisCoPar-Kilimo 53
4.3 DisCoPar-Kilimo Visual Programming Environment 55

4.3.1 Ensuring Support for Environment Sensing 55
4.3.2 Ensuring Support for Computation at the Edge . . . 58
4.3.3 Ensuring Support for Coordination with the Edge . 60
4.3.4 Ensuring Support for Handling Partial Failures . . . 60
4.3.5 Tracking Connected Edge Devices 67
4.3.6 Accumulating Data from Multiple Edge Devices . . 68

4.4 Developing and Deploying Applications by Example 71
4.4.1 Example application 72
4.4.2 Deploying the example application 74

4.5 Extensions to DisCoPar . 75
4.6 Conclusion . 76

5 DisCoPar-Kilimo Implementation 77
5.1 Basic Building Blocks . 77

5.1.1 Application Graphs 77
5.1.2 Executing Application Graphs 78
5.1.3 Basic Application Example 78
5.1.4 Implementing Components in DisCoPar 79
5.1.5 Distributed Connections 81

5.2 DisCoPar-Kilimo . 81
5.2.1 Computation at the Edge 81
5.2.2 Environment Sensing 83
5.2.3 Components for Computation at the Edge 85

5.2.4 Handling Partial Failures on the Mobile Scope . . . 86
5.2.5 Validating Flow-Graphs to Handle Partial Failures . 91
5.2.6 Handling Partial Failures at the Edge 93
5.2.7 Tracking Connected Edge Devices 95
5.2.8 Accumulating Data from Multiple Edge Devices . . 97

5.3 Deploying Applications . 100
5.3.1 Designing Applications in DisCoPar-Kilimo 101
5.3.2 Deploying DisCoPar-Kilimo Applications 104

5.4 Conclusion . 107

6 Validation 109
6.1 Validation Approach . 109
6.2 Validation Scenarios . 110

6.2.1 Scenario 1: Monitoring Soil Moisture 110
6.2.2 Scenario 2: Computing Average Soil Moisture and

Keeping Data at the Edge 112
6.2.3 Scenario 3: Monitoring Soil Moisture Using more

than one Edge Device 113
6.2.4 Scenario 4: Tracking Connected Edge Devices 115
6.2.5 Scenario 5: Tracking and Monitoring Paddy Rice

Storage Conditions 117
6.2.6 Scenario 6: Collecting Data Using Mobile Applica-

tions . 121
6.2.7 Scenario 7: Monitoring Soil Moisture and Temper-

ature in Corn Seeding and Sprouting 122
6.3 Discussion . 125
6.4 Conclusion . 126

7 Conclusion 127
7.1 Problem Statement Revisited 127
7.2 Research Approach Revisited 128
7.3 Contributions . 129
7.4 Shortcomings and Future Work 129
7.5 Concluding Remarks . 131

A DisCoPar Application Graph 133

B Companion Functions for Edge Components 137

C Extracting and Exporting Edge Graph 139

D Implementation of the Networking Code for Coordination
with the Edge 143

E Deployment 145
E.1 Resources Required . 145
E.2 Mobile Application . 146
E.3 Edge Application . 146

List of Figures

1.1 An example illustration of different modern farming tech-
nologies. (a) Auto-pilot tractors and sprayer machines, (b)
Crop sensing, (c) Documenting crop fields and (d) Moni-
toring animal welfare. 2

1.2 An example application that shows a farmer using a mobile
phone to receive data about a corn field. The data comes
from sensors attached to a microcontroller deployed to the
corn field. 3

1.3 DisCoPar-Kilimo in action featuring a canvas with a smart
agriculture application for sensing soil moisture. Compo-
nents are drawn from the component menu, dropped on the
canvas and connected to compose applications. 7

2.1 Illustration of key smart agriculture processes grouped into
four key areas. The processes are data collection, transfor-
mation and processing, dissemination, evaluation and im-
pact assessment. 14

2.2 Sensing soil moisture at the edge. The soil moisture data
is directly sent to the mobile device. 17

2.3 Summary scenario for monitoring soil moisture in different
parts of a large farm, processing it on edge devices and
sending it directly to the farmer’s mobile phone. 18

2.4 An illustration of rice storage in paddy bags. The storage
is subdivided into islands, making it easy to measure and
monitor humidity manually. 20

xi

2.5 Example Node-RED low-code development environment fea-
turing an application composed of connected nodes. The
application reads and displays humidity data and generates
alerts based on set conditions. The application reads and
displays humidity data and generates notifications based on
a threshold value. 27

2.6 Application flow graph showing components, their names,
ports and connections. The colouring on the component
ports and connections shows the type of data the ports
emit or accept. The arrows on the connections show the
direction in which data flows through the flow graph. 28

3.1 Architectural overview of DisCoPar [Zam18]. The archi-
tecture features three parts: (1) the mobile clients, (2) the
server and (3) the web client (dashboard). The lightning
strikes show intermittent network connections between the
mobile client and the server. 36

3.2 Visual programming environment of DisCoPar showing the
canvas, an application graph composed of components with
different execution scopes, the component menu and emu-
lations for mobile devices and the web dashboard. 39

3.3 Menu options available when right-clicking a component on
the DisCoPar canvas. 41

3.4 The configuration window for the DisplayOnScreen compo-
nent. The label to display is specified under the “Heading”
section. 41

3.5 Port typing and highlighting compatible component ports
in DisCoPar. This example highlights all ports that accept
numeric data with the electric plug symbol. 43

3.6 Supported data types in DisCoPar. The supported data
types are distinguished by colour, i.e., each data type has
a distinct colour. 43

3.7 Graph validation error message examples in DisCoPar. In
this example, the error messages show the components that
are not connected. 44

3.8 Implementation of an application showing the use of the
InDatabaseBuffering component to handle partial failures. . 45

3.9 An example application in DisCoPar for measuring and
monitoring noise levels. All the components in this ap-
plication execute on the mobile scope. 47

4.1 Architectural overview of DisCoPar-Kilimo. The architec-
ture depicts four execution scopes. The edge scope is novel
and features edge components. The mobile scope features
mobile components. The server scope features server com-
ponents. Lastly, the web scope features web components. . 54

4.2 Component scopes of DisCoPar-Kilimo on the visual pro-
gramming environment. The scopes correspond to the ar-
chitectural model depicted in Figure 4.1. 57

4.3 Example environment sensing application. 58
4.4 Application example with four connected components. . . . 59
4.5 Window for configuring the record-based offline accessibility

component. The number of records to keep is specified as
a numerical value. 62

4.6 Window for configuring the memory-based offline accessi-
bility component for specifying the maximum memory for
data storage. The memory size is specified in bytes. 63

4.7 Window for configuring the time-based offline accessibility
component. The configuration specifies the maximum time
to keep records in memory, i.e., the lease window. The time
is specified in minutes. 63

4.8 Window for configuring the hybrid-based offline accessibility
component. Time is specified in minutes, and the number
of records to keep is numerical. 64

4.9 Configuration window for the BufferData component to
specify the number of records to store in a buffer in memory. 65

4.10 Flow-graph for in-memory buffering at the edge when the
network connection becomes unavailable. 65

4.11 Flow-graph for on-disk data buffering at the edge when the
network connection becomes unavailable. 66

4.12 Flow-graph for connecting an offline accessibility compo-
nent to the server side. The offline accessibility component
cannot connect to another downstream offline accessibility
or mobile component successively. 67

4.13 Flow chart for tracking the number of connected edge de-
vices. The input to the flow chart is an event with details
for the type of edge devices. 68

4.14 Example application for tracking connected devices. The
application is composed of four mobile components. 69

4.15 Configuration window for specifying the number of edge
devices accumulating soil moisture in the GatherMoistur-
eReadings component. The number of devices is specified
as a numerical value. 69

4.16 Flow chart for accumulating data from multiple edge de-
vices. The input to the process is a message from each
edge device. 70

4.17 Flow-graph for an example application for accumulating
soil moisture data. The application is composed of one
edge component and several mobile components. 70

4.18 Window for configuring the UnWrapForSpecificDevice com-
ponent to specify the edge device for which to filter data. . 71

4.19 Steps for creating an application in DisCoPar-Kilimo. (a)
Accessing DisCoPar-Kilimo platform, (b) Creating an ap-
plication, (c) Specifying general application details, (d) Ac-
cessing the application builder VPE and (e) Complete ap-
plication flow-graph on the VPE. 72

4.20 Deployed edge devices for a DisCoPar-Kilimo application
for monitoring soil moisture. 73

4.21 Example flow-graph of an application for monitoring soil
moisture in DisCoPar-Kilimo. The application is composed
of one edge component and four mobile components. 74

4.22 Exporting the mobile and edge application flow graphs in
DisCoPar-Kilimo. 75

5.1 Simple application showing a component named Transmit-
Data that transmits data received on its output port. . . . 78

5.2 Application design interface of DisCoPar-Kilimo showing
the VPE (canvas and component menu). The VPE also
shows the emulation for mobile applications. 102

5.3 Flow chart for building the entire application graph in DisCoPar-
Kilimo. 102

5.4 Process for extracting the edge application graph. 105

6.1 Flow-graph of the application for monitoring soil moisture. 111
6.2 Preview of the application for monitoring soil moisture de-

ployed to crops in a greenhouse. 112
6.3 Flow-graph of an application for computing average soil

moisture and keeping data at the edge. The application is
composed of three edge components and two mobile com-
ponents. 113

6.4 Flow-graph of an application for monitoring soil moisture
using more than one edge device. 114

6.5 Preview of the application for monitoring soil moisture us-
ing more than one edge device. 115

6.6 Flow-graph of an application for tracking general informa-
tion of connected edge devices. 116

6.7 Preview of the application for tracking connected edge de-
vices. 116

6.8 Flow-graph of an application for tracking and monitoring
humidity levels in storage areas for paddy rice. 118

6.9 Configuring the SetThreshold component to specify the time
interval for sending the set value on the output port. 119

6.10 Mobile application preview for tracking humidity levels in
storage areas for paddy rice. Humidity is below the 75%
threshold, and no alert is generated. 120

6.11 Dashboard application preview for tracking and monitoring
humidity levels in storage areas for paddy rice. 120

6.12 Flow-graph of an application for tracking application data. 121
6.13 Preview for tracking application data. The application fea-

tures a survey for data entry and a web dashboard for data
display. 122

6.14 Flow-graph of an application for monitoring soil moisture
and temperature in corn seeding and sprouting. 124

6.15 Application preview for monitoring farm conditions in corn
seeding and sprouting. The preview shows the maximum,
minimum and average soil moisture. 125

List of Tables

2.1 Summary state-of-the-art of SAAs concerning the four iden-
tified properties. HPFM refers to handling partial failures
on the mobile, while HPFE refers to handling partial fail-
ures at the edge. 24

2.2 Summary of LCDES concerning the properties identified in
Section 2.3. HPFM refers to handling partial failures on
the mobile, and HPFE refers to handling partial failures at
the edge. 30

4.1 Summary of edge and mobile components of DisCoPar-
Kilimo. EDGE refers to data coming from edge devices
in JSON format. OBSERVATION refers to data created
by data-producing processes, NUMERIC refers to numer-
ical data, DATASET refers to a collection of related data
sets, and ALL refers to any data. 56

xvii

List of Listings

5.1 Implementation of the basic building block of applications
in DisCoPar. 79

5.2 Component execution scopes in DisCoPar. It features the
server, mobile and web component execution scopes. 81

5.3 Defining the edge scope. The edge scope is defined as a
class that extends the Client class. 82

5.4 Adding the edge scope to the global object. This allows it
to be globally accessible in DisCoPar-Kilimo. 82

5.5 Implementation of the component for reading soil moisture
at the edge. 83

5.6 Example exported edge graph showing function calls. This
example calls the ReadSoilMoisture companion function and
passes its computation results to the SendData function. . . 84

5.7 Implementation of the edge function to interact with the
network. The function calls a low-level function sendData-
ToNetwork. 84

5.8 Implementation of the companion function of the ReadSoil-
Moisture component. The function assumes the same name
as the component. 85

5.9 Implementation of the friend function of the ReadSoilMois-
ture companion function. 85

5.10 Implementation of the component for keeping previous values. 86
5.11 Implementation of the Subtraction component that finds

the difference between two numerical values. 86
5.12 Implementation of the companion function of the Previous-

Value component. 87

xix

5.13 Implementation of the companion function of the Subtrac-
tion edge component. 87

5.14 Implementation of the blue-print for the offline accessibility
components. 87

5.15 Implementation of the record-based offline accessibility com-
ponent. 88

5.16 Implementation of the memory-based offline accessibility
component. 89

5.17 Implementation of the time-based offline accessibility com-
ponent. 90

5.18 Implementation of the hybrid offline accessibility component. 92
5.19 Implementaion of the validation to drop connections be-

tween successive offline accessibility components. 93
5.20 Implementation for validating flow-graphs that connect suc-

cessive offline accessibility components. 94
5.21 Implementation of the on-disk buffering edge component. . 94
5.22 Companion edge function for the BufferOnDisk component. 94
5.23 Friend function of the on-disk storage companion function. 95
5.24 Implementation for tracking connected devices on the min-

imalist server. 96
5.25 Implementation of the ConnectedDevices component. 97
5.26 Implementation of the DataArrayToTable component. . . . 98
5.27 Implementation of the DeviceAccumulator component. . . . 99
5.28 Format of data coming from the edge. 99
5.29 Filtering general payload of data coming from edge devices. 100
5.30 Filtering payload of specific edge devices. 101
5.31 Implementation for building the edge graph. 103
A.1 JSON representation of an application flow-graph in Dis-

CoPar. 133
B.1 Library of companion edge functions that are invoked when

edge components execute. 137
C.1 Extracting and exporting the edge graph. 139
D.1 Communication bridge running on the mobile phone 143

List of Abbreviations

AI: Artificial intelligence.
API: Application programming interface.
CSS: Cascading style sheets.
CSV: Comma separated values.
DAG: Directed acyclic graph.
DOM: Document object model.
DSL: Domain-specific language.
GPS: Global positioning system.
GUIs: Graphical user interfaces.
HTML: Hyper text markup language.
ICT: Information and communication technology.
IoT: Internet of Things.
JSON: JavaScript object notation.
LCDEs: Low-code development environments.
SAAs: Smart agriculture applications.
UIs: User interfaces.
VPE: Visual programming environment.
VPL: Visual programming language.

xxi

Chapter 1

Introduction

Globally, there is an increasing demand for food and nutrition security
[AAUS+19, MLJ+20, BCIR22, SGR22]. Agriculture is one of the most
important pillars of national income in developing countries [SBK+21].
For example, in Tanzania and Zambia, 75% of the total population derives
livelihoods from agriculture [MAG16]. The increase in demand for food
can be addressed through improving and optimising farming processes
using information and communication technologies (ICTs).

Smart agriculture refers to the application of ICTs such as big data
analysis, the Internet of Things (IoT), artificial intelligence (AI), remote
sensing, robotics, blockchain and smart sensors in modern farming ac-
tivities [WFHB17, GBP+23a]. Each of the above technologies serves
different roles in smart agriculture. For example, AI techniques such
as machine learning can be used to predict the prevailing farm condi-
tions in smart agriculture [JHKS23, FSW+23]. Blockchain can be used
to develop more traceable agri-food supply chains [CLDAOPMPA20].
Lastly, IoT can enable data sharing in a farm using embedded devices
with networking technologies, e.g., Bluetooth and wireless sensor networks
[CLDAOPMPA20, STM22].

The technologies mentioned above for modern farming can be used to
drive farming activities in different ways, as shown in Figure 1.1. In what
follows, we explain examples of applications of the above technologies in
modern farming.

Autopilot tractors and sprayer machines. Modern tractors and sprayer
machines that are equipped with a global positioning system (GPS)

1

CHAPTER 1. INTRODUCTION

can accurately drive themselves through farm fields without drivers
as illustrated in Figure 1.1a [RJK+17]. The GPS can be tied to the
tractor’s steering wheel to automatically keep the machines on track
and free the operators from driving them. Automated guidance is
essential for tillage because it eliminates human error from overlap,
saving fuel and equipment usage hours.

(a) (b) (c) (d)

Figure 1.1: An example illustration of different modern farming technolo-
gies1. (a) Auto-pilot tractors and sprayer machines, (b) Crop sensing, (c)
Documenting crop fields and (d) Monitoring animal welfare.

Crop sensing. Crop sensors, as illustrated in Figure 1.1b, can help farm-
ers effectively apply fertiliser to maximise its uptake [RJK+17]. Ad-
ditionally, crop sensing can help reduce the potential for leaching
and runoff into groundwater [LMBS23]. Crop sensors can inform
fertiliser-applying equipment when and how much to apply in real
time. Optical sensors can show how much fertiliser a plant may need
based on the light reflected in the sensor. Soil moisture sensors can
help farmers activate or deactivate irrigation systems with a button
on their smartphones [RJK+17]. This can increase flexibility and
allow farmers to precisely control water resources and other inputs,
such as fertiliser, applied during irrigation.

Documenting crop fields. GPS has also improved and simplified the pro-
cess of documenting crop yields and farm resources as illustrated in
Figure 1.1c e.g., water and fertiliser [LBJ01, RJK+17]. For instance,
harvesting equipment can use GPS coordinates to move through crop
fields, calculating yields per field to make yield maps. The yield
maps allow the farmer to determine which crop varieties produced
the best, worst, or most consistent yields over varying conditions.

1*Image source: https://www.flaticon.com

2

https://www.flaticon.com

1.1. SMART AGRICULTURE APPLICATIONS

Monitoring animal welfare. Sensors can help farmers to effectively and
efficiently monitor the welfare of farm animals, e.g., when the ani-
mals require care from an expert [CJS+17, CSJK17]. The sensors
can be attached to the animals as illustrated in Figure 1.1d to mon-
itor their behaviour and trigger alerts when abnormal behaviour is
observed, e.g., long periods of inactivity.

1.1 Smart Agriculture Applications

Smart agriculture applications orchestrate components deployed in mi-
crocontrollers, smartphones, and cloud services. For example, Figure 1.2
depicts a farmer using a mobile phone to receive data about a cornfield.
In particular, soil moisture data is gathered and sent by a microcontroller
installed in a cornfield. The microcontroller interprets signals from an at-
tached soil moisture sensor and sends them to the farmer’s mobile phone.
The farmer can also receive additional data from other sensors deployed
to the farm, e.g., location data from a GPS sensor deployed to a tractor
moving around the farm.

GPS

Farmer receiving soil moisture and
location data on the mobile phone

Soil moisture
sensor

Microcontroller

Communication
network

Edge

Corn farm

Figure 1.2: An example application that shows a farmer using a mobile
phone to receive data about a corn field. The data comes from sensors
attached to a microcontroller deployed to the corn field.

1.1.1 Developed vs Developing Regions

This dissertation focuses on the development of smart agriculture applica-
tions. In Section 2.2, we derive properties to support the development of
these applications in developing countries. Technologies supporting smart
agriculture applications have already been used in developed countries. In

3

CHAPTER 1. INTRODUCTION

what follows, we compare smart agriculture processes for developed and
developing countries to sketch the research context.

Compared to developing countries, developed countries adopted smart
agriculture technologies early and applied them in modern farms’ food
production activities. For example, sensing applications have been used
to collect data for monitoring plants and animals [BSS+15, GBP+23b].
The data can be processed on the working machines (e.g., tractor) be-
fore sending it to other components. However, developed countries still
face challenges when using the adopted technologies for smart agriculture
applications. For example, 80% of the 24 million households in the USA
do not have reliable, affordable, and high-speed broadband connection in
rural areas [BSZ+21]. Moreover, we observe that farmers in rural areas
(e.g., Germany and the USA) are still experiencing unreliable network
connections [BSZ+21]. With unreliable network connections, many farm-
ers (e.g., in Germany and the USA) opt to gather data on mobile devices
while in the crop fields and upload it to the cloud after they return home
or the office where they can access good connectivity [KKE+19, BSZ+21].
Unlike farmers in developing regions, farmers in developed countries have
either a technical or university-level education [KKE+19].

Farmers in developing countries face more issues that hinder them
from adopting smart agriculture applications. First, farmers must pay
high servicing costs to connect mobile phones to communication networks
[WS15, MAGT18, ETDS20]. Moreover, farmers encounter bureaucracy
from service providers and intermediaries [MAGT18, RMBCC23]. Like
developed countries, beyond the urban centres in developing countries,
the infrastructure that can support using modern farming technologies
needs to be improved [MMR+21]. For example, remote areas in develop-
ing countries experience network coverage that is limited or nonexistent
[NU16, MAGT18, BBF+19, OLO19, ETDS20]. Therefore, this limits the
usage of smart agriculture applications that rely on access to cloud services
and that assume reliable network access.

1.1.2 Implementing Smart Agriculture Applications

Designing and implementing smart agriculture applications is difficult and
costly in developed or developing countries [CJS+17, BBKR23]. These
applications require highly skilled engineers to implement them since they
entail carefully handling distribution to enable the different parts that

4

1.2. PROBLEM STATEMENT

compose them to communicate [RSS+23]. Moreover, these are complex
and expensive pieces of software that require a combination of different
technical skills to implement [BGS20]. Skilled developers are hard to
find, and domain experts often need more software development knowledge
[BGS20, BWO+20, BM21, RSS+23].

This dissertation aims to empower domain experts to design and im-
plement smart agriculture applications. In the context of this dissertation,
a domain expert is an agricultural extension worker or simply an exten-
sion worker. An extension worker is an employee of the government or a
private company that offers advisory services to farmers. The extension
workers have either technical or university-level education. The extension
workers are the target audience of our research, and we expect they can
be trained to implement basic applications. To implement applications,
extension workers need to be able to read and understand software appli-
cations, such as the code for simple programs. For example, the extension
workers can implement data collection applications that they can give to
farmers to collect data about their crop fields or animals and send it to
them. As such, the extension workers build smart agriculture applications
that farmers use as the end-users.

1.2 Problem Statement

Smart agriculture applications are often constructed using textual pro-
gramming languages. Low-code development environments have risen as
an alternative that domain experts outside software engineering can use to
implement software applications that suit their needs [BGS20, SDRP20,
Was19, RKdL+22, MP23]. The low-code development environments pro-
vide “ready-to-go” visual components that can be used to construct soft-
ware applications and make software development more accessible to all
technical skill levels [MLDGd23]. However, certain limitations hinder the
widespread usage of low-code development environments for developing
smart agriculture applications.

First, the state-of-the-art low-code development environments assume
that devices installed in the environment (e.g., crop fields and farms) only
gather sensor data and send it to a server or cloud. As such, they lack
building blocks for specifying computations on those devices embedded
in the environment. Moreover, the communication between the compo-

5

CHAPTER 1. INTRODUCTION

nents running on the embedded devices and those on mobile phones or the
server must be coordinated. However, the state-of-the-art low-code devel-
opment environments lack the infrastructure and components to support
the coordination. Lastly, the output of the computations done on the
embedded devices must be sent to other components on mobile phones
or the server over communication networks, which can fail. The existing
low-code development environments have limited support for handling the
failures between the components that compose smart agriculture applica-
tions, especially when the networks become unavailable.

Based on the above observations, this dissertation is guided by the
following thesis statement:

Empowering domain experts to implement smart agriculture applications
requires a low-code development environment that supports environment

sensing, computation at the edge, coordination with the edge and
handling partial failures.

1.3 Our Approach

To accomplish its vision, this dissertation introduces DisCoPar-Kilimo2, a
domain-specific low-code development environment geared for smart agri-
culture applications. We draw our inspiration and build on the work of
DisCoPar, a low-code development environment for implementing citizen
science applications for participatory sensing and campaigning [Zam18].
Figure 1.3 shows a screenshot of the DisCoPar-Kilimo visual programming
environment in action.

Our work, presented in this dissertation, is at the intersection of smart
agriculture applications, low-code development environments, component-
based software engineering, and flow-based programming. This disserta-
tion generally focuses on extending a low-code development environment
with properties for building smart agriculture applications, as summarised
below.

Environment sensing. We devise dedicated components to support en-
vironment sensing in a low-code development environment. The

2Kilimo means agriculture or farming (the art or science of cultivating the ground)
in Swahili.

6

1.3. OUR APPROACH

Figure 1.3: DisCoPar-Kilimo in action featuring a canvas with a smart
agriculture application for sensing soil moisture. Components are drawn
from the component menu, dropped on the canvas and connected to com-
pose applications.

components are essential to monitor prevailing conditions in mod-
ern farms effectively.

Computation at the edge. We devise components to support computa-
tions at the edge. The edge computations can process data near the
source before being sent to the farmer’s mobile phone.

Coordination with the edge. Conventionally, components in smart agri-
culture applications rely on a centralised server to communicate.
We devise a mechanism for coordinating communication between
components on edge devices and those on mobile devices. In addi-
tion, the mechanism ensures that tracking connected edge devices
can happen. Lastly, the mechanism ensures that data from the edge
devices eventually reaches the server.

Handling partial failures when networks become unavailable. Implement-
ing computation at the edge introduces a point of failure when
edge components communicate with mobile components. We devise
mechanisms to handle partial failures when the networks become
unavailable and make applications offline available and accessible.

7

CHAPTER 1. INTRODUCTION

1.4 Contributions

This dissertation makes the following contributions.

• As our first contribution, the dissertation proposes a set of proper-
ties (cf. Section 2.3) that a low-code development environment needs
to support implementing smart agriculture applications. The pro-
posed properties include environment sensing, computation at the
edge, coordination with the edge, and handling partial failures when
networks fail. The dissertation implements the above properties as
features of a low-code development environment.
• Our second and main contribution is DisCoPar-Kilimo, a domain-

specific low-code development environment for implementing smart
agriculture applications. The domain-specific low-code development
environment is based on flow-based programming where applications
are represented as graphs of interconnected nodes that stream data
to each other. The implementation of DisCoPar-Kilimo adds the
following extensions to DisCoPar. First, DisCoPar-Kilimo extends
the architecture of DisCoPar with a new execution scope that we
call the edge scope. The edge scope hosts components for perform-
ing computations at the edge and environment sensing. Second,
DisCoPar-Kilimo devises infrastructure for extracting and deploying
the edge graph to edge devices. Third, DisCoPar-Kilimo introduces
more policies to handle partial failures on the mobile. In addition, it
introduces policies and components to handle partial failures at the
edge. Lastly, DisCoPar-Kilimo devises a mechanism to allow edge
components to communicate with mobile components directly.

1.4.1 Supporting Publications

In this section, we list the supporting publications and explain their rela-
tion to the work in this dissertation.

• [OMK+21]:- Isaac Nyabisa Oteyo, Matteo Marra, Stephen Kimani,
Wolfgang De Meuter and Elisa Gonzalez Boix. A Survey on Mobile
Applications for Smart Agriculture. SN Computer Science, 2(4):1–
16, 2021. https://doi.org/10.1007/s42979-021-00700-x.

8

https://doi.org/10.1007/s42979-021-00700-x

1.4. CONTRIBUTIONS

This publication surveys mobile applications in smart agricul-
ture and introduces a taxonomy for classifying them. It presents
pertinent software engineering issues important to smart agriculture
applications, as detailed in Chapter 2.

• [OSZ+21]:- Isaac Nyabisa Oteyo, Angel Luis Scull Pupo, Jesse
Zaman, Stephen Kimani, Wolfgang De Meuter and Elisa Gon-
zalez Boix. Building Smart Agriculture Applications Using Low
Code Development Tools: The Case for DisCoPar. In Proceed-
ings of the IEEE AFRICON 2021, pages 562–565, September 13–15,
2021, Arusha – Tanzania, 2021, IEEE. https://doi.org/10.1109/
AFRICON51333.2021.9570936.

This publication identifies properties of low-code development
environments that can support implementing smart agriculture
applications, as we detail in Chapter 2 and Chapter 3.

• [OSZ+23]:- Isaac Nyabisa Oteyo, Angel Luis Scull Pupo, Jesse
Zaman, Stephen Kimani, Wolfgang De Meuter and Elisa Gonza-
lez Boix (2023). Easing Construction of Smart Agriculture Ap-
plications Using Low Code Development Tools. In Longfei, S.,
Bodhi, P. (eds) Mobile and Ubiquitous Systems: Computing, Net-
working and Services, MobiQuitous 2022. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, vol 492, pp 21–43. Springer, Cham.
https://doi.org/10.1007/978-3-031-34776-4_2.

This publication introduces and presents the final version of
DisCoPar-Kilimo, the technical contribution of this dissertation as
we detail in Chapter 4 and Chapter 5. In addition, it introduces the
extensions and contributions made to DisCoPar to yield DisCoPar-
Kilimo. It also defines the first iteration of smart agriculture sce-
narios presented in Chapter 6. Lastly, the paper implements the
defined scenarios in DisCoPar-Kilimo.

In addition to the publications highlighted above, we also published

9

https://doi.org/10.1109/AFRICON51333.2021.9570936
https://doi.org/10.1109/AFRICON51333.2021.9570936
https://doi.org/10.1007/978-3-031-34776-4_2

CHAPTER 1. INTRODUCTION

one journal article and three conference articles that helped shape the
ideas behind this dissertation [OKB+18, OT20, OKZ+20, GKOK23].

1.5 Dissertation Outline

The rest of this dissertation is organised as follows.

Chapter 2: State-of-the-Art of Smart Agriculture Applications.
This chapter presents a state-of-the-art of smart agriculture applica-
tions and low-code development environments. The chapter starts
by describing key farming processes for smart agriculture that are
important to this dissertation. A description of representative driver
scenarios for smart agriculture applications follows this. The chap-
ter identifies essential properties for smart agriculture applications
based on those scenarios. Then, it uses the identified properties to
analyse the state-of-the-art of different smart agriculture applica-
tions. The chapter uses the identified properties to identify short-
comings in state-of-the-art domain-specific low-code development
environments.

Chapter 3: DisCoPar. This chapter describes DisCoPar, a low-code
development environment where we will prototype our contributions.
The chapter presents the architectural overview of DisCoPar and
describes the different layers comprising DisCoPar. Afterwards, the
chapter describes the relevant components and how they are con-
nected to form an application and presents how applications in Dis-
CoPar are validated for errors. Then, it presents a sample applica-
tion implemented in DisCoPar. Lastly, it concludes by highlighting
the limitations of DisCoPar that are addressed in this dissertation.

Chapter 4: DisCoPar-Kilimo. This chapter describes the design of
components for proofing the concepts we propose in this disserta-
tion and how they were introduced in DisCoPar-Kilimo. First, the
chapter describes the critical features of DisCoPar-Kilimo. Then,
the chapter presents the architectural overview of DisCoPar-Kilimo
and how it supports the properties identified in Chapter 2 for smart
agriculture applications. The chapter then describes how to design
and deploy smart agriculture applications using DisCoPar-Kilimo.

10

1.5. DISSERTATION OUTLINE

Lastly, the chapter concludes by describing the extensions and con-
tributions that DisCoPar-Kilimo makes to DisCoPar.

Chapter 5: DisCoPar-Kilimo Implementation. This chapter
presents the implementation of DisCoPar-Kilimo and the challenges
faced while implementing it. First, the chapter presents the basic
building blocks relevant to implementing DisCoPar-Kilimo. Second,
the chapter details the implementation of the architecture and fea-
tures of DisCoPar-Kilimo. Lastly, it describes how to design and
deploy applications using DisCoPar-Kilimo.

Chapter 6: Validation of DisCoPar-Kilimo. This chapter presents
the validation for DisCoPar-Kilimo. For this dissertation, we adopt
a scenario-based validation approach. The chapter implements all
the driver scenarios for smart agriculture presented in Chapter 2 in
DisCoPar-Kilimo. Lastly, the chapter concludes by discussing the
implemented scenarios.

Chapter 7: Conclusion and future work. This chapter summarises
the dissertation, revisits the research problem and approach, pro-
vides an overview of the contributions of this dissertation, discusses
its shortcomings, and gives some directions for future work.

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

State of the Art of Smart
Agriculture Applications

Different technologies have been developed over time to facilitate the work
of farmers, optimise the use of resources in farms, and increase farm yields.
Today, the agricultural sector is accelerating its transformation by adopt-
ing and using connected devices (e.g., sensors) in the farm, giving rise to
smart agriculture. As already explained in Chapter 1, smart agriculture
refers to the incorporation of ICTs into modern farming processes for im-
proved management of farm activities, such as monitoring farm conditions
[NPSO96, CJS+17, PWT+18, BSDN19].

This chapter presents the state-of-the-art smart agriculture applica-
tions (SAAs) and low-code development environments (LCDEs). The
chapter begins by highlighting the critical processes in smart agriculture
that form the basis for SAAs. The chapter then presents seven driver sce-
narios that serve as the basis for distilling four properties a low-code devel-
opment environment should have for building SAAs. Lastly, the chapter
performs a state-of-the-art analysis of SAAs and LCDEs concerning those
properties.

2.1 Smart Agriculture Processes

As mentioned in Section 1.1, SAAs orchestrate components deployed to
microcontrollers, smartphones and cloud services. These components im-
prove operations in modern farming, such as collecting and analysing data,

13

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

planning, monitoring and controlling [RFMM20]. Therefore, smart agri-
culture is sustained by key processes that can be summarised into four
categories as identified by Wolfert et al. [WGVB17], namely:

1. Data collection.
2. Data transformation and processing.
3. Data dissemination.
4. Evaluation and impact assessment.

Figure 2.1 illustrates the above smart agriculture processes. We de-
scribe each of these processes below.

Data collection

Data
transformation
and processing

Data
dissemination

Evaluation and
impact

assessment

Sensor based
data collection

Prediction using ML
techniques

Web dashboards, mobile
apps, interactive maps etc.

Assessing processed data &
providing feedback

Figure 2.1: Illustration of key smart agriculture processes grouped into
four key areas. The processes are data collection, transformation and
processing, dissemination, evaluation and impact assessment.

Data collection refers to the process of acquiring data from the environ-
ment (e.g., farms, crop fields etc.) [WGVB17]. The data collection
process can be automated or manual. Sensors or embedded devices
can be used for automated data collection, e.g., motion cameras to
capture crop images or temperature and humidity sensors to moni-
tor farm conditions. Farmers often collect data manually by entering
data directly via web forms or dedicated applications [JYG+16].

Data transformation and processing refers to converting collected data
into meaningful information for farmers to use in making appro-
priate decisions. For example, accelerometer values collected from

14

2.2. DRIVER SCENARIOS FOR SMART AGRICULTURE

wearable devices can be converted to determine animal location and
movements. The transformation and processing may benefit from
statistical tools available on data analytic platforms. As mentioned
in Chapter 1, machine learning can also be used to process the data
for prediction.

Data dissemination serves to communicate the transformed and pro-
cessed data (i.e., information) meaningfully to the farmer. Infor-
mation is communicated to farmers to help them make informed
decisions. The data dissemination involves web dashboards, mo-
bile applications, and interactive maps to present processed data to
farmers. For example, interactive maps can be used to communicate
yield information like heat maps.

Evaluation and impact assessment process analyses the transformed data
to give feedback to the data collection process. Farmers in develop-
ing regions rely on agricultural extension services to implement tech-
nologies that can be used to modernise smart agriculture processes.
Agricultural extension workers offer the agricultural extension ser-
vices [DAEA18, KAMH21]. They facilitate and support people en-
gaged in agricultural activities to solve problems, obtain information
and provide advisory feedback to farmers and farming communities
[DBR20, EEE21]. Hence, the extension workers are deemed the pri-
mary contact persons for making agriculture and its related activities
more effective in developing regions [DAEA18].

2.2 Driver Scenarios for Smart Agriculture

As mentioned in Section 1.1, SAAs are varied and support different pro-
cesses in agriculture as described in Section 2.1. This section introduces
seven driver scenarios used throughout this dissertation to distil key prop-
erties for SAAs.

2.2.1 Sensing Farm Conditions

Consider the domain of smart farming, where farmers and extension work-
ers aim to obtain optimal yields, i.e., increased crop production based on
the prevailing farm conditions. To accomplish this goal, the farmers col-
lect data using sensor devices installed on the farm. Farmers can take

15

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

different actions depending on the farm size. We assume that the same
crop (e.g., corn) is grown in all the driver scenarios. In this setting, the
parameters of interest are soil moisture and temperature, as they are vital
environmental conditions that influence the sprouting of seeds [ZPP+20].

The soil moisture indicates the available water content to support the
sprouting of seeds. For example, inadequate soil moisture and extremely
low or high temperatures negatively affect seed sprouting. On the other
hand, temperature affects the maintenance and movement of water and
gases in the soil. It regularly corresponds with essential crop growth func-
tions such as root formation and photosynthesis. Temperature anomalies
significantly affect the movement of water and gas in soils. Soil moisture
is integral to water cycles in land (terrestrial) ecosystems and the basis for
crop survival. Therefore, these two conditions are relevant for obtaining
optimal yields. For example, when soil moisture decreases and the land
surface temperature increases, dryness becomes more severe, making it
harder for crops to grow and develop.

In the context of smart agriculture, we describe seven scenarios.

