
VRIJE UNIVERSITEIT BRUSSEL

DOCTORAL DISSERTATION

Extracting Library Features from
Incomplete Code on Stack Overflow

Camilo Velázquez-Rodríguez

Dissertation submitted in fulfilment of the requirements
for the degree of Doctor of Sciences

Promotor:
Prof. Dr. Coen De Roover

Jury:
Prof. Dr. Viviane Jonckers, Vrije Universiteit Brussel

Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel
Prof. Dr. Ann Nowé, Vrije Universiteit Brussel

Prof. Dr. Sam Verboven, Vrije Universiteit Brussel
Prof. Dr. Davide Di Ruscio, Università degli Studi dell’Aquila

Prof. Dr. Bin Lin, Radboud University

Faculty of Sciences and Bioengineering Sciences
Department of Computer Science
Software Languages Laboratory

March 29th, 2024

https://www.vub.be/en

ii

Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenig-
vuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie,
microfilm, elektronisch of op welke andere wijze ook, zonder voorafgaande
schriftelijke toestemming van de auteur.

All rights reserved. No part of this publication may be produced in any form
by print, photoprint, microfilm, electronic or any other means without per-
mission from the author.

Printed by

Crazy Copy Center Productions

VUB Pleinlaan 2, 1050 Brussel

Tel: +32 2 629 33 44

crazycopy@vub.ac.be

www.crazycopy.be

ISBN: 9789464948219

NUR: 965

THEMA: UMZ

crazycopy@vub.ac.be
www.crazycopy.be

iii

Abstract

It is common in contemporary software development to reuse features provided by
third-party libraries. Reusing features instead of re-implementing them from scratch
can reduce development time and may improve the overall system quality. How-
ever, selecting an appropriate library to reuse features from can be difficult for de-
velopers due to the lack of automated tool support. Some library indices propose
rankings of libraries, but these are biased towards the number of library downloads,
attributed stars, etc. This may lead developers to select the most popular library
instead of the library with the feature they were hoping to reuse.

This thesis makes three contributions. The first, called LiFUSO, is an automated
approach to enumerating and describing the features provided by a library based
on publicly available information on social coding platforms such as Stack Overflow
(SO) and GitHub. LiFUSO analyses library usages within SO posts and extracts
usage patterns indicative of library features. To this end, it considers both the code
snippets and the surrounding natural language within each SO post that discusses
the library.

RESICO, the second contribution of the thesis, is an automated approach to resolv-
ing API type references within a code snippet to their corresponding fully-qualified
name. As a learning-based text classification approach, RESICO needs to be trained
on a corpus of programs for which a compiler has determined the correct type infor-
mation. Once trained, it can take syntactically incorrect code snippets as input.

The final contribution combines LiFUSO and RESICO so the former is no longer
limited in scope to SO posts that have been tagged with a library’s name but can
also extract information from posts in which it has recognised many library types.
We evaluate the impact of broadening the scope of the analysis on the quantity and
quality of the uncovered library features.

The contributions are relevant to the software engineering community at large. RESI-
CO’s type resolution can be adopted by tools that need to analyse potentially incom-
plete code snippets, or by tools that need to determine the libraries used within a
code snippet —just like in our third contribution. LiFUSO paves the way for tool
support for selecting a library from many alternatives. Finally, these contributions
help understand the benefits and drawbacks of data-centric over algorithmic-centric
solutions to software engineering problems.

v

Samenvatting

In de hedendaagse softwareontwikkeling is het gebruikelijk om features van externe
bibliotheken te hergebruiken. Features hergebruiken, in plaats van ze helemaal op-
nieuw te implementeren, kan de ontwikkeltijd verkorten en de algemene systeemk-
waliteit verbeteren. Het selecteren van een geschikte bibliotheek om features uit
te hergebruiken kan echter moeilijk zijn voor ontwikkelaars vanwege het gebrek
aan geautomatiseerde toolondersteuning. Sommige bibliotheekindices stellen ran-
glijsten van bibliotheken voor, maar deze zijn bevooroordeeld op het aantal biblio-
theekdownloads, toegekende sterren, enz. Dit kan ertoe leiden dat ontwikkelaars de
populairste bibliotheek selecteren in plaats van de bibliotheek met de feature die ze
hoopten te hergebruiken.

Deze thesis levert drie bijdragen. De eerste, genaamd LiFUSO, is een geautoma-
tiseerde benadering voor het opsommen en beschrijven van de features die door
een bibliotheek worden geboden, op basis van openbaar beschikbare informatie op
sociale coderingsplatformen zoals Stack Overflow (SO) en GitHub. LiFUSO analy-
seert bibliotheekgebruik binnen SO-berichten en extraheert gebruikspatronen die in-
dicatief zijn voor bibliotheekfeatures. Daartoe wordt zowel rekening gehouden met
de codefragmenten als met de omringende natuurlijke taal binnen elk SO-bericht
waarin de bibliotheek wordt besproken.

RESICO, de tweede bijdrage van de thesis, is een geautomatiseerde aanpak voor het
omzetten van API-typereferenties binnen een codefragment naar hun overeenkom-
stige, volledig gekwalificeerde naam. Als een op leren gebaseerde benadering van
tekstclassificatie moet RESICO worden getraind op een corpus van programma’s
waarvoor een compiler de juiste type-informatie heeft bepaald. Eenmaal getraind
kan het syntactisch onjuiste codefragmenten als invoer gebruiken.

De laatste bijdrage combineert LiFUSO en RESICO zodat de eerste niet langer be-
perkt is tot SO-berichten die zijn getagd met de naam van een bibliotheek, maar ook
informatie kan extraheren uit berichten waarin veel bibliotheektypen zijn herkend.
We evalueren de impact van het verbreden van de reikwijdte van de analyse op de
kwantiteit en kwaliteit van de ontdekte bibliotheekfeatures.

De bijdragen zijn relevant voor de software-engineeringgemeenschap als geheel.
De typeresolutie van RESICO kan worden overgenomen door tools die potentieel
onvolledige codefragmenten moeten analyseren, of door tools die moeten bepalen
welke bibliotheken binnen een codefragment worden gebruikt —net als in onze
derde bijdrage. LiFUSO maakt de weg vrij voor toolondersteuning bij het selecteren
van een bibliotheek uit vele alternatieven. Ten slotte helpen deze bijdragen bij het
begrijpen van de voor- en nadelen van datagerichte dan wel algoritmische oplossin-
gen voor software-engineeringproblemen.

vii

Acknowledgements

The path of a Ph.D. is not lonely, at least for me, it wasn’t. I wouldn’t be able to get
to this point without the unconditional help of my family, friends and colleagues. I
want to start by appreciating and thanking all jury members for their insightful and
constructive comments during the private and public defences, which helped shape
the dissertation better.

The moment I started my Ph.D. I was asking myself many things, but most of all,
what kind of professional and person my promotor was. Luckily, Coen showed
me his professionalism and I think more importantly, his good values. Despite his
super-busy calendar, he always found time whenever I had a problem. I will always
be in his debt because he allowed me to do research with top researchers and to grow
as a scientist and person.

I wouldn’t be here today if I didn’t have remarkable people next to me. Especially
my partner, my wife, my love, Indira. Her support, going through the good and
more importantly, through the rough times, her stubbornness (more than mine) and
her love towards me, make me feel like the luckiest husband.

On a special day like this, my father occupies a relevant place. I will always remem-
ber him as a brilliant man, but more importantly as the excellent father and paternal
figure he was for me and my sister.

It is also a day with mixed feelings because I would have loved to have my family in
Cuba as part of the audience. For my family, I would like to dedicate the following
words in Spanish: Má, Alla, que yo esté aquí es también gracias a ustedes, su apoyo,
consejos y amor incondicional. Me hubiera gustado que estuvieran presentes física-
mente, pero yo sé que están conmigo en la distancia y se sienten felices por mí. A mi
sobrino, decirle que siga siendo lo imaginativo y creativo que es y que siga jugando
con tío cuando lo visite. A Coello, le agradesco todas las veces que ha ayudado a
mi madre y hermana en todos los momentos que pudo. A Fátima, porque aunque
me viva jodiendo, no puedo pedir una cuñada mejor y también me alegro mucho
de todos sus logros. Finalmente, también quisiera recordar a mis suegros, Arlene y
Arnoldo por hacerme parte de la familia desde que llegué a su casa, y por siempre
ser hermosas personas.

I would also like to have a few appreciation words for Wolf. Even though he was not
directly involved in my research, neither was he my promotor, he was very gentle
to me since day one. His continuous pieces of advice to me and my wife about all
sorts of topics, from transportation, politics, to a career, were very important for us
as foreigners in Belgium.

I want to thank my co-authors who helped me tremendously during my Ph.D. Dario,
you were my first office partner, and you were always a fun person to be around,
very hard-working and helped me design my first paper submission. Eleni, thanks

viii

for always being critical, asking me very difficult questions during our countless
meetings and being there despite your busy agenda and life. Ahmed, I would also
like to appreciate your hard-working compromise and all the nice conversations we
had about research, life, sports, etc. Some words of appreciation also go to Maarten
who volunteered to read the dissertation, gave me valuable feedback on the last two
chapters, and has helped tremendously in organising the reception and dinner.

Many friends made it possible for me to be in Belgium and to start my life here
in the best possible way. I would like to thank Roberto Becerra, for always being
a friend since my student times in Cuba and for always teaching me a new thing
when we met. Humberto, for starting my contact with Coen, helping me during all
these years and making my life easier when I started. I want to also thank Scull for
helping me with the paperwork for my Ph.D. application, during my first two years
at Olguita’s house and guiding me in Belgium. No quisiera dejar de mencionar a
Olguita, Cirelda y Patrick que me acogieron como uno más de su familia cuando
llegué. Son muchos los buenos momentos que compartimos y quisiera agradecerles
su gentileza, valiosos consejos y compañía que impidieron que me sintiera lejos de
casa.

I have gained really good friends in Belgium, and others stayed close despite being
far in the distance. My good friends Elio, Alejandro (Paki) and Héctor; even though
we are no longer together in Cuba, have continued our friendship, which is a daunt-
ing task in the distance. I met Jorge and later Jose here, and they became my friends.
We have shared many good moments, which I truly hope to continue to be the case.
Michael, thank you for all your help during these years, your delicious food and
above all, your good company. Tatiana and Patrick, also took me in as family since
we first met in Leuven, to them is my gratitude for all the nice moments together.

My previous mentors and professors also made it possible for me to be here today. I
want to thank Fofi for introducing me to the research life and giving me the first op-
portunities as a researcher. To all my previous professors at Universidad de Holguín
in Cuba, my deepest appreciation for their teachings during my career.

I didn’t want to finish my acknowledgements without mentioning all my colleagues
at the CAMP group and SOFT. I’m lucky to be part of the researchers at SOFT where
many brilliant people gather. More importantly, during my years there I have also
witnessed the goodness of the people willing to help at any moment about anything.
To all of you, and all the persons mentioned before, thanks for being a part of my
journey.

ix

Contents

Abstract iii

Samenvatting v

Acknowledgements vii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Overview of the Approach . 5
1.3 Contributions and Supporting Publications 6
1.4 Outline of the Dissertation . 7

2 Background 9
2.1 API Usages in Library Documentation, Messaging Platforms and Q&A

Fora . 9
2.2 Stack Exchange and SOTorrent Stack Overflow Dataset Dumps 14
2.3 Text Transformation into their Vector Representation 15

2.3.1 TF-IDF . 16
2.3.2 Word2Vec . 16

2.4 Text Classification as a Natural Language Processing Problem 18
2.4.1 Text Classification . 18
2.4.2 Machine Learning Algorithms Used for Text Classification . . . 18

K-Nearest Neighbours . 18
Random Forest . 19
Ridge Linear Classifier . 20
Support Vector Machines . 21
Multi-label Classification Algorithms 23

2.5 Part-Of-Speech Tagging . 23
2.6 Hierarchical Clustering . 24

2.6.1 Static and Dynamic Tree Cutting 24

3 State of the Art 27
3.1 Development Tools Incorporating Stack Overflow Information 27
3.2 Program Analyses for Stack Overflow Code Snippets 30
3.3 Embeddings for Source Code Analysis 33
3.4 Library Usage Comprehension . 35

3.4.1 Feature Uncovering . 35
3.4.2 API Usage Analysis . 36

3.5 Limitations and Opportunities for Improvement 38
3.5.1 Current Limitations in API Type Resolution 38
3.5.2 Current Limitations in API Feature Discovery 39

3.6 Conclusion . 40

x

4 API Type Resolution for Incomplete Code Snippets on Stack Overflow 41
4.1 Introduction . 41
4.2 Motivation . 42
4.3 RESICO: A Type Resolution Approach for Incomplete Code Snippets . 44

4.3.1 A Prime on RESICO . 44
4.3.2 An Overview of Eclipse JDT for Facts Extraction 45
4.3.3 Training Process . 45
4.3.4 Resolution Process . 49
4.3.5 Providing Top-K Recommendations 51

4.4 Evaluation . 51
4.4.1 Datasets Collection . 52

Internal Dataset . 52
External Datasets . 53

4.4.2 RQ1. What are the best hyperparameter combinations for the
classifiers used within RESICO? 55

4.4.3 RQ2. How well do COSTER and the RESICO classifiers per-
form on instances extracted from the dataset used for training? 58

4.4.4 RQ3. What is the performance of the COSTER and RESICO
classifiers when evaluated on unseen datasets? 61

4.4.5 RQ4. How much time is needed to train COSTER and the
RESICO classifiers? . 63

4.4.6 RQ5. To what extent do ambiguities in simple names influence
the performance of the approaches? 64

4.5 Discussion . 66
4.5.1 Context-based Approaches to API Type Resolution 66
4.5.2 Limitations . 68
4.5.3 Potential Impact . 69

4.6 Threats to Validity . 69
4.6.1 Threats to Construct Validity . 69
4.6.2 Threats to Internal Validity . 69
4.6.3 Threats to External Validity . 70
4.6.4 Threats to Conclusion Validity 70

4.7 Conclusion . 70

5 Uncovering Library Features from Stack Overflow Posts 73
5.1 Introduction . 73
5.2 Motivation . 74

5.2.1 Support for Comparing Libraries 74
5.2.2 Support for Exploring Ecosystems 75

5.3 AutoCat: Automatic Library Categorisation 76
5.3.1 Evaluation . 77
5.3.2 Limitations of Category-based Approaches to Feature Uncov-

ering . 78
5.4 MUTAMA: Multi-label Library Tagging 78

5.4.1 Evaluation . 80
5.4.2 Discussion . 84
5.4.3 Limitations of Tag-based Approaches for Features Discovery . 85

5.5 LiFUSO: An Approach to Discover Features from API Usages on Stack
Overflow . 85
5.5.1 Data Collection (Steps 1-3) . 86

xi

5.5.2 Data Processing (Steps 4-5) . 87
5.5.3 Data Transformation (Steps 6-8) 88
5.5.4 Clustering, Selecting and Naming (Steps 9-11) 89