Scenario 1: Monitoring soil moisture. This scenario aims to allow farm-
ers to measure and monitor soil moisture. The scenario considers a
farm that is small in physical size, e.g., a research garden or green-
house in a university environment. For example, a farmer can have
a small greenhouse next to the house. Given that the greenhouse is
next to the farmer’s house, the scenario assumes that the farmer is
always present or close to the farm as depicted in Figure 2.2. Inside
the small greenhouse, the farmer has a water tap that is manually
operated (i.e., closed and opened) to water the crops based on the
conditions of the soil moisture.

From a technological point of view, the scenario considers that the
farmer has a smart agriculture application with a reliable internet
connection. Only one device (e.g., M5StickC) with a soil moisture
sensor attached is sufficient to collect soil moisture data for the entire
greenhouse. Since the farmer has a reliable network connection,
access and connection to the sensors used for collecting soil moisture
data is always guaranteed. The data is sent immediately and directly
to the farmer’s mobile phone without any computations performed
on it.

16

2.2. DRIVER SCENARIOS FOR SMART AGRICULTURE

Farmer house

Farmer receiving soil moisture and
location data on the mobile phone

Microcontroller and
Soil moisture sensor

Communication

Greenhouse

Inside greenhouse

Figure 2.2: Sensing soil moisture at the edge. The soil moisture data is
directly sent to the mobile device.

Scenario 2: Computing average soil moisture and keeping data at the
edge. In this scenario, the farmer still wants to monitor the soil mois-
ture. However, in this scenario, we assume the farmer can be absent
from the farm. Therefore, the soil moisture sensor is only some-
times connected to the farmer’s mobile phone. Hence, the farmer
must wait to receive soil moisture data from the greenhouse gar-
den on the mobile phone. As such, the scenario assumes that the
farmer visits the greenhouse garden once daily (e.g., early morning)
to check the soil moisture and water the crops. For this to happen,
the farmer needs to know the soil moisture levels when away from
the garden.

From a technological point of view, the soil moisture data is col-
lected by soil moisture sensors attached to a microcontroller. In
this scenario, a single microcontroller with a sensor attached is suffi-
cient to measure and monitor the soil moisture conditions. The soil
moisture sensor continuously collects data even when the farmer is
away from the farm. When the farmer is away, the device at the
farm and the companion mobile application running on the farmer’s
mobile phone are not connected to the network. To avoid data loss
between the device at the farm and the mobile phone, data can be
stored on the devices deployed to the greenhouse garden. However,
the devices deployed to the farm are often resource-constrained and
storing every data value from the sensors can be impractical.

Scenario 3: Monitoring soil moisture using more than one edge device.

17

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

Similar to the previous two scenarios, the goal of this scenario is
to monitor soil moisture, albeit for a large farm. The farmer must
monitor the soil moisture and ensure sufficient water is available to
irrigate the crops. Some parts of the farm may already have enough
soil moisture content and may wait to require irrigation immediately
and vice versa. From a technological point of view, more than one
device is required to collect the soil moisture data for a large farm
because conditions can vary rapidly between two locations within
the farm. Hence, multiple devices are required to collect the soil
moisture data. To monitor the soil moisture, the large farm can be
subdivided into smaller portions and soil moisture sensors deployed
to each portion as illustrated in Figure 2.3.

Figure 2.3: Summary scenario for monitoring soil moisture in different
parts of a large farm, processing it on edge devices and sending it directly
to the farmer’s mobile phone.

We consider the smaller portions of the farm as the edge and the
devices deployed to each portion as edge devices. Data from soil
moisture sensors is processed on edge devices before being sent di-
rectly to the farmer’s mobile phone. From the mobile phone, the
data can be sent to the server. The network connections can fail
while sending the data from the devices installed on the farm to the
mobile device and when sending the data from the mobile device to

18

2.2. DRIVER SCENARIOS FOR SMART AGRICULTURE

the server.

Similar to the second driver scenario, the farmer visits the farm once
a day. Immediately after the farmer visits the farm, data from all
the installed devices must be accumulated on the farmer’s mobile
phone. Additionally, the data accumulated on the farmer’s mobile
phone needs to be processed to enable the farmer to get meaningful
information for decision-making. Accumulating data from different
devices installed on the farmer is a complex undertaking.

Scenario 4: Tracking connected edge devices. This scenario assumes a
similar setting to scenario three; its goal is to track connected devices
deployed to the farm. The scenario considers a large farm with many
sensors installed as depicted in Figure 2.3. The farmer must track
the deployed devices to know when they go off and schedule device
maintenance activities or replacements. Additionally, the farmer
can track soil moisture data coming from specific devices and use
the data to plan for irrigation activities on the farm.

Technologically, the sensing devices can go off because of battery
drain or mechanical malfunctioning. On each visit to the farm, the
farmer needs to know the number of active devices and those that
are not active. The scenario considers vital information, such as
the network status for each device, which the farmer can use to
determine when the devices go off. For example, all the devices
installed on the farm for data collection can be listed on the farmer’s
mobile phone each time the farmer visits the farm.

In addition to the above four scenarios, we consider two scenarios
from the literature and one scenario that is based on our experiences with
agricultural extension workers in Kenya.

Scenario 5: Tracking and monitoring paddy rice storage conditions. This
scenario is derived from existing literature [SNN18]. The farmer’s
goal in this scenario is to monitor humidity in rice storage areas.
Paddy rice should be stored in ideal conditions to prevent grain
quality from deteriorating after harvesting. Under natural condi-
tions, stored rice grains undergo chemical changes within themselves.
The chemical changes are significantly related to the environmental
conditions (e.g., the relative humidity). Regardless of the methods

19

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

of storage, (1) the rice grains must be kept dry, and (2) the grains
must be protected from adverse environmental conditions and pests
[AKKM19].
The moisture content of rice grains is closely related to the relative
humidity. Hence, ambient relative humidity significantly influences
the quality of stored rice. Additionally, the relative humidity influ-
ences the increase or decrease of pest population that affects stored
rice. For example, when the relative humidity increases to 70%,
pests’ multiplication increases. A low moisture content with low hu-
midity can significantly reduce pest infestation. Figure 2.4 shows
rice storage in paddy bags stacked on each other. The farmer has
to monitor the relative humidity manually using a humidity meter.

Figure 2.4: An illustration of rice storage in paddy bags. The storage is
subdivided into islands, making it easy to measure and monitor humidity
manually.

Technologically, humidity sensing devices can be deployed to the
rice bags. The devices can measure the humidity levels and send the
data to the farmer’s mobile phone. Since the storage areas can be
enormous, they can be divided into portions and humidity sensors
can be deployed to each portion. This can improve the manual
process of measuring the humidity levels.

Scenario 6: Collecting data using mobile applications. This scenario
aims to help farmers collect crop data using mobile applications.
From our interaction with agricultural extension workers in Kenya,

20

2.2. DRIVER SCENARIOS FOR SMART AGRICULTURE

we observed that they often collect plant-specific data to monitor
their growth and development. For instance, at the sprouting stage,
the extension workers can collect data on the number of leaves per
plant, colour, and height. They use this data to determine if the
plant is developing well and detect any abnormality that may re-
quire intervention. Counting the organs of a plant, such as leaves,
is important in estimating relevant traits in crop breeding [AUS20].
Technologically, this scenario focuses on using mobile forms to help
collect and track crop data [OKW+19]. Additionally, the scenario
relies on plant labels to identify individual plants in the field. The
scenario assumes the plant labels are QR codes generated using an
external application.

Scenario 7: Monitoring soil moisture and temperature in corn seeding
and sprouting. This scenario is derived from El-Sanatawy et al.
[ESEKA+21], Sudozai et al. [STCR13] and our interactions with
agricultural extension workers in Kenya. The goal is to help farmers
obtain the maximum yield from corn crops. This depends on sev-
eral factors. First, for the corn plants to reach maturity, the crop
must develop ‘well’ during all the ‘cultivation’ phases, i.e., plant-
ing, sprouting, developing and maturing. Specifically, during the
stage that encompasses seeding and sprouting of corn, maximum
yield depends on achieving ‘optimal’ sprouting. To this end, exten-
sion workers must help farmers keep track of vital environmental
conditions (e.g., soil moisture, temperature, etc.) that influence the
sprouting of corn seeds [ZPP+20].

Adequate soil moisture content helps activate metabolic enzymes,
increasing cell division and proliferation. For example, corn seeds
that are sown in 60 – 65% available average soil moisture have a
sprouting rate of 77.36%, while those sown in 55 – 60% available
average soil moisture have a sprouting rate of 78.34% after seven
days of planting. After 15 days of seed planting, a decrease in the
available average soil moisture (50 – 55%) significantly reduces the
sprouting of corn seeds to 62.45% [STCR13, ESEKA+21]. Besides
soil moisture, temperatures below 10◦ Celsius retards corn growth,
while temperatures above 38◦ Celsius affect the corn yield by stim-
ulating pollen development. Pollen is essential for corn fertilisation
[HP15]. However, high temperatures cannot severely affect corn pol-

21

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

lination if adequate soil moisture is available [HD18].

Finally, altitude influences the number of days from planting to flow-
ering and maturity of corn because the rate of development of corn
is affected by the air temperature [STCR13]. The higher the tem-
peratures, the faster corn can grow and develop. Conversely, lower
air temperature retards the development of corn and extends the
time taken to reach flowering and maturity. The time from planting
to emergence is highest (26 – 28 days) when corn is produced during
cooler conditions. Metrics such as soil heat capacity can be used to
correlate the available soil moisture and temperature [ZPP+20].

All the above scenarios point to four key properties of SAAs that we
describe in the subsequent section.

2.3 Properties for Smart Agriculture Applica-
tions

Based on the scenarios presented in Section 2.2 and our experiences and
interviews with extension workers in Kenya, we have identified four core
properties inherent to SAAs, which we detail in what follows.

Environment sensing (P1). SAAs must support data collection on the
prevailing crop farm conditions, such as soil moisture and temper-
ature. Small farms (e.g., micro gardens) require only one device,
while large farms require multiple devices. Data from multiple de-
vices can be accumulated before further processing on the mobile
phone or the server. Each data value can be mapped to the device
from which it originates. For all the installed devices, it is essen-
tial to track general information to determine when the devices are
inactive and plan for maintenance.

Computation at the edge (P2). Since extension workers and farmers in de-
veloping countries may have limited or intermittent access to cloud
services, it is essential to perform computations on the devices in-
stalled at the farm (i.e., devices at the edge) to collect data instead
of relying on a centralised server, which may be inaccessible due
to network connection issues or cost, as the farmers cannot afford

22

2.4. STATE-OF-THE-ART OF SMART AGRICULTURE
APPLICATIONS

it. Hence, the data collected should be transformed near the source
before sending it to the farmer’s mobile phone.

Coordination with the edge (P3). Devices at the edge hosting sensors
that collect data on environmental conditions must be able to send
the collected data directly to the farmer’s mobile phone. The farmer
is mobile and may not always be available at the farm. The mobile
phone is closer to the devices at the edge when the farmer is available
at the farm and far away from those devices when the farmer is
unavailable. Therefore, mechanisms are required to coordinate how
the devices at the edge communicate with the mobile devices.

Handling partial failures (P4). SAAs are distributed across devices at
the edge, mobile phones and possibly the cloud. Partial failures can
occur as a result of intermittent network connections or due to the
farmer’s mobility. For example, the farmer can visit the farm daily
to receive the data collected. Therefore, the device gathering the
soil moisture and temperature data from sensors must be capable of
working offline and keeping all sensor data. The stored data must
be accessible when required, e.g., when the farmer visits the farm.
Handling partial failures requires SAAs to be offline, available, and
accessible. Offline data availability and accessibility can happen at
the edge devices hosting sensors and on the farmer’s mobile phone.

We use the above four properties to perform a state-of-the-art study of
smart agriculture applications that we present in the subsequent section.

2.4 State-of-the-Art of Smart Agriculture Appli-
cations

In this section, we describe the state-of-the-art of SAAs for sensing. Ta-
ble 2.1 provides a summary of the applications that we analysed and the
properties that they support. We also include their focus area and the
sensors they use. The focus area indicates the specific sub-domain within
agriculture where the application is used.

Most existing applications included in the state-of-the-art analysis fo-
cus on crop farming, animal farming and sensing. In terms of sensing,
most applications exploit at least one sensor. To the best of our knowl-

23

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

edge, none of the surveyed applications supported coordination with the
edge and handling partial failures at the edge.

Application Focus area Sensors used P1 P2 P3
P4

HPFM HPFE
PocketLAI [CFC+13, OMC+16] Estimating crop water needs Phone camera 3 7 7 7 7

WISE [BAAB15] Irrigation scheduling Soil moisture 3 7 7 7 7

EVAPO [MVd19] Estimating evapotranspiration Temperature & humidity 3 7 7 7 7

PIS [ISY+17] Soil moisture sensing Soil moisture 3 7 7 7 7

RaGPS [MMJRCFP11] Solar radiation monitoring Light 3 7 7 7 7

SmartIrrigation [VLA+16] Irrigation scheduling Soil moisture 3 7 7 7 7

Crop Water Stress [PWL+19] Vine water stress monitoring Soil moisture 3 7 7 7 7

pCAPS [HHRHGM+16] Monitoring crop water needs Phone camera 3 7 7 7 7

VitiCanopy [DFG+16, FBPT12, FPEOF+14] Estimating crop water needs Phone camera 3 7 7 7 7

SmartfLAIr [BSJA16] Crop yield estimation Light 3 7 7 7 7

PETEFA [PMHT18] Geo-referenced soil analysis GPS 3 7 7 7 7

eFarm [YST+17] Geo-tagging land data GPS 3 7 7 7 7

PAMS [YCLF13] Managing land spatial data GPS 3 7 7 3 7

cFertigUAL [PCSMC+17] Fertiliser estimation Temperature & humidity 3 7 7 3 7

BaoKhao [YS12] Leaf colour estimation for N fertiliser Phone camera 3 7 7 7 7

SnapCard [FCO+16] Crop spraying Phone camera 3 7 7 7 7

MobiCrop [LCAD13, LCJD13] Sharing information on pesticides GPS 3 7 7 3 7

DropLeaf [MSA+18] Crop health Phone camera 3 7 7 7 7

AgriMaps [JEM+16] Land management GPS 3 7 7 7 7

LandPKS [HBB+16] Soil assessment GPS 3 7 7 7 7

SOCiT [ADCB13] Soil assessment GPS 3 7 7 7 7

SIFSS [ADCB13] Soil assessment GPS 3 7 7 7 7

GeoFoto [MCCGdGF12] Land identification GPS 3 7 7 7 7

MapIT [FSC13] Equipment tracking GPS 3 7 7 7 7

SafeDriving [LK13] Equipment tracking GPS 3 7 7 7 7

SmartHof [CJS+17] Monitoring animal health Accelerometer 3 3 7 7 7

SmartFarm [CSJK17] Monitoring animal health Accelerometer 3 3 7 7 7

BioLeaf [MOA+16] Leaf health monitoring Phone camera 3 7 7 7 7

Plant Disease [Pet17, Pet19] Plant disease diagnosis Phone camera 3 7 7 7 7

Canopeo [PO15] Estimating canopy development Phone camera 3 7 7 7 7

vitisFlower [AMG+15] Flower assessment Phone camera 3 7 7 7 7

vitisBerry [AIMP+18] Berry assessment Phone camera 3 7 7 7 7

FruitSize [WKW+18] Fruit size assessment Phone camera 3 7 7 7 7

PulAm [PMFZRCAG19] Crop pest monitoring – 7 7 7 3 7

UbiQON [WS18] Mushroom monitoring Temperature& humidity 3 7 7 7 7

Blynk based app [SNN18] Paddy rice monitoring Temperature& humidity 3 7 7 7 7

iDee [ADCB13] Water assessment Phone camera 3 7 7 7 7

ConnectedFarm [RYM+15] Environment monitoring Temperature& humidity 3 7 7 7 7

SmartFarmKit [MPT+17] Mushroom and maize monitoring Temperature& humidity 3 7 7 7 7

WheatCam [CKR19] Risk management Phone camera 3 7 7 7 7

SMILEX [RSS+10] Tracking sick plants GPS 3 7 7 7 7

IRIS [MSR+18] Data collection Soil moisture 3 7 7 7 7

iFarm [MUH+13] Data collection – 3 7 7 7 7

GeoFarmer [ECA+19] Data collection GPS 3 7 7 3 7

Table 2.1: Summary state-of-the-art of SAAs concerning the four identi-
fied properties. HPFM refers to handling partial failures on the mobile,
while HPFE refers to handling partial failures at the edge.

2.4.1 Applications that Support Sensing

As shown in Table 2.1, all the applications surveyed except one support
the environment sensing property. The applications exploit various sen-
sors such as soil moisture, phone cameras, temperature, humidity, global
positioning system (GPS), accelerometer and ambient light sensors. Each
application exploits one specific sensor depending on the focus area.

24

2.4. STATE-OF-THE-ART OF SMART AGRICULTURE
APPLICATIONS

2.4.2 Applications that Support Computation at the Edge

We observe that only two applications (SmartHof [CJS+17] and Smart-
Farm [CSJK17]) offload part of their computations to the edge to reduce
delays that can be experienced when communicating with cloud-hosted
services. Both applications were designed to monitor animal welfare and
follow the classic 3-tier architecture, which has three components: cloud,
edge, and sensing. The cloud provides data processing and storage, while
Raspberry Pi devices are used for data collection via sensors at the edge.
In SmartHof, the animal carries the Raspberry Pi, which uses temperature
and accelerometer sensors to collect body temperature and movement.
The accelerometer data is processed on the Raspberry Pi to determine
the animal’s physical location and the number of steps it has taken. The
application then uses the processed data to trigger an alarm about the
animal’s health when it cannot move by correlating data in the cloud pro-
cessing component. The mobile application acts as an interface to manage
farm configurations and evaluate animal welfare factors in the cloud. Both
applications enable the farmers to visualise and interact with the farm in
real time.

2.4.3 Applications that Support Handling Partial Failures

In Table 2.1, we show applications that exhibit handling partial fail-
ures on the mobile phone and those that exhibit handling partial fail-
ures at the edge. The few applications that handle partial failures do
so on the mobile phone using local storage [PMFZRCAG19], synchroni-
sation [MUH+13], client-side databases [YCLF13, PMFZRCAG19] and
caching [LCAD13, LCJD13, PCSMC+17, ECA+19]. For instance, Mobi-
Crop [LCAD13, LCJD13] uses caching to offer offline accessibility. Geo-
Farmer [ECA+19] uses local phone storage that synchronises to a central
database when the application is online. iFarm’s [MUH+13] client side is
synchronised to the server when the network is available to guarantee that
up-to-date data is available for local computations.

PAMS [YCLF13] and cFertigUAL [PCSMC+17] use a database on
the client side to store data upon network disconnection. cFertigUAL
[PCSMC+17] uses a persistent database on the client side to minimise the
number of requests that can be made to the server. This way, the appli-
cation can function offline between client requests’ windows to the server.

25

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

PulAm [PMFZRCAG19] exploits an SQLite database that runs locally on
the mobile device to minimise network connection issues. The changes
that are made to the database when in offline mode are inserted into a
queue. When the internet connection becomes available, the contents of
the queue are sent and synchronised to the server.

2.4.4 Discussion

Most of the applications studied support the environment-sensing prop-
erty. A varied number of sensors are used by the applications presented
in Table 2.1 including the phone camera, ambient light sensor, temper-
ature and humidity sensors, soil moisture sensor, solar radiation sensor,
accelerometer and lastly, the GPS sensor. Most of the applications pre-
sented in Table 2.1 exploit the phone camera as a sensor to capture images
for further analysis.

Few applications support handling partial failures only between the
mobile and cloud service or server. Applications that use sensors external
to the mobile phone first send the data to a server, and the mobile phone
fetches that data from the server. To the best of our knowledge, none of the
applications analysed offers support for (1) handling partial failures at the
edge and (2) coordination with the edge. All the applications presented in
Table 2.1 have been implemented using textual programming languages.

2.5 State-of-the-Art of Low-Code Development
Environments

As mentioned in Chapter 1, designing and implementing SAAs requires a
combination of skills. In this thesis, we focus on helping domain experts
(such as agricultural extension workers) with limited programming expe-
rience build SAAs. The applications built by the extension workers can
be used by farmers who benefit from the advisory services of the extension
workers.

LCDEs can serve as an alternative that domain experts outside soft-
ware engineering (such as agricultural extension workers) can use to im-
plement software applications [BGS20, SDRP20]. The main aim of the
LCDEs is to reduce the development and maintenance effort required to
implement applications for digital-savvy persons with limited program-

26

2.5. STATE-OF-THE-ART OF LOW-CODE DEVELOPMENT
ENVIRONMENTS

ming experience [SLPF22, RKdL+22, GS22, MP23]. This section gives an
overview of LCDEs that can be used to construct applications as shown
in Figure 2.5. The application in Figure 2.5 reads humidity data, displays
it and generates notifications based on a threshold value.

Figure 2.5: Example Node-RED low-code development environment fea-
turing an application composed of connected nodes. The application reads
and displays humidity data and generates alerts based on set conditions.
The application reads and displays humidity data and generates notifica-
tions based on a threshold value.

LCDEs provide visual programming environments (VPEs) in which
applications are constructed by dragging, dropping and connecting vi-
sual components that represent different computational tasks in the ap-
plication [Was19, SDRP20, SDRIP23, MLDGd23]. The VPEs embody
visual programming languages (VPLs). The VPLs provide pre-built (i.e.,
“ready-to-go”) components that the domain experts can use to construct
and configure software applications. The pre-built components can make
constructing software applications more intuitive for domain experts since
they are already tested and ready to use [KFHB21].

Different kinds of VPLs exist in the literature, such as block-based
VPLs [RMMH+09], icon-based VPLs [Cha87a, Cha87b], form-based VPLs
[RSF17], and flow-based VPLs [CK02]. In this dissertation, we focus
on flow-based VPLs because the LCDEs we consider naturally use them.
In the subsequent section, we explain the notation used in flow-based
VPLs and then review the existing LCDEs concerning the four properties

27

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

identified in Section 2.3.

2.5.1 Notation Used in Flow-Based VPLs

Flow-based VPLs use a specific notation to represent program features and
compose software applications. In this section, we explain this notation.

Application graph. Flow-based VPLs use graphs to represent applica-
tions. In this dissertation, application graphs or flow graphs are
used interchangeably. A flow graph is an acyclic network of nodes
and connections describing data flow during application execution.
For instance, Figure 2.6 shows an application graph composed of
four nodes. Nodes C1 and C2 send data to C3, which in turn sends
its output to node C4.

C1

C2

C3 C4

C31(in)

C32(in)
C4(in)

C2(out)

C1(out)

C3(out)

link(C3(out), C4(in))

link(C2(out), C32(in))

link(C1(out), C31(in))

Figure 2.6: Application flow graph showing components, their names,
ports and connections. The colouring on the component ports and con-
nections shows the type of data the ports emit or accept. The arrows on
the connections show the direction in which data flows through the flow
graph.

Nodes and node connections. Flow-based VPLs use nodes to represent
computation tasks that can modify data. Each node has a name
representative of the computation task it performs. Nodes can have
input ports, output ports or both. The input ports function as
receptors for connections that supply data to the node. The output
nodes send the computation results from the node to the subsequent
“downstream” nodes in the application flow graph. For example, in

28

2.5. STATE-OF-THE-ART OF LOW-CODE DEVELOPMENT
ENVIRONMENTS

Figure 2.6, nodes C1 and C2 have only one output port each, node
C3 has two input ports and one output port and lastly, node C4 has
only one input port. In this case, C1 and C2 are said to be source
nodes, C3 a processor node and C4 a sink node.

Nodes are joined together via links. The links serve as communica-
tion channels between the nodes. For instance, in Figure 2.6, nodes
C1 and C3 are joined together by link, link(C1(out),C31(in)), while
nodes C3 and C4 are joined together by link, link(C3(out),C4(in)).
In terms of implementation, the node connections can be constructed
as simplex or duplex channels. The simplex channels have only the
forward channel, while the duplex channels have both a forward and
backward channel. The forward channel carries information (data)
and delivers it to the next component in the application flow graph.
The backward channel can send acknowledgement messages to “up-
stream” components. This is useful for applications that require
confirmatory messages as proof of successful transactions, e.g., proof
that data has been saved in a database.

Data and data types. In LCDEs, data travels through links that supply
inputs for nodes. The data is transformed into a new form for output
in the nodes. Data types are used to specify the kind of data a node
can receive on its input port(s) or emit on its output port(s). Some
LCDEs allow developers to join any node to another regardless of the
data being shared between the two nodes [BL14]. Hence, developers
can make errors in application designs by connecting nodes that
send data that is not accepted by the receiving node. Other LCDEs
provide the concept of data types through the input and output
ports of nodes [ZKD18, ZKD21]. Therefore, the input ports can only
accept connections from compatible output ports. Often, the ports
present physical cues to guide the application designer on compatible
ports. For example, in DisCoPar, each port has a colour representing
the data type it emits or accepts [ZKD18, ZKD21].

Node compatibility. Two successive nodes are compatible if the upstream
node’s output port emits data acceptable by the downstream node’s
input port. A node’s input and output ports enforce the data type
that it emits or receives. Hence, two nodes A and B are compatible if
the output port of node A is compatible with the input port of B. In
Figure 2.6, the output ports of nodes C1 and C2 are compatible with

29

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

the input ports of node C3, thus making node {C1, C3} and {C2, C3}
compatible. The node compatibility concept can be used to enforce
type-checking rules, which help programmers avoid errors during
application design. Therefore, the VPLs can disallow connections
between nodes that are not compatible. For instance, in DisCoPar,
connections between incompatible nodes are automatically dropped
when composing applications [ZKD18, ZKD21].

2.5.2 Review of Existing Low-Code Environments

This section reviews the existing LCDEs based on the smart agriculture
properties identified in Section 2.3. Table 2.2 shows a summary review of
the existing LCDEs based on their support for the properties explained
in Section 2.3.

Tool P1 P2 P3
P4

HPFM HPFE
Node-RED [BL14] 3 7 7 7 7

WotKit processor [BL12] 3 7 7 7 7

NoFlo [Nof] 3 7 7 7 7

Apache Ni-Fi [NiF] 3 7 7 7 7

NetLab Toolkit [Net] 3 7 7 7 7

DDFlow [NTGS19] 3 7 7 7 7

DisCoPar [Zam18, ZKD18, ZKD21] 3 7 7 3 7

Table 2.2: Summary of LCDES concerning the properties identified in
Section 2.3. HPFM refers to handling partial failures on the mobile, and
HPFE refers to handling partial failures at the edge.

From Table 2.2, all the reviewed LCDEs offer support for environment
sensing, albeit not for smart agriculture-related parameters like tempera-
ture and soil moisture. All the tools presented in Table 2.2 do not sup-
port (1) components for sensing environmental conditions in crop fields
or farms, (2) computation at the edge, (3) coordination with the edge,
and (4) handling partial failures at the edge. DisCoPar supports handling
partial failures on mobile devices. Therefore, to use the tools in construct-
ing smart agriculture applications, the tools need to be extended with (1)
components for computation at the edge, (2) mechanism for coordinating
mobile components with the edge and (3) components for handling partial

30

2.5. STATE-OF-THE-ART OF LOW-CODE DEVELOPMENT
ENVIRONMENTS

failures at the edge.
Each of the tools supports core concepts for constructing applications.

To better understand each tool, we describe the core concepts for each
tool in what follows.

Node-RED: Application programs in Node-RED are referred to as flows
[BL14]. The flows consist of nodes connected by wires, i.e., links.
To the application developer, Node-RED provides a VPE called a
flow canvas for designing and deploying flows. The VPE consists of
a flow editor with node templates that can be dragged and dropped
into the flow canvas. The flows in Node-RED require a centralised
server to coordinate communication between nodes. Node-RED is
implemented in JavaScript using the Node.js1 framework. Flows in
Node-RED are saved into a flow file. Edge devices must be connected
to the server hosting the Node-RED flows to deploy them to the
devices. They only send data, and edge devices cannot host flows.
During execution, the flow file is read, and nodes are instantiated to
correspond to the node type in the flow file. On instantiation, source
nodes can subscribe to external services, listen for data on their input
port(s), get data from a sensor, or begin processing HTTP requests.

Web of Things (WotKit) processor: The WotKit processor is an IoT
mashup toolkit [BL12]. Concretely, the processor allows users to
process sensor data and react to real-time updates from sensors and
other external systems [BL12, GBLL15]. The data model for the
WotKit processor consists of sensors with fields describing the sen-
sors connected to the system. The processor accumulates data from
various sensors and allows users to find and subscribe to the sensor
data of interest. The sensor data is processed as it is pushed into the
system from components and visualised on a dashboard using wid-
gets. The processor is implemented in Java using the Spring frame-
work and leverages the Java concurrency framework in its execution
engine. The WotKit processor provides a browser-based visual data-
flow editor as the primary interface. Processor users can create data
flow programs called pipes. The pipes are made up of modules that
are connected with wires. Typical applications implemented using
the processor are IoT mashup applications that require a centralised

1https://nodejs.org/en

31

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

server to coordinate communication.

NoFlo: NoFlo2 is a flow-based programming environment for JavaScript
that runs both in the browser and Node.js. A program in NoFlo is
defined as a flow graph of nodes connected via edges. The nodes
react to information packets or incoming messages. When a node
receives messages on its input ports, it performs a predefined op-
eration, yielding results that it sends to other nodes on its output
ports. Components communicate by sending messages or packets
through a centralised server. Therefore, once components are de-
ployed, they must send their data to the NoFlo instance via web
sockets. When applications in NoFlo are executed, NoFlo creates a
live graph, instantiates the components used in the graph and links
them together. In the current implementations of NoFlo, the exist-
ing sensing components use sensors embedded in mobile phones.

Apache Ni-Fi: This is a low-code development environment built to au-
tomate data flow between systems. It supports various data formats
like logs, geolocation data and social feeds. The platform provides
a configurable and web-based user interface. Programs in Apache
Ni-Fi3 are composed of processors that are connected using flows.
The processor is a module that fetches data from the source sys-
tem or stores it in the destination system. Other processors can
also add attributes or change content in the flow file. Constructing
applications is done by adding processors and other components to
the Ni-Fi canvas. The processors are configured and connected for
Apache Ni-Fi to know what to do with each flow file after processing
it.

NetLab toolkit: This is a drag-and-drop IoT-based application develop-
ment environment hosted on the cloud. The NetLab4 toolkit pro-
vides a web interface to connect sensors with smart widgets. De-
signing applications is done using widgets. The widgets represent
software components for processing data. The widgets are connected
to enable data to flow between them. The widgets can be configured
and adjusted on how they process data. Other widgets can be used
to build the graphical user interface for standalone applications.

2https://noflojs.org/
3https://nifi.apache.org/
4https://www.netlabtoolkit.org/

32

2.6. CONCLUSION

DDFlow: This LCDE provides an environment for programming appli-
cations that span a diverse and dynamic IoT network [NTGS19].
Applications in DDFlow are defined as a sequence of nodes in a
data flow graph. A node is a computational abstraction that rep-
resents a stateful function. As a stateful function, the node can
optionally map inputs to outputs. Inputs and outputs are key-value
dictionaries (i.e., JSON messages) that contain application data and
metadata such as timestamps. Nodes correspond to at least one in-
stantiation of a task that must be deployed onto a device in the
network. Nodes are connected via wires representing a data flow
graph connection.

DisCoPar: This is a visual reactive and flow-based domain-specific lan-
guage was built for constructing smart sensing applications [Zam18,
ZKD21]. Programs in DisCoPar are directed acyclic graphs (DAGs)
where each node of the graph consists of a component instance and
where the edges represent real-time data streams. DisCoPar’s com-
ponent layer is written in JavaScript. As a result, the source code
of a component can be deployed both on the client and server sides,
as the latter relies on Node.js. We describe DisCoPar in detail in
Chapter 3.

2.6 Conclusion

From the LCDEs presented above, (1) individual computation tasks in
applications are highly conceptualised into visual components for novice
developers, and (2) the tools support implementing web and mobile ap-
plications using drag-and-drop and point-and-click visual programming
techniques. These techniques can be intuitive and valuable to domain
experts for constructing SAAs.

In this chapter, we first identify four properties of SAAs. Secondly,
we perform a state-of-the-art analysis of SAAs and LCDEs based on the
identified properties. To the best of our knowledge, none of the existing
low-code development environments offers support for 1) computation at
the edge, 2) coordinating with the edge, and 3) handling partial failures
at the edge when network connections become unavailable. DisCoPar
has the most potential to be used for constructing SAAs. Still, it lacks
the following: (1) custom sensing components for smart agriculture, (3)

33

CHAPTER 2. STATE OF THE ART OF SMART AGRICULTURE
APPLICATIONS

computation at the edge and components that can execute at the edge,
(3) features for coordinating mobile components with the edge, and (4)
handling partial failures at the edge.

In our work, we design components to support the four properties of
SAAs, and we implement them by extending DisCoPar (see Chapter 4 and
Chapter 5). In particular, we design components that can handle partial
failures at the edge, components that can be used for sensing environmen-
tal conditions, components that can perform computations at the edge,
and support coordinating mobile components with the edge. The choice
of DisCoPar was motivated by the fact that it already offered support
for offline accessibility on mobile phones. Before explaining our work, we
discuss the necessary background details for DisCoPar in the next chapter.

34

Chapter 3

DisCoPar

This work builds on DisCoPar [Zam18], a component-based low-code de-
velopment environment inspired by flow-based programming [Mor10] for
constructing participatory campaigning applications in citizen science.
Recall from Chapter 2 that DisCoPar already offers support for sensing
capabilities and handling partial failures on mobile devices, making it a
good choice for prototyping our research on low-code development envi-
ronments for smart agriculture applications. This chapter describes the
necessary information on DisCoPar to understand our contributions.

3.1 Architectural Overview of DisCoPar

Figure 3.1 shows the DisCoPar architecture, which consists of three dif-
ferent parts, namely, mobile clients, a server with a data store and a
web-based client. Each part of DisCoPar plays a different role.

Mobile clients gather data through onboard sensors and user input and
upload it to the server for aggregation and analysis. Mobile client
users can also receive real-time feedback, e.g., data gathering coor-
dination instructions and visualisations.

Server is used for data processing and long-term storage. Note that
citizen science applications utilise campaigns for data collection that
require a set of steps to be followed. The data collected varies in
form and type. Hence, many different processing strategies can be
used to analyse the collected data. For example, determining noise

35

CHAPTER 3. DISCOPAR

MOBILE CLIENTS SERVER WEB CLIENT

Processing

Storage

Sensing

Processing

Storage

Visualisations

Intermittent

connection

Data analysis

Data query

Campaign

enactment
Feedback

Intermittent

connection

Figure 3.1: Architectural overview of DisCoPar [Zam18]. The architecture
features three parts: (1) the mobile clients, (2) the server and (3) the
web client (dashboard). The lightning strikes show intermittent network
connections between the mobile client and the server.

levels at a particular location requires repeated data collection for
the noise measurements and the GPS coordinates associated with
each measurement. The noise levels can also be visualised on a
map.

Web-based client provides end-users with a dashboard they can use to
reason about the data collected by the mobile clients, e.g., graph
visualisations or map-based plotting of data samples on a dashboard.

DisCoPar follows the classical client/server architecture featuring a
centralised server for coordination and communication. Each of the three
parts of DisCoPar designates different execution scopes for components.
A component’s scope can be mobile, server, or dashboard (i.e., the web
client) depending on where they execute as shown in Figure 3.1. Mobile
clients can transparently establish connections to the server-side data pro-
cessing using dedicated components. Figure 3.2 shows a screenshot of the
visual programming environment of DisCoPar. The left side of the figure
shows the canvas for composing applications, while the right side shows
the component menu with three component categories. The component
categories correspond to the three execution scopes mentioned above. Ap-
plication designers can drag and drop components from any component

36

3.1. ARCHITECTURAL OVERVIEW OF DISCOPAR

category onto the canvas. The canvas features a mobile phone emulation
and a web dashboard that enable application designers (developers) to
preview the expected result of the application.

3.1.1 DisCoPar Layers

The design of DisCoPar is conceptually split into two layers: (1) a graph
layer and (2) a component layer that contains the source code for each
component and the necessary abstractions to compose them. The graph
layer provides the visual syntax for programming applications, i.e., it pro-
vides the application development environment. Beneath the graph and
component layer lies an execution engine built using JavaScript. To ex-
ecute an application, the constructed graph is loaded onto the execution
engine of DisCoPar in JSON format (Appendix A). The execution engine
then initialises the components in the graph by loading their JavaScript
source code from the component layer. Initialising the components en-
ables the execution engine to create data streams between the compo-
nents. Each component activates automatically based on data availability
on its incoming ports.

As mentioned before, DisCoPar provides a built-in library of com-
ponents for data gathering and participatory sensing. More concretely,
DisCoPar supports the following categories of components.

Sensing components: These components gather data through sensors em-
bedded in the mobile device (e.g., noise, GPS coordinates) or via user
input, e.g., questionnaires and social tagging. Sensing components
can either directly upload their data to the server for aggregation
and analysis or perform pre-processing on the mobile device.

Data processing components: This category of components includes ag-
gregation and data analysis. For example, grouping sensor measure-
ments according to geographical locations and averaging the grouped
measurements. Lastly, the components include filtering data based
on meta-information, such as the identity of the devices generating
the data.

Feedback components: These components handle interaction with the
user, e.g., instructions on how to perform measurements. Some
components can be used to inform participants of incorrect sens-
ing behaviour, e.g., not collecting data in the assigned location. It

37

CHAPTER 3. DISCOPAR

is essential to send this feedback to participants to correct their be-
haviour, which may affect the quality of the gathered data.

3.2 DisCoPar Visual Programming Environment

As previously mentioned, DisCoPar embraces a flow-based and visual pro-
gramming approach in which an application comprises different compo-
nents, each representing a computation task [Zam18, ZKD18, ZKD21]. A
DisCoPar application is thus represented as a directed acyclic graph sim-
ilar to the graph shown in Section 2.5 (Figure 2.6). The graph nodes are
processes, while the edges are the connections between ports. Construct-
ing a graph in flow-based programming can either be done using a textual
domain-specific language [Bur99] or graphically using a visual program-
ming tool or environment [Cha87a, RMMH+09, RSF17]. In DisCoPar,
graphs are created through a web-based visual programming environment.
The visual programming environment allows users to compose compo-
nents into an application graph through drag-and-drop actions. Figure 3.2
presents the visual programming environment showing the canvas and the
component menu for DisCoPar. The canvas is a pane for composing com-
ponents into applications. In the sample application shown in Figure 3.2,
the DisplaySoundLevel and DisplayOnScreen are mobile components that
create labels with their respective data on the mobile device. The Sound-
PressureLevel is a mobile component that creates a button on the mobile
device that can be clicked to start recording sound level measurements.
The DisplayAsTable is a web component that displays data on the web
dashboard. The ObservationToTable is a server component for fetching
data from a database. Lastly, the ObservationDatabase is a server com-
ponent storing recorded data in a database.

3.2.1 DisCoPar Components

As mentioned in Section 3.1, DisCoPar applications consist of components
that run on mobile phones and communicate to a server backend or a
web-based dashboard on the server. The component name, execution
scope, ports, and task define all DisCoPar components. Once published,
the components are listed in their respective grouping (categories) in the

38

3.2. DISCOPAR VISUAL PROGRAMMING ENVIRONMENT

Fi
gu

re
3.

2:
V

isu
al

pr
og

ra
m

m
in

g
en

vi
ro

nm
en

t
of

D
isC

oP
ar

sh
ow

in
g

th
e

ca
nv

as
,a

n
ap

pl
ic

at
io

n
gr

ap
h

co
m

po
se

d
of

co
m

po
ne

nt
s

w
ith

di
ffe

re
nt

ex
ec

ut
io

n
sc

op
es

,t
he

co
m

po
ne

nt
m

en
u

an
d

em
ul

at
io

ns
fo

r
m

ob
ile

de
vi

ce
s

an
d

th
e

w
eb

da
sh

bo
ar

d.

39

CHAPTER 3. DISCOPAR

visual component library1.
At the implementation level of DisCoPar, an instance of a component

is called a process. The process is an asynchronously executing piece of
logic. Multiple processes of the same component can be simultaneously
active. A process is stateful and can access its internal state and ports
but not other processes. Processes communicate by sending and receiving
structured data chunks called information packets. A process is activated
when it receives information packets on one of its input ports. Processes
automatically activated on application startup, such as processes emitting
constant values on their output ports, are exceptions to this rule.

3.2.1.1 Component Connections

Components send information packets to other connected components.
Connections between components provide the path on which information
packets can “flow” from one process’s output port to another process’s
input port. The connections can be implemented using bounded buffers
or first-in, first-out queues. The size of the buffer or queue is referred
to as the connection capacity. When the connection capacity is 0, the
information packets are transferred immediately between the sending and
receiving processes.

In the visual programming environment, the connections are repre-
sented as lines linking an output port to an input port. A connection’s
colour indicates the type of data flowing from output to input ports. We
explain this later by example in Section 3.2.1.4. The connections can
be established between components that have different execution scopes.
Connecting components that have a mobile execution scope to those that
have a server scope automatically and transparently creates a distributed
application.

3.2.1.2 Component Configuration

When right-clicking a component on the canvas, a menu appears as shown
in Figure 3.3, which enables the application designer to delete the com-
ponent from the flow graph, open its configuration window or check more
information about the component. Figure 3.4 depicts the configuration

1Mobile, server and web component categories.

40

3.2. DISCOPAR VISUAL PROGRAMMING ENVIRONMENT

window of the DisplayOnScreen component used in Figure 3.2. This com-
ponent displays the data it receives on the screen and can be configured to
change the labels. Each component drawn on the canvas corresponds to
one process of that particular component when the application is deployed.
Since each process has its configuration, two processes of the same com-
ponent can behave differently using different settings. This mechanism
is also referred to as process configuration. For example, the application
developer can add two DisplayOnScreen components on the canvas but
configure them differently.

The application designer’s actions on the canvas are immediately and
persistently updated. As such, there is no need to explicitly “save” a
graph. The canvas also provides emulations for the mobile application
and web dashboard that can help application designers see the final look
and feel of the application as shown by Figure 3.2.

Figure 3.3: Menu options available when right-clicking a component on
the DisCoPar canvas.

Figure 3.4: The configuration window for the DisplayOnScreen compo-
nent. The label to display is specified under the “Heading” section.

41

CHAPTER 3. DISCOPAR

3.2.1.3 Component Ports

Component ports are the communication points between components.
Each port in DisCoPar is named to make it easy to refer to. A com-
ponent can have multiple input or output ports. The input ports provide
a receive functionality to dequeue information packets from a connection’s
buffer. The output ports provide a send functionality to queue informa-
tion packets into the port of a connected process. A process can send data
to or receive data from any of its ports. A process reacts to data arrival
on an input port and executes some code.

The executed code can produce some output, which is then sent via
one of its output ports to another component, e.g., to display the value on
the application’s graphical user interface. It is possible for a component
not to have an input port, in which case it acts as a source component
in the application graph. The source is a component that automatically
produces some output, e.g., sensor components such as the SoundPres-
sureLevel component. Similarly, a component without an output port
acts as a sink component in the application graph. A sink is a compo-
nent that consumes data, such as the DisplayOnScreen component that
displays messages received as shown in Figure 3.2.

3.2.1.4 Port Typing

DisCoPar features port typing. This implies that ports can only be con-
nected if the output of one component can serve as the input of another
component. As such, to connect two successive components, they must
be type-compatible. The canvas includes a visual feedback mechanism
showing the port typing constraint on connections. When dragging a con-
nection from an output port, only input ports with matching colours, i.e.,
those that can accept input from that particular output port, are high-
lighted and can be used. The exception to this rule is input ports of the
Any type, which are always highlighted as they accept any input.

Figure 3.5 shows the port typing principle when an application devel-
oper creates a connection from the output port of the SoundPressureLevel
component. The blue output port of the SoundPressureLevel component
emits numeric data. In this example, there are two compatible ports: the
input ports that are coloured blue because they accept numeric values and
the input ports that are coloured black. After all, they accept any data.

42

3.2. DISCOPAR VISUAL PROGRAMMING ENVIRONMENT

The input ports of the ComputeAverage, ComputeMaximum and Com-
puteMinimum components are highlighted because they accept numeric
data. The input ports of the DisplaySoundLevel and Counter components
are highlighted since they accept any data. Thus, port typing prevents
the creation of a graph in which two components are connected through
incompatible port types.

Figure 3.5: Port typing and highlighting compatible component ports in
DisCoPar. This example highlights all ports that accept numeric data
with the electric plug symbol.

Figure 3.6 shows the supported data types in DisCoPar and the cor-
responding colours for component ports and connections.

Figure 3.6: Supported data types in DisCoPar. The supported data types
are distinguished by colour, i.e., each data type has a distinct colour.

43

CHAPTER 3. DISCOPAR

3.2.2 Graph Validation

Besides checking port types, DisCoPar features a graph validation mech-
anism that alerts application designers whenever errors occur in the flow
graph during application design. An application graph is considered valid
if it satisfies every constraint. Currently, DisCoPar supports three types
of constraints: IncomingData, OutgoingData and pathExists constraints.
The IncomingData verifies whether a certain input port of a process has
at least one connection arriving on the port. The constraint ensures that a
process with an input port receives some data on the input port. Similarly,
the OutgoingData constraint checks if an output port of a process has any
outgoing connections. The pathExists constraint takes an input port of
one process and an output port of another and tests whether a path exists
between the two ports using the breadth-first search algorithm.

Whenever a constraint is not satisfied, an error message is shown to the
application graph designer to indicate that there are still some unresolved
issues. For instance, Figure 3.7 shows three error messages indicating
the components in an application graph that have issues and need to be
resolved on the application flow graph. The constraints are reevaluated
whenever the graph is modified, and the visual cues are updated accord-
ingly.

Figure 3.7: Graph validation error message examples in DisCoPar. In this
example, the error messages show the components that are not connected.

44

3.3. DISCOPAR BY EXAMPLE

3.2.3 Handling Partial Failures

DisCoPar considers that mobile applications can be deployed in areas that
experience network connection issues. As illustrated in Figure 3.1 with the
lightning strikes, there is only one point where the network connection
issues can be experienced, i.e., between the mobile client and the server
dashboard. Network connection issues can cause the mobile application to
fail to communicate with the server, resulting in data loss. Hence, DisCo-
Par provides features for handling partial failures on the mobile side using
a specialised component for offline accessibility called InDatabaseBuffer-
ing. Figure 3.8 shows the specialised component for offline accessibility in
action.

Figure 3.8: Implementation of an application showing the use of the In-
DatabaseBuffering component to handle partial failures.

In this example, the application graph is composed of three com-
ponents. The Survey and InDatabaseBuffering components execute on
the mobile scope while the ObservationDatabase component runs on the
server. The Survey component creates a data collection survey on the
mobile phone. The collected data is stored on the mobile phone using the
InDatabaseBuffering when the network connection becomes unavailable.
The ObservationDatabase component creates a database on the server
and saves data into it. The InDatabaseBuffering creates one lightweight
database on the mobile phone to keep data for all connected components.
Using the database on the mobile phone enables data to be persistently
stored until the network connection is restored. The data saved on the
mobile phone is automatically sent to the server when the network con-
nection is restored.

3.3 DisCoPar by Example

To illustrate how to build applications in DisCoPar, consider the case
of a mobile application that measures and monitors noise levels in the

45

CHAPTER 3. DISCOPAR

environment. The noise levels are read as noise samples using the mobile
phone microphone as a sound sensor. The application runs fully on the
mobile device and performs the following tasks.

1. Computes the average noise level.
2. Determines the maximum noise level.
3. Determines the minimum noise level.
4. Display the measurements on the mobile device.
5. Show the noise levels on a map based on their GPS coordinates.

Figure 3.9 shows the example application for monitoring noise levels
implemented in DisCoPar. The application graph is read from the left to
the right. The arrows on the component links show the direction in which
data flows. All components are black, as they all run on the mobile scope.

The application has eight functional requirements:

1. Reading noise levels. The application reads the noise levels using the
SoundPressureLevel component. It is a source component with two
output ports emitting numeric values and observations. The numeric
values are emitted through the blue port, while the observations are
emitted through the green port. An observation is a standard for-
mat for citizen science data generated by data-producing processes
[Zam18]. The SoundPressureLevel component automatically adds a
button to the application interface for turning on and off the sound
sensor (i.e., phone microphone).

2. Computing the average noise level. The average noise level is com-
puted using the ComputeAverage component. The average is com-
puted for a data stream coming from SoundPressureLevel values.

3. Determining the maximum noise level is done using the ComputeMax-
imum component.

4. Determining the minimum noise level is done using the ComputeM-
inimum component.

5. Tagging noise level readings with GPS coordinates. The application
reads the GPS coordinates using the LocationTracker component.
The noise level measurements from the SoundPressureLevel compo-
nent are tagged with the GPS coordinates using the LocationTagger
component.

46

3.3. DISCOPAR BY EXAMPLE

1

2

3

4

5

6

7

8

Fi
gu

re
3.

9:
A

n
ex

am
pl

e
ap

pl
ic

at
io

n
in

D
isC

oP
ar

fo
r

m
ea

su
rin

g
an

d
m

on
ito

rin
g

no
ise

le
ve

ls.
A

ll
th

e
co

m
po

ne
nt

s
in

th
is

ap
pl

ic
at

io
n

ex
ec

ut
e

on
th

e
m

ob
ile

sc
op

e.

47

CHAPTER 3. DISCOPAR

6. Map the measurements. Mapping the measurements uses the Map
component that creates a map on the mobile device and shows noise
levels on the map. The measurements are converted from observa-
tions for mapping using the ObservationToMapMarker component.

7. Displaying the measurements on a graphical user interface (mobile
phone screen). The measurements are displayed on the screen using
the DisplaySoundLevel component. The average measurements are
displayed using DisplayOnScreen component. The maximum and
minimum measurements are displayed using the DisplayMaximum
and DisplayMinimum components, respectively. The above com-
ponents create labels on the mobile device and display respective
measurements against each label.

8. Count the number of measurements. The Counter component keeps
track of the number of noise level samples. The samples are displayed
using the DisplayOnScreen component.

As mentioned before, some components, such as the SoundPressureLevel
component, act as source components while others, such as the DisplayOn-
Screen component, act as sink components. The source and sink compo-
nents can be used to build the application’s graphical user interface. As
mentioned before, the application flow graph is executed via DisCoPar’s
execution engine.

3.4 Conclusion

This chapter describes DisCoPar, a low-code development environment
based on the flow-based programming paradigm. DisCoPar was initially
designed to create citizen science applications with sensing, data process-
ing, and coordination components. Applications implemented in DisCo-
Par follow a client/server architecture relying on a centralised server for
communication and coordination. Lastly, DisCoPar features components
for creating data collection surveys and saving the collected data into
cloud-hosted databases.

DisCoPar components can be helpful for domain experts, such as agri-
cultural extension workers, who often use farm data to advise farmers. For
instance, DisCoPar features sensing components, e.g., for measuring and
monitoring noise levels. There is no support for gathering sensing data in

48

3.4. CONCLUSION

crop fields or farms (i.e., at the edge), such as sensing soil moisture and
temperature levels. Therefore, the featured sensing components must be
expanded for smart agriculture applications.

DisCoPar already features a specialised component for offline accessi-
bility on mobile phones that keeps data on the mobile phone whenever the
network fails. The stored data is automatically sent to the server when the
network connection becomes available. However, it does not offer support
for handling partial failures at the edge or different strategies for dealing
with offline accessibility. Lastly, DisCoPar does not have built-in vali-
dation mechanisms to avoid incorrect composition of offline accessibility
components.

In summary, to implement smart agriculture applications based on the
properties identified in Section 2.3, DisCoPar: (1) features sensing capa-
bilities, albeit not specific to smart agriculture and (2) supports handling
partial failures on the mobile phone. However, DisCoPar lacks the capa-
bilities of (1) executing components at the edge, (2) coordinating the edge
with mobile components and (3) handling partial failures at the edge. Fi-
nally, DisCoPar lacks components to accumulate data from sensors and
track sensors when they go offline.

49

CHAPTER 3. DISCOPAR

50

Chapter 4

DisCoPar-Kilimo

In Chapter 2, we identified four properties that low-code development
environments need to adhere to facilitate smart agriculture application
development. Our review of existing low-code development environments
in Section 2.5 showed that none of the existing low-code development
environments offer support for the properties identified in Chapter 2 as
environment sensing, computation at the edge, coordination with the edge
and handling partial failures.

This chapter presents DisCoPar-Kilimo, a low-code development en-
vironment for constructing smart agriculture applications. DisCoPar-
Kilimo provides and supports the properties mentioned above. The chap-
ter begins by describing our approach and the features of DisCoPar-
Kilimo. It then describes the DisCoPar-Kilimo architectural overview
and the visual programming environment it provides for composing appli-
cations. In addition, it describes in detail the features of our approach.
Lastly, we end the chapter by describing how to design and implement
applications in DisCoPar-Kilimo.

4.1 Our Approach in a Nutshell

We now describe the fundamental ideas of our approach to build a low-
code development environment specially designed to support the four
properties as identified in Section 2.3.

Environment sensing. Our approach offers dedicated sensing components
for monitoring environmental conditions relevant to smart agricul-

51

CHAPTER 4. DISCOPAR-KILIMO

ture, such as soil moisture, temperature, and humidity. The three
parameters are essential for the seeding, growth and development
of crops, and as such, they should be offered as built-in compo-
nents. Additionally, our approach introduces components that can
filter specific sensor data and enable additional computations to be
performed on that data.

Computation at the edge. We introduce (1) infrastructure to support
computations on devices installed at the edge, (2) infrastructure to
support exporting and executing an application graph at the edge
and lastly, (3) a set of built-in components to perform computations
on devices installed at the edge, e.g., to process and keep data at the
edge before being sent to the server or the mobile phone components
of an application. The infrastructure also supports the environment
sensing components to execute at the edge. The components run-
ning on edge devices are collectively referred to as edge components.
The edge components can perform different computations, such as
computing the soil moisture and temperature averages.

Coordination with the edge. Edge components require coordination to
communicate with the mobile components. Recall from Section 2.2
that multiple edge devices can be installed on the farm. Our ap-
proach devises a mechanism to allow edge components to commu-
nicate with mobile components directly. In addition, our approach
proposes components to accumulate data from multiple edge devices
on the mobile phone for further processing.

Handling partial failures. We introduce components to deal with in-
termittent network connections. The aim is to keep data whenever
network connections become unavailable. Our approach offers offline
accessibility at two levels. First, we introduce offline accessibility
policies on the mobile, such as time-based and memory-based poli-
cies between mobile, server, and dashboard components. Second, we
introduce offline accessibility components to keep data when network
connections between edge and mobile devices become unavailable,
considering that edge devices are often more resource-constrained
than mobile devices. Additionally, we added a mechanism for mon-
itoring the connectivity status of edge devices to enable tracking of
which devices are online.

52

4.2. ARCHITECTURAL OVERVIEW OF DISCOPAR-KILIMO

In the subsequent sections, we present and explain the architectural
overview of our approach, the design of components and its integration
into a concrete LCDE, DisCoPar-Kilimo.

4.2 Architectural Overview of DisCoPar-Kilimo

Figure 4.1 shows the architectural overview of DisCoPar-Kilimo, the LCDE
where we prototyped our approach. The architecture extends DisCoPar’s
architecture shown in Figure 3.1 and consists of four different parts la-
belled 1, 2, 3, and 4 corresponding to devices at the edge, mobile client,
a server with storage, and a web dashboard (web client) for visualisation.
We assume that sensors at the edge are attached to microcontrollers, e.g.,
the ESP321 family of microcontrollers. The microcontroller can perform
computations for processing and storing data at the edge and features
networking technology to communicate with the mobile device. As men-
tioned before, we generally call those microcontrollers with sensors as edge
devices.

Motivated by the driver scenarios in Section 2.2, mobile devices (e.g.,
phones) are used for data collection, processing, and storage. The data
can also be entered directly into the mobile application by the end users
via data collection surveys. Like DisCoPar, the server is purely used for
data processing and long-term storage. Lastly, the web dashboard is used
for data visualisation. The four parts of Figure 4.1 represent execution
scopes for DisCoPar-Kilimo components. Our architecture, thus, has four
scopes distinguished by colour: (1) the edge scope (blue), (2) the mobile
scope (black), (3) the server scope (light grey), and lastly, (4) the web
(dashboard) scope (grey). Data processing can happen at three points,
i.e., at the edge, on the mobile client and the server. Data visualisation
can happen at two points, i.e., the mobile and web dashboards. The
lightning strikes in Figure 4.1 depict two points of failure of DisCoPar-
Kilimo applications due to network connection issues. The first point of
failure is between the edge and mobile scopes, and the second is between
the mobile client and the server. To avoid data losses when the network
connections become unavailable, DisCoPar-Kilimo offers dedicated offline
accessibility components detailed later in Section 4.3.4.

Table 4.1 shows the overview of new edge and mobile components that
1https://www.espressif.com/en/products/socs/esp32

53

CHAPTER 4. DISCOPAR-KILIMO

M
O

B
IL

E
 S

C
O

P
E

P
ro

c
e
s
s
in

g
 &

 v
is

u
a
lis

a
tio

n
S

e
n
s
in

g
E

d
g

e
 p

ro
c
e
s
s
in

g

Te
m

p
o

ra
ry

 s
to

ra
g

e

In
te

rm
itte

n
t c

o
n

n
e
c
tio

n

E
D

G
E

 S
C

O
P

E
S

E
R

V
E

R
 S

C
O

P
E

S
to

ra
g

e

V
is

u
a
lis

a
tio

n

W
E

B
 S

C
O

P
E

P
ro

c
e
s
s
in

g

D
a
ta

 c
o

lle
c
tio

n

1

2

3

4

In
te

rm
itte

n
t c

o
n

n
e
c
tio

n

Te
m

p
o

ra
ry

 s
to

ra
g

e

S
e
n
s
o

r

M
ic

ro
c
o

n
tro

lle
r

Figure
4.1:

A
rchitecturaloverview

ofD
isC

oPar-K
ilim

o.
T

he
architecture

depicts
four

execution
scopes.

T
he

edge
scope

is
noveland

features
edge

com
ponents.

T
he

m
obile

scope
features

m
obile

com
ponents.

T
he

server
scope

features
server

com
ponents.

Lastly,the
w

eb
scope

features
w

eb
com

ponents.

54

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

DisCoPar-Kilimo incorporates into a low-code-development environment.
Some components were incorporated in DisCoPar-Kilimo to support the
implementation of SAAs.

4.3 DisCoPar-Kilimo Visual Programming Envi-
ronment

We now introduce DisCoPar-Kilimo’s visual programming environment
(VPE), in which we integrated novel components for building SAAs. Fig-
ure 4.2 provides an overview of DisCoPar-Kilimo VPE and component
execution scopes (i.e., mobile, edge, server, and dashboard). The figure
shows the edge scope highlighted in yellow in the component menu with
the edge components. Components for each scope are distinguished by
colour. On the canvas, the edge components are depicted in blue, the
mobile components in black, the server in light grey, and the dashboard
in grey. The component menu allows developers to search for all compo-
nents in the different scopes using their names or parts of their names.
Unlike the other components, edge components do not provide an exe-
cute method and are strictly executed at the edge (i.e., they cannot have
multiple execution scopes).

In the remainder of this section, we describe in detail the features
introduced by DisCoPar-Kilimo to simplify the development of SAAs.

4.3.1 Ensuring Support for Environment Sensing

DisCoPar-Kilimo introduces components for environment sensing that are
hosted at the edge scope and can be deployed in farms and crop fields. The
built-in sensing components allow measuring and monitoring soil moisture,
temperature, and humidity conditions. Figure 4.3 shows an example ap-
plication for sensing and sending soil moisture data to the mobile device.
The example shows two connected components, i.e., one for reading the
soil moisture (ReadSoilMoisture component) and another one for display-
ing the soil moisture data on the mobile device (DisplayOnScreen compo-
nent). The ReadSoilMoisture component executes at the edge while the
DisplayOnScreen component executes at the mobile.

In contrast to the state-of-the-art LCDEs like DisCoPar, DisCoPar-
Kilimo offers sensing capabilities at the edge scope. In a smart agriculture

55

CHAPTER 4. DISCOPAR-KILIMO

C
om

ponent
Input

port
and

type
O

utput
port

and
type

D
escription

E
dge

com
ponents

A
ddition

first:
ED

G
E,second:

ED
G

E
out:

ED
G

E
Perform

s
add

operation.
Subtraction

first:
ED

G
E,second:

ED
G

E
out:

ED
G

E
Perform

s
subtract

operation.
M

ultiplication
first:

ED
G

E,second:
ED

G
E

out:
ED

G
E

Perform
s

m
ultiply

operation.
D

ivision
first:

ED
G

E,second:
ED

G
E

out:
ED

G
E

Perform
s

divide
operation.

Exponentiation
exponent:

ED
G

E,base:
ED

G
E

out:
ED

G
E

Perform
s

exponentiation
operation.

C
om

puteEdgeAverage
in:

ED
G

E
out:

ED
G

E
C

om
putes

average.
PreviousValue

in:
ED

G
E

out:
ED

G
E

K
eeps

previous
value.

R
eadSoilM

oisture
–

out:
ED

G
E

R
eads

soilm
oisture.

R
eadTem

perature
–

out:
ED

G
E

R
eads

tem
perature.

R
eadH

um
idity

–
out:

ED
G

E
R

eads
hum

idity.
B

ufferD
ata

in:
ED

G
E

out:
ED

G
E

Stores
data

in
a

buffer
in

m
em

ory.
B

ufferO
nD

isk
in:

ED
G

E
out:

ED
G

E
Stores

data
on

disk.
SetC

onstant
–

out:
ED

G
E

Sets
and

sends
a

constant
num

ber.
M

obile
com

ponents
U

nW
rap

in:
ED

G
E

out:
N

U
M

ER
IC

U
nw

raps
payload.

U
nW

rapForSpecificD
evice

in:
ED

G
E

out:
N

U
M

ER
IC

U
nw

raps
payload

for
a

specific
device.

D
eviceA

ccum
ulator

in:
ED

G
E

data:
ED

G
E,out:

N
U

M
ER

IC
A

ccum
ulates

data
from

m
ultiple

devices.
D

ataA
rrayToTable

in:
A

LL
num

ber:
N

U
M

ER
IC

,out:
D

ATA
SET

C
onverts

data
into

a
dataset.

C
onnectedD

evices
–

out:
ED

G
E

Tracks
connected

devices.
H

ybridPolicyB
uffering

in:
O

B
SERVAT

IO
N

out:
O

B
SERVAT

IO
N

Stores
data

in
a

buffer
in

m
em

ory.
T

im
ePolicyB

uffering
in:

O
B

SERVAT
IO

N
out:

O
B

SERVAT
IO

N
Stores

data
in

a
buffer

in
m

em
ory.

R
ecordPolicyB

uffering
in:

O
B

SERVAT
IO

N
out:

O
B

SERVAT
IO

N
Stores

data
in

a
buffer

in
m

em
ory.

InM
em

oryB
uffering

in:
O

B
SERVAT

IO
N

out:
O

B
SERVAT

IO
N

Stores
data

in
a

buffer
in

m
em

ory.
G

enerateA
ndShow

A
lert

in:
A

LL
out

G
enerates

and
displays

alerts.
R

eadQ
R

C
ode

–
out:

O
B

SERVAT
IO

N
R

eads
Q

R
code.

SetT
hreshold

–
out:

N
U

M
ER

IC
Sets

a
threshold

value.
C

om
pare

threshold:
N

U
M

ER
IC

,input:
N

U
M

ER
IC

out:
B

O
O

LEA
N

C
om

pares
tw

o
inputs.

PlotSoilM
oisture

in:
A

LL
–

Plots
a

line
chart.

Table
4.1:

Sum
m

ary
ofedge

and
m

obile
com

ponents
ofD

isC
oPar-K

ilim
o.

ED
G

E
refers

to
data

com
ing

from
edge

devices
in

JSO
N

form
at.

O
B

SERVAT
IO

N
refers

to
data

created
by

data-producing
processes,N

U
M

ER
IC

refers
to

num
ericaldata,D

ATA
SET

refers
to

a
collection

ofrelated
data

sets,and
A

LL
refers

to
any

data.

56

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

Fi
gu

re
4.

2:
C

om
po

ne
nt

sc
op

es
of

D
isC

oP
ar

-K
ili

m
o

on
th

e
vi

su
al

pr
og

ra
m

m
in

g
en

vi
ro

nm
en

t.
T

he
sc

op
es

co
rr

e-
sp

on
d

to
th

e
ar

ch
ite

ct
ur

al
m

od
el

de
pi

ct
ed

in
Fi

gu
re

4.
1.

57

CHAPTER 4. DISCOPAR-KILIMO

Figure 4.3: Example environment sensing application.

context, the edge computing components introduced by DisCoPar-Kilimo
are expected to support environmental sensing and storing data on envi-
ronmental conditions on the microcontrollers hosting sensors.

4.3.2 Ensuring Support for Computation at the Edge

The edge scope hosts components in DisCoPar-Kilimo that support com-
putations at the edge. Recall from Chapter 2 that edge devices are resource-
constrained and cannot execute entire application graphs. Only the part
of the application graph containing the edge components is exported and
deployed to the edge devices during deployment. DisCoPar-Kilimo intro-
duces a stripped down version of components that can be used in drawing
complete application graphs and have corresponding functions executed
at the edge to perform the computational tasks of those components.
The components are stripped down because the edge devices are resource-
constrained and cannot run the infrastructure for executing flow-based
application flow graphs. We refer to the functions called to execute at
the edge as companion functions. The companion functions that require
interacting with the hardware of edge devices invoke low-level functions
that we call friend functions as explained later in Chapter 5. The friend
functions perform low-level operations, such as reading data from a soil
moisture sensor. The companion functions are implemented to receive
information from the friend functions.

4.3.2.1 Extracting edge graph

We devised a process to extract an edge graph from the overall application
graph to execute edge components. The process takes an entire applica-
tion graph and iteratively traverses it to identify edge subgraphs and edge
components and how they connect. The process then generates the func-
tion calls (i.e., edge function calls) representing the edge application flow

58

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

graph. The edge function calls execute on the edge devices to perform the
edge application flow graph tasks. To explain how the process works, let
us consider an application graph with four edge components as shown in
Figure 4.4.

A

B C

D E

Figure 4.4: Application example with four connected components.

The arrows in the graph indicate the direction of data flow. Compo-
nents A and B are source nodes and do not receive any input. Component
C receives input from component B, and component D receives input from
both components A and C.

4.3.2.2 Building the edge application

After extracting the edge graph, the devised process performs a topological
sorting of the operations represented by the edge components in the graph.
Then, the process builds calls to the respective companion functions as
follows.

Let x1 be A().
Let x2 be B().
Let x3 be C(x2).
Let x4 be D(x1, x3).

A(), B(), C(), and D() are the companion functions of components A,
B, C, and D. The arguments in the calls to companion functions C() and
D() represent data passed from upstream components, i.e., x1 which is
the output from component A, x2 which is the output from component B
and x3 which is the output from component C. The above function calls
are packaged within a DisCoPar-Kilimo loop function, which is an entry

59

CHAPTER 4. DISCOPAR-KILIMO

point for all executions at the edge devices. We detail later in Chapter 5
how the companion functions call their friend functions.

4.3.3 Ensuring Support for Coordination with the Edge

DisCoPar-Kilimo enables direct communication between edge and mo-
bile scope components (e.g., between microcontrollers and mobile phones)
without requiring a centralised coordination server, as is needed in exist-
ing approaches like DisCoPar or Node-RED. This is necessary to support
SAAs deployed to rural areas that experience limited connectivity, as ex-
plained in Chapter 1 and Chapter 2, and the farmer periodically visits the
farm to collect data from the edge devices.

To provide coordination, the mobile scope portions of the application
graph are specialised to act as an access point for edge devices. The mobile
scope runs a dedicated networking code to accept connections from the
edge devices. The dedicated networking code ensures that the edge devices
can send data directly to the components running on the mobile device,
which can communicate to the DisCoPar-Kilimo server. During deploy-
ment, the edge devices are configured with the credentials to connect to
the mobile network eventually. Data from the edge devices can eventually
reach the server via mobile phone components for further processing and
long-term storage.

4.3.4 Ensuring Support for Handling Partial Failures

DisCoPar-Kilimo is the only LCDE that offers offline accessibility facili-
ties for both mobile and edge devices. We now detail the built-in offline
accessibility components and policies offered by DisCoPar-Kilimo.

4.3.4.1 Policies for Handling Partial Failures on the Mobile

Based on the scenarios presented in Section 2.2, we distilled four different
policies of offline accessibility for SAAs. The introduced policies enable
developers to keep data upon a disconnection between the mobile and
server or the web based on:

1. The number of data items, i.e., records.

2. The available memory for data storage.

60

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

3. The time duration to keep data.

4. A combination of time and available memory, i.e., hybrid policy.

The above policies enable configuring applications for different con-
texts. In all the above policies, data is kept in a buffer in memory. In
what follows, we describe the rationale for each policy.

Record-based policy: The first policy allows the application designer to
specify the maximum number of records stored during a network
failure. When the upper limit is surpassed, the oldest records are
removed from the buffer to create space for more recent data. This
policy was motivated by the fact that farmers are often interested
in the latest measurements for farm conditions [PE08]. The number
and data type determines how many records will be kept in memory.

Memory-based policy: The second policy sets a maximum amount of
memory that can be used to store data. Old records are removed
when stored data exceeds the maximum allocated memory space.

Time-based policy: The third policy is based on the time that data can
be kept in memory that we call the lease window and assumes an
infinite buffer. The lease window is configurable and can vary based
on specific application requirements explained when the lease starts.
The lease window works globally for all data records stored in the
buffer. So, if a connection is restored within the lease window, data
records are pushed to the server. Otherwise, all data records are
removed from the buffer when the lease window expires.

Hybrid policy: The fourth and last policy (i.e., hybrid policy) combines
the upper limit of records and the lease window to keep data. The
policy checks to ensure that memory is not depleted as data records
are added to it within the lease window.

4.3.4.2 Components for Handling Failure on the Mobile

DisCoPar-Kilimo implements the offline accessibility policies described in
Section 4.3.4 into dedicated components. When data arrives on the in-
put ports of those components, and there is connectivity, the components
forward it to their output ports. When data arrives and there is a dis-
connection, the data is handled based on the specified policy. Application

61

CHAPTER 4. DISCOPAR-KILIMO

developers can specify the policy parameters as configuration settings for
each offline accessibility component. Specifying the parameters is done
by right-clicking the component on the canvas and selecting the configure
option.

In what follows, we explain the built-in offline accessibility components
in DisCoPar-Kilimo.

Record-based offline accessibility component. This component specifies
an upper limit of records stored during a disconnection. The data
is pushed into a buffer in memory as it arrives at the input ports of
the component. The developer can specify the number of records by
configuring the component. When the internal counter of records
exceeds the upper limit, old records are removed to create space for
recent data. Figure 4.5 shows the configuration window for specify-
ing the number of records.

Figure 4.5: Window for configuring the record-based offline accessibility
component. The number of records to keep is specified as a numerical
value.

Memory-based offline accessibility component. This component specifies
an upper limit of memory in bytes that can be used to store data.
Records received on its input port are stored in a buffer in memory
until the buffer is full. Each time data is pushed into the buffer,
its size is computed and determined. When the memory used by
the buffer exceeds the upper limit, old records are removed. The
developer can specify the upper limit for the memory as shown by
Figure 4.6.

Time-based offline accessibility component. This component specifies a
lease window in minutes to store data in a buffer in memory. The
lease window starts when a disconnection occurs. Stored data is
removed from the buffer when the lease window expires. If the con-
nection is restored before the lease window expires, data stored in

62

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

Figure 4.6: Window for configuring the memory-based offline accessibility
component for specifying the maximum memory for data storage. The
memory size is specified in bytes.

the buffer is pushed to the server. The developer can specify the
lease window as a configuration for the component, as shown by
Figure 4.7.

Figure 4.7: Window for configuring the time-based offline accessibility
component. The configuration specifies the maximum time to keep records
in memory, i.e., the lease window. The time is specified in minutes.

Hybrid offline accessibility component. This component combines the
lease window and the number of records to keep when the network
fails. The developer can configure both parameters as shown by
Figure 4.8. When data arrives on its input port, and there is a
connection, it is immediately forwarded to the output port. When
a disconnection happens, data arriving on the input port is stored
in a buffer in memory. When the buffer gets full, old records are
removed, leaving only the specified number of most recent records.
The records are kept in the buffer until the lease window expires,
and all records are removed from the buffer.

Previous work, e.g., DisCoPar, has already explored on-disk data stor-
age and database policies for offline accessibility. Therefore, the above
components are based on in-memory storage policies for offline accessibil-
ity. The components give application developers more flexibility in spec-
ifying different policies to store data when network connections fail. In

63

CHAPTER 4. DISCOPAR-KILIMO

Figure 4.8: Window for configuring the hybrid-based offline accessibility
component. Time is specified in minutes, and the number of records to
keep is numerical.

contrast to the state-of-the-art LCDEs, DisCoPar-Kilimo specifies more
policies and offers a broader portfolio of offline accessibility components.

4.3.4.3 Handling Partial Failures at the Edge

The policies offered at the edge are different than those for mobile phones
since the networking or device malfunctioning assumptions for microcon-
trollers are different than those for mobile devices, such as phones. First,
we still assume that the network connections, as with mobile devices, can
become unavailable due to the quality of service in developing areas. Sec-
ond, we assume that edge devices can fail due to drained batteries or
mechanical malfunction than mobile phones. Hence, storing data in long-
term memory (i.e., on disk) and restoring it after a device failure should
also be possible. To account for those failures, we propose two policies
that DisCoPar-Kilimo uses to offer offline accessibility at the edge, i.e.,
(1) in-memory buffering and (2) on-disk storage.