5.6 Instantiation of the LiFUSO Approach 90
5.6.1 Implementation . 90
5.6.2 Graphical User Interface . 92

5.7 Evaluation . 94
5.7.1 Selection of Libraries . 94
5.7.2 Features Terminology . 95
5.7.3 RQ1. Which combination of SO answer attributes produces

the most cohesive clusters? . 95
5.7.4 RQ2. How similar are the automatically uncovered features to

documented tutorial features? 97
5.7.5 RQ3. To what extent do the uncovered features that do not

match documented tutorial features correspond to actual API
usage in client projects? . 100

5.8 Discussion . 102
5.8.1 Clusters as Features . 102
5.8.2 Limitations . 104
5.8.3 Potential Impact . 104
5.8.4 Case Study . 105

5.9 Threats to Validity . 107
5.9.1 Threats to Construct Validity . 107
5.9.2 Threats to Internal Validity . 107
5.9.3 Threats to External Validity . 107
5.9.4 Threats to Conclusion Validity 108

5.10 Conclusion . 108

6 Uncovering Library Features based on Resolved Code Snippets 109
6.1 Introduction . 109
6.2 GitHub API Usages as RESICO Training Data 110
6.3 Extending the LiFUSO Dataset with Additional SO Posts 112

6.3.1 Part I: Extraction of GitHub Data and Re-Training of RESICO . 113
6.3.2 Part II: Library Usage Determination and Relatedness Rule Learn-

ing . 117
6.4 Evaluation . 122

6.4.1 Datasets Collection . 123
6.4.2 RQ1. How well does the rule-based classifier perform on the

manually labelled dataset? . 125
6.4.3 Rule-based Model Application on the Manually-labelled Dataset128
6.4.4 RQ2. What is the impact of the new SO answer dataset on the

features uncovered by LiFUSO? 128
6.5 Discussion . 130

6.5.1 Newly Discovered Features . 131
6.5.2 Limitations . 131

6.6 Threats to Validity . 132
6.6.1 Threats to Construct Validity . 132
6.6.2 Threats to Internal Validity . 132
6.6.3 Threats to External Validity . 133

6.7 Conclusion . 133

xii

7 Conclusion and Future Work 135
7.1 Summary . 135
7.2 Contributions . 137

7.2.1 RESICO: API Resolution for Incomplete Code Snippets 137
7.2.2 LiFUSO: Uncovering Library Features from their Stack Over-

flow Usage . 138
7.2.3 Feature Uncovering on Resolved Code Snippets 138
7.2.4 Advantages and Limitations of Data-Driven Approaches 139

7.3 Future Work . 140
7.3.1 API Type Resolution . 140
7.3.2 Uncovering Library Features . 140

7.4 Concluding Remarks . 141

A Appendix 143

Bibliography 147

xiii

List of Figures

1.1 The integration the contributions of this dissertation. 2
1.2 A preview of our feature exploration and library comparison tool. . . . 5

2.1 Example of a question on the Stack Overflow Q&A forum.1 12
2.2 Example of an answer to a question in Stack Overflow.2 12
2.3 Schema of all XML files related to the Stack Overflow community.3 . . 15
2.4 Word2Vec text transformation into a vector representation. 17
2.5 CBOW neural network weights after a training. 17
2.6 Phrase-structured tree of a sentence [32]. 24
2.7 Static (left) and dynamic (right) tree cutting of a dendrogram. 25

4.1 Example type resolutions computed by RESICO. 44
4.2 Training based on a corpus of programs. 46
4.3 Transformation step used by the training process. 47
4.4 Resolution process for API type references in code snippets. 50
4.5 Overview of our evaluation approach. 52
4.6 The three most and least frequent FQNs in the gathered dataset. 53
4.7 Hyperparameter optimisation for the classifiers considered in RESICO. 57
4.8 Performance of the models on the internal dataset. 60
4.9 Performance of the models on the three external datasets. 62
4.10 Similar FQNs by their context vectors. 67

5.1 Comparison of two libraries based on popularity metrics. 75
5.2 The steps followed by tools following the MUTAMA approach. 79
5.3 Distribution of the number of tags for the 4,088 sampled libraries. . . . 81
5.4 A binary array example, its predictions and posterior classifications

into TP, TN, FP, FN. 82
5.5 Overview of the approach to extract features from SO posts. 86
5.6 Collecting the public interface of a library for all its versions. 87
5.7 The API usages extracted by our island parser and its lightweight

analysis for the code snippet on the left. 88
5.8 Vectorisation of the textual information. 89
5.9 A name for an uncovered feature suggesting operations on cache. . . . 90
5.10 Described approach implemented by the LiFUSO tool. The instantia-

tion steps are within the red square. 91
5.11 Front page of the LiFUSO tool with the Search feature tab activated. . . 93
5.12 Shared features for the studied libraries. 105
5.13 Unique features for the studied libraries. 106

6.1 API element coverage of the LiFUSO library Quartz from its depen-
dent GitHub repositories. 112

xiv

6.2 Comparison of API element coverage for each LiFUSO library be-
tween the 50K-C and GitHub-dependent datasets. 113

6.3 Approach to recognising posts related to a library - Part I. 113
6.4 The extraction of API usages from GitHub repositories. 114
6.5 The process to create contexts from the previously extracted API us-

age information. 115
6.6 Steps to (re)train the RESICO classification with the previously GitHub-

dependent dataset. 116
6.7 Approach to classify posts related to a library - Part II. 117
6.8 Steps to extract characteristics from answers with classifications. 118
6.9 Steps to train and apply a rule-based model to improve RESICO clas-

sifications. Highlighted in red are the data elements related to the
usage of LiFUSO libraries. 120

6.10 Integration of the new approaches into the LiFUSO pipeline. 122

A.1 API element coverage of the LiFUSO library Guava from its dependent
GitHub repositories. 143

A.2 API element coverage of the LiFUSO library HttpClient from its de-
pendent GitHub repositories. 144

A.3 API element coverage of the LiFUSO library JFreeChart from its de-
pendent GitHub repositories. 144

A.4 API element coverage of the LiFUSO library JSoup from its dependent
GitHub repositories. 145

A.5 API element coverage of the LiFUSO library PDFBox from its depen-
dent GitHub repositories. 145

A.6 API element coverage of the LiFUSO library POI-OOXML from its
dependent GitHub repositories. 146

xv

List of Tables

2.1 Comparison of the different sources of API usage. 13

3.1 Techniques used to extract API references from code snippets. 29

4.1 Extracted information from the method getIMEI() in Listing 4 by
RESICO. 47

4.2 Transformed API references and contexts from Table 4.1 by the Word2Vec
models. 49

4.3 The last transformation step in the RESICO process. The previous
context vector is further averaged with the API vector, and FQNs are
converted into numbers. 49

4.4 Datasets used for the external evaluation of COSTER and RESICO. . . 54
4.5 Hyperparameters of the classifiers and their search space configuration 56
4.6 Computational cost of the approaches. Time is measured in hours (h),

minutes (m), seconds (s) and milliseconds (ms). 63
4.7 Ambiguity analysis for COSTER and RESICO-KNN trained models

on the external datasets. 65
4.8 The accuracy of the best models per approach shown per library in

the StatType-SO dataset. Highlighted in green and red are the largest
successes and failures, respectively. 68

5.1 Scores achieved by the trained classifiers on the automatic classifica-
tion of libraries. Highlighted in bold are the best models according to
their F1 score. 77

5.2 Performance metrics of MUTAMA instantiated with different multi-
label classifiers. The best results for each metric are highlighted in
bold. 81

5.3 Multi-tag predictions made by the best trained multi-label model. . . . 84
5.4 SO code snippets making use of the libraries. 95
5.5 Top-K scores for all combinations of library attributes. Between paren-

theses is the obtained Silhouette score. 97
5.6 Analysis of the matched features per library. 99
5.7 Client projects information from GitHub. 101
5.8 Newly matched features from GitHub client projects. 101
5.9 Detailed overflow scores per library. 102

6.1 Extracted fields from the GitHub-dependent repositories and their de-
scriptions. 115

6.2 Group of answer characteristics extracted to improve RESICO’s clas-
sifications. 119

6.3 Dependent GitHub repositories for each LiFUSO library before and
after the cleaning. 123

xvi

6.4 Performance metrics (Left) and confusion matrix (Right) of the trained
rules on the manually labelled dataset. 127

6.5 Previous and newly collected SO answers that use a LiFUSO library. . 128
6.6 Comparison between old and new features. 129

xvii

List of Listings

1 Examples of different forms of API usages from three libraries. 10
2 Javadoc documentation for a library method. 10
3 Real code snippets with different issues related to their incompleteness. 43
4 Running example for explaining RESICO. 46
5 Examples of features uncovered for JFreeChart. 103
6 Examples of features uncovered for PDFBox. 103
7 Examples of non-feature clusters uncovered. 104
8 Command to obtain all library dependencies from a Java repository

into a specific folder. 114
9 Trained rules of the J48 decision tree based on the manually labelled

dataset. 126
10 Some examples of newly discovered features for the LiFUSO libraries. 131
11 Examples of improved features for the LiFUSO libraries. 132

xix

List of Abbreviations

AST: Abstract Syntax Tree
API: Application Programming Interface
AUG: API Usage Graph
BoW: Bag-of-Words
CDG: Control Dependency Graph
CFG: Control Flow Graph
CAN: Convolutional Attention Network
CBOW: Continuous Bags-Of-Words
CNN: Convolutional Neural Network
DDG: Data Dependency Graph
FQN: Fully Qualified Name
GNN: Graph Neural Network
GCN: Graph Convolutional Network
HMM: Hidden Markov Models
IDE: Integrated Development Environment
IR: Intermediate Representation
JAR: Java ARchive
JSON: JavaScript Object Notation
KNN: K-Nearest Neighbours
LOF: Local Outlier Factor
NLP: Natural Language Processing
NN: Neural Network
NP: Noun Phrase
PDG: Program Dependency Graph
POS: Part Of Speech
PPA: Partial Program Analysis
SO: Stack Overflow
S2S: Sequence-to-Sequence
SMO: Sequential Minimal Optimisation
SVC: Support Vector Classifier
SVM: Support Vector Machines
RF: Random Forest
RNN: Recurrent Neural Network
RL: Ridge Linear
TF-IDF: Term Frequency-Inverse Document Frequency
TPE: Tree of Parzen Estimators
UI: User Interface
VB: Verb Phrase

1

Chapter 1

Introduction

Libraries date back almost to the first conceptualisations of a digital programmable
computer. An early pioneer in computer science such as Charles Babbage suggested
in 1838 (and later published in 1888) a way of saving and reusing computer opera-
tions on separate cards [26]. Years later in 1947, von Neumann resumed this idea
and proposed magnetic recordings to store code to be later reused [45]. This served
as inspiration to Wilkes and his team to construct the Electronic Delay Storage Au-
tomatic Calculator (EDSAC) computer, released in 1949. Programs in EDSAC con-
tained a main program and a sequence of subroutines copied from a cabinet storing
punched tape libraries [143]. These early reused subroutines were physically stored,
hence the library term is literally a reference to a physical place with external code.

The designers of the first programming languages also considered libraries as an im-
portant element. In these cases, a library is referred to software code outside the main
program. COBOL, for example, included some capabilities for libraries [142], while
FORTRAN introduced the concept of subprogram which resembles a library [144],
and Ada incorporates packages into its design and implementation [29]. Contempo-
rary developers frequently use libraries to collaborate on, distribute, and reuse code.
Programming languages such as Java and JavaScript are two of the most popular
ones. The number of libraries being supported by these languages is considerably
large, e.g., currently above the 500,000.1

As the number of libraries increased throughout the years, easily-accessible library
repositories become necessary. Examples of such repositories include Maven2 for
JVM-based programming languages (e.g., Java, Scala, Kotlin) and NPMJS3 for Java-
Script-based programming languages (e.g., JavaScript, TypeScript). Every day many
libraries and library updates are uploaded to these repositories.

An ever-growing number of libraries signifies that developers have more options
to choose from. The days were a developer had a single library for a task (e.g.,
mocking) are long gone. On the MVNRepository2, developers have 50 Java libraries at
their disposal for the category Mocking.4 These numbers will continue to increase as
new libraries continue being developed and uploaded to the software repositories.

1 http://www.modulecounts.com/
2 https://mvnrepository.com
3 https://www.npmjs.com/
4 https://mvnrepository.com/open-source/mocking: accessed on December 6th, 2023.

http://www.modulecounts.com/
https://mvnrepository.com
https://www.npmjs.com/
https://mvnrepository.com/open-source/mocking

2 Chapter 1. Introduction

The growth of libraries represents a problem for developers as they have to choose
from multiple candidates. This selection is very often not properly performed as li-
braries are selected not by the features they offer, but by popularity metrics such
as number of downloads. Therefore, we envision library repositories where the
features offered by libraries are first-class citizens. For example, instead of rank-
ing libraries based on the number of downloads5 we picture library repositories
where features are displayed and explored by developers according to their require-
ments. This dissertation contributes building blocks to realise this vision through
automated approaches that mine API usages to compute an enumeration of library
features.

The extraction of features requires a source from where to mine and analyse candi-
dates of library features. We selected Q&A fora, and more specifically Stack Over-
flow as the mining source for features of a library (cf. Section 2.1). However, code
snippets in Stack Overflow are very often incomplete and syntactically incorrect (cf.
Section 4.2). We propose our API type resolution approach RESICO to resolve the
fully qualified names within incomplete code snippets (cf. Chapter 4). A means
to enumerate the features provided by a library is currently missing from library
repositories. Such an enumeration could support developers in feature exploration
and library comparison. To extract library features from Stack Overflow, we propose
our LiFUSO approach and tool (cf. Chapter 5). LiFUSO focuses on a group of Stack
Overflow posts that explicitly mention the name of a library in their tag list. We
therefore also extend the dataset considered by LiFUSO by merging our previous
approach RESICO into the former’s pipeline (cf. Chapter 6). Figure 1.1 depicts how
Chapter 6 integrates the RESICO and LiFUSO approaches introduced by Chapter 4
and Chapter 5 respectively.

FIGURE 1.1: The integration the contributions of this disserta-
tion.

The remainder of the Introduction is structured as follows. Section 1.1 defines the
problem statement in the context of this dissertation through elements that explain
the relation between the library feature mining from API usages and the analysis
of incomplete code snippets. We highlight that feature discovery and exploration is
required to avoid biased and unfair library selection and also to enable library com-
parisons according to their provided features. Section 1.2 explains our approaches
and their research objectives. Section 1.3 respectively list the contributions of this
dissertation and their supporting publications. Finally, Section 1.4 presents the out-
line of this dissertation.