DisCoPar-Kilimo implements the above two policies into two concrete
edge components to store data at the edge when the network becomes
unavailable: the BufferData and BufferOnDisk components.

BufferData component: This component works analogously to its mobile
counterpart, the record-based offline accessibility component. The
BufferData component specifies the upper limit of records to be
kept. The number of records can be specified as a configuration
setting for the component as shown in Figure 4.9. When the network
connection becomes unavailable, input records are stored in a buffer
in memory until the buffer reaches its upper limit. At this point,

64

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

old records are removed to create space for recent data.

Figure 4.9: Configuration window for the BufferData component to spec-
ify the number of records to store in a buffer in memory.

Figure 4.10 shows an example application flow graph using the Buffer-
Data component to keep the latest readings of a soil moisture sensor
during disconnections. The role of the UnWrap component is cru-
cial to picking the soil moisture’s numerical values from the messages
from the edge to the mobile device. The component sends the nu-
merical soil moisture values to the DisplayOnScreen component for
display on the mobile.

Figure 4.10: Flow-graph for in-memory buffering at the edge when the
network connection becomes unavailable.

BufferOnDisk component: This component is based on the on-disk stor-
age policy. A buffer is stored on a disk to keep records when net-
works fail. Therefore, old records are removed when the buffer be-
comes full to create space for recent data. When the network be-
comes available, data is read from the buffer and sent to the mobile
phone. Figure 4.11 shows an example application flow-graph using
the BufferOnDisk component.

4.3.4.4 Validating Graphs with Offline Accessibility Compo-
nents

Remember from Section 3.2.3 that in DisCoPar, it is assumed that the ap-
plication developers know where the offline accessibility component should

65

CHAPTER 4. DISCOPAR-KILIMO

Figure 4.11: Flow-graph for on-disk data buffering at the edge when the
network connection becomes unavailable.

be placed when composing application flow graphs. Also, recall that com-
ponents emit and accept specific data types, e.g., the offline accessibility
components that execute on the mobile scope emit and receive observa-
tions. However, developers can compose incorrect application graphs by
connecting two or more successive downstream offline accessibility com-
ponents or to other mobile components that accept observations consecu-
tively.

To avoid incorrect application flow graphs, DisCoPar-Kilimo ensures
that the offline accessibility components that execute on the mobile de-
vice are the last ones in the chain of successive downstream components
to connect to the server side whenever they are used in an application
flow graph. This ensures that an offline accessibility component on the
mobile side cannot be connected to another mobile component or another
offline accessibility component in a chain of successive components, i.e.,
another mobile component cannot be placed between the offline accessi-
bility component and the server-side component. For instance, consider
Figure 4.12 in which InDatabaseBuffering component that supports offline
accessibility in the application can only be connected to the Observation-
Database component that runs on the server side. The connection marked
with a red colour between the InDatabaseBuffering component and the
BytePolicyBuffering component cannot happen since both components
are offline accessibility components. The BytePolicyBuffering component
is an instance of the memory-based offline accessibility component pre-
sented in Section 4.3.4.2. Similarly, while implementing edge applications,
the buffering component on the edge should be the last to connect to the
downstream mobile side.

To ensure correct usage of offline components in DisCoPar-Kilimo ap-
plications, offline accessibility components internally specify a type prop-
erty that is assigned a value “Offline”. We use the type property and the

66

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

Figure 4.12: Flow-graph for connecting an offline accessibility component
to the server side. The offline accessibility component cannot connect to
another downstream offline accessibility or mobile component successively.

component scope to check and validate each connection to a downstream
component. The connection is not allowed during application design if
the downstream component has either the type property with a value “Of-
fline” or the mobile scope. This deters application designers from making
errors when composing application flow graphs on the canvas. DisCoPar-
Kilimo uses the type property and mobile scope to validate application
flow graphs because some mobile scope components accept any data type
on their input ports. The offline accessibility components execute on the
mobile scope; hence, DisCoPar-Kilimo uses the offline property to distin-
guish them from the other mobile scope components.

4.3.5 Tracking Connected Edge Devices

As motivated by the driver scenarios in Section 2.2, it is sometimes nec-
essary to have a global overview of the environment (e.g., a farm) by
installing multiple microcontrollers (edge devices) with sensors attached
to them. The installed edge devices can go offline due to battery drains
or mechanical damage. Therefore, it is essential to monitor and track the
connected edge devices. The monitoring and tracking of connected edge
devices can give farmers general information about the sensing status. We
refer to this general information on the connectivity of devices as “tracking
edge devices”.

DisCoPar-Kilimo incorporates a connectivity tracking mechanism as
illustrated by the flow chart in Figure 4.13 to track the edge devices. The
input to the connectivity tracking mechanism is a uniform resource locator
(URL) and event from the edge devices sent via conventional networking

67

CHAPTER 4. DISCOPAR-KILIMO

facilities (e.g., SocketIO2). The URL contains information that shows the
type of device from which it originates, e.g., ESP32 and the socket event.
Components on mobile devices then use this information to subscribe and
listen to events on the sockets from edge devices.

URL + socket

event

Push all

URLs into

an array

Check device

type from URL

Map all

devices of type

“edge device”

into a list

Output list

Count all

devices of type

“edge device”

Output number of

connected devices

Figure 4.13: Flow chart for tracking the number of connected edge devices.
The input to the flow chart is an event with details for the type of edge
devices.

DisCoPar-Kilimo implements a concrete ConnectedDevices component
for tracking the connected devices as illustrated by Figure 4.14. The com-
ponent subscribes to the socket event mentioned previously and sends
the information it receives on connected devices to the DataArrayToTable
component. The role of the DataArrayToTable component is to convert
the received data into a dataset for display as a list using the ListCon-
nectedDevices component. The component also outputs the numerical
count of the connected devices for display using the NumberOfConnected-
Devices component. The numerical count is helpful to give a quick in-
dication of the number of connected devices. The ListConnectedDevices
component is an instance of the existing DisplayInTable component, while
the NumberOfConnectedDevices component is an instance of the existing
DisplaOnScreen component.

The ConnectedDevices component allows developers to track connected
edge devices that we explain in Section 5.2.7.

4.3.6 Accumulating Data from Multiple Edge Devices

Recall from the scenarios in Section 2.2 that multiple edge devices can
be installed to give a better overview of the farm conditions. DisCoPar-

2https://socket.io/

68

4.3. DISCOPAR-KILIMO VISUAL PROGRAMMING
ENVIRONMENT

Figure 4.14: Example application for tracking connected devices. The
application is composed of four mobile components.

Kilimo offers a dedicated component to accumulate data from multiple
edge devices on the phone. Developers can configure this component to
specify the number of devices to accumulate data as shown in Figure 4.15.

Figure 4.15: Configuration window for specifying the number of edge de-
vices accumulating soil moisture in the GatherMoistureReadings compo-
nent. The number of devices is specified as a numerical value.

Figure 4.16 illustrates how the accumulation component works. The
accumulator component receives the number of devices to accumulate data
from and the actual data from the sensing component as input. Each
data received is mapped to the identifier (ID) of the sending device. This
accumulation mechanism outputs a map of device IDs, their payloads,
and a numerical array of the latest values from the edge devices. The
accumulated data can be filtered on the mobile phone to get the specific
payloads for each edge device.

Figure 4.17 shows an example application for accumulating soil mois-
ture from multiple devices. This example accumulates data using the
GatherMoistureReadings component on the mobile phone. The number
of devices to accumulate data is specified as a configuration for the Gath-
erMoistureReadings component as shown in Figure 4.15. The configured
number of devices must be met before the data accumulation. The Gath-
erMoistureReadings component accumulates the data internally. Then,
it sends a map of device IDs, their payloads, and an array of numeri-
cal values on its output ports to the subsequent components. The aver-

69

CHAPTER 4. DISCOPAR-KILIMO

Accumulator

component

device 1, payload

.

.

.

device m, payload m

Devices IDs and

payloads plus array

of latest values

Number of devices

to receive data from

Map for m devices

and payload

Edge device

Figure 4.16: Flow chart for accumulating data from multiple edge devices.
The input to the process is a message from each edge device.

age for the accumulated readings is computed using the ComputeAverage
component using the data it receives from the GatherMoistureReadings
component. The ComputeMaximum and ComputeMinimum components
determine the maximum and minimum values of the accumulated data,
respectively.

Figure 4.17: Flow-graph for an example application for accumulating soil
moisture data. The application is composed of one edge component and
several mobile components.

DisCoPar-Kilimo incorporates two components for filtering data from
the edge devices, i.e., the UnWrap and UnWrapForSpecificDevice compo-
nents. Previously, we have explained how the UnWrap component filters
data from edge devices to get the general payload in Section 4.3.4.3. The
UnWrap component filters the payload for all messages from the edge

70

4.4. DEVELOPING AND DEPLOYING APPLICATIONS BY
EXAMPLE

devices. Therefore, it cannot serve in the context of accumulating data
from multiple edge devices, and the payload for each edge device needs
to be filtered. In this example, we use and explain how the UnWrapFor-
SpecificDevice component filters data for specific edge devices. For the
filtering to happen, the identity of the specific device has to be specified
by the developer in the configuration of the component as illustrated by
Figure 4.18. Multiple UnWrapForSpecificDevice components can be used
depending on the number of edge devices considered for filtering. In such
a case, each UnWrapForSpecificDevice component is used to filter data for
one edge device.

Figure 4.18: Window for configuring the UnWrapForSpecificDevice com-
ponent to specify the edge device for which to filter data.

4.4 Developing and Deploying Applications by
Example

We now detail how to design and deploy an application in DisCoPar-
Kilimo. Figure 4.19 illustrates the different stages of creating an applica-
tion in DisCoPar-Kilimo. Recall that DisCoPar-Kilimo’s VPE is hosted on
a server. Hence, it can be accessed on a web interface. Therefore, every-
thing begins by accessing the installed and running instance of DisCoPar-
Kilimo on a browser and clicking on the part labelled 1 (platform) in
Figure 4.19a to access the platform. A new application can be created in
the platform by clicking the part labelled 2 in Figure 4.19b and specifying
the general application details in the fields shown in Figure 4.19c. Lastly,
the application is created by clicking the “Create Application” button.
After creating the application, one can access the application builder in-
terface by clicking the button labelled ‘4’ in Figure 4.19d. The application
builder interface (shown in Figure 4.19e) allows dragging, dropping and
connecting components on the VPE to compose application flow graphs.
Figure 4.19e depicts a sample application graph that we explain in the

71

CHAPTER 4. DISCOPAR-KILIMO

following subsection.

1

(a)

2

(b)

3

(c)

4

(d)

5

(e)

Figure 4.19: Steps for creating an application in DisCoPar-Kilimo. (a) Ac-
cessing DisCoPar-Kilimo platform, (b) Creating an application, (c) Spec-
ifying general application details, (d) Accessing the application builder
VPE and (e) Complete application flow-graph on the VPE.

4.4.1 Example application

To illustrate how to build and deploy applications in DisCoPar-Kilimo,
consider an application that measures and monitors soil moisture levels in
the farm as explained in the driver smart agriculture scenarios in Chap-
ter 2. The application accumulates the readings from several devices and

72

4.4. DEVELOPING AND DEPLOYING APPLICATIONS BY
EXAMPLE

computes the average on the mobile client. The moisture levels are read
using a soil moisture sensor attached via serial connection to an edge de-
vice, e.g., M5StickC device, as shown in Figure 4.20.

Edge devices

Soil moisture sensor

Figure 4.20: Deployed edge devices for a DisCoPar-Kilimo application for
monitoring soil moisture.

When the readings are received on the mobile phone, the application
displays the soil moisture values on the screen. The above application has
four functional requirements:

1. Read soil moisture levels.

2. Accumulate the soil moisture readings on the mobile phone.

3. Compute the average soil moisture on the mobile phone.

4. Display the average soil moisture on a mobile phone.

Computationally, the application executes on two scopes: the edge
scope and the mobile scope. The flow graph for this application is repre-
sented in the visual programming environment as shown in Figure 4.21.

73

CHAPTER 4. DISCOPAR-KILIMO

Figure 4.21: Example flow-graph of an application for monitoring soil
moisture in DisCoPar-Kilimo. The application is composed of one edge
component and four mobile components.

This application reads the soil moisture using the ReadSoilMoisture
component and accumulates the readings on the mobile phone using the
GatherMoistureReadings component. The application computes the aver-
age soil moisture using the ComputeMoistureAverage component. Lastly,
the application displays the average soil moisture on the mobile phone
using the DisplayMoisture component. The SetDecimalPlaces component
is used to specify the number of decimal places for the soil moisture values
displayed on the mobile phone.

4.4.2 Deploying the example application

Now that we have the composed application flow graph, we need to deploy
it to the mobile phone and the edge device with the soil moisture sensor
attached. First, executing the flow graph on the mobile phone requires
the base and application graphs. The base application for the mobile is
built, exported in JavaScript format, and bundled with the client appli-
cation. The base application contains the infrastructure and machinery
for all DisCoPar-Kilimo components. The mobile application is exported
in JSON format and packaged using Cordova3 for the target device, e.g.,
an Android device. Second, executing the flow graph on edge devices
requires the edge graph. The edge graph contains the calls to functions
invoked when the edge components execute. Both base applications can
be provided via web link(s) where they can be downloaded. The applica-
tion graphs can be downloaded from the canvas as shown by Figure 4.22.
Deployment details are explained in Chapter 5.

3https://cordova.apache.org/

74

4.5. EXTENSIONS TO DISCOPAR

Figure 4.22: Exporting the mobile and edge application flow graphs in
DisCoPar-Kilimo.

4.5 Extensions to DisCoPar

As previously mentioned in Section 4.2, DiscoPar-Kilimo builds on Dis-
CoPar. In this section, we detail how DisCoPar-Kilimo extends DisCoPar
as follows.

New execution scope: DisCoPar-Kilimo extends the architecture of Dis-
CoPar with a new execution scope. The new scope hosts components
that support computation at the edge and environment sensing. As
a result, DisCoPar-Kilimo features infrastructure for extracting the
edge graph from an entire application graph and deploying and ex-
ecuting it at the edge devices.

Policies to handle partial failures: DisCoPar-Kilimo introduces different
policies to address partial failures geared to smart agriculture appli-
cations. This entailed extending the existing DisCoPar policies for
handling partial failures on mobile devices and adding new ones for
edge devices.

Tracking connected edge devices: An essential aspect of handling partial
failures is knowing when devices go online and offline. In this regard,
DisCoPar-Kilimo introduces a mechanism and component for track-
ing connected devices. This is important to provide information on
devices requiring repair and maintenance.

Accumulating data from edge devices: DisCoPar-Kilimo provides an accu-
mulator component for accumulating data from several edge devices
on the mobile device. Remember from Section 2.2 that several edge
devices can be deployed in large farms.

Coordination with the edge: DisCoPar-Kilimo introduces a coordination

75

CHAPTER 4. DISCOPAR-KILIMO

mechanism to allow edge components to communicate directly with
the mobile components. Hence, it introduces the infrastructure that
transparently provides coordination to application developers.

4.6 Conclusion

In this chapter, we introduce our approach for a low-code development
environment to simplify the development of SAAs. We design and incor-
porate components in a concept LCDE, DisCoPar-Kilimo, that supports
(1) dedicated environment sensing, (2) computation at the edge, (3) coor-
dination with the edge and lastly, (4) handling partial failures. Computa-
tion at the edge is essential for microcontrollers to process data near the
source before sending it to mobile devices. Keeping data at the edge is
essential to avoid losing it when the network connection becomes unavail-
able. Lastly, support for coordination with the edge is essential to enable
edge devices to communicate directly with the components on a mobile
device without going through a centralised server. The above features
have been designed to simplify the development of SAAs.

The features are implemented into DisCoPar-Kilimo’s architectural
model, which has four execution scopes: the edge, mobile, server, and web
scopes. Each category hosts components that can be used to construct
smart agriculture applications. In the next chapter, we present and discuss
the implementation of DisCoPar-Kilimo.

76

Chapter 5

DisCoPar-Kilimo
Implementation

In the previous chapter, we introduced DisCoPar-Kilimo, the low-code
development environment presented in this dissertation. This chapter
aims to describe the implementation of DisCoPar-Kilimo to make it repro-
ducible. In particular, the chapter focuses on the implementation details
of each feature that DisCoPar-Kilimo devised to satisfy the properties
identified in Chapter 2. Lastly, the chapter discusses the design choices
adopted and challenges faced during the implementation.

5.1 Basic Building Blocks

DisCoPar-Kilimo is built on DisCoPar (cfr. Chapter 3). DisCoPar is
implemented using Node.js1 and JavaScript. This section outlines the
internal details of DisCoPar to explain the implementations of our contri-
butions.

5.1.1 Application Graphs

Recall from Section 3.2 that in DisCoPar, applications are directed acyclic
graphs composed of connected components. For execution, the application
flow graph (network of dependent computations) is represented as a JSON
file (see Appendix A). The JSON file stores the application graph in a

1https://nodejs.org/en/

77

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

text format for transporting data. Therefore, the JSON file represents the
application graph as an object. Components and their connections are
nested objects of the application graph object. Each nested component
object denotes a node in the application graph. Similarly, each nested
connection object denotes a link in the application graph. The connection
objects show the source output ports and the destination input ports,
channels through which data can flow from one component to another.
The component object contains the state and scope of the node.

5.1.2 Executing Application Graphs

The JSON file representing the application graph is loaded onto the ex-
ecution engine of DisCoPar for execution. Execution is accomplished by
initialising the components, loading their source code from the compo-
nent layer, and establishing the real-time data streams between the newly
created processes. Due to DisCoPar’s reactive flow-based nature, each
component process activates automatically based on data availability in
its incoming data streams. State changes are automatically and efficiently
propagated across the application flow graph by the underlying execution
engine.

5.1.3 Basic Application Example

To explain the basic building blocks in DisCoPar, let’s consider a simple
application consisting of a component that transmits data received on its
input port and sends a message to an upstream component each time it
receives data. Figure 5.1 illustrates the TransmitData component in use.

Figure 5.1: Simple application showing a component named TransmitData
that transmits data received on its output port.

In the example above, the TransmitData component receives sound
pressure measurements from the SoundPressureLevel component and sends

78

5.1. BASIC BUILDING BLOCKS

them on its output port to the DisplayOnScreen component. The Trans-
mitData component then sends back an acknowledgement message to the
SoundPressureLevel component for each measurement received.

5.1.4 Implementing Components in DisCoPar

Conventionally, DisCoPar components are implemented using JavaScript
classes before making them available as visual blocks. Therefore, List-
ing 5.1 illustrates the conventional implementation of the TransmitData
component in Figure 5.1. The component is called TransmitData and ex-
tends the Component class generated by DisCoPar. The Component class
provides the blueprint for components.
1 class TransmitData extends Component {
2 constructor() {
3 super();
4 this.description = "Transmit data received on its output port";
5 this.icon = "fas fa-code-branch";
6 this.scope = Globals.Scope.Mobile;
7 }
8 initialise() {
9 this.inPorts.add("in", {type: Globals.DataType.ALL});

10 this.outPorts.add("out", {type: Globals.DataType.ALL});
11 }
12 execute(component) {
13 component.inPorts.in.on("data", (input, connection) => {
14 component.outPorts.out.send(input);
15 connection.acknowledge(input)
16 });
17 }
18 }

Listing 5.1: Implementation of the basic building block of applications
in DisCoPar.

Each component in DisCoPar has a name picked by the end user, which
is expected to describe the computation task it performs. DisCoPar uses
the component name for a JavaScript class representing the component
and is stored in the component palette of DisCoPar. Internally, each
component has three main parts that include the constructor method,
initialise method and lastly, the execute method.

Constructor method: The constructor is a unique method for creating
an instance of the component and initialising the default state. The
default state of a component includes (1) the description of the com-
ponent given by the user in the canvas, (2) the component icon to
display on the canvas and (3) the execution scope of the component.

Initialise method: Recall from Section 3.2.1.3 that components have in-
put and output ports to exchange data and messages. Component

79

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

ports are specified within the initialise() method (lines 9 and 10
of Listing 5.1) using the add() method. The add() method takes
the component’s name and its type as arguments. In this example,
the ports are named “in” and “out” respectively. Remember from
Section 3.2.1.4 that the component port type specifies the kind of
data the port accepts (for input ports) or emits (for output ports).
The port type is specified using a JavaScript object {type: Glob-
als.DataType.«speficic data type»}. Both ports in Listing 5.1 are
of type ALL, which represents the Any type. Lastly, the initialise
method is used to specify the concrete state of a component, which
can be given by “configure”. In this case, no state is passed.

Execute method: DisCoPar asks a component to perform some compu-
tation using the execute() method. The method receives as input
an object containing meta-data about the component and a func-
tion containing instructions on performing the intended computa-
tion. The method adds a listener for events on the input port. Line
13 of Listing 5.1 listens for events on the input port of the com-
ponent using the on() method. When data arrives on the input
port, callback (input, connection) is applied. The callback receives
as arguments (1) a channel to receive data and send it to the next
downstream component and (2) an optional channel to send back ac-
knowledgement messages to upstream components e.g., confirmatory
messages when data is saved into a database successfully. In this ex-
ample callback, input is a channel to receive data and send it to the
next downstream component while connection is the channel to send
back acknowledgement messages to upstream components. In List-
ing 5.1, lines 13 – 16 of the component simply forward to its output
port the data received on its input port. DisCoPar uses web sockets
(i.e., Socket-IO2) for communication via component ports. In this
example, the component listens on its input port for incoming data
as the payload. Line 14 sends the data received on the input port to
the output port using the send() method. Line 15 emits an acknowl-
edgement event to upstream components. Lastly, component output
ports emit events to which the input ports of connected components
can subscribe. In this example, the TransmitData subscribes and
listens to a “data” event emitted by the upstream component on

2https://socket.io/

80

5.2. DISCOPAR-KILIMO

line 13.

In DisCoPar, there are two kinds of components: (1) components that
perform computational tasks and (2) that visualise and display the results
of the computational tasks. The components that visualise and display
computation can be used to build graphical user interfaces (GUIs) for
applications. Each component has a unique identifier generated when the
component is published to a component library in the canvas.

5.1.5 Distributed Connections

As mentioned in Chapter 3, components can belong to three different
scopes as shown in Listing 5.2, i.e., server, mobile and web scope.
1 Globals.Scope = {
2 Server: new ComponentScope.Server(),
3 Mobile: new ComponentScope.Mobile(),
4 Web: new ComponentScope.Web(),
5 };

Listing 5.2: Component execution scopes in DisCoPar. It features the
server, mobile and web component execution scopes.

Connecting the output ports of mobile components to the input ports
of server or web components creates a distributed connection. Distributed
connections are implemented using Socket.IO. The Socket.IO library in-
cludes additional features, such as auto-reconnection after network con-
nectivity has been restored and network disconnection detection. The
library provides server-side and client-side components with similar APIs
such that both the client and the server can emit events and subscribe to
events in a publish–subscribe manner.

5.2 DisCoPar-Kilimo

In this section, we explain in detail the implementation of the DisCoPar-
Kilimo extensions. We focus our explanations on the features DisCoPar-
Kilimo offers to support the properties for smart agriculture applications
identified in Chapter 2.

5.2.1 Computation at the Edge

As explained in Section 4.2, DisCoPar-Kilimo introduces components that
can run computations at the edge. Those components form the edge scope.

81

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

To provide a new scope, two changes were added to DisCoPar. First, a
new class was added for the edge scope as shown in Listing 5.3.
1 class Edge extends Client {
2 constructor() {
3 super();
4 }
5 }

Listing 5.3: Defining the edge scope. The edge scope is defined as a
class that extends the Client class.

The new class is modelled as a subclass of the Client class since the
components that execute at the edge scope eventually communicate with
the DisCoPar-Kilimo server. The Client class provides the functionality
to specify where components can be deployed. Second, as shown in List-
ing 5.4, the new edge scope needs to be published in the global object to
make it appear as a category on the component menu in the visual pro-
gramming environment of DisCoPar-Kilimo. Publishing the new scope
globally allows it to specify component categories while defining compo-
nents that will eventually be hosted on it. Hence, all components that
execute at the edge are hosted within this scope.
1 Globals.Scope = {
2 Server: new ComponentScope.Server(),
3 Mobile: new ComponentScope.Mobile(),
4 Web: new ComponentScope.Web(),
5 Edge: new ComponentScope.Edge(),
6 };

Listing 5.4: Adding the edge scope to the global object. This allows it
to be globally accessible in DisCoPar-Kilimo.

5.2.1.1 Runtime Environment at the Edge

At the edge, we use Arduino3 and Duktape4 to support executing the
parts of an application graph portion running on edge devices, e.g., mi-
crocontrollers. We refer to this application running on edge devices as
the ‘edge application’. The edge application consists of a base application
implemented in C/C++/Arduino and a JavaScript application generated
from the edge components connected in the DisCoPar-Kilimo visual pro-
gramming environment. We use Duktape to run JavaScript applications
on microcontrollers, e.g., the ESP32 family. Duktape is a lightweight

3https://www.arduino.cc/en/software
4https://duktape.org/

82

5.2. DISCOPAR-KILIMO

JavaScript engine that can run on microcontrollers. The engine allows
JavaScript programs to call functions implemented in C/C++. This en-
ables deploying and executing JavaScript code on the edge devices which
interact with sensors and peripheral devices using Arduino.

We now describe the key ideas about implementing the built-in edge
components. The edge components fall into three main categories: (1)
environment sensing components, (2) edge computation components and
(3) offline accessibility components to handle partial failures.

5.2.2 Environment Sensing

DisCoPar-Kilimo provides three built-in sensing components named Read-
SoilMoisture, ReadTemperature and ReadHumidity components to read
soil moisture, air temperature and humidity, respectively. All the sensing
components at the edge have no input ports – they have only the output
port(s). They are source components in the application graphs that can
be used to produce sensor data.

Listing 5.5 shows the implementation of the ReadSoilMoisture compo-
nent. Its scope is as defined in line 6. The component has one output
port named ‘out’ and emits data of type “EDGE”. The “EDGE” data
type refers to data coming from edge devices in JSON format.
1 class ReadSoilMoisture extends Component {
2 constructor() {
3 super();
4 this.description = ’Reads soil moisture at the edge.’;
5 this.icon = ’fas fa-tint’;
6 this.scope = Globals.Scope.Edge;
7 }
8 initialise(graph) {
9 this.outPorts.add(’out’, {type: Globals.DataType.EDGE});

10 }
11 }

Listing 5.5: Implementation of the component for reading soil moisture
at the edge.

5.2.2.1 Executing edge components

Recall from Chapter 4 that DisCoPar-Kilimo incorporates companion and
friend functions. Therefore, the edge components do not define an execute
method as other regular components. Instead, each edge component has
a companion function invoked to perform the component’s task at the
edge. Remember from Section 5.1 that an application is represented as a

83

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

JSON file. The JSON file is processed to extract the companion function
calls representing the edge application and executed at the edge devices.
Companion functions that require interaction with the hardware, in turn,
call friend functions.

Listing 5.6 shows the function calls for the application example in
Section 4.3.1 (Figure 4.3). The code defines a discoparKilimoLoop that
creates a variable that calls the ReadSoilMoisture companion function in
line 2. The discoparKilimoLoop function is the entry point for all exe-
cutions at the edge devices. In this code example, the variable assigned
the call to the ReadSoilMoisture companion function is passed as an ar-
gument to the SendData function. The discoparKilimoLoop is executed
within the Arduino loop in the edge devices. The SendData is a special
function defined to send data to the network as shown by Listing 5.7. The
function takes the connection between the edge and mobile component as
an argument and the data to send over the network. When executed, it
invokes its friend function, the sendDataToNetwork in line 6.
1 function discoparKilimoLoop(){
2 var _92e4f2d1cc5b465bac81b93a3690f37a = ReadSoilMoisture();
3 SendData("data:92e4f2d1-cc5b-465b-ac81-b93a3690f37a_out_0eecc2b0-c0ec-49ac-d273-17e6a55e5677_in",

_92e4f2d1cc5b465bac81b93a3690f37a);
4 }

Listing 5.6: Example exported edge graph showing function calls. This
example calls the ReadSoilMoisture companion function and passes its
computation results to the SendData function.

1 function SendData(conn, payload) {
2 var send_to_network = "";
3 send_to_network += conn;
4 send_to_network += "#";
5 send_to_network += payload;
6 sendDataToNetwork(send_to_network);
7 }

Listing 5.7: Implementation of the edge function to interact with the
network. The function calls a low-level function sendDataToNetwork.

Example: In the application shown in Figure 4.3 (Chapter 4), the Read-
SoilMoisture companion function shown in Listing 5.8 is invoked to sense
soil moisture. In this example, the companion function requires inter-
action with the hardware to read soil moisture levels. Therefore, the
companion function further invokes the friend function, readSoilMoisture-
FromSensor(), in line 2 of Listing 5.8.

84

5.2. DISCOPAR-KILIMO

1 function ReadSoilMoisture() {
2 var soilM = readSoilMoistureFromSensor();
3 return soilM;
4 }

Listing 5.8: Implementation of the companion function of the
ReadSoilMoisture component. The function assumes the same name
as the component.

The friend functions are low-level functions implemented in C/C++
that interact directly with the hardware. They perform low-level opera-
tions, such as reading values using a sensor and returning those values to
the calling companion function. The readSoilMoistureFromSensor friend
function to the ReadSoilMoisture companion function is shown in List-
ing 5.9. The function reads soil moisture in line 6, adds it into an array
and computes the average of several measurements in line 9. The number
of measurements pushed into the array is specified as the array size in line
2. The average handles erroneous sensor readings [GTTSBR+19]. In line
10, the average soil moisture is spread over a 0 – 100 range. The spread
helps limit the soil moisture values within the 0 – 100 range. The soil
moisture readings are then pushed to the Duktape stack in line 11.
1 static duk_ret_t native_readSoilMoistureFromSensor(duk_context *ctx) {
2 float sm_array[WINDOW_SIZE];
3 float sum = 0.0;
4 int i;
5 for (i = 0; i < (sizeof(sm_array)/sizeof(sm_array[0])); i++) {
6 sm_array[i] = analogRead(33);
7 sum = sum + sm_array[i];
8 }
9 float avg_sm = (float)sum/(sizeof(sm_array)/sizeof(sm_array[0]));

10 avg_sm = map(avg_sm, 4095, 0, 0.00, 100);
11 duk_push_number(ctx, avg_sm);
12 memset(sm_array, 0, sizeof(sm_array));
13 return 1; /* one return value */
14 }

Listing 5.9: Implementation of the friend function of the
ReadSoilMoisture companion function.

The rest of the sensing components, such as the ReadTemperature and
ReadHumidity components, follow a similar implementation strategy to
the ReadSoilMoisture component. Appendix B lists all the implemented
companion functions.

5.2.3 Components for Computation at the Edge

To support computation using sensing data at the edge, DisCoPar-Kilimo
implements several components that can be used to perform arithmetic op-

85

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

erations, e.g., addition, subtraction, multiplication and division. To illus-
trate the implementation of those components, let us consider computing
temperature differences (∆T = T2 − T1). This computation requires the
current temperature (T2) at time t and previous temperatures (T1) at time
t− 1, where t is a logical time. Therefore, DisCoPar-Kilimo implemented
a PreviousValue component shown in Listing 5.10. The component has
one input port and one output port. This component can be connected to
a ReadTemperature component to get the previous temperature reading
value at t−1. The temperature change is computed using the Subtraction
component shown in Listing 5.11. The component has two input ports
and one output port.
1 class PreviousValue extends Component {
2 /* more code */
3 initialise(graph) {
4 this.inPorts.add(’in’, {type: Globals.DataType.EDGE});
5 this.outPorts.add(’out’, {type: Globals.DataType.EDGE});
6 }
7 }

Listing 5.10: Implementation of the component for keeping previous
values.

1 class Subtraction extends Component {
2 /* more code */
3 initialise(graph) {
4 this.inPorts.add(’first’, {type: Globals.DataType.EDGE});
5 this.inPorts.add(’second’, {type: Globals.DataType.EDGE});
6 this.outPorts.add(’out’, {type: Globals.DataType.EDGE});
7 }
8 }

Listing 5.11: Implementation of the Subtraction component that finds
the difference between two numerical values.

Recall that the edge components do not provide the execute method
because their companion and friend functions are invoked on the edge
devices instead. Listing 5.12 shows the companion function of the Previ-
ousValue component. The edge flow graph implements the temperature
difference using the Subtraction arithmetic operator components. The
Subtract companion function receives two input values and computes the
difference in line 2 of Listing 5.13.

5.2.4 Handling Partial Failures on the Mobile Scope

DisCoPar-Kilimo introduces more policies for handling partial failures
and implements them into concrete components. In addition, DisCoPar-
Kilimo implements policies for the application flow graph to ensure that

86

5.2. DISCOPAR-KILIMO

1 var preValue = null;
2 function PreviousValue(current){
3 var temp = preValue;
4 preValue = current;
5 return temp;
6 }

Listing 5.12: Implementation of the companion function of the
PreviousValue component.

1 function Subtract(a, b){
2 return a - b;
3 }

Listing 5.13: Implementation of the companion function of the
Subtraction edge component.

offline accessibility components cannot be connected successively or to
another downstream mobile component. DisCoPar-Kilimo proposes and
implements the OfflineComponent blueprint to generalise handling partial
failures. Therefore, each offline accessibility component extends the Of-
flineComponent class (Listing 5.14). The OfflineComponent class defines
the “$type” property with a value “Offline” that can be used as a flag to
validate application graphs as we explain later in Section 5.2.5.
1 class OfflineComponent extends Component {
2 constructor() {
3 this.$type = "Offline";
4 }
5 }

Listing 5.14: Implementation of the blue-print for the offline
accessibility components.

5.2.4.1 Mobile Components for Handling Partial Failures

As mentioned previously in Section 4.3.4, DisCoPar-Kilimo proposes dif-
ferent offline accessibility policies. Each of the policies is implemented
into a concrete component that we describe below.

Record-based offline accessibility component: Listing 5.15 shows
the implementation of the record-based offline accessibility component.
The number of records to keep is specified as a component configuration
in line 12. The component defines a flag (i.e., «this.isConnected») that

87

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

it initially sets to true in line 7 and uses it to determine when to store
data in a buffer. The buffer to store data records is defined in line 6.
On disconnection (line 29), the component sets the «this.isConnected»
flag to false in line 30. This makes the component execute lines 21 – 28,
checking whether the buffer is full in line 23, removing some records from
the buffer if it’s full in line 24, and pushing data to the buffer in line 26.
On reconnection (line 32), all records stored in the buffer are sent in bulk
in line 33, the buffer is cleared in line 34, and «this.isConnected» flag is
set to true in line 35.

1 class RecordPolicyBuffering extends OfflineComponent {
2 constructor() {
3 super();
4 this.scope = Globals.Scope.Mobile;
5 this.$type = "Offline";
6 this.buffer = [];
7 this.isConnected = true;
8 }
9 initialise(graph) {

10 this.inPorts.add("in", {type: Globals.DataType.OBSERVATION});
11 this.outPorts.add("out", {type: Globals.DataType.OBSERVATION});
12 this.settings.add("records_to_keep", 5, {
13 type: Globals.SettingType.Numerical
14 });
15 }
16 execute(component) {
17 const {settings: {records_to_keep},} = component;
18 component.inPorts.in.on(’data’, (data, connection) => {
19 if(this.isConnected){
20 component.outPorts.out.send(data);
21 } else {
22 let required_records = records_to_keep.value();
23 if (this.buffer.length > records_to_keep.value()) {
24 this.buffer.splice(0, this.buffer.length - required_records);
25 }
26 this.buffer.push(data);
27 }
28 });
29 component.outPorts.out.on("disconnect", () => {
30 this.isConnected = false;
31 });
32 component.outPorts.out.on("reconnect", () => {
33 component.outPorts.out.sendBulk(this.buffer);
34 this.buffer.splice(0, this.buffer.length);
35 this.isConnected = true;
36 });
37 }
38 }

Listing 5.15: Implementation of the record-based offline accessibility
component.

Memory-based offline accessibility component: Listing 5.16 shows
the implementation of the memory-based offline accessibility component.
In line 12, the application designer can specify the maximum memory size

88

5.2. DISCOPAR-KILIMO

configured for data storage. The component defines a buffer to store data
records in line 6. Also, the component defines «this.isConnected» flag
in line 7 and uses it to determine in line 21 whether to send data when
there is a connection in line 22 or store data in a buffer when there is a
disconnection in lines 27.

1 class BytePolicyBuffering extends OfflineComponent {
2 constructor() {
3 super();
4 this.scope = Globals.Scope.Mobile;
5 this.$type = "Offline";
6 this.buffer = [];
7 this.isConnected = true;
8 }
9 initialise(graph) {

10 this.inPorts.add("in", {type: Globals.DataType.OBSERVATION});
11 this.outPorts.add("out", {type: Globals.DataType.OBSERVATION});
12 this.settings.add("max_memory_size", 4000, {
13 type: Globals.SettingType.Numerical
14 });
15 }
16 execute(component) {
17 const {settings: {max_memory_size},} = component;
18 let available_memory = memory_size_units(max_memory_size.value());
19 let used_memory = memory_size_units(calc_buffer_size(this.buffer));
20 component.inPorts.in.on("data", (data, connection) => {
21 if(this.isConnected){
22 component.outPorts.out.send(data);
23 } else {
24 if (used_memory > available_memory) {
25 this.buffer.splice(0, this.buffer.length);
26 }
27 this.buffer.push(data);
28 }
29 });
30 component.outPorts.out.on("disconnect", () => {
31 this.isConnected = false;
32 });
33 component.outPorts.out.on("reconnect", () => {
34 component.outPorts.out.sendBulk(this.buffer);
35 this.buffer.splice(0, this.buffer.length);
36 this.isConnected = true;
37 });
38
39 function calc_buffer_size(input) { ... }
40 function memory_size_units(input) { ... }
41 }
42 }

Listing 5.16: Implementation of the memory-based offline accessibility
component.

Before storing data records in the buffer, the component checks the
available memory in line 24 and removes data from the buffer in line 25 if
the allocated memory is full. On disconnection (line 30), the component
sets «this.isConnected» flag to false in line 31. Setting the flag to false
prompts the execution to jump to line 23. On reconnection (line 33), all
data records in the buffer are sent in bulk in line 34, the buffer is cleared

89

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

in line 35, and «this.isConnected» flag is set to true in line 36. Setting the
flag to true prompts the execution to jump to line 21.

Time-based offline accessibility component: Listing 5.17 shows the
implementation of the time-based offline accessibility component. The
lease window in minutes to keep the data is specified as a component
configuration in line 13. The component defines a time interval in line 6
that starts to count when a disconnection occurs in line 28, a buffer in
line 7 and «this.isConnected» flag in line 8. The time counter is global
and applies to all incoming data.

1 class TimePolicyBuffering extends OfflineComponent {
2 constructor() {
3 super();
4 this.scope = Globals.Scope.Mobile;
5 this.$type = "Offline";
6 this.time_interval = null;
7 this.buffer = [];
8 this.isConnected = true;
9 }

10 initialise(graph) {
11 this.inPorts.add("in", {type: Globals.DataType.OBSERVATION});
12 this.outPorts.add("out", {type: Globals.DataType.OBSERVATION});
13 this.settings.add("time_to_keep_data", 1, {
14 type: Globals.SettingType.Numerical
15 });
16 }
17 execute(component) {
18 const {settings: {time_to_keep_data},} = component;
19 component.inPorts.in.on("data", (data, connection) => {
20 if(this.isConnected){
21 component.outPorts.out.send(data);
22 } else {
23 this.buffer.push(data);
24 }
25 });
26 component.outPorts.out.on("disconnect", () => {
27 this.isConnected = false;
28 this.time_interval = setInterval(() => {
29 this.buffer.splice(0, this.buffer.length);
30 }, time_to_keep_data.value()*60000);
31 });
32 component.outPorts.out.on("reconnect", () => {
33 component.outPorts.out.sendBulk(this.buffer);
34 this.buffer.splice(0, this.buffer.length);
35 this.isConnected = true;
36 });
37 }
38 }

Listing 5.17: Implementation of the time-based offline accessibility
component.

When data arrives on the input port in line 19, the component checks
connectivity in line 20. When there is a connection, i.e., the «this.isConnected»
flag is true, the component sends data in line 21, and otherwise, it pushes

90

5.2. DISCOPAR-KILIMO

the data records into a buffer in line 23. As mentioned previously in Sec-
tion 4.3.4, the component assumes an infinite buffer to keep data until
the lease window expires. On disconnection (line 26), the component sets
«this.isConnected» flag to false in line 27, waits for the lease window to
expire and removes data records from the buffer in line 29. On reconnec-
tion (line 32), all stored data records are sent in bulk in line 33, the buffer
is cleared in line 34, and «this.isConnected» flag is set to true in line 35
to prompt the execution to jump to line 21.

Hybrid-based offline accessibility component: Listing 5.18 shows
the implementation of the hybrid-based offline accessibility component.
The number of data records and lease window to keep them in a buffer are
specified as the component configuration in lines 13 and 16, respectively.
The component defines a timer in line 6 activated when a disconnection
happens. Also, the component defines the «this.isConnected» flag in line
8 to determine when to send or store data records in lines 24 and 30,
respectively. When the connection is available, i.e., this.isConnected flag
is true, the component sends data in line 25. On disconnection (line 33),
the component sets this.isConnected flag to false in line 34. It then checks
whether the buffer is full in line 36 and, when the lease window expires,
removes data records from the buffer in line 37.

When disconnected, if data arrives on its input port, the component
checks if the buffer is full in line 27 and removes old data records, leaving
only the most recent data records in the buffer in line 28. Otherwise,
it stores the data arriving at its input port in the buffer in line 30. On
reconnection (line 41), the stored data is sent on the output port in bulk
in line 42, the buffer is cleared in line 43 and this.connected flag is set to
false. Setting the this.connected flag to false prompts the execution of the
component to jump to line 24.

5.2.5 Validating Flow-Graphs to Handle Partial Failures

Recall from Section 5.2.4 that the blueprint for the offline accessibility
components provides a $type property assigned with a value “Offline”. We
use the $type property and the component scope to validate each connec-
tion to a downstream component in application flow graphs. When con-
necting offline accessibility components to others successively, DisCoPar-
Kilimo checks if the downstream component has either the $type property

91

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

1 class HybridPolicyBuffering extends OfflineComponent {
2 constructor() {
3 super();
4 this.scope = Globals.Scope.Mobile;
5 this.$type = "Offline";
6 this.time_interval = null;
7 this.buffer = [];
8 this.isConnected = true;
9 }

10 initialise(graph) {
11 this.inPorts.add("in", {type: Globals.DataType.OBSERVATION});
12 this.outPorts.add("out", {type: Globals.DataType.OBSERVATION});
13 this.settings.add("records_to_keep", 5, {
14 type: Globals.SettingType.Numerical
15 });
16 this.settings.add("time_to_keep_data", 30, {
17 type: Globals.SettingType.Numerical
18 });
19 }
20 execute(component) {
21 const {settings: {records_to_keep, time_to_keep_data},} = component;
22 let required_records = records_to_keep.value();
23 component.inPorts.in.on("data", (data, connection) => {
24 if (this.isConnected){
25 component.outPorts.out.send(data);
26 } else {
27 if (this.buffer.length > records_to_keep.value()) {
28 this.buffer.splice(0, this.buffer.length - required_records);
29 }
30 this.buffer.push(data);
31 }
32 });
33 component.outPorts.out.on("disconnect", () => {
34 this.isConnected = false;
35 this.time_interval = setInterval(() => {
36 if (this.buffer.length > records_to_keep.value()) {
37 this.buffer.splice(0, this.buffer.length);
38 }
39 }, time_to_keep_data.value()*60000);
40 });
41 component.outPorts.out.on("reconnect", () => {
42 component.outPorts.out.sendBulk(this.buffer);
43 this.buffer.splice(0, this.buffer.length);
44 this.isConnected = true;
45 });
46 }
47 }

Listing 5.18: Implementation of the hybrid offline accessibility
component.

92

5.2. DISCOPAR-KILIMO

with an “Offline” value or the Mobile scope. The connection is auto-
matically dropped if the downstream component has either. These checks
stop application designers from creating incorrect application flow graphs.
The implementation of the above validation checks is summarised in List-
ing 5.19 and Listing 5.20.

Connecting offline accessibility components to mobile components suc-
cessively is not permitted either, as shown in lines 4 – 9 in Listing 5.19.
The code snippet checks if the source and the target components being
connected successively have the $type property with a value “Offline” and
belong to the “Mobile” scope. The connection is dropped if the code
evaluates to true when composing the application flow graphs.

1 drawConnection(connection) {
2 let outPortID = this._getOutPortUuid(connection.outPort);
3 let inPortID = this._getInPortUuid(connection.inPort);
4 if((connection.sourceComponent.graph ===
5 connection.targetComponent.graph &&
6 connection.sourceComponent.$type === "Offline") ||
7 (connection.sourceComponent.$type === "Offline" &&
8 connection.targetComponent.scope === "Mobile")) {
9 return undefined;

10 } else {
11 this._drawConnectionBetweenEndpoints(connection, outPortID, inPortID);
12 }
13 }

Listing 5.19: Implementaion of the validation to drop connections
between successive offline accessibility components.

Lines 6 – 15 of Listing 5.20 generate an error message to alert the
developer of incorrect component connections. This validation ensures
that an offline accessibility component can only be the last to connect to
the server side in a flow graph. Therefore, successive offline accessibil-
ity components cannot be connected. The validation happens live while
composing applications in the visual programming environment.

5.2.6 Handling Partial Failures at the Edge

DisCoPar-Kilimo implements two components to handle partial failures
at the edge, i.e., BufferOnDisk and BufferData components. The Buffer-
Data component follows a similar approach to the memory-based offline
accessibility component explained in Section 5.2.4.1 to store data records
in a buffer in memory. In what follows, we explain the implementation of
the BufferOnDisk component.

93

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

1 var GraphValidationFunctions = {
2 /*more code*/
3 NoConnectedOfflineComponents: (graph) => {
4 let msg = [];
5 for (let connectionID in graph.connections) {
6 let connection = graph.connections[connectionID];
7 if (connection.sourceComponent.$type === "Offline" &&
8 connection.targetComponent.scope ===
9 connection.sourceComponent.scope) {

10 msg.push(new GraphValidationMessage(false,
11 ‘/*error message */‘));
12 }
13 }
14 return msg;
15 }
16 };

Listing 5.20: Implementation for validating flow-graphs that connect
successive offline accessibility components.

5.2.6.1 BufferOnDisk component

Listing 5.21 shows the implementation of the BufferOnDisk edge compo-
nent. The component has one input port and one output port. When the
application graph is executed, the BufferOnDisk companion function is
invoked. Listing 5.22 shows the companion function of the BufferOnDisk
component. The function takes input data to store in memory and calls
the storeOnDisk() friend function in line 2.

1 class BufferOnDisk extends Component {
2 /*more code*/
3 initialise(graph) {
4 this.inPorts.add("in", {type: Globals.DataType.EDGE});
5 this.outPorts.add("out", {type: Globals.DataType.EDGE});
6 }
7 }
8

Listing 5.21: Implementation of the on-disk buffering edge component.

1 function BufferOnDisk(data){
2 var data_to_store = storeOnDisk(data);
3 return data_to_store;
4 }
5

Listing 5.22: Companion edge function for the BufferOnDisk
component.

Listing 5.23 shows the storeOnDisk friend function of the BufferOnDisk

94

5.2. DISCOPAR-KILIMO

companion function. The companion function invokes the friend function
to store data on disk. It defines two counters in line 2 that are used to
keep track of the memory addresses (i.e., aCounter) and the entries in the
Duktape stack (i.e., i). Line 6 fetches data from the stack and keeps it in
an array. Line 8 checks for network connectivity, and if there is a connec-
tion, data is fetched from memory in line 11 and pushed to the Duktape
stack in line 13. The data is written into a disk on lines 16 and 17 when
the network fails. In line 20, data is always pushed to the top of the stack
and returned to the calling companion function.
1 static duk_ret_t native_storeOnDisk(duk_context *ctx) {
2 int aCounter, i;
3 int n = duk_get_top(ctx); /* #args */
4 char* storedData = "no data";
5 for (i = 0; i < n; i++) {
6 storedData = (char*)duk_to_string(ctx, i);
7 }
8 if(socketIO.isConnected()){
9 char* readData = "";

10 for(aCounter = 0; aCounter < EEPROM.length(); aCounter++){
11 readData = (char*)EEPROM.read(aCounter);
12 }
13 duk_push_string(ctx, readData);
14 } else {
15 for(aCounter = 0; aCounter < EEPROM.length(); aCounter++){
16 EEPROM.write(aCounter, duk_get_top(ctx));
17 EEPROM.commit();
18 }
19 }
20 duk_push_string(ctx, storedData);
21 return 1;
22 }

Listing 5.23: Friend function of the on-disk storage companion function.

5.2.7 Tracking Connected Edge Devices

Remember from scenarios three and four in Section 2.2 that more than
one edge device can be installed on a farm. Therefore, the farmer needs
to know when the devices go off by obtaining general information for all
the connected and active devices. This requires the farmer to track all the
installed, connected, and active edge devices. To accomplish this goal of
tracking the connected devices, DisCoPar-Kilimo incorporates a tracking
mechanism for connected edge devices and implements two components,
i.e., the ConnectedDevices and DataArrayToTable components.

5.2.7.1 Mechanism for tracking connected devices

To track connected devices, DisCoPar-Kilimo implements a networking
code that runs on the mobile device (Listing 5.24) as infrastructure for

95

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

monitoring those devices. The networking code uses socket information to
track connected devices. All connected sockets are pushed into an array
in line 11. The networking code keeps a global counter of all connected
devices in line 7. The sockets contain information on the type of con-
nected device, e.g., a phone or an ESP32, as defined by the developer.
In our implementations, the edge devices are flagged with a type “esp32”
property, as shown in line 14. We use the type property to map only the
edge devices and emit the number of connected devices as a “data” event
(line 18). The event is broadcast to all subscribed components (clients).
1 /*more code */
2 let mobileSocket = [];
3 let dServerSocket = ioc.connect("<<DisCoPar-Kilimo server address>>");
4 io.on("connection", (socket) => {
5 let connectedDevices = null;
6 if(socket.connected){
7 connectedDevices = Array.from(io.sockets.sockets).map(socket => (socket[1].handshake.address).

substring(7, (socket[1].handshake.address).length));
8 }
9 /* more code */

10 if(getParam(socket.client.request.url,"device_type") === "phone"){
11 mobileSocket.push(socket);
12 /* more code */
13 }
14 if(getParam(socket.client.request.url,"device_type") === "esp32"){
15 socket.on("discopar_k_event", (data) => {
16 if(mobileSocket && mobileSocket.length){
17 mobileSocket.map((s)=> {
18 s.emit("data", connectedDevices);
19 s.emit(data.connection, {data: data});
20 });
21 }
22 });
23 }
24 });

Listing 5.24: Implementation for tracking connected devices on the
minimalist server.

5.2.7.2 Component for tracking connected devices

On the mobile scope of its architecture, DisCoPar-Kilimo incorporates
and implements the ConnectedDevices component that registers to listen
to the events emitted by the networking code infrastructure (line 9 of
Listing 5.25). The component receives an array of connected devices as
input and sends the array values on its output port in line 11.

5.2.7.3 Component for listing connected edge devices

Listing 5.26 shows the implementation of the DataArrayToTable compo-
nent. The component has one input port (line 8) and two output ports

96

5.2. DISCOPAR-KILIMO

1 class ConnectedDevices extends Component {
2 constructor() {
3 /*more code */
4 }
5 initialise() {
6 this.outPorts.add("out", {type: Globals.DataType.EDGE});
7 }
8 execute(component) {
9 Globals.connDevicesSubject.subscribe({

10 next: (connectedDevices) => {
11 component.outPorts.out.send(connectedDevices.values());
12 }
13 });
14 }
15 }

Listing 5.25: Implementation of the ConnectedDevices component.

(lines 9 and 10). As input, the component receives a list of connected
devices from the ConnectedDevices component. Line 12 specifies the time
interval within which data is sent on the component’s output port. The
received input message is saved into an array in line 22. The array is
processed in lines 25 – 30 to create observations in line 26, update the
counter of connected devices in line 28 and add the observations to the
observations dataset in line 29. The observation data is defined in line
22. The counter for the number of connected devices is defined in line 24.
Line 32 sends data on the component output ports based on the specified
time interval. Lines 34 and 35 send the number of connected devices and
the dataset to the component’s output ports.

5.2.8 Accumulating Data from Multiple Edge Devices

Recall from scenarios three and four in Section 2.2 that farmers can in-
stall multiple edge devices to monitor the farm conditions. This means
that data comes from multiple sources and needs to be accumulated on
the mobile phone. DisCoPar-Kilimo implemented the DeviceAccumula-
tor component that can accumulate data from several edge devices to
accomplish this goal. The application designer can specify the devices
from which to accumulate data by indicating the number of devices as a
component configuration setting.

5.2.8.1 Data accumulation component

Listing 5.27 shows the implementation of the DeviceAccumulator compo-
nent. The component has one input port (line 6) and two output ports

97

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

1 class DataArrayToTable extends Component {
2 constructor() {
3 /* more code */
4 this.interval = null;
5 }
6
7 initialise() {
8 this.inPorts.add("in", {type: Globals.DataType.ALL});
9 this.outPorts.add("number", {type: Globals.DataType.NUMERIC});

10 this.outPorts.add("out", {type: Globals.DataType.DATASET});
11 this.settings.add("fieldName", ‘field${Math.floor(Math.random() * 1000)}‘);
12 this.settings.add("sendDataInterval", 10000, {
13 type: Globals.SettingType.Numerical
14 });
15 }
16
17 execute(component) {
18 const {settings: {sendDataInterval},} = component;
19 component.inPorts.in.on("data", (input, connection) => {
20 clearInterval(this.interval);
21 var observation = null;
22 var observationDataset = new DataSet();
23 var uniqueConnectedDevices = [...new Set(input)];
24 var number_of_devices = 0;
25 uniqueConnectedDevices.forEach((observationItem) => {
26 observation = new Observation(component.graph.context,
27 {[component.settings.fieldName.value()]: observationItem});
28 number_of_devices += 1;
29 observationDataset.addObservation(observation);
30 });
31 let send_data = sendDataInterval.value();
32 this.interval = setInterval(sendConnectedDevices, send_data);
33 function sendConnectedDevices() {
34 component.outPorts.number.send(number_of_devices);
35 component.outPorts.out.send(observationDataset);
36 }
37 });
38 }
39 }

Listing 5.26: Implementation of the DataArrayToTable component.

(lines 7 and 8). It defines a map in line 12 and adds data to the map
in line 17. The component uses the device identifier as the key and the
payload as the value to store data on the map. As a configuration setting,
the component takes the number of connected devices from which to ac-
cumulate data in line 9. The number of connected devices corresponds to
the number of measurements that must be accumulated before they are
sent to the output port in line 16. On its output port, the component
sends only the data values stored on the map (line 19) and clears the map
in line 20.

The output from the DeviceAccumulator component is a map of device
identities and their corresponding payload. The payload for each specific
device can be filtered. To filter the specific payload for particular devices,
we implemented the UnWrapForSpecificDevice component (Listing 5.30).

98

5.2. DISCOPAR-KILIMO

1 class DeviceAccumulator extends Component {
2 constructor() {
3 /* more code */
4 }
5 initialise() {
6 this.inPorts.add("in", {type: Globals.DataType.EDGE});
7 this.outPorts.add("data", {type: Globals.DataType.EDGE});
8 this.outPorts.add("out", {type: Globals.DataType.NUMERIC});
9 this.settings.add("number", "#devices to accumulate data.");

10 }
11 execute(component) {
12 let newMap = new Map();
13 const {settings: {number}} = component;
14 let number_of_readings = parseInt(number.value(), 10);
15 component.inPorts.in.on("data", (data, connection) => {
16 component.outPorts.data.send(data);
17 newMap.set(data.device_id, data.payload);
18 if(newMap.size === number_of_readings){
19 component.outPorts.out.send(Array.from(newMap.values()));
20 newMap.clear();
21 }
22 });
23 }
24 }

Listing 5.27: Implementation of the DeviceAccumulator component.

5.2.8.2 Filtering edge data

Messages from the edge come in the format depicted in Listing 5.28 i.e.,
as a JSON object. The data has the identity of the emitting device, the
link connecting the edge, mobile components, and the payload. Therefore,
this message can be filtered to get the general payload or one for specific
edge devices. DisCoPar-Kilimo implemented two filter components: one
for filtering the general payload and another for filtering the payload for
specific sensor devices.

1 {
2 "device_id": "192.168.1.104",
3 "connection": "data:df9643a-0279-4a03-9ebc-d310ab196388_out_bc78d71e-7dbd-4a38-ea18-740561501949_in",
4 "payload": "92"
5 }

Listing 5.28: Format of data coming from the edge.

General payload: DisCoPar-Kilimo implemented the UnWrap component
that executes on the mobile phone to get the general payload. List-
ing 5.29 shows the implementation of the UnWrap component. The
component has one input port (line 6) and one output port (line 7).
On receiving data on its input port, the payload is filtered and sent
out on its output port (line 11).

99

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

1 class UnWrap extends Component {
2 constructor() {
3 /* more code */
4 }
5 initialise() {
6 this.inPorts.add("in", {type: Globals.DataType.EDGE});
7 this.outPorts.add("out", {type: Globals.DataType.NUMERIC});
8 }
9 execute(component) {

10 component.inPorts.in.on("data", (data, connection) => {
11 component.outPorts.out.send(data.payload);
12 });
13 }
14 }

Listing 5.29: Filtering general payload of data coming from edge devices.

Specific payload: To get the payload for a specific edge device, DisCoPar-
Kilimo implemented the UnWrapForSpecificDevice component (List-
ing 5.30). As mentioned in Chapter 4, the motivation for this com-
ponent is derived from the fact that in large farms, multiple edge
devices can be installed, and the farmer may want to monitor the
measurements from specific edge devices. The component takes as
a configuration setting the identity of the device for which to filter
data. The user must set the device identifier during application de-
sign in line 8 of Listing 5.28. This configuration setting is used to
filter the payload for a specific device. The component has one input
port (line 6) and one output port (line 5). When data is received on
its input port, the component checks the device identity (line 13),
filters the payload for that device, and sends it to its output port
(line 14).

Now that we have explained how DisCoPar-Kilimo features are im-
plemented, we will next describe the process of designing and deploying
DisCoPar-Kilimo applications in the subsequent section.

5.3 Deploying Applications

This section describes and explains the process followed to deploy appli-
cations in DisCoPar-Kilimo. In the subsequent section, we describe the
general design of applications in DisCoPar-Kilimo before detailing its de-
ployment strategies.

100

5.3. DEPLOYING APPLICATIONS

1 class UnWrapForSpecificDevice extends Component {
2 constructor() {
3 /* more code */
4 }
5 initialise() {
6 this.inPorts.add("in", {type: Globals.DataType.EDGE});
7 this.outPorts.add("out", {type: Globals.DataType.NUMERIC});
8 this.settings.add("device", "Device ID");
9 }

10 execute(component) {
11 const {settings: {device}} = component;
12 component.inPorts.in.on("data", (data, connection) => {
13 if(device.value() === data.device_id){
14 component.outPorts.out.send(data.payload);
15 }
16 });
17 }
18 }

Listing 5.30: Filtering payload of specific edge devices.

5.3.1 Designing Applications in DisCoPar-Kilimo

Figure 5.2 shows the application design interface of DisCoPar-Kilimo. The
interface features a canvas, a component menu, a mobile phone and a web
emulation preview. The emulation previews are necessary to give the
developer the look and feel of the final application. The interface also has
an error message section to inform the application designer when errors
are detected while composing application flow graphs (e.g., it shows type
validation errors).

To design an application, the developer must draw the required com-
ponents from the component menu, drop them on the canvas, and connect
them to compose the application flow graph. Components can be drawn
from any of the categories in the component menu. Typical applications
constructed using DisCoPar-Kilimo have four parts: the edge application,
the mobile application, the server, and the dashboard. The graph of the
composed components is validated for correctness in terms of component
connections. The validation happens live and gives immediate feedback
to the application designer. The flow chart in Figure 5.3 summarises the
entire process of building mobile applications.

5.3.1.1 Building the edge application graph

Recall from Section 4.2 that DisCoPar-Kilimo introduces the edge execu-
tion scope. This means some parts of DisCoPar-Kilimo applications must
be executed on the edge. The deployment of DisCoPar-Kilimo deviates

101

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

Figure 5.2: Application design interface of DisCoPar-Kilimo showing the
VPE (canvas and component menu). The VPE also shows the emulation
for mobile applications.

Compose

application graph

Validate

application graph
Valid?

Export application

graph

Build application

graph

Package and

deploy

No

Yes

Figure 5.3: Flow chart for building the entire application graph in
DisCoPar-Kilimo.

from DisCoPar as two applications may need to be generated: one for mo-
bile and another for edge devices. Only the edge graph (part of the graph
with blue components) is exported and deployed to the edge devices. The

102

5.3. DEPLOYING APPLICATIONS

edge graph is extracted from the entire application graph represented in
JSON format as explained in Section 5.1. The edge graph’s implementa-
tion and exporting are shown in Listing 5.31. More detailed code is shown
in Appendix C.

1 function processGraph(ids, graph) {
2 const workList = []; // the first item does not have any parent
3 for (const startNodeId of ids) {
4 workList.push({ nodeId: startNodeId, parentNodesIDs: [] });
5 }
6 const visitedNodes = new Set;
7 const orderedNodes = [];
8 while (workList.length !== 0) {
9 // dequeue the first node from the list

10 const currentNode = workList.shift();
11 if (visitedNodes.has(currentNode.nodeId)) continue;
12 if (hasAllDependencies(visitedNodes, currentNode.parentNodesIDs)) {
13 //the dependencies of the node have been resolved.
14 visitedNodes.add(currentNode.nodeId);
15 //Now its children can be added to the queue.
16 const children = getChildrenOf(currentNode.nodeId, graph.connections);
17 children.forEach(child => workList.push({
18 nodeId: child,
19 parentNodesIDs: getParentsOf(child, graph.connections)
20 }));
21 orderedNodes.push(currentNode);
22 } else {
23 //node cannot be processed since dependencies still need to be resolved.
24 workList.push(currentNode);
25 }
26 }
27 return orderedNodes;
28 }
29
30 function hasAllDependencies(available, myParents) { ... }
31 function getChildrenOf(outPort, edgesSet) { ... }
32 function getParentsOf(nodeID, edgesSet) { ... }
33 function getInitialGraphNodes(graph) { ... }
34
35 /*application*/
36 var ids = getInitialGraphNodes(edgeGraph);
37 var orderedNodes = processGraph(ids, edgeGraph);
38 var edge_graph = buildEdgeGraph(orderedNodes, edgeGraph);

Listing 5.31: Implementation for building the edge graph.

The processGraph function takes the entire application graph com-
posed on the DisCoPar-Kilimo visual programming environment as an
argument. In line 2, the function creates a working array (work list) and
pushes the graph nodes to it in line 4. It keeps track of the visited nodes in
line 14 to create an ordered list of nodes in line 21 for the edge graph. The
function iterates through the work list until all graph nodes are processed.
Line 38 shows the application of the buildEdgeGraph function to generate
the function calls for deployment to the edge device. The buildEdgeGraph
function receives as input the list of ordered edge nodes (line 37) from the
processGraph function.

103

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

Let us demonstrate the extraction of the edge graph using a concrete
example of an application consisting of four nodes: A, B, C, and D. All
of these nodes execute at the edge. Listing 5.31 extracts the graph as
illustrated in Figure 5.4. Initially, the work list (stack), visited nodes and
ordered nodes arrays are empty (Figure 5.4a). Node A is determined to
be a root node since it does not have any predecessor node connected to
it. Node A is visited and pushed to the ordered nodes array, and its non-
visited adjacent (neighbours) nodes B and C are pushed into the work list
(Figure 5.4b). In the next iteration, node B is at the top of the work list.
Node B is visited, removed from the work list and put into the array of
visited nodes and ordered nodes (Figure 5.4c). Node B has no unvisited
adjacent nodes. In the next iteration, node C is at the top of the work list.
Node C is visited, removed from the work list and put into the array of
visited nodes and ordered nodes (Figure 5.4d). Lastly, node D at the top
of the work list is visited, removed from the stack and added to the array
of visited nodes and ordered nodes (Figure 5.4e). The work list becomes
empty, meaning all the nodes have been visited and ordered. The ordered
nodes are then used to generate the edge graph.

5.3.2 Deploying DisCoPar-Kilimo Applications

We now detail how deployment happens per scope. Each scope generates
a respective application, i.e., for the web, mobile or edge. When the user
clicks deploy, three applications will be deployed as follows.

5.3.2.1 Web application

The web (dashboard) application is automatically deployed to the cloud
or server hosting DisCoPar-Kilimo. The components used to build the
web application are rendered to the web client and are implemented in
HTML5, JavaScript and CSS. The web components have access to the
document object model (DOM) that comprises the structure and con-
tent of documents on the web, i.e., the DOM contains fields that hold
the HTML code. When loading the pages for the web client, the un-
derlying dashboard components automatically connect themselves to the
corresponding server-side output ports. From that point on, the dash-
board receives real-time status updates from the server. When initialising
their connection, the server-side components will send their entire state

104

5.3. DEPLOYING APPLICATIONS

A

B

C D

workList

visitedNodes

orderedNodes

(a)

A

B

C D

B C

A

workList

visitedNodes

A orderedNodes

(b)

A

B

C D

C

A B

workList

visitedNodes

A B orderedNodes

(c)

A

B

C D

D

A B C

workList

visitedNodes

A B C orderedNodes

(d)

A

B

C D

A B C D

workList

visitedNodes

A B C D orderedNodes

(e)

Figure 5.4: Process for extracting the edge application graph.

to update the dashboard. Figure 6.13 in Section 6.2.6 shows a preview of
a web application.

5.3.2.2 Mobile application

The application developer deploys the mobile application to the mobile
phone by installing the corresponding distribution file, e.g., the .apk for
Android devices. This is a two-step process. In the first step, the devel-
oper must download the mobile application graph in JSON format. Then,
application developers need to use Cordova5, a cross-platform application
deployment tool, to package the application graph together with the base
DisCoPar-Kilimo into an executable file following the steps described be-
low. The application developer must also ensure the tool is installed and
working. Then, the developer downloads and sets up a Cordova project for
DisCoPar-Kilimo mobile applications. The base DisCoPar-Kilimo (disco-

5https://cordova.apache.org/

105

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

par.min.js) should be copied into the /www/js/ directory of the Cordova
project. The base application for DisCoPar-Kilimo contains the core and
user-defined components necessary for the mobile application graph to
execute.

In the second step, the developer exports and downloads the mobile
application graph from the DisCoPar-Kilimo canvas by clicking the Down-
load mobile graph button as shown in (Figure 4.22). This will download
the mobile application graph as a JSON file. The JSON file should be
copied into the root directory of the Cordova project. The last step is
opening a command terminal, navigating to the root directory of the Cor-
dova project and executing the cordova run «target-platform» command,
e.g., cordova run android. The above command will package and deploy
the application to the Android phone connected to the computer via a
USB port. The developer should install any command line tool on the
mobile phone and use it to deploy the networking code to the mobile
phone. The networking code (Appendix D) must be up and running to
communicate between the edge and mobile components.

5.3.2.3 Edge application

Deploying applications to the edge requires a base edge application and
the edge application graph. The base edge application talks directly to
the hardware of the edge device and runs a lightweight JavaScript engine
that can execute the companion functions of the edge components. The
edge application graph is designed on the VPE of DisCoPar-Kilimo and
exported as a JavaScript file (as illustrated in Figure 4.22). The exported
file contains the companion functions for the edge components. The com-
panion functions are invoked when the graph is executed as explained in
Section 5.2.2.

Edge applications are deployed to ESP326 supported hardware or any
other hardware with similar configurations. Deploying the application to
the edge device follows the following steps. First, the developer should
download the edge graph and copy the file into the /data/ directory of
the DisCoPar-Kilimo edge application setup as a PlatformIO project. The
file contains the edge application graph and the functions that are invoked
when the edge application executes. Second, the developer specifies the

6https://www.espressif.com/en/products/socs/esp32

106

5.4. CONCLUSION

network credentials and the mobile device’s address. In the next step, the
developer should run a series of commands as follows:

1. “platformio run –target buildfs –environment m5stick-c” command
to compile the file system,

2. “platformio run –environment m5stick-c” to compile the edge appli-
cation,

3. platformio run –target uploadfs –environment m5stick-c command
to install the file system on the edge device and lastly,

4. “platformio run –target upload –environment m5stick-c” command
to install the edge application.

Appendix E lists the resources used for the applications implemented
in this work.

5.4 Conclusion

This chapter discusses the implementation of core concepts and compo-
nents of DisCoPar-Kilimo. DisCoPar-Kilimo proposes and implements a
new design choice to support a new breed of components that can execute
at the edge. At the edge, the components are implemented as companion
functions that may further invoke friend functions. The friend functions
can talk directly to the hardware of edge devices hosting sensors. This
enabled stripping down the implementation of the edge components in
DisCoPar-Kilimo and transferring the business logic for those components
to the edge. We use the stripped-down edge components on the visual
programming environment to ensure composing complete application flow
graphs and configure the state for the edge components. The state of the
edge components is passed as a configuration for those components.

The chapter presents the mechanisms introduced to handle partial
failures at the edge. The chapter presents and discusses the policies in-
troduced to handle partial failures on the mobile side. The policies are
implemented as concrete components of DisCoPar-Kilimo. Though the
implementations we present in this chapter advance the work done on the
existing low-code development environments, there is still room to add
more components that can execute at the edge for advanced real-world

107

CHAPTER 5. DISCOPAR-KILIMO IMPLEMENTATION

applications. In the next chapter, we present the validation of DisCoPar-
Kilimo by implementing the driver scenarios from Chapter 2 on it.

108

Chapter 6

Validation

In this chapter, we validate the approach we present in this dissertation
and its implementation in DisCoPar-Kilimo. The validation aims to ex-
amine the applicability of DisCoPar-Kilimo in implementing smart agri-
culture applications. To this end, we implement seven smart agriculture
scenarios on DisCoPar-Kilimo. The implemented scenarios were intro-
duced in Section 2.2.

We begin the chapter by describing the validation approach adopted
in this dissertation in Section 6.1. Then, we present and describe the
implementation of each scenario in Section 6.2. Lastly, the chapter ends
with a discussion and a conclusion on the implemented scenarios based
on the four properties for smart agriculture applications as explained in
Section 2.3.

6.1 Validation Approach

In this chapter, we assess the applicability of our approach by answering
the following questions.

1. Can DisCoPar-Kilimo simplify the development of smart agriculture
applications?

2. How flexible is DisCoPar-Kilimo in implementing smart agriculture
applications?

In this dissertation, we use the scenario-based approach to answer
those questions. We define scenarios which are then implemented using

109

CHAPTER 6. VALIDATION

DisCoPar-Kilimo. In a scenario-based validation approach [ACS10], a
scenario describes the set of interactions between different actors in a
system and can comprise a concrete sequence of interaction steps or a set
of possible interaction steps. The interaction steps represent the behaviour
of the application. During validation, the requirements of the scenario are
verified against the expected behaviour of the application.

Scenarios provide an intuitive approach to describe complex behaviours
of software applications [MMCR13]. Scenarios can be derived from the
requirements analysis and used later to verify whether the implementa-
tion satisfies the specifications described by the scenario for validation.
Reusing scenarios can help in economising the development of validation
use cases.

In the subsequent sections, we describe the implementation of the sce-
narios we use to evaluate DisCoPar-Kilimo.

6.2 Validation Scenarios

For our evaluation, we start from the driver scenarios presented in Sec-
tion 2.2 using DisCoPar-Kilimo. We used the scenarios to identify the
features that low-code development environments need to support imple-
menting smart agriculture applications. In addition, we implement three
additional scenarios derived from the literature [SNN18] and our expe-
riences with agricultural extension workers in Kenya. In the following
sections, we describe each scenario and explain its implementation.

6.2.1 Scenario 1: Monitoring Soil Moisture

As mentioned in Section 2.2, soil moisture is critical in maintaining the
ecological stability of the soil-plant-atmosphere system [ZPP+20, SPKB+22].
For instance, changes in soil moisture directly influence the hydrological
processes on the land surface. Hence, accurate soil moisture estimation is
essential for ecological assessment and predicting crop growth and devel-
opment.

Farmers in developing regions rely on physical observations (e.g., when
it rained last) to determine whether the available soil moisture is sufficient
to support the growth and development of crops [SPKB+22]. Therefore,
access to soil moisture data can significantly benefit agricultural extension

110

6.2. VALIDATION SCENARIOS

workers in making appropriate decisions concerning their advice to farm-
ers, e.g., when to plant or even when to water the crops. Although weather
information services have been promoted in several developing countries,
soil moisture measurements in situ are required to address needs at the
farm level [OCC+13, MMC19].

In this scenario, we build a smart agriculture application which mon-
itors soil moisture in the following conditions.

1. A small farm (e.g., a research garden in a university environment)
that always has a reliable internet connection.

2. The farmer has an up-to-date view of the soil moisture conditions
on the farm.

Figure 6.1 shows the flow-graph of the application to monitor soil mois-
ture. Recall that application flow graphs are read from left to right, and
the arrows on the component links show the direction in which data flows
through the graph. The application comprises three components to read
and display soil moisture on the mobile phone. Recall from Section 5.1.5
that connecting components with different execution scopes automatically
yields a distributed application. In this case, the application runs on an
edge device and mobile phone.

Figure 6.1: Flow-graph of the application for monitoring soil moisture.