5 https://mvnrepository.com/open-source/io-utilities

https://mvnrepository.com/open-source/io-utilities

1.1. Problem Statement 3

1.1 Problem Statement
The selection criteria developers have to resort to when selecting a library from mul-
tiple candidates targetting the same domain (e.g., Mocking) suffers from two prob-
lems. First, developers tend to be based on the popularity of the library such as the
number of downloads, the number of maintainers, etc. These criteria remain at the
level of metadata and are biased towards the most popular libraries. Second, these
criteria do not capture the suitability of the library for the task at hand. This disserta-
tion provides initial steps towards using automatically enumerated library features
as a selection criterion.

A library feature has been previously defined by Kanda et al. [64] as “a set of fre-
quent API calls, accompanied by a corresponding name”. Such a definition consists
of a code part, i.e., frequently invoked API methods, and a natural language part,
i.e., the name of the feature. The extraction and analysis of features provided by
libraries is a recent research area in software engineering. Previous works [3, 10,
51, 110] have explored uncovering the features provided by Android applications
through an analysis of the user reviews. However, their analyses are limited to the
natural language processing of the reviews and does not contribute to the code el-
ements in the definition by Kanda et al. [64]. We investigate the extraction and
analysis of library features from posts on the Stack Overflow (SO) platform. To over-
come the incompleteness and syntactical incorrectness of the code in these posts, we
also propose an approach capable of resolving API types in code snippets.

Library Client Analysis for Feature Discovery
The analysis of clients that use the API of a library has been frequently employed
to extract knowledge about the library. Examples include recommending API se-
quences for a certain functionality [48], providing similar API usage examples to fa-
miliarise with a library [47] or detecting API usage anomalies [93]. Natural language
processing is required for the automatic uncovering of the features provided by a li-
brary. However, only two approaches combine the analysis of library clients with
natural language processing to enumerate the features provided by a library. Kanda
et al. [64] extract a set of co-occurring API usages, and label them manually to form
features. Shen et al. [113] automatically process natural language information from
SO posts, but, mine information about API usages from GitHub repositories and not
from SO posts. It is evident that API usage analysis approaches have not been tar-
getting feature discovery. Those proposing similar techniques in this research area
have either not fully automated their approach (i.e., Kanda et al. [64]) or have not
considered API usage focused on an individual feature such as those found within
SO code snippets (i.e., Shen et al. [113]).

Analysis of Incomplete Code
Incomplete code can be found in multiple sources such as commit diffs, video and
webpage tutorials, and SO snippets. The analysis of incomplete code is relevant
since it might be accompanied by other valuable information. This is indeed the
case for SO code snippets as they relate to the natural language information in their
surroundings. Analysing the API usage within SO code snippets can be challenging
due to their often incomplete and syntactically incorrect nature. Nonetheless, several

4 Chapter 1. Introduction

works (e.g., [37, 72, 100, 128, 131]) have demonstrated that the content on the SO
platform is very rich in information.

To mine information from SO posts such as API usage, other works have also pro-
posed techniques to address incompleteness of code snippets (e.g., [36, 40, 95, 106,
118, 124, 150, 163]). Many of these works are based on the Eclipse JDT parser or
on PPA [36], which only have access to the information provided in the code snip-
pet itself. Other works, in contrast, leverage learning-based techniques to augment
the snippets with its missing information (e.g., import statements to qualify sim-
ple names of API types). Example techniques include source-to-target translation
[95], or context-based learning [106], etc. We deem context-based techniques more
promising to resolve missing information as the can leverage the code surrounding
the missing information. However, we noticed that the design space for the actual
context to use is currently underexplored. This brings us to our problem statement:

There is a need for automated approaches that uncover the library features provided by
a library through the mining of public information regardless of code incompleteness
and incorrectness

Towards Feature-based Library Selection
In a survey of 115 developers, Vargas et al. [133] found that developers rely on
library metrics such as the number of downloads, the number of GitHub stars, etc.
An automated approach for extracting the features provided by a library could bring
many benefits. For example, library repositories could enable users to explore their
libraries based on features provided. Features can be displayed as frequently API
elements and combinations thereof described by a name or other natural language
text facilitating their comprehension. In this way, developers can more easily select
the library with the exact features that match their requirements. Additionally, sim-
ilar features provided by different libraries can be compared based on their case of
use, the number of lines of code, etc. This ultimately contributes to higher-quality
library selection.

Figure 1.2 shows a preview of the user interface of our tool for feature exploration
and library comparison. This tool is described in more detail in Section 5.6, and
Section 5.8.4 demonstrates its utility with a use case. As observed in Figure 1.2,
a list of features from various libraries is presented to users for them to explore.
Each feature is shown with the name of the library it belongs to on top, followed
by a description of the feature in terms of frequent verb-noun pairs and the most
frequent corresponding API references required for reusing the feature. Next to the
API references are frequency percentages.

A user can explore features by browsing through all features extracted by the tool.
Moreover, a user can search for a feature by its description, for example, “filter list”
or “create chart” which will reduce the list of available features to those matching the
queried terms. Once a feature is found by a user, it can be included into a project by
adding the corresponding import statements and the missing glue code (i.e., variable
declarations, parameter additions, etc.).

1.2. Overview of the Approach 5

FIGURE 1.2: A preview of our feature exploration and library
comparison tool.

1.2 Overview of the Approach
Our research goal is the automated uncovering of library features by mining and
processing public information. To this end, we propose a number of related ap-
proaches to advance the state of the art in the domain:

1. We investigate the use of Maven repository categories as a coarse description
of library features. We design an approach, called AutoCat, that learns from
the bytecode implementation of libraries that have already been categorised
and recommends a suitable category for any unseen library (cf. Section 5.3).

2. We extend the above approach to tags in the Maven repository as they rep-
resent a more fine-grained library features. This new approach, called MU-
TAMA, explores the capabilities of multi-label classification algorithms in rec-
ommending a set of tags for libraries (cf. Section 5.4).

3. As the former approaches only support coarse-grained descriptions of features
(i.e., categories and tags) we design another approach that supports API-level
feature descriptions. LiFUSO is architected as a series of steps analysing Stack
Overflow posts that carry the name of the target library among their tags. Li-
FUSO parses the code snippet of such post using a lenient and robust parser
to avoid parsing errors due to code incompleteness. The library’s API usages
extracted from those posts are clustered according to their similarity. Clusters
are filtered according to the frequency of the API elements within them. The
remaining clusters are named in order to form library features by processing
the natural language text surrounding the clustered code snippets (cf. Sec-
tion 5.5).

6 Chapter 1. Introduction

4. As our source of library feature information, SO code snippets have the advan-
tage of being focused on the task mentioned in the corresponding question of
the post. However, SO code snippets also have disadvantages such as code in-
completeness and code incorrectness. We target the lack of import statements
that would otherwise qualify the simple names of used API types through a
dedicated API type resolution technique. The API type resolution problem is
addressed as a text classification problem where an API type reference and
the context into which appears are the input text, and the fully qualified name
(FQN) of the referenced API type is the output class to predict. Our approach
RESICO learns the most likely FQN of an API type when referenced in a par-
ticular context and is trained on the complete code within GitHub repositories.
RESICO recommends FQNs based on the context similarity of API type refer-
ences in incomplete snippets (cf. Chapter 4).

5. LiFUSO is limited to SO posts that carry the name of a library in their list of
tags. However, this limitation can be overcome by using RESICO to recognise
SO posts that use the library in their code snippet. We design a combined
approach in which we retrain RESICO on a corpus of API usages of the Li-
FUSO libraries. The resulting model is applied to the entire set of Java SO
code snippets to expand the number of posts considered by LiFUSO. As a re-
sult, LiFUSO is able to uncover more features and also improve their textual
description (cf. Chapter 6).

1.3 Contributions and Supporting Publications
This dissertation presents contributions in two main research areas: i) automated li-
brary feature uncovering and ii) API type resolution for incomplete code snippets.
Specifically, the contributions are supported by five international peer-reviewed pub-
lications [134–138]:

• Velázquez-Rodríguez, Camilo and De Roover, Coen, (2020). Automatic library
categorization. In Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops (SoHeal), pages 733-734. (Workshop paper)

This workshop paper proposes an automated approach to categorising libraries shared
in the Maven repository index into predefined categories.6 The approach supports
existing as well as newly added libraries. Based on the embeddings of their code the
machine learning model of the approach learns how to categorise libraries as a form
of text classification (cf. Chapter 5). This paper presents the foundation for our later
work about feature uncovering.

• Velázquez-Rodríguez, Camilo and De Roover, Coen, (2020). MUTAMA: An
Automated Multi-label Tagging Approach for Software Libraries on Maven.
In Proceedings of the 20th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 243-247.

This paper presents a similar approach to the previous workshop paper. However,
in this case, the target is the recommendation of multiple tags for the libraries in

6 https://mvnrepository.com/open-source

https://mvnrepository.com/open-source

1.4. Outline of the Dissertation 7

the Maven repository.7 Our MUTAMA approach (cf. Chapter 5) incorporates multi-
label classification algorithms and word vectorisation. We considered and evaluated
multiple algorithms which contributed to the design of our feature uncovering ap-
proach.

• Velázquez-Rodríguez, Camilo, Constantinou, Eleni and De Roover, Coen, (2022).
Uncovering Library Features from API Usage on Stack Overflow. In Proceed-
ings of the 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 207-217.

• Velázquez-Rodríguez, Camilo, Constantinou, Eleni and De Roover, Coen, (2022).
LiFUSO: A Tool for Library Feature Unveiling based on Stack Overflow Posts.
In Proceedings of the 38th IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 489-493.

These two papers propose, implement and evaluate our automated library feature
uncovering approach. The first paper presents the initial approach to uncovering
features from their usages in SO posts. The approach is based on the clustering of
similar library API usages and a natural language processing of the text surround-
ing them (cf. Chapter 5). An implementation of the approach is discussed in the
second paper. This tool paper demonstrates the main use cases of LiFUSO and also
a presents a case study into its application to find similar and unique features across
libraries within the same domain.

• Velázquez-Rodríguez, Camilo, Di Nucci, Dario and De Roover, Coen, (2023).
A Text Classification Approach to API Type Resolution for Incomplete Code
Snippets. In the Science of Computer Programming Journal, Volume 227, article
102941.

The approach to resolve simple names of API types to their FQN in incomplete code
snippets from Stack Overflow is introduced in this paper. The approach, RESICO,
is motivated by the fact that Java code snippets on Stack Overflow are often incom-
plete with missing import statements to qualify simple names. RESICO approaches
API type resolution as a text classification problem by vectorising the surrounding
context of an API reference that misses its FQN. Given an API reference, a machine
learning classifier computes the most likely FQN for the context it resides. RESICO
outperforms the state-of-the-art approach in an extensive evaluation (cf. Chapter 4).

1.4 Outline of the Dissertation
The remainder of this dissertation is structured as follows:

Chapter 2: Background We provide a detailed explanation of the main sources
where API usages can be found as well as our reasons for selecting Stack Overflow as
the source from where to mine for library features. We describe the main techniques
used throughout the dissertation ranging from text transformation to hierarchical
clustering.

7 https://mvnrepository.com/tags

https://mvnrepository.com/tags

8 Chapter 1. Introduction

Chapter 3: State of the Art We survey the state of the art in program analyses
for SO code snippets, machine learning embeddings for source code, and API us-
age analysis. The approaches proposed in this dissertation are inspired by previous
work in these research areas and overcome the shortcomings of the state of the art.

Chapter 4: API Type Resolution for Incomplete Code Snippets on Stack Over-
flow We motivate the need for an approach that resolves missing information in
incomplete code snippets. We describe RESICO, our machine-learning based ap-
proach, which learns the FQNs that simple names of API types resolve to in a given
API usage context. The approach is trained on a publicly available dataset of Java
programs and is subsequently evaluated. The evaluation is carried out thoroughly
on internal and external datasets, and by comparing RESICO’s resolutions to those
made by the state-of-the-art approach COSTER which has also been trained on the
same dataset. RESICO outperforms COSTER in the conducted experiments, al-
though, it is slightly slower due to its context-learning nature. RESICO’s type resolu-
tion capabilities are later employed in this dissertation to identify SO code snippets
that use a particular library.

Chapter 5: Uncovering Library Features from Stack Overflow Posts An auto-
mated approach to library feature uncovering is proposed in this chapter. We mo-
tivate our LiFUSO approach by the need to support the selection of libraries and
their comparison. Two approaches are initially proposed to automatically categorise
libraries and recommend tags for them. These can be seen as more high-level de-
scriptions of the features provided by a library. Later we introduce our API-level
feature discovery approach built on top of many of the techniques described in the
Background chapter. Our approach is also evaluated with respect to features of li-
braries as documented in tutorials and cookbooks. Finally, the chapter also describes
an instantiation of LiFUSO into a working tool prototype that supports library fea-
ture exploration and comparison. We demonstrate its use through a case study.

Chapter 6: Uncovering Library Features based on Resolved Code Snippets The
previous implementation of LiFUSO only considers SO posts that have been tagged
with one of the libraries under analysis. To extend the analysis to the full set of SO
Java code snippets, we propose an approach that integrates RESICO with LiFUSO.
We first analyse the extent to which the API of the LiFUSO libraries is covered by the
original dataset RESICO was trained on, and then retrain RESICO on a more focused
dataset. As the retrained RESICO suffers from a limited vocabulary, we design a
rule-based classifier to assist RESICO on ambiguous simple names. This rule-based
approach is evaluated and confirmed to be helpful in assessing the correctness of
RESICO’s API type resolutions. Using RESICO complemented by the rule-based
classifier, we collect a much larger dataset of SO answers for LiFUSO to process. As
a result new features are uncovered and existing feature descriptions are improved.

Chapter 7: Conclusion and Future Work We conclude the dissertation by revisiting
the problem statement and listing potential avenues for future work.

9

Chapter 2

Background

This chapter provides the background for the remainder of the dissertation. We
start with a closer look at the problem and solution domains of our dissertation: the
sometimes suboptimal documentation of software libraries and the presence of us-
age of their corresponding API in developer fora. Natural-language techniques for
analysing and transforming texts are reviewed. Furthermore, supervised machine
learning algorithms for automated text classification are explained in detail since
they form the foundation for the API usage resolution contribution of this disser-
tation. Unsupervised machine learning algorithms for clustering are also reviewed
as they form the foundation for the library features discovery contribution of the
dissertation.

2.1 API Usages in Library Documentation, Mes-
saging Platforms and Q&A Fora

It is common for reusable software to provide access to its features through a pub-
lic interface called Application Programming Interface (API), while shielding users
from its internal implementation details. In general, there are two main forms of
APIs: I) endpoints exposed by web services1, and II) the public interface of libraries.2

This dissertation focuses on the analysis of the latter form of APIs.

How to use the API from such a library can vary depending on multiple factors
such as the overall design of the library, the type of features it offers for reuse, the
programming paradigm and language is implemented in, etc. For example, some
libraries such as the popular Google Guava3 have an API for which a single method
call suffices to perform a feature (e.g., the concatenation of collections). Other li-
braries, such as JFreeChart4 require a sequence of API calls that together perform a
task (e.g., draw a pie chart). Some of these libraries (e.g., Apache HttpClient5) pro-
vide so-called fluent API (i.e., chained method calls) to achieve an objective (e.g.,
send HTTP authentication credentials). Listing 1 illustrates client usages of these
APIs.