The application uses the ReadSoilMoisture component to read soil
moisture every 30 minutes. Recall from Section 4.3.3 that components
that execute at the edge scope can directly be connected to those that run
on the mobile scope in DisCoPar-Kilimo’s VPE. As shown in Figure 6.1,
the ReadSoilMoisture component is directly connected to the UnWrap-
Moisture component, avoiding a centralised server for communication.
Figure 6.2 shows the deployed soil moisture sensor (the part labelled A)
and the application preview to display the soil moisture readings (the part
labelled B). The soil moisture sensor (circled in orange) is attached to an
M5StickC microcontroller (circled in white). The label and measurements

111

CHAPTER 6. VALIDATION

for the soil moisture are shown on the user interface thanks to the Dis-
playOnScreen component. The application’s GUI is built based on the
flow graph composed by either the application designer or domain expert.

A B

Soil moisture sensor

Microcontroller

Figure 6.2: Preview of the application for monitoring soil moisture de-
ployed to crops in a greenhouse.

6.2.2 Scenario 2: Computing Average Soil Moisture and
Keeping Data at the Edge

As mentioned in Chapter 2, this scenario considers a small farm, and the
farmer periodically visits the farm. Hence, the scenario seeks to fulfil the
following two goals.

1. Perform computations for the average soil moisture at the edge de-
vice.

2. Store sensor data at the edge and send it to the farmer’s mobile
device when it becomes available.

Figure 6.3 shows the implemented application in DisCoPar-Kilimo.
The flow graph comprises five components – three edge components and

112

6.2. VALIDATION SCENARIOS

two mobile components. The ReadSoilMoisture component reads soil
moisture values and sends them to the ComputeEdgeAverage component
that computes the average. The average soil moisture values from the
ComputeEdgeAverage component are sent to the BufferOnDisk compo-
nent for storage when the network fails. Recall from Section 4.3.2 that
edge components have companion functions invoked to execute at the edge
devices. When the network connection is available, data is sent from the
BufferOnDisk component to the UnWrapMoisture component on the mo-
bile phone in JSON format. The UnWrapMoisture filters the soil moisture
values and sends numerical values to the DisplayOnScreen component for
display on the mobile device. Again, the BufferOnDisk edge component
is directly connected to the UnWrapMoisture component that runs on the
mobile device.

Figure 6.3: Flow-graph of an application for computing average soil mois-
ture and keeping data at the edge. The application is composed of three
edge components and two mobile components.

6.2.3 Scenario 3: Monitoring Soil Moisture Using more
than one Edge Device

As explained in Chapter 2, this scenario considers a large farm with many
edge devices deployed. The scenario seeks to fulfil the following two goals.

1. Accumulate soil moisture sensor data from multiple edge devices on
the mobile phone.

2. Compute the average soil moisture of the data accumulated and the
minimum and maximum soil moisture of the accumulated data.

Figure 6.4 shows the application flow-graph composed of edge and mo-
bile components. Similar to the previous scenario, the application reads
soil moisture using the ReadSoilMoisture component and stores data when
networks fail at the edge using the BufferOnDisk component. In this sce-
nario, however, computing the average soil moisture does not happen at

113

CHAPTER 6. VALIDATION

the edge. Instead, soil moisture data is accumulated on the mobile device
using the GatherMoistureReadings component. Recall from Section 4.3.6
that each edge device represents one measurement. Hence, the configured
number of devices also represents the number of soil moisture measure-
ments to accumulate. The accumulated data is sent to the output port as
an array of numeric values.

Once data is at the mobile phone, the average soil moisture is com-
puted for the accumulated data using the ComputeMoistureAverage com-
ponent. The component receives an array of numeric values from the
GatherMoistureReadings component. The minimum and maximum soil
moisture values are computed using the ComputeMinimum and Com-
puteMaximum components, and the values are displayed on the mobile
device using the DisplayMinimum and DisplayMaximum components, re-
spectively. We use the existing SetDecimalPlaces component to round off
the soil moisture average.

Figure 6.4: Flow-graph of an application for monitoring soil moisture using
more than one edge device.

Figure 6.5 shows the deployment of the application for monitoring
soil moisture using more than one edge device. In the figure, three soil
moisture sensors were deployed to three plant pots in a greenhouse to
simulate a large crop field. Each of the soil moisture sensors was attached
to a microcontroller. Recall that the microcontroller receives and sends
the sensor measurements to the mobile phone. Part B of Figure 6.5 shows
the minimum, maximum and average soil moisture displayed on the mobile
application.

114

6.2. VALIDATION SCENARIOS

A B

Soil moisture sensor 1

Microcontroller

Soil moisture sensor 2

Soil moisture sensor 3

Figure 6.5: Preview of the application for monitoring soil moisture using
more than one edge device.

6.2.4 Scenario 4: Tracking Connected Edge Devices

As mentioned in Chapter 2, some devices can fail due to drained batteries
or mechanical malfunction. This scenario seeks to fulfil the following goals.

1. Track connected edge devices.

2. Display the number of connected edge devices as a numerical value.

3. Display connected edge devices as a list on the farmer’s mobile
phone.

Figure 6.6 shows the application flow-graph added to the graph of Fig-
ure 6.3 to track devices. The tracking happens only on the mobile side;
messages for connected edge devices are broadcast to all mobile-scope
application components. The ConnectedDevices component in this appli-
cation subscribes to receive messages on all connected edge devices and
sends on its output port a list of connected devices. The list is received
by the DataArrayToTable component, which processes it to (1) count the
number of connected devices for display using the NumberOfConnectedDe-
vices component and (2) display as a table using the ListConnectedDevices

115

CHAPTER 6. VALIDATION

component. The NumberOfConnectedDevices and ListConnectedDevices
components are reused from the existing components in DisCoPar.

Figure 6.6: Flow-graph of an application for tracking general information
of connected edge devices.

Figure 6.7 shows the preview of the implemented application with the
number and listing of the connected edge devices. When edge devices go
offline or return online, the number and list of connected edge devices are
updated automatically in real-time.

Figure 6.7: Preview of the application for tracking connected edge devices.

116

6.2. VALIDATION SCENARIOS

6.2.5 Scenario 5: Tracking and Monitoring Paddy Rice
Storage Conditions

The scenario was derived from the literature as explained in Section 2.2.
The goals of the scenario are as follows.

1. Measure humidity level in paddy rice storage locations. Humidity
sensors attached to an edge device can be installed at several points
within the storage area to take measurements. We assume that
several paddy bags can be piled on each other to allow measuring
one pile at a time. The measurements are sent to the farmer’s mobile
phone for further processing.

2. Accumulate humidity data from all the installed edge devices. Re-
member that rice storage areas can have several relative humidity
measurement points with edge devices installed. Hence, humidity
measurements for all the edge devices must be collected on the mo-
bile phone for further processing.

3. Show humidity levels on a gauge and line chart.

4. Set a threshold for generating and showing notifications. The farmer
must be alerted when the humidity level exceeds a certain threshold.

5. Store humidity measurements in a database for future retrieval and,
at the same time, display them on a web dashboard.

6. Generate CSV report for humidity data. According to Serikul et al.
[SNN18], the CSV report allows further processing of humidity data
by third-party applications.

Compared to the application presented in [SNN18], our implementa-
tion adds the following. First, it accumulates humidity data from edge
devices and processes it to get a general overview of rice storage areas.
Second, it generates notifications when the humidity level exceeds the
required limit.

Figure 6.8 shows the flow graph of the application for tracking the
humidity levels in paddy rice storage areas.

The application uses the ReadHumidity component to measure the hu-
midity levels. The humidity data is stored at the edge device when there
is a network disconnection using the BufferOnDisk component. Humidity

117

CHAPTER 6. VALIDATION

Figure
6.8:

Flow
-graph

ofan
application

for
tracking

and
m

onitoring
hum

idity
levels

in
storage

areas
for

paddy
rice.

118

6.2. VALIDATION SCENARIOS

measurements are accumulated using the GatherHumidityReadings com-
ponent on the mobile device. The accumulated data is processed further
using the ComputeAverage component to get the average humidity level.

Tracking humidity on a gauge chart uses the existing DisCoPar Plot-
GaugeChart component. Tracking humidity levels over time (i.e., on a line
chart) uses the existing DisCoPar PlotHumidityOverTime component. In
addition, the component was modified and adapted to plot the maximum
and minimum humidity levels. Both the PlotGaugeChart and PlotHumid-
ityOverTime components receive as input the average humidity from the
ComputeAverage component. To generate notifications, the application
starts by setting the threshold using the SetThreshold component config-
ured with 75% for a tropical environment [CFM+19]. The threshold can
be changed by configuring the component as shown in Figure 6.9. By
default, the component emits the set threshold on its output port every
10 seconds. The application uses the GenerateAndShowAlert component
to generate humidity notifications.

Figure 6.9: Configuring the SetThreshold component to specify the time
interval for sending the set value on the output port.

Collecting humidity data into a database for long-term storage and
future retrieval uses the existing DisCoPar ObservationDatabase compo-
nent. This component accepts observations as input data. As such, the
humidity data is first converted into an observation by the DataToOb-
servation component. Humidity data is exported to CSV report via the
DisplayAsTable component. The component adds a “Download CSV Re-
port” button to the application’s web dashboard. The DisplayAsTable
component also displays the humidity data as a list on a web dashboard.

To track connected devices, the application uses the ConnectedDevices
component that sends an array of connected devices. The DataArray-
ToTable component converts the received array of connected devices and
sends two outputs. The first output it sends is a numerical number of con-
nected devices to the NumberOfConnectedDevices component for display.

119

CHAPTER 6. VALIDATION

The second output it sends is a list of connected devices for display using
the DisplayAsTable component.

Figure 6.10 and Figure 6.11 show the preview of the implemented
application. Figure 6.11 shows the results of the CSV report when the
“Download CSV Report” button is clicked.

Figure 6.10: Mobile application preview for tracking humidity levels in
storage areas for paddy rice. Humidity is below the 75% threshold, and
no alert is generated.

Figure 6.11: Dashboard application preview for tracking and monitoring
humidity levels in storage areas for paddy rice.

120

6.2. VALIDATION SCENARIOS

6.2.6 Scenario 6: Collecting Data Using Mobile Applica-
tions

This scenario was introduced in Section 2.2. We rely on plant labels to
identify individual plants in the field. We assume the plant labels are QR
codes generated using an external application. This scenario seeks to fulfil
the following goals.

1. Scan plant labels and present a survey to the farmer to enter plant
growth and status data.

2. Store the survey data on the mobile phone when the network fails.

3. Send the data to a server for storage and display it on a dashboard.

Figure 6.12 shows the flow graph of the application for tracking plant-
specific data. The application scans plant labels using the ReadQRCode
component. The component implements a QR code scanner that uses the
mobile phone’s camera where the application is running. On successfully
reading the plant label, a survey is generated using the ObservationPop-
UpSurvey component already existing in DisCoPar. The survey entries we
defined for this application are the number of leaves, the colour of leaves
and the plant height.

Data is stored on the mobile device when the network fails using the
InDatabaseBuffering component already in DisCoPar. The component
creates a small database on the mobile to store data, which it synchronises
to the server when the network is restored. Recall from Section 4.3.4
that the InDatabaseBuffering component is the last one to connect to
the server-side component following the offline accessibility policies for
DisCoPar-Kilimo.

Figure 6.12: Flow-graph of an application for tracking application data.

Part 1 of Figure 6.13 shows the preview of the data collection survey on
a mobile phone. Part 2 of Figure 6.13 shows the web dashboard of the ap-
plication. The data can be exported from the web dashboard as a CSV file

121

CHAPTER 6. VALIDATION

for further analysis. The application uses the existing DisCoPar Observa-
tionDatabase component to store the data in a database. The component
transparently establishes a connection and inserts data into the database
running on the server. The data saved into a database is displayed on a
dashboard using the existing DisCoPar DisplayAsTable component. The
web dashboard of the application allows users to download collected data
as a CSV report. Domain experts from other fields, such as statistical
science experts, can use such reports to gain more insights.

1 2

Figure 6.13: Preview for tracking application data. The application fea-
tures a survey for data entry and a web dashboard for data display.

6.2.7 Scenario 7: Monitoring Soil Moisture and Tempera-
ture in Corn Seeding and Sprouting

This scenario was introduced in Section 2.2. The goals of this scenario are
as follows.

1. Read soil moisture and temperature.

2. Compute soil heat capacity to determine soil moisture and temper-
ature interaction.

3. Accumulate soil moisture and temperature data on the mobile phone.

4. Generate and show notifications on soil moisture.

5. Visualise soil moisture data over time.

122

6.2. VALIDATION SCENARIOS

Figure 6.14 shows the application flow graph for monitoring corn seed-
ing and soil heat capacity computation. The application uses the Read-
SoilMoisture and ReadTemperature components to measure soil moisture
and temperature. Accumulating data uses the GatherMoistureReadings
and GatherTemperatureReadings components. The accumulated data is
processed to get the soil moisture and temperature averages using the
ComputeAverage components.

Computing the soil heat capacity is done using mobile components
that perform arithmetic operations (such as addition, subtraction, mul-
tiplication and exponentiation) according to the following formula: Q =
4.2 × 103 × V × (0.2 + W) × ∆T , where V is the soil volume, W is the
soil moisture, and ∆T is the temperature change [ZPP+20]. The soil heat
capacity is displayed on the mobile device using the DisplayHeatCapacity
component.

The application also uses the SetThreshold component to specify the
threshold for generating notifications when soil moisture exceeds the set
threshold. The threshold value was set at 57.5% for a tropical setting
[STCR13]. The threshold value is compared with the incoming average
soil moisture data using the Compare component. The Compare com-
ponent receives two inputs, i.e., the threshold and the data value. The
output from the component triggers the GenerateAndShowAlert compo-
nent to generate and show soil moisture notifications as popup messages
on the mobile phone. Lastly, the application uses the PlotSoilMoisture-
OverTime component to visualise the average soil moisture on a line chart.
This component plots the average soil moisture and the maximum (98%)
and minimum (55%) thresholds. During application design, the maximum
and minimum thresholds are configured in the component setting. The
component receives, as input, the average soil moisture from the Com-
puteAverage component.

Figure 6.15 shows the preview of the resulting application. The line
chart shows the average soil moisture over time. The notifications dis-
played as pop-up messages on the mobile phone were generated at 57.5%
soil moisture.

123

CHAPTER 6. VALIDATION

Figure
6.14:

Flow
-graph

of
an

application
for

m
onitoring

soil
m

oisture
and

tem
perature

in
corn

seeding
and

sprouting.

124

6.3. DISCUSSION

Figure 6.15: Application preview for monitoring farm conditions in corn
seeding and sprouting. The preview shows the maximum, minimum and
average soil moisture.

6.3 Discussion

We now discuss how DisCoPar-Kilimo adheres to the properties presented
in Chapter 2.

Environment sensing: DisCoPar-Kilimo introduces new and dedicated
components for smart agriculture applications requiring environ-
mental sensing. The above components are collectively called envi-
ronment sensing components. The environment sensing components
form a sound basis for providing a rich portfolio of future sensing
components. Our approach allows sensor data to accumulate on mo-
bile devices, where it can be processed to give a general overview of
environmental conditions on the farm.

Computation at the edge: DisCoPar-Kilimo provides infrastructure and
dedicated components for performing computations at the edge. As
explained in Chapter 4 and Chapter 5, DisCoPar-Kilimo implements
companion and friend functions to interact with the sensor hard-
ware. In contrast to the existing LCDEs, our approach provides

125

CHAPTER 6. VALIDATION

mechanisms to export and execute application graphs at the edge
devices.

Coordination with the edge: DisCoPar-Kilimo devises a communication
mechanism between components executing at the edge and those
running on mobile devices. Then, DisCoPar-Kilimo implements the
mechanism into a networking code to support the implementation
of smart agriculture applications. The mechanism enables it to sup-
port coordination with the edge and track connected edge devices.
It also provides components to accumulate and filter data coming
from edge devices. In contrast to existing LCDEs, our work enables
communication between edge and mobile devices without requiring
a centralised server.

Handling partial failures: First, DisCoPar-Kilimo devises policies for
handling partial failures at the edge device and on the mobile de-
vice. Second, DisCoPar-Kilimo provides dedicated edge and mobile
components based on the devised policies that can handle partial
failures in smart agriculture applications when networks fail. In
contrast to existing LCDEs, our work extends offline accessibility to
edge devices.

The implemented scenarios demonstrate that DisCoPar-Kilimo pro-
vides “ready-to-go” components for implementing different SAAs. The
components hide away application development issues like coordinating
communication between different components that compose SAAs.

6.4 Conclusion

In this chapter, we implemented different scenarios to show how the LCDE
presented in this dissertation meets our research vision for constructing
smart agriculture applications. By implementing different scenarios, we
demonstrate how DisCoPar-Kilimo supports environment sensing, compu-
tation at the edge, coordination with the edge, handling partial failures,
tracking connected edge devices and accumulating data from multiple edge
devices. Supporting the above properties means that DisCoPar-Kilimo
can be considered, to the best of our knowledge, the first of a kind in new
and future generations of LCDEs for implementing SAAs.

126

Chapter 7

Conclusion

This dissertation explored a low-code development environment for imple-
menting smart agriculture applications. In this final chapter, we revisit
the problem statement, research approach, contributions, and limitations
and provide directions for possible future work.

7.1 Problem Statement Revisited

Smart agriculture applications are geared towards improving modern farm
operations to obtain optimal yields. The applications orchestrate compo-
nents deployed in microcontrollers, smartphones, and cloud services. Im-
plementing these applications requires skilled engineers, careful handling
of distribution, dealing with potential network and device failures, and
integration with resource-constrained devices. Smart agriculture applica-
tions are often constructed using textual programming languages requir-
ing software development knowledge that domain experts usually need to
have. Low-code development environments have emerged as an alterna-
tive for users needing more technical expertise. The low-code development
environments offer visual programming environments with “ready-to-use”
components, making software development more accessible to all technical
skill levels.

In this work, we identified four properties that a low-code development
environment should have to simplify the development of smart agriculture
applications. We summarise them below.

1. Environment sensing to monitor prevailing farm conditions. Pre-

127

CHAPTER 7. CONCLUSION

vailing farm conditions are crucial in the growth and development
of crops. Hence, low-code development environments should allow
sensing data to be collected to monitor environmental conditions.

2. Computation at the edge to process data near the source. Farmers,
especially in rural areas, do not have uninterrupted access to cloud
services. Hence, collecting data and performing computations on
edge devices instead of sending all data to a centralised server for
processing is essential.

3. Coordination with the edge to ensure that data is sent from the edge
devices to the mobile devices. Implementing distribution and com-
putation at the edge requires supporting communication between
edge and mobile devices. This communication requires some form
of coordination between the edge and mobile devices.

4. Handling partial failures to keep data when the networks become
unavailable. LCDEs should provide mechanisms for dealing with
partial failures. The failures can lead to data losses, which can affect
decision-making processes. Partial failures can happen between edge
and mobile devices and between the mobile device and the server.

We performed a state-of-the-art analysis of low-code development en-
vironments using the identified properties. The findings showed that none
of the existing low-code development environments supported all the iden-
tified properties.

7.2 Research Approach Revisited

Recall that we introduced and stated our research approach in Chap-
ter 1. In Chapter 2, we presented two studies to motivate the work in
this dissertation. The two studies presented state-of-the-art solutions for
smart agriculture applications and low-code development environments.
In Chapter 3, we described in detail a low-code development environment
that we extended in this dissertation with novel components for construct-
ing smart agriculture applications. We explained our low-code develop-
ment environment’s features and implementation details in Chapter 4 and
Chapter 5. As mentioned earlier, the components were geared to support
the properties of smart agriculture applications.

128

7.3. CONTRIBUTIONS

In this dissertation, we adopted a scenario-based validation approach.
We implemented the seven driver scenarios introduced in Chapter 2 in
DisCoPar-Kilimo.

7.3 Contributions

Our work on developing a low-code development environment for smart
agriculture applications led to this dissertation’s main contributions.

• As our first contribution, the dissertation proposes a set of properties
that a domain-specific low-code development environment needs to
support implementing smart agriculture applications. The proposed
properties include support for environment sensing, computation at
the edge, coordination with the edge and handling partial failures
when networks fail.
• Our second and main contribution is DisCoPar-Kilimo, a domain-

specific low-code development environment for smart agriculture ap-
plications. DisCoPar-Kilimo is based on flow-based programming,
where application tasks are represented as graphs of interconnected
components that stream data to each other. The implementation of
DisCoPar-Kilimo builds on DisCoPar and adds new extensions as
explained in Section 4.5.

7.4 Shortcomings and Future Work

In this section, we state shortcomings and possible avenues of future work.

Deployment. In the current implementation, the deployment of appli-
cations is partially done by executing a series of commands. This
requires specific technical skills, which domain experts may still need
to gain. In future work, we plan to improve the deployment process
so that domain experts can easily deploy DisCoPar-Kilimo applica-
tions.

Dynamically adding and labelling new sensors. Large farms require in-
stalling many edge devices and adding new ones after deployment.
Dynamically adding devices to the application is not possible in our
current implementation. Additionally, each edge device installed

129

CHAPTER 7. CONCLUSION

must be labelled correctly to make it easy to identify and track.
The number of edge devices to install can grow considerably, and
naming and labelling each edge device can take considerable time.
For future work, we suggest investigating how to dynamically add
devices to an application and an automatic approach for labelling
edge devices with the data they generate.

Applying DisCoPar-Kilimo components to other domains. The compo-
nents that DisCoPar-Kilimo features can be applied to other do-
mains, e.g., in citizen science applications. For example, the offline
accessibility policies and components that DisCoPar-Kilimo provides
can be used to enrich data collection for different participatory cam-
paigning citizen science applications. However, some domains, like
irrigation management, may require domain experts to add new
components. Adding new components by domain experts is not
supported in our current implementation. Hence, we plan to ex-
plore how domain experts can add new components to our low-code
development environment in future work.

Supporting actuators: In this dissertation, we have focused on supporting
sensing environmental conditions. However, some smart agriculture
applications may also require actuating on the environment. For
example, when the soil moisture content falls below a set thresh-
old for a particular edge device, a smart agriculture application can
go beyond notifying the farmer and activate the irrigation system
to open water valves and irrigate the part of the farm where the
particular edge device is deployed. From the scenarios presented in
Section 2.2, this can help reduce water wastage, thus conserving it
for other farming activities. This requires implementing actuator
components to the edge scope of DisCoPar-Kilimo since they are
not supported in the current implementation. Hence, adding the ac-
tuator components requires implementing (1) companion functions
that will execute on edge devices and (2) friend functions that can
interact with the actuation hardware.

Throttling (i.e., handling back pressure). In flow-based programming,
data is consumed by the receiving components as soon as it arrives.
However, this can be problematic when the data arrival rate becomes
higher than the rate at which the receiving components consume the
data. To support back pressure, existing literature proposes using

130

7.5. CONCLUDING REMARKS

bounded buffers (i.e., communication channels)[Ngu15]. This issue
is not addressed in the current implementation of DisCoPar-Kilimo.
For future work, we aim to explore how the application developer
can explicitly specify the buffer capacity for those communication
channels.

Receiving data from two different nodes. In our current implementation,
we assume that data from two different nodes arrives at the same
rate and order to the receiving component. However, data from dif-
ferent nodes can arrive at different rates and orders to the receiving
component. Existing literature proposes using logical conjunction
operators that are commutative in time [VVANDM22]. This is not
featured in the current implementation of DisCoPar-Kilimo. For fu-
ture work, we aim to explore how to handle and coordinate data
arriving at the receiving components at different rates and orders
from two different nodes.

Further evaluation and user study. The implemented scenarios only
focused on demonstrating the properties supported by DisCoPar-
Kilimo. Further and more elaborate user studies are necessary to
evaluate how DisCoPar-Kilimo can be used by domain experts, such
as agricultural extension workers, to implement applications.

7.5 Concluding Remarks

Computers and software applications are changing our world at a fast
pace. A growing demand for software applications has increasingly pres-
sured the market for skilled software developers. LCDEs are an alternative
for implementing software applications. In this work, we use LCDEs to
simplify the development of smart agriculture applications. Our findings
show that the techniques presented in LCDEs for software construction
can be intuitive. Domain engineering, which incorporates domain con-
cepts into the target LCDEs, is necessary for the LCDE techniques to be
effective and for the software development goals to be met. This requires
close collaboration with the experts in the target domain. Although our
tool is a research prototype, we consider our work the foundation for the
new and future generation of LCDEs.

131

CHAPTER 7. CONCLUSION

132

Appendix A

DisCoPar Application
Graph

Listing A.1 shows the JSON representation of an application flow-graph in
DisCoPar. Components and their connections are represented as nested
JSON objects. Each nested component object denotes a node in the ap-
plication graph. Similarly, each nested connection object denotes a link
between components in the application graph.

1 {
2 "graph": {
3 "version": 3,
4 "constraints": [],
5 "_id": "6496aabe4017577a81f0ed48",
6 "id": "9bf0d69f-90ea-4885-92ec-5ed53e2a2a2e",
7 "observatory_id": "6496aabe4017577a81f0ed4d",
8 "components": {
9 "05f1f2d8-e73d-4d19-a8b5-5102e5d62d59": {

10 "id": "05f1f2d8-e73d-4d19-a8b5-5102e5d62d59",
11 "name": "SoundPressureLevel",
12 "icon": "fas fa-microphone",
13 "description": "Records sound samples using the microphone and calculates the sound pressure level

in decibel",
14 "settings": {},
15 "position": {
16 "left": 361,
17 "top": 215
18 },
19 "clone": false,
20 "parent": "SoundPressureLevel",
21 "scope": {},
22 "platform": "Mobile",
23 "options": {
24 "componentColor": "#333",
25 "iconColor": "#FFF"
26 },
27 "components": null
28 },
29 "d2d3e429-8537-4ec0-9dfc-cf87b24c76de": {
30 "id": "d2d3e429-8537-4ec0-9dfc-cf87b24c76de",
31 "name": "DisplaySoundLevel",
32 "icon": "fas fa-tablet-alt",

133

APPENDIX A. DISCOPAR APPLICATION GRAPH

33 "description": "Displays input on a label on the screen.",
34 "settings": {
35 "heading": {
36 "name": "heading",
37 "value": "someText"
38 },
39 "unit": {
40 "name": "unit",
41 "value": ""
42 },
43 "backgroundColor": {
44 "name": "backgroundColor",
45 "value": "#000000"
46 },
47 "textColor": {
48 "name": "textColor",
49 "value": "#FFFFFF"
50 },
51 "fontWeight": {
52 "name": "fontWeight",
53 "value": "400"
54 }
55 },
56 "position": {
57 "left": 582,
58 "top": 205.76953125
59 },
60 "clone": false,
61 "parent": "DisplaySoundLevel",
62 "scope": {
63 "scopes": [
64 {},
65 {}
66]
67 },
68 "platform": "Mobile",
69 "options": {
70 "componentColor": "#333",
71 "iconColor": "#FFF"
72 },
73 "components": null
74 }
75 },
76 "connections": {
77 "8918fd84-1c68-43d7-bab8-8822ac74cd1f": {
78 "id": "8918fd84-1c68-43d7-bab8-8822ac74cd1f",
79 "outPort": {
80 "name": "decibel",
81 "component": "05f1f2d8-e73d-4d19-a8b5-5102e5d62d59",
82 "graph": "9bf0d69f-90ea-4885-92ec-5ed53e2a2a2e"
83 },
84 "inPort": {
85 "name": "in",
86 "component": "d2d3e429-8537-4ec0-9dfc-cf87b24c76de",
87 "graph": "9bf0d69f-90ea-4885-92ec-5ed53e2a2a2e"
88 }
89 }
90 },
91 "socketConnections": {
92 "inbound": {},
93 "outbound": {}
94 },
95 "DOM": {},
96 "__v": 0
97 },
98 "processingGraph": {
99 "version": 0,

100 "constraints": [],
101 "_id": "6496aabe4017577a81f0ed49",
102 "id": "93672c25-c946-4247-a5db-29b24f1d83ee",
103 "observatory_id": "6496aabe4017577a81f0ed4d",
104 "components": {},
105 "connections": {},

134

106 "socketConnections": {
107 "inbound": {},
108 "outbound": {}
109 },
110 "DOM": {},
111 "__v": 0
112 },
113 "dashboardGraph": {
114 "version": 0,
115 "constraints": [],
116 "_id": "6496aabe4017577a81f0ed4a",
117 "id": "88e03b7f-80a4-4f9a-c392-aee72a419ed6",
118 "observatory_id": "6496aabe4017577a81f0ed4d",
119 "components": {},
120 "connections": {},
121 "socketConnections": {
122 "inbound": {},
123 "outbound": {}
124 },
125 "DOM": {},
126 "__v": 0
127 },
128 "edgeGraph": {
129 "version": 0,
130 "constraints": [],
131 "_id": "6496aabe4017577a81f0ed4b",
132 "id": "954c38b9-f7d4-4719-c373-bbfe39f31310",
133 "observatory_id": "6496aabe4017577a81f0ed4d",
134 "components": {},
135 "connections": {},
136 "socketConnections": {
137 "inbound": {},
138 "outbound": {}
139 },
140 "DOM": {},
141 "__v": 0
142 },
143 "mobileApp": {
144 "_id": "6496aabe4017577a81f0ed4c",
145 "name": "Simple application App",
146 "implementation": "9bf0d69f-90ea-4885-92ec-5ed53e2a2a2e",
147 "configuration": {
148 "layout": {
149 "mode": "SINGLE"
150 }
151 },
152 "__v": 0,
153 "id": "6496aabe4017577a81f0ed4c"
154 }
155 }

Listing A.1: JSON representation of an application flow-graph in
DisCoPar.

135

APPENDIX A. DISCOPAR APPLICATION GRAPH

136

Appendix B

Companion Functions for
Edge Components

Listing B.1 shows the portfolio of companion functions invoked to perform
edge components’ computation tasks.

1 function ReadTemperature() {
2 var temperature = readTemperatureFromSensor();
3 return temperature;
4 }
5
6 function CelciusToKelvin(temp) {
7 var kelvinTemp = parseInt(temp) + 273;
8 return kelvinTemp;
9 }

10
11 function CelciusToFarenheit(temp) {
12 var farenheitTemp = (parseInt(temp)*9/5) + 32;
13 return farenheitTemp;
14 }
15
16 function ReadHumidity() {
17 var humidity = readHumidityFromSensor();
18 return humidity;
19 }
20
21 function ReadSoilMoisture() {
22 var soilM = readSoilMoistureFromSensor();
23 return soilM;
24 }
25
26 function ComputeEdgeAverage(data) {
27 var count = 0;
28 var sum = 0;
29 sum += parseFloat(data);
30 count++;
31 return (sum/count);
32 }
33
34 function BufferOnDisk(data){
35 var storedData = storeOnDisk(data);
36 return storedData;
37 }
38
39 function Addition(a, b){

137

APPENDIX B. COMPANION FUNCTIONS FOR EDGE
COMPONENTS

40 return a + b;
41 }
42
43 function Subtraction(a, b){
44 return a - b;
45 }
46
47 function Multiplication(a, b){
48 return a * b;
49 }
50
51 function Exponentiation(a, b){
52 return Math.pow(a, b);
53 }
54
55 function Division(a, b){
56 return a/b;
57 }
58
59 function SetConstant(x){
60 return x;
61 }
62
63 function SetExponent(x){
64 return x;
65 }
66
67 function SetBase(x){
68 return x;
69 }
70
71 var preValue = null;
72 function PreviousValue(current){
73 var temp = preValue;
74 preValue = current;
75 return temp;
76 }
77
78 function SendData(conn, payload) {
79 var send_to_network = "";
80 send_to_network += conn;
81 send_to_network += "#";
82 send_to_network += payload;
83 sendDataToNetwork(send_to_network);
84 }

Listing B.1: Library of companion edge functions that are invoked when
edge components execute.

138

Appendix C

Extracting and Exporting
Edge Graph

Listing C.1 shows the DisCoPar-Kilimo implementation to extract the
edge application graph and build function calls that can be executed on
edge devices.

1 export function getInitialGraphNodes(graph) {
2 let eData = graph;
3 let cmpSet = new Set();
4 for (let cmps in eData.components) {
5 cmpSet.add(eData.components[cmps].id);
6 }
7
8 for (let cns in eData.connections) {
9 cmpSet.delete(eData.connections[cns].inPort.component);

10 }
11 return cmpSet;
12 }
13
14 export function processGraph(id, graph) {
15 const workList = [{ nodeId: id, parentNodesIDs: [] }]; // the first item does not have any parent
16 const visitedNodes = new Set;
17 const orderedNodes = [];
18 while (workList.length !== 0) {
19 //Dequeue the first node from the list
20 const currentNode = workList.shift();
21 if (visitedNodes.has(currentNode.nodeId)) continue;
22
23 if (hasAllDependencies(visitedNodes, currentNode.parentNodesIDs)) {
24 //the dependencies of the node has been resolved.
25 visitedNodes.add(currentNode.nodeId);
26
27 //Now its children can be add to the queue.
28 const children = getChildrenOf(currentNode.nodeId, graph.connections);
29 children.forEach(child => workList.push({
30 nodeId: child,
31 parentNodesIDs: getParentsOf(child, graph.connections)
32 }));
33 orderedNodes.push(currentNode);
34 } else {
35 //the node cannot be processed cause it dependencies are not yet resolved.
36 workList.push(currentNode);
37 }

139

APPENDIX C. EXTRACTING AND EXPORTING EDGE GRAPH

38 }
39 return orderedNodes;
40 }
41
42 function hasAllDependencies(available, myParents) {
43 for (const parent of myParents) {
44 if (!available.has(parent)) {
45 return false;
46 }
47 }
48 return true;
49 }
50
51 function getChildrenOf(outPort, edgesSet) {
52 const res = [];
53 for (const edge in edgesSet) {
54 if (edgesSet[edge].outPort.component === outPort) {
55 res.push(edgesSet[edge].inPort.component);
56 }
57 }
58 return res;
59 }
60
61 /** Compute the nodes’ id of the incoming arrows to a node */
62 function getParentsOf(nodeID, edgesSet) {
63 let parentsIDs = [];
64 for (const edge in edgesSet) {
65 if (edgesSet[edge].inPort.component === nodeID) {
66 parentsIDs.push(edgesSet[edge].outPort.component);
67 }
68 }
69 return parentsIDs;
70 }
71
72 export function buildEdgeGraph(computedNodes, edgeGraph) {
73 let str = "";
74
75 var edgeComponent = fs.readFileSync(’REFERENCE_BASEFILE’, ’utf8’);
76 str += edgeComponent + "\n ";
77
78 str += ‘\n function discoparLoop(){\n‘;
79 computedNodes.forEach((node, index) => {
80 const args = node.parentNodesIDs;
81 try {
82 const varName = ‘_${node.nodeId.replace(/-/g, "")}‘;
83 const edgeNode = edgeGraph.components[node.nodeId];
84 if (edgeNode) {
85 const edgeNodeName = edgeGraph.components[node.nodeId].name;
86 if (edgeNodeName && edgeGraph.components[node.nodeId].name !== "SetConstant" && edgeGraph.

components[node.nodeId].name !== "BufferData") {
87 const string = ‘var ${varName} = ${edgeNodeName}(${args.map(id => "_" + id.replace(/-/

g, ""))});‘;
88 str += string + "\n ";
89 } else if(edgeNodeName && edgeGraph.components[node.nodeId].name === "SetConstant") {
90 const string = ‘var ${varName} = ${edgeNodeName}(${edgeGraph.components[node.nodeId].

settings.constant.value});‘;
91 str += string + "\n ";
92 } else if(edgeNodeName && edgeGraph.components[node.nodeId].name === "BufferData") {
93 const string = ‘var ${varName} = ${edgeNodeName}(${edgeGraph.components[node.nodeId].

settings.bufferSize.value}, ${args.map(id => "_" + id.replace(/-/g, ""))});‘;
94 str += string + "\n ";
95 }
96 }
97
98 if (Object.getOwnPropertyNames(edgeGraph.socketConnections.outbound).some(name =>
99 edgeGraph.socketConnections.outbound[name].inPort.graph !== edgeGraph.socketConnections.

outbound[name].outPort.graph)) {
100 let conIDs = Object.getOwnPropertyNames(edgeGraph.socketConnections.outbound).filter(name

=> name.startsWith(node.nodeId));
101 if(conIDs[0]){
102 str += ‘ SendData("data:${conIDs[0]}", ${varName});\n‘;
103 }
104 }

140

105 } catch (err) {
106 console.error(’Error when printingFunctionNames: ’, err);
107 }
108 });
109 str += "}";
110 return str;
111 }

Listing C.1: Extracting and exporting the edge graph.

141

APPENDIX C. EXTRACTING AND EXPORTING EDGE GRAPH

142

Appendix D

Implementation of the
Networking Code for
Coordination with the Edge

Listing D.1 shows the implementation of the networking code that coor-
dinates communication between edge and mobile devices.
1 var express = require("express");
2 var http = require("http");
3 var app = express();
4 var server = http.Server(app);
5 var PORT = 4000;
6
7 server.listen(PORT, function () {
8 console.log("Communication bridge started on port: " + PORT);
9 });

10
11 function getParam(url, param){
12 var paramParts = url.split("?")[1].split("&");
13 for (const entry of paramParts){
14 var split = entry.split("=");
15 if(param === split[0]){
16 return split[1]
17 }
18 }
19 return undefined;
20 }
21
22 var io = require("socket.io")(server);
23 var ioc = require(’socket.io-client’);
24 var middleware = require("socketio-wildcard")();
25 io.use(middleware);
26 var mobileSocket = [];
27 var discoparServerSocket = ioc.connect(’address of discopar-k server’);
28
29 io.on("connection", (socket) => {
30 var connectedDevices = null;
31 if(socket.connected && getParam(socket.client.request.url,"device_type") === "esp32"){
32 connectedDevices = Array.from(io.sockets.sockets).map(socket => (socket[1].handshake.address).

substring(7, (socket[1].handshake.address).length));
33 }
34

143

APPENDIX D. IMPLEMENTATION OF THE NETWORKING
CODE FOR COORDINATION WITH THE EDGE

35 socket.on("disconnect", () => {
36 connectedDevices = Array.from(io.sockets.sockets).map(socket => socket[1].handshake.address);
37 });
38
39 if(getParam(socket.client.request.url,"device_type") === "phone"){
40 mobileSocket.push(socket);
41 socket.on("*", (packet) => {
42 var event = packet.data[0];
43 var data = packet.data[1];
44 if(event.startsWith("data:")){
45 discoparServerSocket.emit(event, data);
46 }
47 });
48 }
49
50 if(getParam(socket.client.request.url,"device_type") === "esp32"){
51 socket.on("discopar_k_event", (data) => {
52 if(mobileSocket && mobileSocket.length){
53 mobileSocket.map((s)=> {
54 s.emit("onmessage", connectedDevices);
55 s.emit(data.connection, {data: data});
56 });
57 }
58 });
59 }
60 });

Listing D.1: Communication bridge running on the mobile phone

144

Appendix E

Deployment

E.1 Resources Required

Deploying DisCoPar-Kilimo applications requires the following resources.

1. Webpack1 is a module bundler. Its primary purpose is to bundle
JavaScript files.

2. Cordova2 packages HTML/JavaScript source code into a native ap-
plication that can run on Android or iOS. It is a platform for building
hybrid mobile applications using HTML, CSS and JavaScript.

3. Visual studio code3 is an integrated development environment
(IDE) for code editing and debugging applications.

4. PlatformIO4 is a platform and IDE for developing embedded ap-
plications, e.g., Arduino applications.

5. M5StickC microcontroller is a portable IoT development board.
ESP32-PICO-D4 powers the board with Bluetooth 4.2 and WiFi
capabilities. The device is integrated with rich hardware resources,
such as infrared, real-time clock (RTC), microphone, and light emit-
ting diodes (LED).

1https://webpack.js.org/
2https://cordova.apache.org/
3https://code.visualstudio.com/
4https://platformio.org/

145

APPENDIX E. DEPLOYMENT

6. Smartphone is a portable computing device that combines the mo-
bile telephone and computing functions into one unit.

E.2 Mobile Application

1. Install a command line tool, e.g., Termux.

2. Specify the remote address for the DisCoPar-Kilimo server.

3. Copy the networking code file into the phone. The networking code
is a JavaScript file that creates a minimalist server instance on the
mobile phone when executed.

4. Navigate into the folder containing the networking code using the
installed command line tool.

5. Start the the networking code using “node «communication-bridge-
file-name».js” command.

6. Export the mobile application graph and copy it into the “www”
directory in the Cordova project.

7. Export the base DisCoPar-Kilimo application and copy it into the
js directory in the Cordova project.

8. Connect the mobile phone and run the command (cordova run “«target-
platform»”) to deploy app to the phone.

E.3 Edge Application

1. Download the edge graph and copy the file into /data/ directory of
the DisCoPar-Kilimo edge application project. The file contains the
edge application graph and the functions that are invoked when the
edge application executes.

2. Specify the network SSID and password.

3. Specify the address to the mobile device.

146

E.3. EDGE APPLICATION

4. Compile the file system using “platformio run –target buildfs –environment
m5stick-c” command and the edge application using “platformio run
–environment m5stick-c”. Both commands are supported by the
PlatformIO tool.

5. Install the file system to the device using the platformio run –target
uploadfs –environment m5stick-c command.

6. Install the edge application to the device using “platformio run –
target upload –environment m5stick-c” command.

147

APPENDIX E. DEPLOYMENT

148

Bibliography

[AAUS+19] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour,
and E. M. Aggoune. Internet-of-Things (IoT)-Based
Smart Agriculture: Toward Making the Fields Talk.
IEEE Access, 7:129551–129583, 2019. ISSN: 2169-
3536, DOI: 10.1109/ACCESS.2019.2932609.

[ACS10] Dave Arnold, Jean-Pierre Corriveau, and Wei Shi.
Scenario-Based Validation: Beyond the User Require-
ments Notation. In 2010 21st Australian Software
Engineering Conference, pages 75–84, Auckland, New
Zealand, 2010. IEEE. ISSN: 2377-5408, DOI: 10.1109/
ASWEC.2010.29.

[ADCB13] Matthew Aitkenhead, David Donnelly, Malcolm
Coull, and Helaina Black. E-SMART: Environmen-
tal Sensing for Monitoring and Advising in Real-Time.
In Jǐŕı Hřeb́ıček, Gerald Schimak, Miroslav Kubásek,
and Andrea E. Rizzoli, editors, Environmental Soft-
ware Systems. Fostering Information Sharing, pages
129–142, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN: 978-3-642-41151-9, DOI: 10.1007/
978-3-642-41151-9 13.

[AIMP+18] Arturo Aquino, Barrio Ignacio, Diago Maŕıa-Paz, Mil-
lan Borja, and Tardaguila Javier. vitisBerry: An
Android-smartphone application to early evaluate the
number of grapevine berries by means of image analy-
sis. Computers and Electronics in Agriculture, 148:19–
28, 2018. ISSN: 0168-1699, DOI: 10.1016/j.compag.
2018.02.021.

149

http://dx.doi.org/10.1109/ACCESS.2019.2932609
http://dx.doi.org/10.1109/ASWEC.2010.29
http://dx.doi.org/10.1109/ASWEC.2010.29
http://dx.doi.org/10.1007/978-3-642-41151-9_13
http://dx.doi.org/10.1007/978-3-642-41151-9_13
http://dx.doi.org/10.1016/j.compag.2018.02.021
http://dx.doi.org/10.1016/j.compag.2018.02.021

BIBLIOGRAPHY

[AKKM19] Griffiths G. Atungulu, R.E. Kolb, J. Karcher, and
Z. Mohammadi Shad. Postharvest technology:
Rice storage and cooling conservation. In Jin-
song Bao, editor, Rice (Fourth Edition), pages 517–
555. AACC International Press, fourth edition edi-
tion, 2019. ISBN: 978-0-12-811508-4, DOI: 10.1016/
B978-0-12-811508-4.00016-2.

[AMG+15] Arturo Aquino, Borja Millan, Daniel Gaston, Maŕıa-
Paz Diago, and Javier Tardaguila. vitisFlower R©:
Development and Testing of a Novel Android-
Smartphone Application for Assessing the Number of
Grapevine Flowers per Inflorescence Using Artificial
Vision Techniques. Sensors, 15(9):21204–21218, 2015.
ISSN: 1424-8220, DOI: 10.3390/s150921204.

[AUS20] Tewodros W. Ayalew, Jordan R. Ubbens, and Ian
Stavness. Unsupervised Domain Adaptation for Plant
Organ Counting. In Adrien Bartoli and Andrea
Fusiello, editors, Computer Vision – ECCV 2020
Workshops, pages 330–346, Cham, 2020. Springer
International Publishing. ISBN: 978-3-030-65414-6,
DOI: 10.1007/978-3-030-65414-6 23.

[BAAB15] A. C. Bartlett, A. A. Andales, M. Arabi, and T. A.
Bauder. A smartphone app to extend use of a cloud-
based irrigation scheduling tool. Computers and Elec-
tronics in Agriculture, 111:127–130, 2015. ISSN: 0168-
1699, DOI: 10.1016/j.compag.2014.12.021.

[BBF+19] Manlio Bacco, Paolo Barsocchi, Erina Ferro, Alberto
Gotta, and Massimiliano Ruggeri. The Digitisation of
Agriculture: a Survey of Research Activities on Smart
Farming. Array, 3–4:1–11, 2019. ISSN: 2590-0056,
DOI: 10.1016/j.array.2019.100009.

[BBKR23] Hamza Benyezza, Mounir Bouhedda, Reda Kara, and
Samia Rebouh. Smart platform based on IoT and
WSN for monitoring and control of a greenhouse in the
context of precision agriculture. Internet of Things,

150

http://dx.doi.org/10.1016/B978-0-12-811508-4.00016-2
http://dx.doi.org/10.1016/B978-0-12-811508-4.00016-2
http://dx.doi.org/10.3390/s150921204
http://dx.doi.org/10.1007/978-3-030-65414-6_23
http://dx.doi.org/10.1016/j.compag.2014.12.021
http://dx.doi.org/10.1016/j.array.2019.100009

BIBLIOGRAPHY

23:100830, 2023. ISSN: 2542-6605, DOI: 10.1016/j.
iot.2023.100830.

[BCIR22] Cheick Tidiane Ba, Chloé Choquet, Roberto Inter-
donato, and Mathieu Roche. Explaining Food Se-
curity Warning Signals with YouTube Transcriptions
and Local News Articles. In Proceedings of the 2022
ACM Conference on Information Technology for So-
cial Good, GoodIT’22, pages 315–322, New York,
NY, USA, 2022. Association for Computing Machin-
ery. ISBN: 9781450392846, DOI: 10.1145/3524458.
3547240.

[BGS20] M. Bexiga, S. Garbatov, and J. C. Seco. Closing the
gap between designers and developers in a low code
ecosystem. In Proceedings - 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems, MODELS-C 2020 - Companion
Proceedings, Virtual Event Canada, 2020. ISBN: 978-
1-4503-8135-2, DOI: 10.1145/3417990.3420195.

[BL12] Michael Blackstock and Rodger Lea. IoT mashups
with the WoTKit. In Proceedings of 2012 Interna-
tional Conference on the Internet of Things, IOT
2012, pages 159–166, Wuxi, China, 2012. ISBN: 978-
1-4673-1345-2, DOI: 10.1109/IOT.2012.6402318.

[BL14] Michael Blackstock and Rodger Lea. Toward a Dis-
tributed Data Flow Platform for the Web of Things
(Distributed Node-RED). In ACM International Con-
ference Proceeding Series, pages 34–39, New York,
NY, USA, 2014. ISBN: 978-1-4503-3066-4, DOI: 10.
1145/2684432.2684439.

[BM21] Travis Breaux and Jennifer Moritz. The 2021 Software
Developer Shortage is Coming. Communications of
the ACM, 64(7):39–41, June 2021. ISSN: 0001-0782,
DOI: 10.1145/3440753.

[BSDN19] Cheikh Saliou Mbacke Babou, Bernard Ousmane
Sane, Ibrahima Diane, and Ibrahima Niang. Home

151

http://dx.doi.org/10.1016/j.iot.2023.100830
http://dx.doi.org/10.1016/j.iot.2023.100830
http://dx.doi.org/10.1145/3524458.3547240
http://dx.doi.org/10.1145/3524458.3547240
http://dx.doi.org/10.1145/3417990.3420195
http://dx.doi.org/10.1109/IOT.2012.6402318
http://dx.doi.org/10.1145/2684432.2684439
http://dx.doi.org/10.1145/2684432.2684439
http://dx.doi.org/10.1145/3440753

BIBLIOGRAPHY

edge computing architecture for smart and sustainable
agriculture and breeding. In Proceedings of the 2nd
International Conference on Networking, Information
Systems & Security, NISS19, pages 1–7, New York,
NY, USA, 2019. Association for Computing Machin-
ery. ISBN: 978-1-4503-6645-8, DOI: 10.1145/3320326.
3320377.

[BSJA16] J. Bauer, B. Siegmann, T. Jarmer, and N. Aschen-
bruck. Smart fLAIr: A smartphone application for
fast LAI retrieval using Ambient Light Sensors. In
2016 IEEE Sensors Applications Symposium (SAS),
pages 1–6, Catania, Italy, 2016. ISBN: 978-1-4799-
7250-0, DOI: 10.1109/SAS.2016.7479880.

[BSS+15] M. Busse, W. Schwerdtner, R. Siebert, A. Doern-
berg, A. Kuntosch, B. König, and W. Bokelmann.
Analysis of animal monitoring technologies in Ger-
many from an innovation system perspective. Agri-
cultural Systems, 138:55–65, 2015. ISSN:0308-521X,
DOI: 10.1016/j.agsy.2015.05.009.

[BSZ+21] Heinz Bernhardt, Leon Schumacher, Jianfeng Zhou,
Maximilian Treiber, and Kent Shannon. Digital Agri-
culture Infrastructure in the USA and Germany. En-
gineering Proceedings, 9(1), 2021. ISSN: 2673-4591,
DOI: 10.3390/engproc2021009001.

[Bur99] Margaret M. Burnett. Visual Programming. In Wiley
Encyclopedia of Electrical and Electronics Engineer-
ing. John Wiley & Sons, Ltd, 1999. ISBN: 978-0-4713-
4608-1, DOI: 10.1002/047134608X.W1707.

[BWO+20] Markus Borg, Joakim Wernberg, Thomas Olsson, Ul-
rik Franke, and Martin Andersson. Illuminating a
Blind Spot in Digitalization - Software Development
in Sweden’s Private and Public Sector. In Proceed-
ings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops, ICSEW’20,

152

http://dx.doi.org/10.1145/3320326.3320377
http://dx.doi.org/10.1145/3320326.3320377
http://dx.doi.org/10.1109/SAS.2016.7479880
http://dx.doi.org/10.1016/j.agsy.2015.05.009
http://dx.doi.org/10.3390/engproc2021009001
http://dx.doi.org/10.1002/047134608X.W1707

BIBLIOGRAPHY

pages 299–302, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN: 978-1-4503-
7963-2, DOI: 10.1145/3387940.3392213.

[CFC+13] R. Confalonieri, M. Foi, R. Casa, S. Aquaro, E. Tona,
M. Peterle, A. Boldini, G. D. Carli, A. Ferrari,
G. Finotto, T. Guarneri, V. Manzoni, E. Movedi,
A. Nisoli, L. Paleari, I. Radici, M. Suardi, D. Veronesi,
S. Bregaglio, G. A. Cappelli, M. E. Chiodini, P. Domi-
noni, C. Francone, N. Frasso, T. Stella, and M. Acutis.
Development of an app for estimating leaf area index
using a smartphone. Trueness and precision determi-
nation and comparison with other indirect methods.
Computers and Electronics in Agriculture, 96:67–74,
2013. ISSN: 0168-1699, DOI: 10.1016/j.compag.2013.
04.019.

[CFM+19] Maria Otilia Carvalho, Patŕıcia Fradinho, M. João
Martins, Ana Magro, Anabela Raymundo, and Is-
abel de Sousa. Paddy rice stored under hermetic
conditions: The effect of relative humidity, temper-
ature and storage time in suppressing Sitophilus zea-
mais and impact on rice quality. Journal of Stored
Products Research, 80:21–27, 2019. ISSN: 0022-474X,
DOI: 10.1016/j.jspr.2018.11.002.

[Cha87a] Shi-Kuo Chang. Icon Semantics – a Formal Ap-
proach to Icon System Design. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
1(1):103–120, apr 1987. ISSN: 0218-0014, DOI: 10.
1142/S0218001487000084.

[Cha87b] Shi-Kuo Chang. Visual Languages: A Tutorial and
Survey. IEEE Software, 4(1):29–39, 1987. ISSN: 1937-
4194, DOI: 10.1109/MS.1987.229792.

[CJS+17] Francisco Carpio, Admela Jukan, Ana Isabel Mart́ın
Sanchez, Nina Amla, and Nicole Kemper. Beyond Pro-
duction Indicators: A Novel Smart Farming Applica-
tion and System for Animal Welfare. In Proceedings

153

http://dx.doi.org/10.1145/3387940.3392213
http://dx.doi.org/10.1016/j.compag.2013.04.019
http://dx.doi.org/10.1016/j.compag.2013.04.019
http://dx.doi.org/10.1016/j.jspr.2018.11.002
http://dx.doi.org/10.1142/S0218001487000084
http://dx.doi.org/10.1142/S0218001487000084
http://dx.doi.org/10.1109/MS.1987.229792

BIBLIOGRAPHY

of the Fourth International Conference on Animal-
Computer Interaction, ACI2017, New York, NY, USA,
2017. Association for Computing Machinery. ISBN:
978-1-4503-5364-9, DOI: 10.1145/3152130.3152140.

[CK02] Jarinee Chattratichart and Jasna Kuljis. Exploring
the Effect of Control-Flow and Traversal Direction on
VPL Usability for Novices. Journal of Visual Lan-
guages & Computing, 13(5):471–500, 2002. ISSN:
1045-926X, DOI: 10.1006/jvlc.2002.0240.

[CKR19] Francisco Ceballos, Berber Kramer, and Miguel Rob-
les. The feasibility of picture-based insurance (PBI):
Smartphone pictures for affordable crop insurance.
Development Engineering, 4:100042, 2019. ISSN:
2352-7285, DOI: 10.1016/j.deveng.2019.100042.

[CLDAOPMPA20] Antonio Manuel Ciruela-Lorenzo, Ana Rosa Del-
Aguila-Obra, Antonio Padilla-Meléndez, and
Juan José Plaza-Angulo. Digitalization of Agri-
Cooperatives in the Smart Agriculture Context. Pro-
posal of a Digital Diagnosis Tool. Sustainability, 12(4),
2020. ISSN: 2071-1050, DOI: 10.3390/su12041325.

[CSJK17] Marcel Caria, Jasmin Schudrowitz, Admela Jukan,
and Nicole Kemper. Smart farm computing sys-
tems for animal welfare monitoring. In 2017 40th In-
ternational Convention on Information and Commu-
nication Technology, Electronics and Microelectron-
ics, MIPRO, pages 152–157, Opatija, Croatia, 2017.
IEEE. ISBN: 978-9-5323-3092-2, DOI: 10.23919/
MIPRO.2017.7973408.

[DAEA18] Gideon Danso-Abbeam, Dennis Sedem Ehiakpor, and
Robert Aidoo. Agricultural extension and its effects
on farm productivity and income: insight from North-
ern Ghana. Agriculture & Food Security, 7(74), 2018.
ISSN: 2048-7010, DOI: 10.1186/s40066-018-0225-x.

[DBR20] Kristin E. Davis, Suresh Chandra Babu, and Cather-
ine Ragasa. Agricultural extension: Global status

154

http://dx.doi.org/10.1145/3152130.3152140
http://dx.doi.org/10.1006/jvlc.2002.0240
http://dx.doi.org/10.1016/j.deveng.2019.100042
http://dx.doi.org/10.3390/su12041325
http://dx.doi.org/10.23919/MIPRO.2017.7973408
http://dx.doi.org/10.23919/MIPRO.2017.7973408
http://dx.doi.org/10.1186/s40066-018-0225-x

BIBLIOGRAPHY

and performance in selected countries. Washington,
DC: International Food Policy Research Institute (IF-
PRI), 2020. ISBN: 978-0-89629-375-5, DOI: 10.2499/
9780896293755.

[DFG+16] Roberta De Bei, Sigfredo Fuentes, Matthew Gilliham,
Steve Tyerman, Everard Edwards, Nicolò Bianchini,
Jason Smith, and Cassandra Collins. VitiCanopy: A
Free Computer App to Estimate Canopy Vigor and
Porosity for Grapevine. Sensors, 16(4), 2016. ISSN:
1424-8220, DOI: 10.3390/s16040585.

[ECA+19] Anton Eitzinger, James Cock, Karl Atzmanstorfer,
Claudia R. Binder, Peter Läderach, Osana Bonilla-
Findji, Mona Bartling, Caroline Mwongera, Leo Zu-
rita, and Andy Jarvis. GeoFarmer: A monitoring and
feedback system for agricultural development projects.
Computers and Electronics in Agriculture, 158:109–
121, 2019. ISSN: 0168-1699, DOI: 10.1016/j.compag.
2019.01.049.

[EEE21] Ann Nnenna Ezeh, Anayochukwu Victor Eze, and Es-
ther Onyinyechi Eze. Extension Agents’ Use of Mobile
Phone Applications for Agricultural Extension Service
Delivery in Ebonyi State Agricultural Development
Programme, Nigeria. Journal of Agricultural Exten-
sion, 25, 2021. ISSN: 2408-6851, DOI: 10.4314/jae.
v25i1.6.

[ESEKA+21] AbdAllah M. El-Sanatawy, Ahmed S. M. El-Kholy,
Mohamed M. A. Ali, Mohamed F. Awad, and Elsayed
Mansour. Maize Seedling Establishment, Grain Yield
and Crop Water Productivity Response to Seed Prim-
ing and Irrigation Management in a Mediterranean
Arid Environment. Agronomy, 11(4), 2021. ISSN:
2073-4395, DOI: 10.3390/agronomy11040756.

[ETDS20] Ezinne M. Emeana, Liz Trenchard, and Katharina
Dehnen-Schmutz. The Revolution of Mobile Phone-
Enabled Services for Agricultural Development (m-

155

http://dx.doi.org/10.2499/9780896293755
http://dx.doi.org/10.2499/9780896293755
http://dx.doi.org/10.3390/s16040585
http://dx.doi.org/10.1016/j.compag.2019.01.049
http://dx.doi.org/10.1016/j.compag.2019.01.049
http://dx.doi.org/10.4314/jae.v25i1.6
http://dx.doi.org/10.4314/jae.v25i1.6
http://dx.doi.org/10.3390/agronomy11040756

BIBLIOGRAPHY

Agri Services) in Africa: The Challenges for Sustain-
ability. Sustainability, 12(2), 2020. ISSN: 2071-1050,
DOI: 10.3390/su12020485.

[FBPT12] Sigfredo Fuentes, Roberta De Bei, C. Pozo, and
Stephen D. Tyerman. Development of a smart-
phone application to characterise temporal and spatial
canopy architecture and leaf area index for grapevines.
Wine and Viticulture Journal, 27(6):56–60, 11 2012.
ISSN: 1838-6547.

[FCO+16] Jason Connor Ferguson, Rodolfo Glauber Chechetto,
Chris C. O’Donnell, Bradley Keith Fritz, Wesley Clint
Hoffmann, Chet E. Coleman, Bhagirath Singh
Chauhan, Steve William Adkins, Greg Robert Kruger,
and Andrew J. Hewitt. Assessing a Novel Smartphone
Application - SnapCard, Compared to Five Imaging
Systems to Quantify Droplet Deposition on Artificial
Collectors. Computers and Electronics in Agricul-
ture, 128(C):193–198, October 2016. ISSN: 0168-1699,
DOI: 10.1016/j.compag.2016.08.022.

[FPEOF+14] Sigfredo Fuentes, C. Poblete-Echeverŕıa, S. Ortega-
Farias, S. Tyerman, and Roberta De Bei. Automated
estimation of leaf area index from grapevine canopies
using cover photography, video and computational
analysis methods. Australian Journal of Grape and
Wine Research, 20(3):465–473, 2014. ISSN: 1755-0238,
DOI: 10.1111/ajgw.12098.

[FSC13] Lutz Frommberger, Falko Schmid, and Chunyuan
Cai. Micro-Mapping with Smartphones for Monitor-
ing Agricultural Development. In Proceedings of the
3rd ACM Symposium on Computing for Development,
ACM DEV’13, pages 1–2, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN: 978-1-
4503-1856-3, DOI: 10.1145/2442882.2442934.

[FSW+23] Laura Foster, Katie Szilagyi, Angeline Wairegi, Chidi
Oguamanam, and Jeremy de Beer. Smart farming

156

http://dx.doi.org/10.3390/su12020485
http://dx.doi.org/10.1016/j.compag.2016.08.022
http://dx.doi.org/10.1111/ajgw.12098
http://dx.doi.org/10.1145/2442882.2442934

BIBLIOGRAPHY

and artificial intelligence in East Africa: Address-
ing indigeneity, plants, and gender. Smart Agricul-
tural Technology, 3:100132, 2023. ISSN: 2772-3755,
DOI: 10.1016/j.atech.2022.100132.

[GBLL15] Nam Ky Giang, Michael Blackstock, Rodger Lea, and
Victor C. M. Leung. Developing IoT applications
in the Fog: A Distributed Dataflow approach. In
2015 5th International Conference on the Internet of
Things (IOT), pages 155–162, Seoul, Korea (South),
2015. ISBN: 978-1-4673-8058-4, DOI: 10.1109/IOT.
2015.7356560.

[GBP+23a] Girma Gebresenbet, Techane Bosona, David Patter-
son, Henrik Persson, Benjamin Fischer, Nerea Man-
daluniz, Gherardo Chirici, Aleksejs Zacepins, Vitalijs
Komasilovs, Tudor Pitulac, and Abozar Nasirahmadi.
A concept for application of integrated digital tech-
nologies to enhance future smart agricultural systems.
Smart Agricultural Technology, 5:100255, 2023. ISSN:
2772-3755, DOI: 10.1016/j.atech.2023.100255.

[GBP+23b] Girma Gebresenbet, Techane Bosona, David Patter-
son, Henrik Persson, Benjamin Fischer, Nerea Man-
daluniz, Gherardo Chirici, Aleksejs Zacepins, Vitalijs
Komasilovs, Tudor Pitulac, and Abozar Nasirahmadi.
A concept for application of integrated digital tech-
nologies to enhance future smart agricultural systems.
Smart Agricultural Technology, 5:100255, 2023.

[GKOK23] Stephen Gitahi, Dennis Mugambi Kaburu,
Isaac Nyabisa Oteyo, and Stephen Kimani. A Model
Implementation of Internet of Things (IoT)-based
Smart Watering System for Crops using LoRaWAN.
In 2023 IST-Africa Conference (IST-Africa), pages 1–
8, Cape Town, South Africa, 2023. ISSN: 2576-8581,
DOI: 10.23919/IST-Africa60249.2023.10187864.

[GS22] Pedro Galhardo and Alberto Rodrigues da Silva.
Combining Rigorous Requirements Specifications with

157

http://dx.doi.org/10.1016/j.atech.2022.100132
http://dx.doi.org/10.1109/IOT.2015.7356560
http://dx.doi.org/10.1109/IOT.2015.7356560
http://dx.doi.org/10.1016/j.atech.2023.100255
http://dx.doi.org/10.23919/IST-Africa60249.2023.10187864

BIBLIOGRAPHY

Low-Code Platforms to Rapid Development Software
Business Applications. Applied Sciences, 12(19), 2022.
ISSN: 2076-3417, DOI: 10.3390/app12199556.

[GTTSBR+19] Juan D. González-Teruel, Roque Torres-Sánchez, Pe-
dro J. Blaya-Ros, Ana B. Toledo-Moreo, Manuel
Jiménez-Buenda, and Fulgencio Soto-Valles. Design
and Calibration of a Low-Cost SDI-12 Soil Moisture
Sensor. 19(3), 2019. ISSN: 1424-8220, DOI: 10.3390/
s19030491.

[HBB+16] Jeffrey E. Herrick, Adam Beh, Edmundo Barrios,
Ioana Bouvier, Marina Coetzee, David Dent, Emile
Elias, Tomislav Hengl, Jason W. Karl, Hanspeter Lin-
iger, John Matuszak, Jason C. Neff, Lilian Wangui
Ndungu, Michael Obersteiner, Keith D. Shepherd,
Kevin C. Urama, Rik Bosch, and Nicholas P. Webb.
The Land–Potential Knowledge System (LandPKS):
mobile apps and collaboration for optimizing climate
change investments. Ecosystem Health and Sustain-
ability, 2(3):e01209, 2016. ISSN: 2332-8878, DOI: 10.
1002/ehs2.1209.

[HD18] Jerry L. Hatfield and Christian Dold. Climate Change
Impacts on Corn Phenology and Productivity. In
Amanullah and Shah Fahad, editors, Corn - Produc-
tion and Human Health in Changing Climate, chap-
ter 6. IntechOpen, Rijeka, 2018. ISBN: 978-1-78984-
156-5, DOI: 10.5772/intechopen.76933.

[HHRHGM+16] Jose Luis Hernández Hernández, J. Ruiz-Hernández,
Ginés Garćıa-Mateos, Jose Manuel Esquiva, Antonio
Ruiz-Canales, and José Mart́ınez. A new portable
application for automatic segmentation of plants in
agriculture. Agricultural Water Management, 183, 08
2016. ISSN: 1873-2283, DOI: 10.1016/j.agwat.2016.
08.013.

[HP15] Jerry L. Hatfield and John H. Prueger. Temperature
extremes: Effect on plant growth and development.

158

http://dx.doi.org/10.3390/app12199556
http://dx.doi.org/10.3390/s19030491
http://dx.doi.org/10.3390/s19030491
http://dx.doi.org/10.1002/ehs2.1209
http://dx.doi.org/10.1002/ehs2.1209
http://dx.doi.org/10.5772/intechopen.76933
http://dx.doi.org/10.1016/j.agwat.2016.08.013
http://dx.doi.org/10.1016/j.agwat.2016.08.013

BIBLIOGRAPHY

Weather and Climate Extremes, 10:4–10, 2015. USDA
Research and Programs on Extreme Events, ISSN:
2212-0947, DOI: 10.1016/j.wace.2015.08.001.

[ISY+17] Mehmet Fatih IÅik, Yusuf Sönmez, Cemal Yilmaz,
Veysel Özdemir, and Ercan Nurcan Yilmaz. Precision
Irrigation System (PIS) using sensor network technol-
ogy integrated with IOS/Android Application. Ap-
plied Sciences (Switzerland), 7(891):1–14, 2017. ISSN:
2076-3417, DOI: 10.3390/app7090891.

[JEM+16] René Jordan, Gaius Eudoxie, Kiran Maharaj, Renaldo
Belfon, and Margaret Bernard. AgriMaps: Improving
site-specific land management through mobile maps.
Computers and Electronics in Agriculture, 123:292–
296, 2016. ISSN: 0168-1699, DOI: 10.1016/j.compag.
2016.02.009.

[JHKS23] Mohd Javaid, Abid Haleem, Ibrahim Haleem Khan,
and Rajiv Suman. Understanding the potential appli-
cations of Artificial Intelligence in Agriculture Sector.
Advanced Agrochem, 2(1):15–30, 2023. ISSN: 2773-
2371, DOI: 10.1016/j.aac.2022.10.001.

[JYG+16] Prem Prakash Jayaraman, Ali Yavari, Dimitrios Geor-
gakopoulos, Ahsan Morshed, and Arkady Zaslavsky.
Internet of things platform for smart farming: Ex-
periences and lessons learnt. Sensors (Switzerland),
16(11):1–17, 2016. ISSN: 1424-8220, DOI: 10.3390/
s16111884.

[KAMH21] Hazem S. Kassem, Bader Alhafi Alotaibi, Muhammad
Muddassir, and Ahmed Herab. Factors influencing
farmers’ satisfaction with the quality of agricultural
extension services. Evaluation and Program Planning,
85:101912, 2021. ISSN: 0149-7189, DOI: 10.1016/j.
evalprogplan.2021.101912.

[KFHB21] Mohammad Amin Kuhail, Shahbano Farooq, Rawad
Hammad, and Mohammed Bahja. Characterizing

159

http://dx.doi.org/10.1016/j.wace.2015.08.001
http://dx.doi.org/10.3390/app7090891
http://dx.doi.org/10.1016/j.compag.2016.02.009
http://dx.doi.org/10.1016/j.compag.2016.02.009
http://dx.doi.org/10.1016/j.aac.2022.10.001
http://dx.doi.org/10.3390/s16111884
http://dx.doi.org/10.3390/s16111884
http://dx.doi.org/10.1016/j.evalprogplan.2021.101912
http://dx.doi.org/10.1016/j.evalprogplan.2021.101912

BIBLIOGRAPHY

Visual Programming Approaches for End-User De-
velopers: A Systematic Review. IEEE Access,
9:14181–14202, 2021. ISSN: 2169-3536, DOI: 10.1109/
ACCESS.2021.3051043.

[KKE+19] Andrea Knierim, Maria Kernecker, Klaus Erdle,
Teresa Kraus, Friederike Borges, and Angelika Wurbs.
Smart farming technology innovations – Insights and
reflections from the German Smart-AKIS hub. NJAS
- Wageningen Journal of Life Sciences, 90-91:100314,
2019. ISSN: 1573-5214, DOI: 10.1016/j.njas.2019.
100314.

[LBJ01] Mounir Louhaichi, Michael M. Borman, and Dou-
glas E. Johnson. Spatially Located Platform and
Aerial Photography for Documentation of Graz-
ing Impacts on Wheat. Geocarto International,
16(1):65–70, 2001. ISSN: 1752-0762, DOI: 10.1080/
10106040108542184.

[LCAD13] Richard K. Lomotey, Yiding Chai, Kazi A. Ahmed,
and Ralph Deters. Web services mobile application
for geographically dispersed crop farmers. In Proceed-
ings - 16th IEEE International Conference on Com-
putational Science and Engineering, CSE 2013, pages
151–158, Sydney, NSW, Australia, 2013. IEEE. ISBN:
978-0-7695-5096-1, DOI: 10.1109/CSE.2013.33.

[LCJD13] Richard K. Lomotey, Yiding Chai, Shomoyita Jamal,
and Ralph Deters. MobiCrop: Supporting crop farm-
ers with a cloud-enabled mobile app. In Proceed-
ings - IEEE 6th International Conference on Service-
Oriented Computing and Applications, SOCA 2013,
pages 182–189, Koloa, HI, USA, 2013. IEEE. ISBN:
978-1-4799-2701-2, DOI: 10.1109/SOCA.2013.19.

[LK13] Bo Liu and A. Bulent Koc. SafeDriving: A mobile ap-
plication for tractor rollover detection and emergency
reporting. Computers and Electronics in Agriculture,

160

http://dx.doi.org/10.1109/ACCESS.2021.3051043
http://dx.doi.org/10.1109/ACCESS.2021.3051043
http://dx.doi.org/10.1016/j.njas.2019.100314
http://dx.doi.org/10.1016/j.njas.2019.100314
http://dx.doi.org/10.1080/10106040108542184
http://dx.doi.org/10.1080/10106040108542184
http://dx.doi.org/10.1109/CSE.2013.33
http://dx.doi.org/10.1109/SOCA.2013.19

BIBLIOGRAPHY

98:117–120, 2013. ISSN: 0168-1699, DOI: 10.1016/j.
compag.2013.08.002.

[LMBS23] Martin J. Luna Juncal, Pietro Masino, Edoardo
Bertone, and Rodney A. Stewart. Towards nutri-
ent neutrality: A review of agricultural runoff miti-
gation strategies and the development of a decision-
making framework. Science of The Total Environ-
ment, 874:162408, 2023. ISSN: 0048-9697, DOI: 10.
1016/j.scitotenv.2023.162408.

[MAG16] E. Misaki, M. Apiola, and S. Gaiani. Technology
for small scale farmers in Tanzania: A design sci-
ence research approach. Electronic Journal of Infor-
mation Systems in Developing Countries, 74(4):1–15,
2016. ISSN: 1681-4835, DOI: 10.1002/j.1681-4835.
2016.tb00538.x.

[MAGT18] Ezra Misaki, Mikko Apiola, Silvia Gaiani, and Matti
Tedre. Challenges facing sub-Saharan small-scale
farmers in accessing farming information through mo-
bile phones: A systematic literature review. The Elec-
tronic Journal of Information Systems in Develop-
ing Countries, 84(4):e12034, 2018. ISSN: 1681-4835,
DOI: 10.1002/isd2.12034.

[MCCGdGF12] Francisco Javier Mesas-Carrascosa, Isabel Luisa
Castillejo-González, Manuel Sánchez de la Orden, and
Alfonso Garćıa-Ferrer. Real-time mobile phone appli-
cation to support land policy. Computers and Elec-
tronics in Agriculture, 85:109–111, 2012. ISSN: 0168-
1699, DOI: 10.1016/j.compag.2012.04.003.

[MLDGd23] Francisco Mart́ınez-Lasaca, Pablo Dı́ez, Esther
Guerra, and Juan de Lara. Dandelion: A scal-
able, cloud-based graphical language workbench for
industrial low-code development. Journal of Com-
puter Languages, 76:101217, 2023. ISSN: 2590-1184,
DOI: 10.1016/j.cola.2023.101217.