1 https://github.com/public-api-lists/public-api-lists
2 https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/graph/
package-summary.html

3 https://guava.dev
4 https://jfree.org/jfreechart
5 https://hc.apache.org/httpcomponents-client-5.2.x

https://github.com/public-api-lists/public-api-lists
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/graph/package-summary.html
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/graph/package-summary.html
https://guava.dev
https://jfree.org/jfreechart
https://hc.apache.org/httpcomponents-client-5.2.x

10 Chapter 2. Background

1 // Guava multiple examples of single method calls
2 Iterators.concat(...);
3 Strings.repeat(...);
4 Graphs.reachableNodes(...);
5

6 // JFreeChart minimum group of calls to create a pie chart
7 DefaultPieDataset.setValue(...);
8 ChartFactory.createPieChart(...);
9

10 // HttpClient chain of method calls to send authentication credentials
11 CredentialsProviderBuilder.create().add(...).build();

LISTING 1: Examples of different forms of API usages from
three libraries.

1 /**
2 * Returns the character at the specified index. An index
3 * ranges from <code>0</code> to <code>length() - 1</code>.
4 *
5 * @param index the index of the desired character.
6 * @return the desired character.
7 ...
8 */
9 public char charAt(int index) {

10 ...
11 }

LISTING 2: Javadoc documentation for a library method.

Such examples of API usages could be illustrative for other library clients and may
point them to proven recurring API usage patterns. In this dissertation, we collect
and analyse such API usage patterns to not only support developers in reusing the
features provided by a library, but also in comparing libraries based on the features
they provide and the API through which it can be reused.

Information about the API of a library and its usage can be obtained from various
sources. One of the most common sources is the documentation of the library itself.
The documentation should provide a description in natural language of all inter-
faces, classes, methods, and fields that are part of the API. Library developers are
supported in this task by documentation generators, such as Javadoc, which analyse
the structured strings of documentation placed in the implementation above each
library element.6 Listing 2 provides an example.

Documentation provided by library developers has been the only source of informa-
tion about the library’s API usage for many years. In recent years, however, several
alternative sources of API usage information have become available. These sources
include README files shipped with open-sourced library implementations, mes-
saging software, and Question and Answer (Q&A) fora for developers.

6 https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#
javadoctags

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags

2.1. API Usages in Library Documentation, Messaging Platforms and Q&A Fora 11

README files can often be found in the public version repository (e.g., GitHub) of
a library. README files are intended to provide a general overview of the library as
well as some insights into its installation, usage, features offered, etc. The files do not
have a predefined structure (in contrast to auto-generated library documentation)
and they can be as detailed as the library developers desire. Some READMEs include
examples of the library’s API usage, although it is not common to see the entire API
detailed in a README file.

Messaging software for developers such as Discord7, Slack8, and Gitter9 are another
emergent source of API usage information. These applications are characterised by
their support for extensive dialogues about a library-related topic between library
developers and users. Discord and Slack support multiple communication chan-
nels. Their users might, therefore, assign each channel to a different topic about the
library. Gitter, in contrast, supports only a single channel. The channel topic can be
very general such as programming10 or be dedicated to a specific library or technol-
ogy such as scikit-learn11, docker12, etc.

Q&A fora such as Code Ranch13, Code Project14 and Stack Overflow15, provide yet
another source of information about a library and its API usage. Forums differ from
the previous information sources in that their posts focus on individual questions
users have about a particular feature of a library or a programming language. For
example, many questions in fora have the format of “How to do X with Y?”, where
X is a feature offered by library Y. Sometimes, the question includes a (partially-
functional) code snippet to illustrate what the user is trying to achieve. Code snip-
pets in answers posted by the community either complete the original snippet or
illustrate the required API usage from scratch.

Figure 2.1 shows an example of a question about “How to merge PDFs files?” posted
on the SO Q&A forum. Relevant parts of the posts have been highlighted in the
colour red. The Title is one of the main parts and where a user states the topic of
a post. The other correspond to the publication and modification dates, as well as
the number of views. The number of votes depends on whether the community
considers the question relevant (i.e., the higher the votes, the more relevant). The
tags part of the post is a list of up to five tags from a number of forum-defined ones.
Finally, the main content of the question consists of the text part of the question,
and the code part of the question. As their names indicate, the text part refers
to a natural language description of the problem a user has, and the code part (if
any) exemplifies the previous text in any programming or markup language (e.g.,
Java, Python, HTML, XML, etc.). Multiple snippets could be present in a question,
alternating text and code to exemplify better the user’s intention.

7 https://discord.com
8 https://slack.com
9 https://gitter.im
10 https://gitter.im/chat-rooms/programming
11 https://gitter.im/scikit-learn/scikit-learn
12 https://gitter.im/docker/docker
13 https://coderanch.com
14 https://www.codeproject.com
15 https://stackoverflow.com
16 https://stackoverflow.com/questions/3585329

https://discord.com
https://slack.com
https://gitter.im
https://gitter.im/chat-rooms/programming
https://gitter.im/scikit-learn/scikit-learn
https://gitter.im/docker/docker
https://coderanch.com
https://www.codeproject.com
https://stackoverflow.com
https://stackoverflow.com/questions/3585329

12 Chapter 2. Background

Title of the post

Publication, modification
dates and views

Text part of
the question

Code part
of the question

Votes

Tags

FIGURE 2.1: Example of a question on the Stack Overflow Q&A
forum.16

Next to the question multiple answers can be part of a post. An answer has a similar
structure to the question formulated in the post. The main purpose of an answer
is not only to help the user who originally asked the corresponding question, but
also to help other developers who encounter the same issue. As a result, SO has
become a massive knowledge base for developers. Figure 2.2 displays an example
of an answer to the previous question in Figure 2.1.

Votes

Accepted
Answer

Edit Date
Publish Date

and User

Code part
of the answer

Text part
of the answer

Number of answers
for the question.

FIGURE 2.2: Example of an answer to a question in Stack Over-
flow.17

In total, this question has received seven answers. The main parts of the answer are
similar to those of a question such as the number of votes, the text and code parts
and the publication and edit dates. Unique to answers is an optional green check
mark indicating whether the answer is the one among all posted answers that has
been accepted by the user who made the question. This attribute functions as a form
of both answer curation and stimulus.

17 https://stackoverflow.com/questions/4874334

https://stackoverflow.com/questions/4874334

2.1. API Usages in Library Documentation, Messaging Platforms and Q&A Fora 13

The text and code parts of the answer point to a solution for the posted question.
They form the main source of information for the data-driven tool support for library
users which we will develop in this dissertation.

API Source Structured Feature-focused Updated Ecosystem
Generated documentation + − − +
README files − − + −
Messaging software − + −

Q&A fora + +

TABLE 2.1: Comparison of the different sources of API usage.

Table 2.1 compares the four sources of API usage information discussed above. Col-
umn Structured specifies whether the source is structured and can therefore eas-
ily be analysed through automated means. Feature-focused indicates those sources
where a group of related API usages is likely to be found. Updated highlights those
that are most likely kept up to date throughout time. Finally, column Ecosystem
states the reach of the information source or how much of the ecosystem it covers.

Auto-generated library documentation is typically well-structured (cf. Listing 2).
This structure is easily exploited for analysis. Moreover, most libraries feature such
documentation as it is considered a best practice among library developers. How-
ever, the documentation of a library targets its public API at the finest granularity,
describing each of its elements (i.e., methods, fields, classes, etc). This is convenient
whenever help for a specific component is required. However, it rarely offers infor-
mation about API elements that need to be used together in idiomatic ways due to its
very fine-grained nature. In other words, library documentation was not designed
to describe API usage sets. Moreover, documentation may not always be kept up to
date for every library release as developers consider it a cumbersome task.

README files, as previously mentioned, do not have a defined structured since they
are basically an open-format document for library installation and configuration.
Due to their informative nature of providing general descriptions, it is rare to find li-
brary API usage patterns in them. Nonetheless, as library projects evolve, maintain-
ers usually keep README files up to date. The reach of READMEs to an ecosystem-
wide scope depends on the availability of libraries as open-source projects, which is
currently not the case.

Messaging software, as shown in Table 2.1, is a less-structured source of library in-
formation. For example, it is not straightforward to retrieve all messages that be-
long to a particular conversation since conversation threats intertwine. Advanced
techniques to untangle messages from different conversations are required. API us-
age patterns might appear in code examples within a conversation; however, it is
very common to have conversations about a single API call.18 Several libraries have
started adopting Slack, Gitter or Discord to be closer to their users and provide feed-
back more quickly (e.g., Akka19, Pandas20, Django21).

18 https://discord.com/channels/632150470000902164/1008846246661849179
19 https://matrix.to/#/#akka_akka:gitter.im
20 https://pandas.pydata.org/docs/dev/development/community.html#
community-slack

21 https://discord.com/invite/TP9yQBwyxF

https://discord.com/channels/632150470000902164/1008846246661849179
https://matrix.to/#/#akka_akka:gitter.im
https://pandas.pydata.org/docs/dev/development/community.html#community-slack
https://pandas.pydata.org/docs/dev/development/community.html#community-slack
https://discord.com/invite/TP9yQBwyxF

14 Chapter 2. Background

Q&A fora impose more structure on conversations as shown in Figure 2.1 and Fig-
ure 2.2. This structure facilitates extracting library information. Furthermore, API
usage patterns are commonly found in Q&A fora since as conversations are struc-
tured as one or more answers to a well-scoped question. Therefore, the code snippets
and the natural-language text within a post are related to the same topic. In terms of
API updates, authors of both questions and answers can update their content to the
latest version of an API, but, unfortunately, this is not a common practice. For exam-
ple, Zerouali et al. [153] report that code snippets with import statements make use
of an 80.7% of libraries with outdated versions. Finally, Q&A fora, like Messaging
software, have the potential to host any conversation about any library in an ecosys-
tem. Although this is not yet the case for Stack Overflow (the most popular Q&A
forum), it already contains many questions and answers for numerous libraries in
the Java ecosystem. For example, there is currently 2 million questions with the java
tag.22

Based on this information, we deem Q&A fora a promising source of API usage
information. More specifically, we will use Stack Overflow as our information
source because it is the most popular among its relatives, containing a vast num-
ber of posts (e.g., over 55 million) to be analysed.

2.2 Stack Exchange and SOTorrent Stack Overflow
Dataset Dumps

Stack Overflow started in 2008 as a company launched by Jeff Atwood and Joel
Spolsky. Since then, many communities (e.g., AI, Bioinformatics, Space, Unix, etc.)
have congregated into the umbrella fora called Stack Exchange23, which includes the
Stack Overflow forum. These communities discuss topics related to their name, be-
ing Stack Overflow the most popular with over 55 million posts. Every three months
a snapshot of the contents in all communities is created and made publicly available
in the Internet Archive.24 The snapshot contains compressed (i.e., 7zipped) XML
files with an internal structure. Stack Overflow, as the rest of communities, also has
a schema depicted in Figure 2.3.

The extracted schema reflects the relations between different files or tables. More-
over, the figure provides a description of the fields for each file and their types (e.g.,
field Score in file Posts of type int). In this dissertation we use the contents of the
files Posts and Tags. The Posts file contains important fields for our research such as
PostTypeId, indicating the type of post (e.g., question or answer); Title; Tags; Body of
the post, among others.

Based on this dataset of publicly available information, SOTorrent26 is proposed by
Baltes et al. [12] with the goal of investigating the evolution of SO posts. SOTorrent
has been referenced multiple times by previous works that analyse SO posts for soft-
ware engineering tasks. In contrast to Stack Exchange compressed files, SOTorrent
provides an already configured MySQL database where each table corresponds to

22 https://stackoverflow.com/tags
23 https://stackexchange.com/tour
24 https://archive.org/download/stackexchange
25 The figure is extracted from here: https://sedeschema.github.io/
26 https://empirical-software.engineering/sotorrent/

https://stackoverflow.com/tags
https://stackexchange.com/tour
https://archive.org/download/stackexchange
https://sedeschema.github.io/
https://empirical-software.engineering/sotorrent/

2.3. Text Transformation into their Vector Representation 15

FIGURE 2.3: Schema of all XML files related to the Stack Over-
flow community.25

an XML file. In such a way, queries are much faster in the database than in a file
with millions of rows and information to parse.

The research conducted in this dissertation uses both SOTorrent and Stack Exchange
XML files. SOTorrent is used in Chapter 5 to extract features from SO posts. The
Stack Exchange files are employed in Chapter 6 to extend the dataset of posts re-
ferring to a library usage. The reason for the selection of the latter in Chapter 6 is
the access to the most recent posts, being SOTorrent discontinued. We had to imple-
ment the mechanisms for accessing and querying, which were already facilitated by
SOTorrent.

SO posts are used throughout the whole dissertation. Specifically, Chapter 4 pro-
poses an API resolution approach for incomplete SO code snippets. Chapter 5
proposes an approach to uncover library features from API usages in SO posts.
Chapter 6 proposes an approach that extracts SO posts characteristics to train a
model that improves the API type predictions on incomplete code snippets.

2.3 Text Transformation into their Vector Represen-
tation

Q&A fora feature text written in natural and programming languages alike. In order
for this data to serve as input to analysis and learning algorithms, some text transfor-
mations are typically required as a preprocessing step. Examples of commonly-used

16 Chapter 2. Background

text transformations include Bag-of-Words (BoW) [54], Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) [116], and Word Embeddings [86, 87]. Each take a text
document as input and produce an M× N dimensional matrix as output.

2.3.1 TF-IDF
TF-IDF [116] is one of the earliest techniques used in natural language processing to
transform text into a vector representation for the purpose of classifying documents.
The technique is based on the frequency of the words or terms in a document.
More specifically, TF-IDF is defined by the following equations:

TF(t, d) =
ft,d

∑t′∈d ft′,d
(2.1)

IDF(t, D) = log
N

|d ∈ D : t ∈ D| (2.2)

TF-IDF(t, d, D) = TF(t, d) · IDF(t, D) (2.3)

The same terminology is shared across the above equations. Equation (2.1) deter-
mines the frequency of the term t in a document d. The frequency is simply defined
as the number of occurrences of t in d: ft,d, divided by the sum of the frequencies of
all terms in d: ∑t′∈d ft′,d. Analysing documents using the frequency of their words
alone can be misleading since articles (e.g., the, a, etc.), and prepositions (e.g., in, at,
etc.) occur more often than nouns and verbs.

TF-IDF therefore accounts for very common terms that might not be relevant to char-
acterise a document as follows. Equation (2.2) calculates the logarithm of the num-
ber of documents N, divided by the number of documents where the term t appears:
|d ∈ D : t ∈ D|. Equation (2.3) combines the term frequency of Equation (2.1) with
the inverse document frequency of Equation (2.2). TF-IDF will generate a rectangu-
lar matrix D×M, where M is the number of unique terms in all documents D.