161

http://dx.doi.org/10.1016/j.compag.2013.08.002
http://dx.doi.org/10.1016/j.compag.2013.08.002
http://dx.doi.org/10.1016/j.scitotenv.2023.162408
http://dx.doi.org/10.1016/j.scitotenv.2023.162408
http://dx.doi.org/10.1002/j.1681-4835.2016.tb00538.x
http://dx.doi.org/10.1002/j.1681-4835.2016.tb00538.x
http://dx.doi.org/10.1002/isd2.12034
http://dx.doi.org/10.1016/j.compag.2012.04.003
http://dx.doi.org/10.1016/j.cola.2023.101217

BIBLIOGRAPHY

[MLJ+20] Danse Myrtille, Klerkx Laurens, Reintjes Jorrit, Rab-
binge Rudy, and Leeuwis Cees. Unravelling inclusive
business models for achieving food and nutrition se-
curity in BOP markets. Global Food Security, 24:1–
15, 2020. ISSN: 2211-9124, DOI: 10.1016/j.gfs.2020.
100354.

[MMC19] L. Myeni, M. E. Moeletsi, and A. D. Clulow. Present
status of soil moisture estimation over the African con-
tinent. Journal of Hydrology: Regional Studies, 21:14–
24, 2019. ISSN: 2214-5818, DOI: 10.1016/j.ejrh.2018.
11.004.

[MMCR13] Jean-Vivien Millo, Frédéric Mallet, Anthony Coadou,
and S. Ramesh. Scenario-based verification in presence
of variability using a synchronous approach. Frontiers
of Computer Science, 7(5):650–672, 2013. ISSN: 2095-
2236, DOI: 10.1007/s11704-013-3094-6.

[MMJRCFP11] Jose M. Molina-Mart́ınez, Manuel Jiménez, Anto-
nio Ruiz-Canales, and Daniel G. Fernández-Pacheco.
RaGPS: A software application for determining ex-
traterrestrial radiation in mobile devices with GPS.
Computers and Electronics in Agriculture, 78(1):116–
121, 2011. ISSN: 0168-1699, DOI: 10.1016/j.compag.
2011.06.009.

[MMR+21] Zia Mehrabi, Mollie J. McDowell, Vincent Riccia-
rdi, Christian Levers, Juan Diego Martinez, Natascha
Mehrabi, Hannah Wittman, Navin Ramankutty, and
Andy Jarvis. The global divide in data-driven farm-
ing. Nature Sustainability, 4:154–160, 2021.

[MOA+16] Bruno Brandoli Machado, Jonatan P. M. Orue,
Mauro S. Arruda, Cleidimar V. Santos, Diogo S.
Sarath, Wesley N. Goncalves, Gercina G. Silva,
Hemerson Pistori, Antonia Railda Roel, and Jose F.
Rodrigues-Jr. BioLeaf: A professional mobile ap-
plication to measure foliar damage caused by insect
herbivory. Computers and Electronics in Agriculture,

162

http://dx.doi.org/10.1016/j.gfs.2020.100354
http://dx.doi.org/10.1016/j.gfs.2020.100354
http://dx.doi.org/10.1016/j.ejrh.2018.11.004
http://dx.doi.org/10.1016/j.ejrh.2018.11.004
http://dx.doi.org/10.1007/s11704-013-3094-6
http://dx.doi.org/10.1016/j.compag.2011.06.009
http://dx.doi.org/10.1016/j.compag.2011.06.009

BIBLIOGRAPHY

129:44–55, 2016. ISSN: 0168-1699, DOI: 10.1016/j.
compag.2016.09.007.

[Mor10] John Paul Morrison. Flow-Based Programming: A
New Approach to Application Development. CreateS-
pace, Paramount, CA, California, 2nd edition, 2010.
ISBN: 978-1-4515-4232-5.

[MP23] Eder Martinez and Louis Pfister. Benefits and limi-
tations of using low-code development to support dig-
italization in the construction industry. Automation
in Construction, 152:104909, 2023. ISSN: 0926-5805,
DOI: 10.1016/j.autcon.2023.104909.

[MPT+17] Quang Tran Minh, Trong Nhan Phan, Akihiko
Takahashi, Tam Thai Thanh, Son Nguyen Duy,
Mong Nguyen Thanh, and Chau Nguyen Hong. A
Cost-Effective Smart Farming System with Knowl-
edge Base. In Proceedings of the Eighth International
Symposium on Information and Communication Tech-
nology, SoICT 2017, pages 309–316, Nha Trang City,
Viet Nam, 2017. Association for Computing Machin-
ery. ISBN: 978-1-4503-5328-1, DOI: 10.1145/3155133.
3155151.

[MSA+18] Bruno Brandoli Machado, Gabriel Spadon, Mauro S.
Arruda, Wesley N. Goncalves, Andre C. P. L. F. Car-
valho, and Jose F. Rodrigues-Jr. A smartphone ap-
plication to measure the quality of pest control spray-
ing machines via image analysis. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing,
SAC ’18, Pau, France, April 2018. ACM. ISBN: 978-
1-4503-5191-1, DOI: 10.1145/3167132.3167237.

[MSR+18] Ajay Mittal, Sanat Sarangi, Saranya Ramanath,
Prakruti V. Bhatt, Rahul Sharma, and P. Srini-
vasu. IoT-Based Precision Monitoring of Horticul-
tural Crops-A Case-Study on Cabbage and Capsicum.
In Proceedings of GHTC 2018 - IEEE Global Hu-
manitarian Technology Conference, pages 1–7, San

163

http://dx.doi.org/10.1016/j.compag.2016.09.007
http://dx.doi.org/10.1016/j.compag.2016.09.007
http://dx.doi.org/10.1016/j.autcon.2023.104909
http://dx.doi.org/10.1145/3155133.3155151
http://dx.doi.org/10.1145/3155133.3155151
http://dx.doi.org/10.1145/3167132.3167237

BIBLIOGRAPHY

Jose, CA, 2018. IEEE. ISBN: 978-1-5386-5566-5,
DOI: 10.1109/GHTC.2018.8601908.

[MUH+13] Yukikazu Murakami, Slamet Kristanto Tirto Utomo,
Keita Hosono, Takeshi Umezawa, and Noritaka Os-
awa. iFarm: Development of cloud-based system of
cultivation management for precision agriculture. In
2013 IEEE 2nd Global Conference on Consumer Elec-
tronics, GCCE 2013, pages 233–234, Tokyo, Japan,
2013. IEEE. ISBN: 978-1-4799-0892-9, DOI: 10.1109/
GCCE.2013.6664809.

[MVd19] Walter Maldonado, Taynara Tuany Borges Valeriano,
and Glauco de Souza Rolim. EVAPO: A smart-
phone application to estimate potential evapotranspi-
ration using cloud gridded meteorological data from
NASA-POWER system. Computers and Electronics
in Agriculture, 156:187–192, 2019. ISSN: 0168-1699,
DOI: 10.1016/j.compag.2018.10.032.

[Net] NTK Getting Started Steps. https://www.
netlabtoolkit.org/overview/, Accessed: 2022-11-
25.

[Ngu15] Vu Thien Nga Nguyen. An Efficient Execution Model
for Reactive Stream Programs. PhD thesis, Univer-
sity of Hertfordshire, 2015. ISBN: 978-9-49231-289-1,
DOI: 10.18745/th.16361.

[NiF] Apache Ni-Fi Overview. https://nifi.apache.org/
docs.html, Accessed: 2022-11-24.

[Nof] Getting started with NoFlo. https://noflojs.org/
documentation/, Accessed: 2022-11-24.

[NPSO96] F. Nelson, T. Pickett, W. Smith, and L. Ott. The
GreenStar precision farming system. In Proceed-
ings of Position, Location and Navigation Sympo-
sium - PLANS’96, pages 6–9, Atlanta, GA, USA,
1996. ISBN: 0-7803-3085-4, DOI: 10.1109/PLANS.
1996.509048.

164

http://dx.doi.org/10.1109/GHTC.2018.8601908
http://dx.doi.org/10.1109/GCCE.2013.6664809
http://dx.doi.org/10.1109/GCCE.2013.6664809
http://dx.doi.org/10.1016/j.compag.2018.10.032
https://www.netlabtoolkit.org/overview/
https://www.netlabtoolkit.org/overview/
http://dx.doi.org/10.18745/th.16361
https://nifi.apache.org/docs.html
https://nifi.apache.org/docs.html
https://noflojs.org/documentation/
https://noflojs.org/documentation/
http://dx.doi.org/10.1109/PLANS.1996.509048
http://dx.doi.org/10.1109/PLANS.1996.509048

BIBLIOGRAPHY

[NTGS19] Joseph Noor, Hsiao Yun Tseng, Luis Garcia, and Mani
Srivastava. DDFlow: Visualized declarative program-
ming for heterogeneous IoT networks. In IoTDI 2019
- Proceedings of the 2019 Internet of Things Design
and Implementation, IoTDI’19, pages 172–177, Mon-
treal, Quebec, Canada, 2019. ISBN: 978-1-4503-6283-
2, DOI: 10.1145/3302505.3310079.

[NU16] Chioma Udo Nwaobiala and Victoria Uchechi Ubor.
Effectiveness of electronic wallet system of growth en-
hancement support scheme distribution among arable
crop farmers in Imo State, South East Nigeria. Scien-
tific Papers Series Management, Economic Engineer-
ing in Agriculture and Rural Development, 16(1):355–
360, 2016. ISSN: 2284-7995.

[OCC+13] Tyson E. Ochsner, Michael H. Cosh, Richard H.
Cuenca, Wouter A. Dorigo, Clara S. Draper, Yutaka
Hagimoto, Yann H. Kerr, Kristine M. Larson, Eni G.
Njoku, Eric E. Small, and Marek Zreda. State of
the Art in Large-Scale Soil Moisture Monitoring. Soil
Science Society of America Journal, 77(6):1888–1919,
2013. ISSN: 1435-0661, DOI: 10.2136/sssaj2013.03.
0093.

[OKB+18] Isaac Nyabisa Oteyo, Kennedy Kambona, Clément
Béra, Mary Esther Muyoka Toili, Stephen Kimani,
Wolfgang De Meuter, and Elisa Gonzalez Boix. Dy-
namically processing agricultural data from controlled
legume sites. In The Sixth African Higher Educa-
tion Week and RUFORUM Biennial Conference, vol-
ume 17 of RUFORUM Working Document Series,
pages 183–192, Nairobi, Kenya, 2018.

[OKW+19] Turry Ouma, Agnes Kavoo, Cornelius Wainaina,
Busayo Ogunya, Margaret Karanja, P. Lava Kumar,
and Trushar Shah. Open data kit (ODK) in crop
farming: mobile data collection for seed yam track-
ing in Ibadan, Nigeria. Journal of Crop Improvement,

165

http://dx.doi.org/10.1145/3302505.3310079
http://dx.doi.org/10.2136/sssaj2013.03.0093
http://dx.doi.org/10.2136/sssaj2013.03.0093

BIBLIOGRAPHY

33(5):605–619, 2019. ISSN: 1542-7536, DOI: 10.1080/
15427528.2019.1643812.

[OKZ+20] Isaac Nyabisa Oteyo, Kennedy Kambona, Jesse Za-
man, Wolfgang De meuter, and Elisa Gonzalez Boix.
Developing Smart Agriculture Applications: Experi-
ences and Lessons Learnt. In Proceedings of the 2020
African Conference on Software Engineering (ACSE
2020), volume 2689, Nairobi, Kenya, 2020.

[OLO19] M. J. O’Grady, D. Langton, and G. M. P. O’Hare.
Edge computing: A tractable model for smart agri-
culture? Artificial Intelligence in Agriculture, 3:42–
51, 2019. ISSN: 2589-7217, DOI: 10.1016/j.aiia.2019.
12.001.

[OMC+16] Francesca Orlando, Ermes Movedi, Davide Coduto,
Simone Parisi, Lucio Brancadoro, Valentina Pagani,
Tommaso Guarneri, and Roberto Confalonieri. Esti-
mating Leaf Area Index (LAI) in Vineyards Using the
PocketLAI Smart-App. Sensors, 16(12), 2016. ISSN:
1424-8220, DOI: 10.3390/s16122004.

[OMK+21] Isaac Nyabisa Oteyo, Matteo Marra, Stephen Kimani,
Wolfgang De Meuter, and Elisa Gonzalez Boix. A
Survey on Mobile Applications for Smart Agriculture
Making Use of Mobile Software in Modern Farming.
SN Computer Science, 2(4):1–16, 2021. ISSN: 2661-
8907, DOI: 10.1007/s42979-021-00700-x.

[OSZ+21] Isaac Nyabisa Oteyo, Angel Luis Scull Pupo, Jesse
Zaman, Stephen Kimani, Wolfgang De Meuter, and
Elisa Gonzalez Boix. Building Smart Agriculture
Applications Using Low-Code Tools: The Case for
DisCoPar. In 2021 IEEE AFRICON, pages 1–6,
Arusha, Tanzania, 2021. IEEE. ISBN: 978-1-6654-
1984-0, DOI: 10.1109/AFRICON51333.2021.9570936.

[OSZ+23] Isaac Nyabisa Oteyo, Angel Luis Scull Pupo, Jesse
Zaman, Stephen Kimani, Wolfgang De Meuter, and

166

http://dx.doi.org/10.1080/15427528.2019.1643812
http://dx.doi.org/10.1080/15427528.2019.1643812
http://dx.doi.org/10.1016/j.aiia.2019.12.001
http://dx.doi.org/10.1016/j.aiia.2019.12.001
http://dx.doi.org/10.3390/s16122004
http://dx.doi.org/10.1007/s42979-021-00700-x
http://dx.doi.org/10.1109/AFRICON51333.2021.9570936

BIBLIOGRAPHY

Elisa Gonzalez Boix. Easing Construction of Smart
Agriculture Applications Using Low Code Develop-
ment Tools. In Shangguan Longfei and Priyantha
Bodhi, editors, Mobile and Ubiquitous Systems: Com-
puting, Networking and Services, volume 492, pages
21–43. Springer, Cham, 2023. Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. ISBN: 978-3-
031-34776-4, DOI: 10.1007/978-3-031-34776-4 2.

[OT20] Isaac Nyabisa Oteyo and Mary Esther Muyoka Toili.
Improving Specimen Labelling and Data Collection
in Bio-science Research using Mobile and Web Ap-
plications. Open Computer Science, 10(1):1–16, 2020.
ISSN: 2299-1093, DOI: 10.1515/comp-2020-0002.

[PCSMC+17] A. Pérez-Castro, J. A. Sánchez-Molina, Maŕıa
Castilla, José Sánchez-Moreno, J. C. Moreno-Úbeda,
and Juan José Magán. cFertigUAL: A fertigation man-
agement app for greenhouse vegetable crops. Agricul-
tural Water Management, 183:186–193, 2017. Special
Issue: Advances on ICTs for Water Management in
Agriculture. ISSN: 0378-3774, DOI: 10.1016/j.agwat.
2016.09.013.

[PE08] F. J. Pierce and T. V. Elliott. Regional and on-farm
wireless sensor networks for agricultural systems in
Eastern Washington. Computers and Electronics in
Agriculture, 61(1):32–43, 2008. Emerging Technolo-
gies For Real-time and Integrated Agriculture Deci-
sions. ISSN: 0168-1699, DOI: 10.1016/j.compag.2007.
05.007.

[Pet17] Nikos Petrellis. A smart phone image processing ap-
plication for plant disease diagnosis. In 2017 6th Inter-
national Conference on Modern Circuits and Systems
Technologies (MOCAST), pages 4–7, Thessaloniki,
Greece, 2017. ISBN: 978-1-5090-4386-6, DOI: 10.
1109/MOCAST.2017.7937683.

167

http://dx.doi.org/10.1007/978-3-031-34776-4_2
http://dx.doi.org/10.1515/comp-2020-0002
http://dx.doi.org/10.1016/j.agwat.2016.09.013
http://dx.doi.org/10.1016/j.agwat.2016.09.013
http://dx.doi.org/10.1016/j.compag.2007.05.007
http://dx.doi.org/10.1016/j.compag.2007.05.007
http://dx.doi.org/10.1109/MOCAST.2017.7937683
http://dx.doi.org/10.1109/MOCAST.2017.7937683

BIBLIOGRAPHY

[Pet19] Nikos Petrellis. Plant Disease Diagnosis for Smart
Phone Applications with Extensible Set of Diseases.
Applied Sciences, 9, 2019. ISSN: 2076-3417, DOI: 10.
3390/app9091952.

[PMFZRCAG19] Alejandra Perez-Mena, José Alberto Fernández-
Zepeda, Juan Pablo Rivera-Caicedo, and Himer Avila-
George. PulAm: An App for Monitoring Crops. In
Jezreel Mejia, Mirna Muñoz, Álvaro Rocha, Adriana
Peña, and Marco Pérez-Cisneros, editors, Trends and
Applications in Software Engineering, pages 196–205,
Cham, 2019. Springer International Publishing. ISBN:
978-3-030-01170-3, DOI: 10.1007/978-3-030-01171-0
18.

[PMHT18] Walther Palomino, Giorgio Morales, Samuel Huamn,
and Joel Telles. PETEFA: Geographic Information
System for Precision Agriculture. In 2018 IEEE XXV
International Conference on Electronics, Electrical
Engineering and Computing (INTERCON), pages 1–
4, Lima, Peru, 2018. IEEE. ISBN: 978-1-5386-5491-0,
DOI: 10.1109/INTERCON.2018.8526414.

[PO15] Andres Patrignani and Tyson E. Ochsner. Canopeo:
A Powerful New Tool for Measuring Fractional Green
Canopy Cover. Agronomy Journal, 107(6):2312–2320,
2015. ISSN:1435-0645, DOI: 10.2134/agronj15.0150.

[PWL+19] Paul R. Petrie, Yeniu Wang, Scarlett Liu, Stanley
Lam, Mark A. Whitty, and Mark A. Skewes. The
accuracy and utility of a low cost thermal camera and
smartphone-based system to assess grapevine water
status. Biosystems Engineering, 179:126–139, 2019.
ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2019.
01.002.

[PWT+18] Dieisson Pivoto, Paulo Dabdab Waquil, Edson Ta-
lamini, Caroline Pauletto Spanhol Finocchio, Vi-
tor Francisco Dalla Corte, and Giana de Vargas Mores.
Scientific development of smart farming technologies

168

http://dx.doi.org/10.3390/app9091952
http://dx.doi.org/10.3390/app9091952
http://dx.doi.org/10.1007/978-3-030-01171-0_18
http://dx.doi.org/10.1007/978-3-030-01171-0_18
http://dx.doi.org/10.1109/INTERCON.2018.8526414
http://dx.doi.org/10.2134/agronj15.0150
http://dx.doi.org/10.1016/j.biosystemseng.2019.01.002
http://dx.doi.org/10.1016/j.biosystemseng.2019.01.002

BIBLIOGRAPHY

and their application in Brazil. Information Process-
ing in Agriculture, 5(1):21–32, 2018. ISSN: 2214-3173,
DOI: 10.1016/j.inpa.2017.12.002.

[RFMM20] Amine Roukh, Fabrice Nolack Fote, Sidi Ahmed Mah-
moudi, and Said Mahmoudi. WALLeSMART: Cloud
Platform for Smart Farming. In 32nd International
Conference on Scientific and Statistical Database
Management, SSDBM 2020, Vienna, Austria, 2020.
Association for Computing Machinery. ISBN: 78-1-
4503-8814-6, DOI: 10.1145/3400903.3401690.

[RJK+17] Abdul Rehman, Luan Jingdong, Rafia Khatoon, Im-
ran Hussain, and Muhammad Shahid Iqbal. Mod-
ern Agricultural Technology Adoption its Importance,
Role and Usage for the Improvement of Agriculture.
Life Science Journal, 14(2):70–74, 2017. DOI: 10.
7537/marslsj140217.10.

[RKdL+22] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara,
Alfonso Pierantonio, Massimo Tisi, and Manuel Wim-
mer. Low-code development and model-driven engi-
neering: Two sides of the same coin? Software and
Systems Modeling, 21:437–446, 2022. ISSN: 1619-1374,
DOI: 10.1007/s10270-021-00970-2.

[RMBCC23] Alexandra F. Rocha, Ivan E. Mallque, Samuel I.
Bellido-Contreras, and Pedro S. Castaneda. Chakri:
Mobile Application to Reduce Dependence on In-
termediaries in the Marketing of Products in Fam-
ily Farming. In Proceedings of the 8th International
Conference on Industrial and Business Engineering,
ICIBE’22, pages 19–25, Macau, China, 2023. Associ-
ation for Computing Machinery. ISBN: 978-1-4503-
9758-2, DOI: 10.1145/3568834.3568908.

[RMMH+09] Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay Sil-
ver, Brian Silverman, and Yasmin Kafai. Scratch:

169

http://dx.doi.org/10.1016/j.inpa.2017.12.002
http://dx.doi.org/10.1145/3400903.3401690
http://dx.doi.org/10.7537/marslsj140217.10
http://dx.doi.org/10.7537/marslsj140217.10
http://dx.doi.org/10.1007/s10270-021-00970-2
http://dx.doi.org/10.1145/3568834.3568908

BIBLIOGRAPHY

Programming for All. Communications of the ACM,
52(11):60–67, nov 2009. ISSN: 0001-0782, DOI: 10.
1145/1592761.1592779.

[RSF17] M. R. Reisinger, J. Schrammel, and P. Frohlich. Visual
languages for smart spaces: End-user programming
between data-flow and form-filling. In 2017 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 165–169, Los Alamitos,
CA, USA, oct 2017. IEEE Computer Society. ISSN:
1943-6106, DOI: 10.1109/VLHCC.2017.8103464.

[RSS+10] Trond Rafoss, Knut Sælid, Arild Sletten, Lars Fredrik
Gyland, and Liv Engravslia. Open geospatial tech-
nology standards and their potential in plant pest
risk management–GPS-enabled mobile phones utilis-
ing open geospatial technology standards Web Fea-
ture Service Transactions support the fighting of fire
blight in Norway. Computers and Electronics in
Agriculture, 74(2):336–340, 2010. ISSN: 0168-1699,
DOI: 10.1016/j.compag.2010.08.006.

[RSS+23] Kamil Rybiński, Micha l Śmia lek, Agris Sostaks,
Krzysztof Marek, Rados law Roszczyk, and Marek
Wdowiak. Visual Low-Code Language for Orches-
trating Large-Scale Distributed Computing. Jour-
nal of Grid Computing, 21, 2023. ISSN: 1572-9184,
DOI: 10.1007/s10723-023-09666-x.

[RYM+15] Minwoo Ryu, Jaeseok Yun, Ting Miao, Il Yeup Ahn,
Sung Chan Choi, and Jaeho Kim. Design and imple-
mentation of a connected farm for smart farming sys-
tem. In 2015 IEEE SENSORS - Proceedings, pages
1–4, Busan, Korea (South), 2015. IEEE. ISBN: 978-
1-4799-8202-8, DOI: 10.1109/ICSENS.2015.7370624.

[SBK+21] Elsayed Said Mohamed, A. A. Belal, Sameh Kotb
Abd-Elmabod, Mohammed A. El-Shirbeny, A. Gad,
and Mohamed B. Zahran. Smart farming for improv-
ing agricultural management. The Egyptian Journal of

170

http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1109/VLHCC.2017.8103464
http://dx.doi.org/10.1016/j.compag.2010.08.006
http://dx.doi.org/10.1007/s10723-023-09666-x
http://dx.doi.org/10.1109/ICSENS.2015.7370624

BIBLIOGRAPHY

Remote Sensing and Space Science, 24(3, Part 2):971–
981, 2021. ISSN: 1110-9823, DOI: 10.1016/j.ejrs.2021.
08.007.

[SDRIP23] Apurvanand Sahay, Davide Di Ruscio, Ludovico
Iovino, and Alfonso Pierantonio. Analyzing busi-
ness process management capabilities of low-code de-
velopment platforms. Software: Practice and Ex-
perience, 53(4):1036–1060, 2023. ISSN: 1097-024X,
DOI: 10.1002/spe.3177.

[SDRP20] Apurvanand Sahay, Davide Di Ruscio, and Alfonso
Pierantonio. Understanding the Role of Model Trans-
formation Compositions in Low-Code Development
Platforms. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings,
MODELS’20, Virtual Event, Canada, 2020. Associ-
ation for Computing Machinery. ISBN: 978-1-4503-
8135-2, DOI: 10.1145/3417990.3420197.

[SGR22] Eashwar Sivakumar, Geetha Ganesan, and Ragavi.
Harnessing I4.0 Technologies for Climate Smart Agri-
culture and Food Security. In The 5th Interna-
tional Conference on Future Networks & Distributed
Systems, ICFNDS 2021, pages 504–510, New York,
NY, USA, 2022. Association for Computing Machin-
ery. ISBN: 978-1-4503-8734-7, DOI: 10.1145/3508072.
3508175.

[SLPF22] João Costa Seco, Hugo Lourenço, Joana Parreira, and
Carla Ferreira. Nested OSTRICH: Hatching Compo-
sitions of Low-Code Templates. In Proceedings of the
25th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS ’22, pages
210–220, Montreal, Quebec, Canada, 2022. Associa-
tion for Computing Machinery. ISBN: 978-1-4503-
9466-6, DOI: 10.1145/3550355.3552442.

[SNN18] Peerasak Serikul, Nuttapun Nakpong, and Nitigan

171

http://dx.doi.org/10.1016/j.ejrs.2021.08.007
http://dx.doi.org/10.1016/j.ejrs.2021.08.007
http://dx.doi.org/10.1002/spe.3177
http://dx.doi.org/10.1145/3417990.3420197
http://dx.doi.org/10.1145/3508072.3508175
http://dx.doi.org/10.1145/3508072.3508175
http://dx.doi.org/10.1145/3550355.3552442

BIBLIOGRAPHY

Nakjuatong. Smart Farm Monitoring via the Blynk
IoT Platform. In 2018 Sixteenth International Con-
ference on ICT and Knowledge Engineering, pages 70–
75, Bangkok, Thailand, 2018. IEEE. ISSN: 2157-099X,
DOI: 10.1109/ICTKE.2018.8612441.

[SPKB+22] Samuel J. Sutanto, Spyridon Paparrizos, Gordana
Kranjac-Berisavljevic, Baba M. Jamaldeen, Abdu-
lai K. Issahaku, Bizoola Z. Gandaa, Iwan Supit, and
Erik van Slobbe. The Role of Soil Moisture Infor-
mation in Developing Robust Climate Services for
Smallholder Farmers: Evidence from Ghana. Agron-
omy, 12(2), 2022. ISSN: 2073-4395, DOI: 10.3390/
agronomy12020541.

[STCR13] M. I. Sudozai, Shamsuddin Tunio, Qamaruddin
Chachar, and Inayatullah Rajpar. Seedling establish-
ment and yield of maize under different seed priming
periods and available soil moisture. Sarhad Journal of
Agriculture, 29(4):515–527, 2013. ISSN: 1016-4383.

[STM22] Vivek Sharma, Ashish Kumar Tripathi, and Himan-
shu Mittal. Technological revolutions in smart farm-
ing: Current trends, challenges & future directions.
Computers and Electronics in Agriculture, 201:107217,
2022. ISSN: 0168-1699, DOI: 10.1016/j.compag.2022.
107217.

[VLA+16] G. Vellidis, V. Liakos, J. H. Andreis, C. D. Perry,
W.M. Porter, E. M. Barnes, K. T. Morgan, C. Fraisse,
and K. W. Migliaccio. Development and assessment
of a smartphone application for irrigation scheduling
in cotton. Computers and Electronics in Agriculture,
127:249–259, 2016. ISSN: 0168-1699, DOI: 10.1016/j.
compag.2016.06.021.

[VVANDM22] Louise Van Verre, Humberto Rodriguez Avila, Jens
Nicolay, and Wolfgang De Meuter. FLOREnce: A
Hybrid Logic-Functional Reactive Programming Lan-
guage. REBLS 2022, pages 24–36, Auckland, New

172

http://dx.doi.org/10.1109/ICTKE.2018.8612441
http://dx.doi.org/10.3390/agronomy12020541
http://dx.doi.org/10.3390/agronomy12020541
http://dx.doi.org/10.1016/j.compag.2022.107217
http://dx.doi.org/10.1016/j.compag.2022.107217
http://dx.doi.org/10.1016/j.compag.2016.06.021
http://dx.doi.org/10.1016/j.compag.2016.06.021

BIBLIOGRAPHY

Zealand, 2022. Association for Computing Machin-
ery. ISBN: 978-1-4503-9911-1, DOI: 10.1145/3563837.
3568339.

[Was19] Robert Waszkowski. Low-code platform for automat-
ing business processes in manufacturing. IFAC-
PapersOnLine, 52(10):376–381, 2019. 13th IFAC
Workshop on Intelligent Manufacturing Systems IMS
2019. ISSN: 2405-8963, DOI: 10.1016/j.ifacol.2019.10.
060.

[WFHB17] Achim Walter, Robert Finger, Robert Huber, and
Nina Buchmann. Smart farming is key to developing
sustainable agriculture. PNAS, 114(24):6148–6150,
2017.

[WGVB17] Sjaak Wolfert, Lan Ge, Cor Verdouw, and
Marc Jeroen Bogaardt. Big Data in Smart Farming
- A review. Agricultural Systems, 153:69–80, 2017.
ISSN: 0308-521X, DOI: 10.1016/j.agsy.2017.01.023.

[WKW+18] Zhenglin Wang, Anand Koirala, Kerry Walsh,
Nicholas Anderson, and Brijesh Verma. In Field
Fruit Sizing Using A Smart Phone Application. Sen-
sors, 18(10), 2018. ISSN: 1424-8220, DOI: 10.3390/
s18103331.

[WS15] S. Wyche and C. Steinfield. Why don’t farmers use
cell phones to access market prices? Technology af-
fordances and barriers to market information services
adoption in rural Kenya. Journal of Information Tech-
nology for Development, 22(2):320–333, 2015. ISSN:
1554-0170, DOI: 10.1080/02681102.2015.1048184.

[WS18] Theerayod Wiangtong and Phaophak Sirisuk. IoT-
based Versatile Platform for Precision Farming. In
2018 18th International Symposium on Communica-
tions and Information Technologies (ISCIT), pages
438–441, Bangkok, Thailand, 2018. IEEE. ISBN: 978-
1-5386-8458-0, DOI: 10.1109/ISCIT.2018.8587989.

173

http://dx.doi.org/10.1145/3563837.3568339
http://dx.doi.org/10.1145/3563837.3568339
http://dx.doi.org/10.1016/j.ifacol.2019.10.060
http://dx.doi.org/10.1016/j.ifacol.2019.10.060
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://dx.doi.org/10.3390/s18103331
http://dx.doi.org/10.3390/s18103331
http://dx.doi.org/10.1080/02681102.2015.1048184
http://dx.doi.org/10.1109/ISCIT.2018.8587989

BIBLIOGRAPHY

[YCLF13] Jiuyan Ye, Bin Chen, Qingfeng Liu, and Yu Fang.
A precision agriculture management system based on
Internet of Things and WebGIS. In International
Conference on Geoinformatics, pages 1–5, Kaifeng,
China, 2013. IEEE. ISSN: 2161-024X, DOI: 10.1109/
Geoinformatics.2013.6626173.

[YS12] Intaravanne Yuttana and Sumriddetchkajorn Sarun.
BaiKhao (rice leaf) app: a mobile device-based appli-
cation in analyzing the color level of the rice leaf for
nitrogen estimation. In Tsutomu Shimura, Guangyu
Xu, Linmi Tao, and Jesse Zheng, editors, Optoelec-
tronic Imaging and Multimedia Technology II, volume
8558, pages 96–102. International Society for Optics
and Photonics, SPIE, 2012. DOI: 10.1117/12.2001120.

[YST+17] Qiangyi Yu, Yun Shi, Huajun Tang, Peng Yang,
Ankun Xie, Bin Liu, and Wenbin Wu. eFarm: A
Tool for Better Observing Agricultural Land Systems.
Sensors, 17(3), 2017. ISSN: 1424-8220, DOI: 10.3390/
s17030453.

[Zam18] Jesse Zaman. DISCOPAR: A Visual Reactive Flow-
Based Domain-Specific Language for Constructing
Participatory Sensing Platforms. PhD thesis, Vrije
Universiteit Brussel, 2018. ISBN: 978-9-49231-289-1.

[ZKD18] Jesse Zaman, Kennedy Kambona, and Wolfgang De
Meuter. DISCOPAR: A visual reactive program-
ming language for generating cloud-based participa-
tory sensing platforms. In REBLS 2018 - Proceedings
of the 5th ACM SIGPLAN International Workshop
on Reactive and Event-Based Languages and Systems,
Co-located with SPLASH 2018, REBLS 2018, pages
31–40, Boston, MA, USA, 2018. ISBN: 978-1-4503-
6070-8, DOI: 10.1145/3281278.3281285.

[ZKD21] Jesse Zaman, Kennedy Kambona, and Wolfgang De
Meuter. A reusable & reconfigurable Citizen Observa-
tory platform. Future Generation Computer Systems,

174

http://dx.doi.org/10.1109/Geoinformatics.2013.6626173
http://dx.doi.org/10.1109/Geoinformatics.2013.6626173
http://dx.doi.org/10.1117/12.2001120
http://dx.doi.org/10.3390/s17030453
http://dx.doi.org/10.3390/s17030453
http://dx.doi.org/10.1145/3281278.3281285

BIBLIOGRAPHY

114:195–208, 2021. ISSN: 0167-739X, DOI: 10.1016/j.
future.2020.07.028.

[ZPP+20] Ziyuan Zhang, Zhihua Pan, Feifei Pan, Jun Zhang,
Guolin Han, Na Huang, Jialin Wang, Yuying Pan,
Zizhong Wang, and Ruiqi Peng. The Change Char-
acteristics and Interactions of Soil Moisture and Tem-
perature in the Farmland in Wuchuan County, Inner
Mongolia, China. Atmosphere, 11(5), 2020. ISSN:
2073-4433, DOI: 10.3390/atmos11050503.

175

http://dx.doi.org/10.1016/j.future.2020.07.028
http://dx.doi.org/10.1016/j.future.2020.07.028
http://dx.doi.org/10.3390/atmos11050503

	Introduction
	Smart Agriculture Applications
	Developed vs Developing Regions
	Implementing Smart Agriculture Applications

	Problem Statement
	Our Approach
	Contributions
	Supporting Publications

	Dissertation Outline

	State of the Art of Smart Agriculture Applications
	Smart Agriculture Processes
	Driver Scenarios for Smart Agriculture
	Sensing Farm Conditions

	Properties for Smart Agriculture Applications
	State-of-the-Art of Smart Agriculture Applications
	Applications that Support Sensing
	Applications that Support Computation at the Edge
	Applications that Support Handling Partial Failures
	Discussion

	State-of-the-Art of Low-Code Development Environments
	Notation Used in Flow-Based VPLs
	Review of Existing Low-Code Environments

	Conclusion

	DisCoPar
	Architectural Overview of DisCoPar
	DisCoPar Layers

	DisCoPar Visual Programming Environment
	DisCoPar Components
	Graph Validation
	Handling Partial Failures

	DisCoPar by Example
	Conclusion

	DisCoPar-Kilimo
	Our Approach in a Nutshell
	Architectural Overview of DisCoPar-Kilimo
	DisCoPar-Kilimo Visual Programming Environment
	Ensuring Support for Environment Sensing
	Ensuring Support for Computation at the Edge
	Ensuring Support for Coordination with the Edge
	Ensuring Support for Handling Partial Failures
	Tracking Connected Edge Devices
	Accumulating Data from Multiple Edge Devices

	Developing and Deploying Applications by Example
	Example application
	Deploying the example application

	Extensions to DisCoPar
	Conclusion

	DisCoPar-Kilimo Implementation
	Basic Building Blocks
	Application Graphs
	Executing Application Graphs
	Basic Application Example
	Implementing Components in DisCoPar
	Distributed Connections

	DisCoPar-Kilimo
	Computation at the Edge
	Environment Sensing
	Components for Computation at the Edge
	Handling Partial Failures on the Mobile Scope
	Validating Flow-Graphs to Handle Partial Failures
	Handling Partial Failures at the Edge
	Tracking Connected Edge Devices
	Accumulating Data from Multiple Edge Devices

	Deploying Applications
	Designing Applications in DisCoPar-Kilimo
	Deploying DisCoPar-Kilimo Applications

	Conclusion

	Validation
	Validation Approach
	Validation Scenarios
	Scenario 1: Monitoring Soil Moisture
	Scenario 2: Computing Average Soil Moisture and Keeping Data at the Edge
	Scenario 3: Monitoring Soil Moisture Using more than one Edge Device
	Scenario 4: Tracking Connected Edge Devices
	Scenario 5: Tracking and Monitoring Paddy Rice Storage Conditions
	Scenario 6: Collecting Data Using Mobile Applications
	Scenario 7: Monitoring Soil Moisture and Temperature in Corn Seeding and Sprouting

	Discussion
	Conclusion

	Conclusion
	Problem Statement Revisited
	Research Approach Revisited
	Contributions
	Shortcomings and Future Work
	Concluding Remarks

	DisCoPar Application Graph
	Companion Functions for Edge Components
	Extracting and Exporting Edge Graph
	Implementation of the Networking Code for Coordination with the Edge
	Deployment
	Resources Required
	Mobile Application
	Edge Application