2.3.2 Word2Vec
The use of Word Embeddings (e.g., Word2Vec) [86, 87] has become popular due to
its ability to capture semantic relations between words based on the surrounding
context. For instance, the words “dog” and “pet” may be related because of the
similarity of their contexts.

In general, the Word2Vec approach follows the flow described in Figure 2.4.

First, the training data is constructed from the text passed as input. Training data is
usually built by considering a window hyperparameter which extracts the surround-
ing words around a target word as its context. For example, consider the sentence
“The cat is on the mat”. The context for the target word on comprises all the words ad-
jacent to the selected target. Each word of its surrounding context forms the training
dataset.

Once the training data has been constructed its words are transformed into one-hot
encoded vectors. One-hot encoded vectors have all elements set to zero, except for

2.3. Text Transformation into their Vector Representation 17

FIGURE 2.4: Word2Vec text transformation into a vector repre-
sentation.

the element at the index corresponding to the word under transformation which is
set to one. These vectors are of the size of the unique vocabulary in the text and form
the input of a neural network (NN) for training.

The particular NN used has been described by Mikolov et al. [86, 87] and is shallow
with only two hidden layers, and a linear activation function in the internal neurons
for faster processing. The first hidden layer represents the embedding layer and the
second one is the output layer which is compared to the target vector after the appli-
cation of a sigmoid function. Given the vectors of the context words, the task of the
NN is to predict the vector of the target word. Once the network has been trained,
it is not used for future predictions, but the weights within the embedding layer are
extracted. Thus, each word is associated with a learnt vector for it given its sur-
rounding context. Two words might appear in many similar contexts, but since they
might be used differently, their one-hot vectors might differ, hence resulting vectors
are also dissimilar. The output is, therefore, a lookup table or a map data structure
where the keys are words and the values are the learnt n-dimensional vectors, where
n corresponds to the number of neurons in the first layer.

Two configurations can be used for Word2Vec: Continuous Skip-gram (Skip-gram)
and Continuous Bag-Of-Words (CBOW) [86]. The former predicts the context around
a word, whereas the latter tries to predict a word given its surrounding context.
CBOW is used in this research as it is faster than the alternative Skip-gram [87] while
resulting in similar efficiency. The following figure shows the weights of the selected
architecture after a training epoch on the running example:

FIGURE 2.5: CBOW neural network weights after a training.

18 Chapter 2. Background

As depicted by Figure 2.5, the input of the CBOW NN are one-hot encoded vectors
representing the target word’s context. Two hidden layers are responsible for the
training, with a first layer of neurons containing the weights for each input word
individually, and a second layer with the aggregated (e.g., averaged) weights of all
context words. The output layer of the network will predict the most likely word, en-
coded as a one-hot vector, and after an evaluation check, a backpropagation process
calculates the needed adjustment of the weights. After the adjustment is made, the
process repeats until a success criterion is met, e.g., number of epochs, goal achieved,
etc.

The resulting weight vectors or embeddings of the first hidden layer are extracted
for each of the context words, and eventually for all words in the vocabulary. These
vectors effectively capture the context in which the target word appears.

Chapter 3 discusses recent applications of word embeddings within the state-of-
the-art work in source code analysis (e.g., [6, 7, 57, 91, 92, 123]). Additionally, the
techniques presented in this section are utilised in Chapter 4 and Chapter 5 as a
processing step before a learning procedure (i.e., classification or clustering).

2.4 Text Classification as a Natural Language Pro-
cessing Problem

2.4.1 Text Classification
Text classification [14] is a natural language processing problem that requires as-
signing a correct label yi to each set X1, X2, . . . , Xn of tokens that corresponds to
a text from a given corpus. For example, a paragraph describing movies, actors,
directors, and scenes might be tagged with the label cinema. In contrast, a text about
a forecast with snowfall, wind direction, and expected humidity could be labelled as
weather. Supervised machine learning approaches for text classification train a learn-
ing model by extracting the relations between the tokens and the labels of a smaller
representative set (i.e., the training set) to assign a correct label y′i to a new set of to-
kens X′1, X′2, . . . , X′n (i.e., the test set). Several approaches to training and predicting
these labels have been proposed over the years (e.g., [23, 54, 107, 116, 149]).

2.4.2 Machine Learning Algorithms Used for Text Classifica-
tion

In classification problems, the feature vector resulting from feature extraction
(e.g., through word embeddings or TF-IDF) is given to a classification algorithm
for either training or class/label prediction. This subsection briefly presents the
ML-based classification algorithms employed for one of the main contributions of
this dissertation.

K-Nearest Neighbours

K-Nearest Neighbours (KNN) [38] classifies a new instance by analysing its K
closest neighbours in the space of the independent features. If these neighbouring
instances belong to different classes, the assigned class will be the most common
among the neighbours. Algorithm 1 details the KNN classification procedure.

2.4. Text Classification as a Natural Language Processing Problem 19

Algorithm 1: K-Nearest Neighbours classifier pseudocode
Input : Features X, Labels y, unlabelled vector j, neighbours k.
Output: Label for vector j.

1 distances← ∅
/* Calculates the distances of all records in the training data to

the unlabelled vector */
2 for i← 0 to n− 1 do
3 distances ∪ {calculateDistance(Xi, j)}
4 end
// Computes the nearest k distances

5 selectedDistances← nearestDistances(distances, k)
// Returns the majority label of the k nearest neighbours

6 return majorityLabel(selectedDistances)

The input of the KNN algorithm is the matrix X with the features for the documents
in the corpus and their labels y. KNN also requires an unlabelled vector j for which
the label will be predicted as the outcome of the learning process and the number
of neighbours k. The algorithm first calculates the distance between each vector Xi
and the unlabelled vector j (Lines 2-4). The k-nearest distances are selected (Line 5)
to finally obtain the majority label from all labels y1, y2, · · · , yk of the k-closest neigh-
bours (Line 6). KNN is popular because of its fast classification and good results.
Existing work [20, 111, 115] has applied KNN to text classification problems.

Random Forest

Random Forest (RF) [24, 58] belongs to the family of machine learning classifiers cat-
egorised as ensemble algorithms. Ensemble classifiers group several machine learn-
ing algorithms that are considered efficient, yet lightweight. In the case of Random
Forest, the ensemble consists of several Decision Tree classifiers, hence the term
Forest. Each tree is trained with a random selection of features, hence the term
random. This last characteristic prevents bias in the RF algorithm also avoiding
overfitting especially on imbalanced datasets. At prediction time in a classification
task, each of the trees performs a vote on the decision to be taken. The majority
vote represents the final prediction of the trained model. On the other hand, for re-
gression tasks, RF considers the averaged outcome of all decision trees in the forest.
Algorithm 2 describes this ensemble algorithm into more detail.

The algorithm starts with an empty forest, or set of decision trees, which will be
dynamically filled in. The number of decision trees comprising the forest is set us-
ing a hyperparameter. Each tree in the forest is trained with a bootstrapped (i.e.,
randomly sampled and replaced) version of the training dataset (Line 4).

Each decision node makes a split based on a random subset of features f ′ < f (Lines
8 and 11). This will ensure that the algorithm remains unbiased. Like KNN, RF has
already been used with success for text classification tasks [31, 111].

20 Chapter 2. Background

Algorithm 2: Random Forest classifier pseudocode
Input : Training data Xy, feature vector f , number of trees n.
Output: Trained Random Forest RF.

1 RF ← ∅
// Trains a tree and added it to the forest set

2 for i← 0 to n− 1 do
3 dataBoost← bootstrap(Xy)
4 tree← RandomisedTreeLearn(dataBoost, f)
5 RF ∪ {tree}
6 end
7 function RandomisedTreeLearn(dataset, features):

// Constructs a Decision Tree considering the following:
8 for Each decision node do

// Selects a random subset of features
9 f eaturesSubset← randomSubsetFeatures(f eatures)

// Splits on the best feature of the subset
10 splitNode(f eaturesSubset)

/* Re-calculates information gain, entropy, etc., and
continues to other remaining nodes in the tree if any */

11 end
12 return The learnt tree
13 end
14 return RF

Ridge Linear Classifier

Linear Regression classifiers fit a line to the data that optimally splits the data into
two categories or labels. To use them on multi-class datasets (e.g., such as many for
text classification), techniques have been proposed including One-vs-Rest, and One-
vs-One. One-vs-Rest transforms a multi-class dataset in multiple binary datasets
where one class is considered positively, and all other classes are treated negatively
[89]. One-vs-One on the other hand, constructs multiple binary datasets with every
possible pair of classes [21].

Regularised linear classifiers are a variation on classical linear classifiers since that
introduces penalisation hyperparameters at training time. The latter have been used
successfully for text classification problems [160]. We will instantiate our approach
with the Ridge Linear (RL) regressor [101], which first transforms the multi-class
data into a multi-output regression problem and then fits one regressor per target
label. RL regressors introduce a regularisation parameter α that determines the vari-
ance of the estimated weights for the model.27 The regularisation parameter adds
the linear classifier into the regularised classifier family.

The base of the classifier is an ordinary linear regression model (OLR) of the form
detailed in Equation (2.4).

27 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
RidgeClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html

2.4. Text Classification as a Natural Language Processing Problem 21

Modelolr = mx + n (2.4)

The variables m and n will be adjusted to the training data features x. To optimise
the model to the best possible m and n, a loss function is needed to report how well
the trained model performs with its current variable values on the testing data. One
of the most popular loss functions is the mean-squared error (MSE) function defined
in Equation (2.5).

MSE(y, y′) =
1
n
·

n

∑
i=1

(yi − y′i)
2 (2.5)

Equation (2.5) is applied to the testing data of which n is the number of elements, yi
refers to the true label, and y′i is the predicted label of the ith element. Regularised
classifiers add parameters to the loss function in order to control the variables in the
model.

Reg_MSE(y, y′) = MSE(y, y′) + α · ||θi||1 (2.6)

Equation (2.6) shows an additional summand to the original Equation (2.5) with
the α and the θ parameters. α will penalise the parameters θi in case their values
are too low or too high. The parameters θi|i = 1...n refer to all variables in the
model being regularised. In this case, the variables to be adjusted are m and n from
Equation (2.4). Finally, a L1-norm or absolute-value norm is applied to θi which
means ||θi||1 = ∑ |θi|. The regularisation addition to linear classifiers is considered
advantageous since it prevents model overfitting.

Support Vector Machines

The Support Vector Machines (SVM) classifier [34] searches for an optimal hy-
perplane that can effectively distinguish the classes based on their features. For
example, when the number of features in a dataset is two, SVM will try to find the
optimal line dividing the data in a 2D space. If the number of features is three, the
division becomes a plane trying to separate a 3D feature space. This concept can
be generalised to datasets with n feature dimensions and a hyperplane with n − 1
dimensions, which require considerable computational resources if n is high.

Different kernels can be used to fit the model to the data. Examples of kernel func-
tions include linear, polynomial, sigmoid, etc. SVMs have also been used success-
fully for text classification problems [62, 71].

Algorithm 3 is a version28 of the original SVM that has been simplified for didactic
purposes. For example, the λs (i.e., trainable penalisation parameters) in the original
SVM are calculated using a Sequential Minimal Optimisation (SMO) algorithm [96].
SMO is used to speed up calculations as well as to explore more regions on the
solution space. The simplified version depicted in Algorithm 3 uses the simpler
bounded calculations instead.

28 A Python implementation can be found at: https://github.com/fbeilstein/simplest_
smo_ever/blob/master/simple_svm.ipynb

https://github.com/fbeilstein/simplest_smo_ever/blob/master/simple_svm.ipynb
https://github.com/fbeilstein/simplest_smo_ever/blob/master/simple_svm.ipynb

22 Chapter 2. Background

Algorithm 3: Support Vector Machine classifier pseudocode
Input : Features X, Labels y, kernel k, regularisation C, max. iter. m.
Output: Trained SVM.

1 λ← ∅
2 K ← k(X, X) · y′ · y // y’ is y with an extra dimension
// Trains the λs

3 for _← 0 to m− 1 do
4 for i← length(λ) do
5 j← random(λ)
6 Q← K[[[i, i], [j, j]], [[i, j], [i, j]]]
7 v0 ← λ[[i, j]]
8 k0 ← 1−∑ λ× K[[i, j]]
9 u← [−yj, yi]

10 tmax ← k0 · u/(Q · u2 + σ)
11 λ[i,j] ← v0 + u× restrict(tmax, v0, u)
12 end
13 end
14 function restrict(t, v0, u):

// Bounds the results to defined limits
15 return bound(v0 + t× u, 0, C)
16 end

// Obtains the indices supporting λ at a minimum σ

17 indices← index(λ > σ)
// Calculates the bias b

18 b← (∑(1−∑ Kindexes × λ)× y)/length(indices)
// Computes and returns the model

19 return ∑(k(X, X)× y× λ) + b

Algorithm 3 takes as input the training data X and y, the kernel k, the regularisation
C and the maximum number of iterations m. Some variables are initially bound to
certain values, for example, the λs (Line 1) start with an empty set and K (Line 2)
stores the application of the kernel k on the features multiplied by their labels. The
nested for loop (Lines 3-13) iterates until the maximum iteration m is reached for all
λs in each outer cycle. The variables i and j are used in the internal loop for various
operations to finally modify the value of λ at a specific location. The restrict func-
tion (Lines 14-16) limits the calculated results to the maximum parameter C. Indices
are extracted (Line 17) where the calculated λs are higher than a defined threshold
σ. The threshold is usually a very small number (e.g., 1E− 15). Finally, the extracted
indices and their λs are used to compute the bias b (Line 18) and the SVM model
(Line 19).

The classification algorithms described above are used in Chapter 4 to suggest a
likely FQN in an incomplete code snippet. The algorithms are evaluated accord-
ing to their performance in solving the API type resolution as a text classification
problem.

2.5. Part-Of-Speech Tagging 23

Multi-label Classification Algorithms

In general, classifiers can be trained on three types of datasets. The first type of
dataset is called a binary dataset as it contains only two classes to predict. This
explains why classifiers trained on binary datasets can be very effective. The sec-
ond, more complex, type is called a multi-class dataset as it includes more than two
classes to predict. Classifiers trained on multi-class datasets can still achieve good
performance. For both types of datasets, classifiers only need to predict one class
per instance in the dataset. The third and most complex type of dataset is called
a multi-label datasets as it includes more than one class to predict per data in-
stance. In order to perform well, classifiers on a multi-label dataset need to fit
several distinct data distributions which increases the complexity of both train-
ing and evaluation.

We discuss the multi-label classifiers that performed best in an extensive survey and
empirical comparison by Madjarov et al. [82]. Note that multi-label classifiers need
to be instantiated with a base classifier. That is, a multi-label classifier cannot make
predictions on its own without consulting a base classifier. The previously discussed
SVM algorithm has, for instance, been used as a base classifier for multi-label classi-
fiers.

Binary Relevance Classifiers
The Binary Relevance (BR) classifier [129] trains one classifier per label to predict.
It assigns one class for a label and another class for the rest of the labels. In other
words, it simplifies the multi-label problem to a single-label one by binarising the
dataset.

Like BR, Classifier Chaining (CC) [103] also uses n binary classifiers. The algo-
rithm “chains” these classifiers together. Each binary classifier is assigned a label
j the relevance of which will be learned. To compute the remaining relevance of the
j + q | q > 0 labels, prior knowledge is used.

Ensemble Method Classifiers
The RAndom k-LabELsets (RAkEL) ensemble classifier [130] forms groups of labels
and trains a single classifier for each group. It does consider relations among the la-
bels within a group. Being an ensemble algorithm, predictions are made by majority
vote from the classifiers for each group.

The Ensemble Multi-label (EML) classifier proposed by Read [102] combines several
multi-label classifiers in an ensemble way. It can, for instance, be instantiated with
the aforementioned Binary Relevance (BR) and Classifier Chaining (CC) classifiers.

2.5 Part-Of-Speech Tagging
Phrase-structured trees are a common way to represent the structure of sentences.
Figure 2.6 shows the tree representation of the sentence “The man hit the ball”. The
sentence comprises several constituents, each of them having a distinct grammatical
role in the sentence structure.

Initially, the tree in Figure 2.6 divides the sentence into two elements: a Noun Phrase
(NP) and a Verb Phrase (VP). The NP is further decomposed into the determiner (T)

24 Chapter 2. Background

FIGURE 2.6: Phrase-structured tree of a sentence [32].

the and the noun (N) man. On the other hand, the VP comprises the verb hit and NP
comprising another determiner the and the noun ball.

The tags alongside the constituents forming a sentence (e.g., NP, VP, etc.), are known
as part-of-speech (POS) tags. POS tags help identifying specific elements in sen-
tences and assist in cases where relation-based characteristics or patterns need to
be extracted, e.g., NP formed by determiners and nouns. Automatic approaches for
POS tagging have been introduced [126, 127] and their models have been made pub-
licly available to enable more research on the topic. The techniques in Chapter 5 use
POS tagging as a way of automatic feature naming. All sentences surrounding code
snippets are analysed to extract the pairs of nouns and verbs to can help in naming
a frequent pattern into a library feature.

2.6 Hierarchical Clustering
Hierarchical clustering [83] is a technique that clusters elements based on the sim-
ilarity of their attributes, and results in a hierarchy of clusters (often visualised as
a dendrogram) so that elements in a child cluster also belong to the parent cluster.
Intuitively, each layer in the hierarchy is characterised by its own maximum distance
among the elements in its cluster. Bottom-up (or agglomerative) approaches initially
form one cluster per element and merge these clusters repeatedly according to their
similarity. The cluster at the root of the hierarchy encompasses all elements. Top-
down (or divisive) approaches initially group all elements in a single cluster and
repeatedly split until every element is on its own.

2.6.1 Static and Dynamic Tree Cutting
The Hierarchical clustering algorithm results in a tree of clusters that needs to be cut
at a given height to obtain a unique clustering of the dataset. In static tree cutting (left
part of Figure 2.7), each child below the given height cut off forms a separate cluster.
However, an appropriate height threshold might be very challenging to determine.

A suboptimal clustering can result, especially for height thresholds at which there
are many similar elements and hence nested clusters. Alternatively, Langfelder et
al. [68] propose to cut the tree branches dynamically (right part of Figure 2.7) based
on its shape using either a top-down or a bottom-up tree-cutting algorithm. These
have been shown to outperform static cutting in bioinformatics applications, and
are amenable to complete automation, rather than manual selection of the cutting

2.6. Hierarchical Clustering 25

FIGURE 2.7: Static (left) and dynamic (right) tree cutting of a
dendrogram.

threshold. We will use this technique in Chapter 5 for clustering the API usage in
code snippets and form patterns of usages that will eventually be library features.

27

Chapter 3

State of the Art

This chapter describes the current state of the art in data-driven tooling based on SO
information. The chapter starts with a survey of tools that consult Stack Overflow
information to offer developers support on various software engineering problems.
Next, we analyse how these tools approach the problems of SO code snippets being
incomplete and ambiguous. Furthermore, as word embeddings applied to code are
an integral part of the thesis contributions, this chapter also explores the latest ap-
proaches in this direction. As we use SO to provide tool support for library usage
and selection, this chapter also includes a major survey on library recommendation
and feature uncovering.

3.1 Development Tools Incorporating Stack Over-
flow Information

Several software engineering tools have been proposed throughout the years that
use SO posts as a source of information. In general, these tools aim to leverage
the multitude of advantages provided by Q&A platforms (detailed in Chapter 2) by
analysing a selection of code snippets within SO answers that have been curated by
the developer community.

RecoDoc [37], for instance, identifies API references within text in the library docu-
mentation and in library-selected answers on Q&A websites to improve their learn-
ing resources. To identify API references, RecoDoc performs multiple steps includ-
ing snippet parsing and Partial Program Analysis (PPA) [36]. PPA introduces changes
to the input program with the goal to produce complete and correct code ready to
be compiled and run by the end user. For example, a code snippet can be incor-
rectly typed and PPA would attempt to correct variable declaration types. However,
none of the code snippets presented in the PPA paper is syntactically incomplete,
nor do they miss package imports statements. Assuming that PPA manages to make
the code snippet compile, it will infer partial type information for the expression
declarations in the snippet, but not for the types for which it misses a declaration
(e.g., those imported from a library). When faced with incomplete code, RecoDoc is
limited by these limitations of PPA.

Prompter [100] proactively retrieves SO posts that are relevant for the current context
of the developer within the IDE. The approach establishes a ranking model based
on different types of similarities between the context in the IDE and the SO posts
to retrieve. The ranking model is based on eight features that capture the relations

28 Chapter 3. State of the Art

between the mentioned entities. The considered features are textual similarity, code
similarity, and API types similarity, question score, accepted answer score, user rep-
utation and tags similarity. To calculate the API types similarity, Prompter relies on
the outcome of the Eclipse JDT parser, which means that the input to the parser has
to be at least syntactically correct.

SISE [128] augments library documentation with relevant API sentences in SO posts.
To find insightful sentences in the corpus of SO information, SISE’s search is based
on regular expressions which are matched against the body and title of posts. The
goal is to detect API elements within natural language and possibly augment the
documentation of the referenced API with community-based knowledge.

CodeTube [99] enables querying the contents of software development video tuto-
rials and complements the results with relevant discussions. The tool identifies the
frames in the video that feature Java code to subsequently extract the region in the
frame with the code. An Optical Character Recognition (OCR) tool is used to recog-
nise and extract the text within the video frame. An island parser [11, 88] is used to
obtain the Java code within the frame.

BIKER [28] takes a natural language query about a library as input (e.g., “run linux
commands in Java code”) and returns related SO posts and API methods. To identify
API references in SO posts, BIKER (like the aforementioned SISE [128]), uses regular
expressions that match API types by their fully qualified names (FQNs).

POME [72] analyses SO posts to synthesise the community’s opinion about a library.
Once again, the identification step of the referenced API elements in SO code snip-
pets heavily depends on the usage of regular expressions as some of the previous
works. The POME approach includes an additional regular expression that matches
the occurrences of method invocations by their parent classes. Sentences contain-
ing matches are considered related to the corresponding library and subsequently
classified through sentiment analysis as positive or negative.

PostFinder [105] recommends SO posts based on the developer’s context in the IDE
by constructing queries to an already populated Lucene database. PostFinder tries to
resolve API type references by parsing a code snippet using the Eclipse JDT, and then
consulting the Maven Dependency Graph [16] to obtain the likely FQN for simple
names within the Abstract Syntax Tree (AST). When multiple candidate types share
the same simple name (i.e., ambiguous cases), PostFinder computes the Levenshtein
distance between the candidates and the SO post title, the question body, and the
answer. However, this heuristic does not ensure the accurate type resolution for an
ambiguous simple name for the following reasons:

1. Levenshtein distance calculates the number of edits needed to transform a text
sequence into another at the character level [70]. PostFinder takes the maxi-
mum distance (cf. Line 163 - Line 178 in its GitHub source code1), meaning
that the selected FQN is the most dissimilar to the post text corpus. We did
not find a rationale behind this decision.

2. SO code snippets might contain API types that are not related to the topic
under discussion, yet are entangled with those types that are.

1 https://github.com/MDEGroup/PostFinder/blob/master/tools/src/main/java/
soRec/Utils/Jdt.java

https://github.com/MDEGroup/PostFinder/blob/master/tools/src/main/java/soRec/Utils/Jdt.java
https://github.com/MDEGroup/PostFinder/blob/master/tools/src/main/java/soRec/Utils/Jdt.java

3.1. Development Tools Incorporating Stack Overflow Information 29

Opiner [131] mines the API usage of libraries in SO posts with the objective of pro-
ducing API documentation. The approach combines several techniques to parse and
filter the information in the posts, as well as to learn based on the proximity of API
references. More specifically, the code snippets are parsed through a combination of
ANTLR [94] and island parsers [88]. Each line is processed first by the Java ANTLR
parser. In case of a parse error, the island parser will process it instead. Since many
code snippets are syntactically incorrect, the technique can work in most of the cases.
However, incomplete code snippets where there is no reference to the FQN of the
used API element might represent a problem for Opiner as it is not able to resolve
API types.

ATTACK [146] generates API tags for fragments of SO tutorial posts. Using ques-
tion and answer pairs from SO and their corresponding tag sets, ATTACK trains
an attention-based deep neural network that prioritises the most relevant parts of
a post based on its tags. The trained network is able to recommend tags per API
fragment and to provide more insights about the feature of an API usage. The tech-
nique employed by ATTACK is hybrid since it combines Eclipse JDT and PPA [36].
The approach works similarly to Opiner [131]: in case of failure from the first tool
(Eclipse JDT in this case), the second one is used (PPA).

Table 3.1 summarises the techniques used by these state-of-the-art tools to extract
(and resolve) API references from SO code snippets.

Approach Eclipse JDT PPA Regex ANTLR Island Parser
RecoDoc [37] ✓
Prompter [100] ✓
SISE [128] ✓
CodeTube [99] ✓
BIKER [28] ✓
POME [72] ✓
PostFinder [105] ✓
Opiner [131] ✓ ✓
ATTACK [146] ✓ ✓

TABLE 3.1: Techniques used to extract API references from code
snippets.

Table 3.1 shows that many software engineering tools that leverage SO information
rely on the Eclipse JDT or simple regular expressions. Eclipse JDT is not able to
parse a syntactically incorrect code snippet. In other words, the code passed as input
needs to compile without errors, which is also the case for PPA (e.g., RecoDoc [37],
ATTACK [146]) and ANTLR (e.g., Opiner [131]). This is particularly problematic for
SO code snippets as the Q&A platform has no restriction (i.e., syntax checks) on how
a contributor should include code in a post.

The regular expressions used in the discussed approaches have been crafted to match
particular parts of the text information in SO posts. For example, they target the
title or the body of the post and retrieve specific forms of API references such as
prototypical method calls and field accesses therein. However, syntactically more
complex API references such as chained method calls known from libraries that fea-
ture a fluent API, might escape the hand-crafted regular expression. Island parsers

30 Chapter 3. State of the Art

[88], in contrast, could be configured with the complete and official grammar for any
language. This ensures that the parsing step covers all intricacies of the language.
Moreover, statements and declarations that are unrelated to API references can be
declared as water whereas the expressions that are to be extracted (e.g., method calls)
can be declared as islands. Only two of the discussed approaches (e.g., CodeTube [99]
and Opiner [131]) rely on island parsers [88]. This renders their extraction of API ref-
erences robust. However, other means are required to resolve fully qualified names.

3.2 Program Analyses for Stack Overflow Code Snip-
pets

Several algorithms for API type resolution in code snippets have been proposed over
the years.

PARSEWeb [124] is a tool supporting developers unfamiliar with a library in identi-
fying an API method sequence to obtain the object of a type they need. To this end,
it constructs Method Invocation Sequences (MIS) from direct acyclic graphs con-
structed from code examples where the nodes represent statements and the edges
represent the control flow between two statements. Next, a clustering technique is
applied to group similar sequences. The resulting clusters are used to recommend
completions of partial method invocation sequences to developers. The approach is
limited to a single library under analysis at a time, while developers often use APIs
from multiple libraries. Moreover, the method invocations do not necessarily form
contiguous sequences, but may be scattered throughout a snippet.

PPA [36] has been used in several approaches that require a robust technique for
extracting type-related information from incomplete code snippets. For instance,
this is the case for RecoDoc [37] and ATTACK [146], as shown in Table 3.1. PPA is
based on the Eclipse JDT parser and aims to recover types from partial programs.
The goal of PPA is to infer type information (i.e., member declaration and subtyping
information) for referenced types of which the type declaration (i.e., a Java class or
some file with a class or interface that declares the type) is in otherwise complete and
syntactically correct programs. As PPA is based on the Eclipse JDT parser it fails to
analyse syntactically incorrect code and code that does not form a compilation unit
on its own.

Baker [118, 119] traverses an AST constructed by the Eclipse JDT parser or the Es-
prima parser for JavaScript to collect type information at variable declaration nodes.
It then associates a list of candidate FQNs for these nodes by consulting a database
populated from the JAR files of candidate libraries in the case of Java code snip-
pets. These lists are iteratively refined for every method invocation of which the
receiver expression is a known variable reference or method invocation. The com-
puted lists satisfy the semantic constraints imposed by using the API-related vari-
ables in the snippet. The deductive reasoning approach taken by Baker is therefore
limited by I) the syntactical correctness of the snippet, II) the extent to which it con-
tains candidate-reducing API usages, and III) the library implementations for which
its database has been populated.

Yang et al. [150] investigate the usability of code snippets in Stack Overflow for four
programming languages: C#, Java, Python and JavaScript. Usability, in this case, is
defined as whether a code snippet can be successfully parsed, compiled, and run

3.2. Program Analyses for Stack Overflow Code Snippets 31

using the language’s default tools. Their findings indicate that few snippets are us-
able as they are in the posts, especially in the case of Java with less than 4% parsing
and 1% compilation success rates. Their heuristics for repairing code snippets (e.g.,
addition of wrapping classes, methods, and semicolons) slightly improves these re-
sults, but still, a large percentage of snippets (more than 80%) remains unusable. As
pointed out by Yang et al. [150], almost 63% of errors are due to missing symbols,
which reinforces the need for tools capable of analysis incomplete code snippets.

CSnippEx [122] is an Eclipse plug-in for repairing Java code snippets and converting
them into compilable source code files. CSnippEx takes a feedback-based approach
where the Eclipse Quick Fix tool is continuously queried for errors in the snippet
under repair. First, the tool discovers the likely merging of multiple code snippets
in a post. Second, it resolves the import dependencies by relying on a database that
maps FQNs to the latest version of the JAR that defines them and by exploiting their
clustering hypothesis. This hypothesis refers to the observation that classes in a Java
file are frequently used together, hence, import declarations might share common
package names and thus, create clusters. Third, CSnippEx considers the compila-
tion errors of the Eclipse Quick Fix tool to identify repairs that could render the code
into a compilable source. CSnippEx [122] reports the successful repair of 40,410 code
snippets from a total of 242,175 for a success rate of around 17%, which is still testa-
ment to the difficulty of the problem.

Grapa [163] is a tool and approach also targeting partial programs to enable their
successful analysis. Grapa is slightly different to similar techniques since it lever-
ages other approaches for completing programs to analyse incomplete ones. The
approach first explores previous versions of the partial program to extract the ma-
jority of its declared types, which are referred as the context version of the partial
program. Using PPA, Grapa extracts the ASTs from the partial program including
unknown types, which might be resolved in a following step. Using a custom in-
ference algorithm, and the extracted context, Grapa resolves the missing types in
the partial program. The approach concludes with an ambiguity analysis to decide
upon shared simple names at resolution time. The concept of versions being syntac-
tically correct and containing types to use in incomplete programs, is not applicable
to code snippets in SO.

StatType [95] uses statistical machine translation to resolve FQNs. The approach
translates sentences from a source language (i.e., of partially qualified API names)
to a target language (i.e., of FQNs). It requires training a language model and a sepa-
rate mapping model on a corpus of projects that use the API of the targeted libraries.
These projects are simultaneously translated into StatType’s source and target lan-
guage by traversing their methods’ ASTs. Sentences in the source language capture
information about the simple name of each referenced API element. In contrast,
sentences in the target language convey the corresponding FQN and the syntactic
construct through which the API element was referenced. Extracting this informa-
tion requires the input projects to compile. However, the approach is entirely data-
driven because it is agnostic to program semantics. Resolutions learnt by combining
the language and mapping model are refined based on the local context surround-
ing the name to be resolved. StatType achieved higher accuracy than the previously
discussed Baker [118, 119]; however, training its models may be computationally
expensive.

COSTER [106] takes an information retrieval approach to the problem of resolving

32 Chapter 3. State of the Art

FQNs in incomplete code snippets. Like StatType [95], it relies on the wisdom-of-
the-crowd obtained from a corpus of compilable projects. Extracted information
from the corpus is used to compute the likelihood that textual tokens surrounding
the non-qualified API reference co-occur in the project corpus when the reference re-
solves to the corresponding FQN. The immediately surrounding tokens are referred
to as the local context of the API reference. The local context is extended with its
global context. It relies on the names of methods called on the variable to which the
reference is assigned or the names of methods to which this variable is passed as
an argument. In a snippet, context and name similarities are subsequently used to
refine the candidates returned from this so-called occurrence likelihood dictionary
for the queried name and context. COSTER has outperformed StatType and Baker
in many aspects of the evaluation conducted in Saifullah et al. [106].

JCoffee [50] is another PPA-based tool with the goal of transforming code snippets
into compilable Java programs. As previous PPA approaches, JCoffee assumes the
syntactical correctness of the code snippets. Nonetheless, in this case, the approach
uses the errors triggered by the Java compiler as feedback to transform the code
snippets and finally make them compilable. The transformation is based on the
automatic creation of Java classes, their methods and fields including unknown types.

Ahmed et al. [1] use deep neural networks (NNs) with the goal of repairing code
snippets from student solutions and SO fragments. The usage of classical parsers
such as Eclipse JDT is immediately identified as impractical by Ahmed et al. [1],
due to the multiple issues incomplete code has, such as missing semicolons, braces,
brackets, external types, presence of ellipsis, etc. Therefore, alternative strategies
are adopted to first parse incorrect code and second repair all identified errors in
the snippets. Three transformer-based neural networks are proposed to this end.
The first, BlockFix, has been trained to repair the block structure mistakes such as
missing curly braces. The second, FragFix, learns repairs for syntactically incorrect
fragments of code. The third, TypeFix, repairs code snippets by adding missing
import statements and types. TypeFix, the most related to this dissertation, has been
trained on 50 correct GitHub Java projects. Code elements with no types are hidden
with a special marker (e.g., ~). Random fragments of code are created consisting of
pairs of Java code and the described typed code. In this way the transformer NN
learns how to “tag” Java code with types based on the local information of their
usages.

SnR [40] infers FQNs based on constraints in SO code snippets. The approach con-
structs a knowledge base from libraries consisting of relations between types of
fields and methods. As in CSnippEx [122], SnR tries first to repair a code snippet
and to form a compilation unit from which to extract an AST and infer API types.
The type inference step uses Datalog, given the current code snippet constraints and
the knowledge base, to provide reachable nodes in a dependency graph. Nodes in
the dependency graph represent the variables or constants in a program and edges
represent a relation (e.g., references) between the nodes. In this way, the graph cap-
tures the reachable relations of all typed elements in a program. SnR ranks type
candidates and selects those at the top to create import statements and to include
them in the repaired code. SnR is compared against COSTER [106] using the public
StatType-SO dataset.

3.3. Embeddings for Source Code Analysis 33

3.3 Embeddings for Source Code Analysis
As previously stated in Chapter 2, our research makes use of embeddings [86, 87]
to transform text into its vector representation. More specifically, RESICO, our API-
type resolution approach, employs embeddings to convert API references and their
contexts into a format suitable as input to machine learning algorithms. Applica-
tions leveraging similar context-based embeddings in software engineering tasks
have been increasingly prevalent in the literature. Approaches considering the to-
kens of programs as input to machine learning processes were pioneers in the appli-
cation of ML for software engineering.

Allamanis et al. [5] propose a language model for code text capable of suggest-
ing a name for a method or a class based on the features of their implementation.
Class and method names of which the vector embedding is close in distance denote
similar features according to their contexts. For the same task as in the previous re-
search, Allamanis et al. [4] have trained a Convolutional Attention Network (CAN)
(i.e., similar to a Convolutional Neural Network, but focused on the attention mech-
anism) to summarise source code into a method name. Based on the sequence of
(sub)tokens that are in the method’s implementation, the CAN learns the most rele-
vant ones related to the real name of the method which, in this case, serves as ground
truth. The attention mechanism used in the latter work is the major difference with
the former proposed approach.

Iyer et al. [60] introduce Code-NN, a Long-Short Term Memory NN with attention to
summarise source code into short sentences. Code-NN is based on the information
Stack Overflow posts provide such as the natural language features surrounding
code snippets. Code-NN leverages the available information in SO posts, and makes
use of embeddings in its learning process.

Henkel et al. [57] attempt to learn trace-oriented embeddings for source code. These
are obtained by applying abstracting transformations to a lightweight form of intra-
procedural symbolic execution. Similarly, Wang and Su [140] propose LiGer, a neu-
ral network that can learn from a mixture of symbolic and concrete traces. The
blended trace represents the input to an encoder-decoder NN architecture which
outperforms code2seq [6] in the task of predicting method names. The use of sym-
bolic execution for the embeddings is considered infeasible for the research in this
dissertation, given the sheer number of libraries and library usages on SO.

The import2vec [123] framework learns library usage representations based on the
co-occurrence of their corresponding import statements in client projects. Trained
word embeddings are suitable for recommending imports with a usage context sim-
ilar to the queried one. The embeddings have shown that they capture meaningful
semantic relations such as which library packages are often used together in partic-
ular problem domains (e.g., data science code).

Lehmann and Pradel [69] propose SnowWhite, an approach and tool that predicts
high-level types from low-level types and their contexts in WebAssembly (WA) bi-
naries. A trained sequence-to-sequence (S2S) model generates high-level types from
WA binaries and supports developers in auditing possible security issues (e.g., sup-
ply chain attacks).

An alternative to token-based embeddings are those based on information derived
from ASTs. For instance, code2vec [7] predicts source code properties such as method

34 Chapter 3. State of the Art

names provided their bodies. It uses a neural network for learning embeddings that
effectively model the correspondence between the code in the method body and its
associated label. The network learns to aggregate syntactic paths from the AST of the
code into a vector. Similarly, code2seq [6] uses AST paths and an encoder-decoder
architecture to learn code representations which are subsequently used in code sum-
marisation and captioning.

Zhang et al. [158] propose an AST-based Neural Network (ASTNN) to capture syn-
tactical information at the statement level. The approach is based on a Recurrent NN
(RNN) and the statement trees that are extracted from the AST. Statement vectors are
learnt in a similar manner as word embeddings in RNN. The nodes in the statement
trees and their hidden states in the RNN influence the weights of the final statement
embedding.

InferCode [27] also focuses on the analysis of subtrees extracted from the AST. In this
case, the approach uses a self-supervised technique (i.e., identified subtrees should
be predicted by previous subtrees) in conjunction with a Tree-Based Convolutional
Neural Network. InferCode improves upon previous approaches (e.g., [7], [6], [158])
in tasks such as code clustering, clone detection, etc.

Lin et al. [73] present a novel method called Block-wise Abstract Syntax Tree Split-
ting (BASTS) to improve code summarisation. BASTS constructs the Control Flow
Graph of a method and then removes cycles and conditional edges. The remaining
subgraphs are encoded and represent the input to a transformer-based approach.
Code summaries are generated based on the comments of the methods and the learnt
subtree encoded representations.

Graph-based representations have also been used in ML-based support for software
engineering tasks. For example, ProGraML [35] constructs an enhanced graph from
an initial Control Flow Graph by adding the information flow in Data Flow and
Call graphs. A graph-based machine learning approach leverages the previously
enhanced graph to learn downstream tasks such as device (e.g., CPU or GPU) map-
ping. Similarly, Liu et al. [75] propose a representation of the code via Graph Neural
Networks (GNN) called UniCoRN. The approach is based on a control and data flow
representation of the code at the method level with additional enhancements such as
AST node types and variable usage relations (e.g., first, or last use). Graph-LSTMs
presented by Jiang et al. [61] are yet another proposed representation proposal rely-
ing on program dependence graphs (PDGs). The goal of Graph-LSTMs is not only
to learn from local syntactic dependencies, but also, to explore global relations of
different sub-trees which are extracted similarly to UniCoRN [75]. The difference of
Graph-LSTM approaches to Tree-LSTM-based ones is that the latter’s internal struc-
ture depends on the parent relationship, whereas the former’s can be generalised to
any relationship between nodes.

Approaches that learn hybrid representations have been proposed as well. Zhang
et al. [157] combine paths of the PDG, intermediate representation (IR) instructions
(i.e., from the Jimple IR), and natural language comments in a representation to train
a model for suggesting method names. Vagavolu et al. [132] use paths of the AST,
CFG and PDG to also name methods of C programs. Tian and Treude [125] hypoth-
esise that external context (e.g., traces, developer activities, etc.) could help code
representations and the approaches based on them. As a proof-of-concept they em-
ploy the call hierarchy as context, thereby, enhancing the results compared to same
approach without it.

3.4. Library Usage Comprehension 35

3.4 Library Usage Comprehension
This section discusses automated approaches that support developers in understand-
ing what features are offered by a library and their usage.

3.4.1 Feature Uncovering
Kanda et al. [64] present an approach to uncovering functional features from the
source code of an Android application. Functional features are defined as a set of
related API calls with a textual description. The approach exploits the assumption
that apps with similar features make similar calls to the Android SDK. It is semi-
automated as call sequences that are frequent across apps need to be described man-
ually as a feature.

Zhang and Hou [161] analyse forum discussions in search of problematic APIs. Their
tool Haystack identifies sentences with a negative sentiment containing API tokens.
Through the Stanford NLP toolkit, it recommends API feature names (e.g., “resize
jscrollpane”).

Other work focused on features as natural language concepts without an associated
code implementation. Guzman et al. [51] and Shah et al. [110] uncover features
from app reviews using NLP techniques. The former use techniques such as colloca-
tion finding, aggregation, topic modeling, and sentiment analysis to provide single-
feature reviews to developers and ease the burden of inspecting possibly thousands
of them. The latter approach by Shah et al. [110] employs the same techniques but
goes one step further by comparing competing apps (e.g., fitness applications) ac-
cording to the sentiment description of their respective reviews. In other words, the
apps are compared in relation to their ratio of positive and negative reviews from
users. Similarly, Sarro et al. [108] empirically studied the lifecycles of features in app
stores. Their feature extraction pipeline focuses on the processing of app descrip-
tions also through NLP techniques.

Al-Subaihin et al. [3] group apps based on the features extracted from their descrip-
tions. A hierarchical clustering algorithm is employed to form groups of similar apps
based on their most shared tuple of bi-gram or tri-gram words (i.e., featurelets).

Guo et al. [49] extract features from the UI elements in mobile applications. Their
goal is to identify redundant features and to investigate the extent of feature redun-
dancy in installed apps on a smartphone. Redundancy is defined as two or more in-
stalled applications sharing common features (e.g., schedule, app management). Their
extraction process includes the identification of relevant words from the XML files
that describe the graphic elements of apps. Subsequent steps in the process involve
text processing of the extracted terms in the visual descriptions. Their study shows
that more than 85% of smartphones contain redundant features and that all studied
features are redundant on at least half of the analysed smartphones.

The NLI2Code framework proposed by Shen et al. [113] bridges the natural lan-
guage and functional perspectives on features. The framework consists of three
components, a functional feature extractor, a pattern miner, and a synthesizer. The
functional feature extractor mines SO posts with the name of the target library in
the tag list. Verb phrases are extracted from the surrounding text after a natural
language filtering application. API candidate elements are retrieved and processed
(e.g., camel-case split) to associate them to the previous verb phrases. Selected API

36 Chapter 3. State of the Art

candidates are mined from client projects on GitHub and a data flow graph is con-
structed from their usage. A frequent graph pattern mining algorithm (e.g., gSpan)
is used to obtain the frequent sub-graphs as API patterns. Finally, a synthesizer
is used to incorporate information into the incomplete patterns (e.g., local variable
names) and suggest a complete API usage to the developer.

FeatCompare [10] employs user reviews to extract global and local features from
apps. Local features are related to the category of a particular app, whereas global
features are not bound to any domain. Supported by the advantages of word embed-
dings, the outcome of FeatCompare is a comparison table based on the discovered
features from user reviews.

SIRA [141] is also based on the reviews of apps as many of the already mentioned
approaches. However, SIRA focuses on the negative sentences that might repre-
sent problematic features. The approach uses a pre-trained language model (i.e.,
BERT-CRF) to identify problematic phrases to later cluster them and detect the trou-
blesome features. The pre-trained model is trained with the local data in the study,
its hyperparameters tuned, and the resulting model renamed to BERT-Attr-CRF. The
newly trained model improves the identification of problematic features from user
reviews.

3.4.2 API Usage Analysis
Gu et al. [48] propose a learning-based approach for generating API sequences start-
ing from a natural language description. A RNN architecture is used where the
encoder is the natural language description of library APIs in their Javadoc docu-
mentation, and the decoder represents the sequence of associated API elements The
designed network is trained on a dataset of over seven million pairs of API elements
and their respective document annotation.

Ghafari et al. [44] gather unit tests to generate API usage examples. This is particu-
larly useful in cases where libraries are not popular, are new additions to a software
ecosystem, or their status is a private one. The approach mines test scenarios to first
identify all methods under test and then synthesise API usages based on data and
control dependencies of all expressions in a test. Approaches such as the one by
Ghafari et al. [44] could boost the features’ discovery of lesser-known libraries and
extend feature-based comparisons in a software ecosystem.

Gu et al. [47] propose CodeKernel to cluster API usage graphs by embedding them
into a continuous space using a graph kernel and applying spectral clustering. Their
approach uses a kernel function to transform graphs to their vector representation
under different similarity metrics. After the transformation and clustering, CodeK-
ernel selects the most representative graph in each cluster by relying on metrics of
centrality and specificity.

Zhang et al. [159] study the adaptations of SO code snippets into development sce-
narios such as those in GitHub repositories. Their empirical analysis shed light on
the different kinds of variations code snippets must pass through to be usable for
developers. For example, many of the adaptations to make are related to changes
in method calls (e.g., signature of the method or the receiver type) and renaming of
variables, fields, and methods to fit adequately into the target program. Based on
their empirical analysis on SO snippets and their GitHub equivalents, the designed
the ExampleStack recommendation tool. ExampleStack, when given a code snippet,

3.4. Library Usage Comprehension 37

proposes a list containing similar GitHub code snippets and their possible adapta-
tions.

Zhong and Mei [162] found that single-type usages (i.e., of a single API class) are as
common as multi-type usages (i.e., involving more than one API class). Addition-
ally, static methods are found to be frequently called and methods (both static and
virtual) are more commonly called than fields. API usages in SO code snippets fol-
low the above findings. Code snippets form in many cases, clusters with a handful
of related classes whereas in others the diversity of API types is much higher.

A special place in API analysis is occupied by those approaches targeting API mis-
uses. The detection of misuses has been (and still is) an active research area in the
community. The following works span different ranges of API misuse detection:
from techniques to target programming languages and platforms.

MAPO [148] extracts method call sequences and extracts API usage patterns by clus-
tering similar sequences and mining frequent patterns in each cluster. Similarly,
UP-Miner [139] uses the same technique of clustering and mining, however in this
case, UP-Miner performs a two-step clustering process. Call sequences are clustered
first to determine clusters of similar sequences. A frequent closed pattern mining
algorithm is applied to each cluster to extract API usage patterns. This two-step
approach reduces some redundant and repetitive patterns produce by previous ap-
proaches such as MAPO [148].

GrouMiner [93] is frequency-based approach to finding API patterns. It is founded
on graphs called Groums which include API call and conditional control nodes, as
well as temporal order and data dependency edges. The approach transforms the
graphs into characteristic vectors to avoid the computational cost of graph isomor-
phisms. Graphs with the same vector can be considered isomorphic and therefore,
increase the occurrence frequency of the graph candidate. If the selected candidate
exceeds a predefined threshold, it can be considered as an API pattern.

A statistical approach to recommending API sequences based on Groums is pro-
posed by Nguyen et al. [90]. The approach uses Hidden Markov Models (HMM)
to recommend subsequent API calls following a given call. Call sequences extracted
from Groums built for Android applications, are the input to the HMM which learns
the most likely API to recommend based on preceding API calls.

Amann et al. [8] survey several API usage miners intended for API misuse detec-
tion, including GrouMiner [93]. They differ in the techniques used to extract and
subsequently analyse API usage for frequent patterns. Their findings indicate a low
percentage of detecting precision, a high presence of false positives, and the inability
to capture differentiation details. Nonetheless, the analysis also indicates that stud-
ied detectors are capable of identifying misuses when they are explicitly provided
with correct usages to mine. Moreover, highlighted shortcomings can pave the way
for future detectors on improving previous research.

Sven et al. [120] present MuDetect, an API misuse detector based on graphs similar
to those used by previous approaches (e.g., GrouMiner [93]). MuDetect constructs
API Usage Graphs (AUGs) from control and dependency information about the pro-
gram under analysis. AUGs can be considered a more detailed variant of Groums
which includes more specialised edges (e.g., receiver, parameter, definition, etc.) in
its representation. The extraction of API patterns in MuDetect employs the Apriori

38 Chapter 3. State of the Art

frequent sub-graph mining algorithm and requires users to set a frequency thresh-
old.

CPAM proposed by Liu et al. [76] approaches API misuse detection differently.
CPAM extracts patterns (also based on frequency) from code changes in commits
and thus has a mapping for code that might be highly related to misuses to its re-
pairs. Lastly, the ALP by Kang and Lo [65] approaches the problem of misuse detec-
tion as a form of active learning. ALP extracts the previously described AUGs [120]
and identifies discriminative sub-graphs from the extracted graphs. Discriminative
sub-graphs are a set of sub-graphs from an AUG having the peculiarity that some
contain misuses, whereas other extracted sub-graphs are correct. The identification
of discriminative sub-graphs enables mapping them to a one-hot vector (i.e., only
ones and zeros) where the ith element with a one indicates the presence of a misuse
corresponding to the ith sub-graph. This vector representation allows the training
of a machine learning algorithm that ultimately identifies API misuses.

3.5 Limitations and Opportunities for Improvement
Discussed approaches have limitations which can be considered as opportunities to
improve their current research. Specifically, shortcomings can be found in two main
areas of research, API type resolution and feature discovery from API library usage.

3.5.1 Current Limitations in API Type Resolution
The resolution of API types has been the target of many approaches as previously
discussed. These approaches rely on parsers that may fall short in handling incom-
plete and syntactically incorrect code snippets. Therefore, these limitations are also
inhered by approaches leveraging them. For example, Table 3.1 shows a consider-
able number of techniques leveraging Eclipse JDT and PPA (e.g., [37, 100, 105, 146]).
Their limitation to handle incomplete code comes from the inflexibility of the Eclipse
JDT parser. Another limitation related to the PPA-based solution is that they rely on
all available program information extracted from the code to infer types. Such infor-
mation may not be explicitly referenced in the code of incomplete snippets.

More robust parsers such as ANTLR and island parsers are not frequently used by
the described approaches. The former is only used once by Udin et al. [131], whereas
the latter only two times (e.g., [99, 131]). From the two mentioned parsers, island
parsers [88] have more flexibility towards the analysis of incomplete and incorrect
code snippets. These parsers present a more robust and lenient approach to the
extraction of relevant information from a text.

A more robust parsing could guarantee the extraction of information (e.g., method
calls) from syntactically incorrect code snippets. However, in addition to parsing,
a resolution step may be required to incorporate missing information (e.g., FQNs)
in an incomplete snippet. As previously mentioned, PPA-based techniques cannot
recommend external information from the types in the code. Therefore, there is an
opportunity for recommendation-based algorithms to resolve missing information
in a code snippet.

3.5. Limitations and Opportunities for Improvement 39

In summary, we stress the need for an approach that can extract information from
syntactically incorrect code snippets. Such an approach should also resolve miss-
ing external API references in incomplete code snippets. The extracted information
and the API reference resolution may improve the current SO code processing. Dis-
cussed approaches have not addressed these problems commonly found on SO code
snippets.

3.5.2 Current Limitations in API Feature Discovery
Regarding the automatic discovery of features from API usages, presented approaches
in this chapter also have limitations. For example, the work Kanda et al. [64] study a
set of automatically extracted API sequences on Android applications and manually
label them as features. Inspired in this work, we consider that a fully-automated
approach can replace the need for human-labelling intervention. Moreover, we are
not aware of similar research on libraries, which could lead the way to more feature-
based applications.

Android applications have been more investigated according to the features they
might offer. Guzman et al. [51], Sarro et al. [108], Shah et al. [110], Assi et al.
[10], and Wang et al. [141] uncover and analyse features from app reviews and
descriptions. This same process is not applicable to external libraries. Additionally,
library features are more subscribed to the definition by Kanda et al. [64], e.g., API
patterns associated to a natural language description. Therefore, the exploration
of only the text surrounding API usages, as previously investigated, may not be
sufficient to discover library features.

The work by Shen et al. [113], focuses on the functional features described by Kanda
et al. [64]. Their approach, called NLI2Code, leverages the natural language text
of SO posts to extract feature descriptions and pair them with API references in
the posts. Pair references are mined on GitHub to extract API usages, construct
a data flow graph and later through frequent graph mining extract API patterns
related to the descriptions. NLI2Code is aligned with the feature discovery research
on this dissertation. However, the approach uses GitHub for the mining code API
patterns instead of relying on SO code snippets. In many cases, the information
about API references in SO code snippets is more focused to their text description.
Additionally, many studies (e.g., [59, 77, 78, 151]) have shown that SO code has been
reused in GitHub projects with additional information from the projects.

Many of the previous works target Android applications. Features in Android ap-
plications are more clearly defined due to their relation to UI elements, e.g., “weather
forecast”. Stack Overflow stands out as the source of information from where to un-
cover features from libraries. We only found the work by Shen et al. [113] exploring
the feature research domain while leveraging SO post information. However, that
work only extracts the natural language information in SO posts and not the API
patterns within code snippets. Instead, they explore GitHub API usages as an alter-
native to SO code snippets. SO code snippets are more focused on the API references
of interest, unlike code on GitHub repositories.

To summarise, there is a need for an approach that extracts API patterns from library
usages in SO code snippets. This approach should process the natural language
text and automatically name the extracted patterns. Unlike Shen et al. [113], the

40 Chapter 3. State of the Art

approach should investigate patterns from SO snippets since they are more focused
to the task discussed on the post.

3.6 Conclusion
This chapter presented the current state of the art on several works related to the
research on this dissertation. Approaches discussed in this chapter include develop-
ment tools that incorporate SO information, program analyses for SO code snippets
and works proposing embeddings for source code analysis. In addition, research
on library usage comprehension is also explored consisting of feature discovery and
API usage analysis works. Explored approaches in this chapter have limitations re-
lated to code snippet analysis and the discovery of features from library API usages.
Some detected limitations are inhered by the adopted technology (e.g., Eclipse JDT),
while others are determined by the research domain (e.g., feature discovery from
API usages). These limitations present research opportunities to improve the cur-
rent state of the art. In the next chapters we will target the discussed limitations
through our approaches, API type resolution for incomplete code snippets and fea-
ture discovery based on API usages from SO posts.

41

Chapter 4

API Type Resolution for
Incomplete Code Snippets on Stack
Overflow

4.1 Introduction
Developers may consult several sources of information online. Stack Overflow is
a platform where users can post questions answered by others with expertise in
the domain. SO posts often contain code snippets, e.g., to illustrate how to use the
API of a library. However, such code snippets may miss the type declarations and
package import statements that constitute a compilation unit. They may contain API
usages without any syntactic reference to the library that provides the API. Even if
the library name is mentioned in the text surrounding the code snippet (e.g., Guava),
the fully-qualified name (FQN) of the types to import (e.g., com.google.common.*)
can be challenging to resolve.

Determining which library types to import for a given code snippet is a problem
shared by several tools that rely on SO. For example, many of the works discussed in
Chapter 3 (e.g., [95, 106, 118, 119, 122, 150, 163]) propose a solution to resolve missing
information, such as FQNs, in incomplete code snippets. RESICO differs from each
of the previous approaches either in the technique or in the problem formulation
and its respective solution.

This chapter presents RESICO (RESolution in Incomplete COde), a new learning-
based text classification approach to the problem of resolving API types in incomplete
code snippets. This approach will assist our feature extraction approach which is
proposed in the next chapter by being part of its pipeline in Chapter 6. RESICO’s
prediction capabilities will assist our feature extraction approach by extending the
number of SO posts related to a library with those that are not be necessarily tagged
with the name of the library. The resolved answers by RESICO will be processed by
our feature extraction approach (cf. Chapter 5).

RESICO embraces the hypothesis that the API elements used within a snippet and
the context in which this usage occurs often suffice to resolve the simple name of
a type within the snippet to its fully qualified one. Word2Vec plays a fundamental
role in RESICO, where it is used to learn vector representations for the API elements
and their usage contexts within a dataset, so relying on a suboptimal predetermined
one can be avoided. Once vector representations or word embeddings have been

42 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

learnt, RESICO vectorises the dataset and trains a multi-class (i.e., each FQN cor-
responds to a class) machine learning algorithm on the resulting vectors. RESICO
supports using any supervised machine learning classifier to train on the vectorised
dataset and considers FQNs as the label to predict. At resolution time, RESICO re-
turns the most likely FQNs for all simple names in a given code snippet, regardless
of whether the snippet is incomplete or syntactically incorrect.

Like StatType [95] and COSTER [106], RESICO is applicable in contexts where the
crowd’s wisdom is to be preferred over the deductive reasoning of Baker [118, 119]
(cf. Chapter 3), e.g., when snippets are small and contain few expressions that im-
pose semantic constraints on ambiguous API names. Although RESICO is a machine
learning approach such as StatType, it features a different approach to solving the
problem. StatType considers API type resolution as a sequence-to-sequence task. In
contrast, RESICO relies on a classification procedure where a learned context influ-
ences the class prediction (i.e., the FQN of the API reference). COSTER considers
the surroundings of API references like RESICO, but it does not perform any learn-
ing to improve context comparisons further. We chose COSTER as the baseline to
compare to as previous studies showed that it is similar or superior in performance
to StatType. Furthermore, despite repeated attempts, we could not obtain an imple-
mentation of StatType from the authors.

We evaluate RESICO and COSTER extensively on four datasets: one gathered from
a corpus of 50K compilable GitHub projects and three datasets that serve as exter-
nal validators for the trained models. Our approach is more complex than COSTER
since it involves training several machine learning models; hence, it consumes more
computational resources during training. Despite being slower to train, RESICO out-
performs COSTER in all experiments we conducted. We also performed a root cause
analysis of the type resolution failures of the two approaches. More specifically, we
measured how many of the failures were due to simple names being ambiguous.

The remainder of the sections in the chapter is structured as follows. First, a motiva-
tion section provides arguments towards the necessity of context-based approaches
for API resolution. Second, the approach to resolving missing FQNs is presented
in detail. Third, a thorough evaluation is performed on RESICO in comparison to
the state-of-the-art tool and approach COSTER. Fourth, more results of the evalua-
tion are further discussed and analysed to subsequently, present the limitations of
RESICO and its potential impact. Threats to the validity of the approach and eval-
uation are also discussed to finally conclude the chapter about learning-based type
resolution.

4.2 Motivation
Each example in Listing 3 illustrates a real-world incompleteness issue that can be
encountered on SO. The issues in the code snippets of Listing 3 could be considered
as intractable for classic parsers and static analysis tools. Unfortunately, this is very
frequent on the SO platform, which represents a reuse problem for the developer
community. The incompleteness issues that code snippets in Listing 3 experience
are the following:

Incomplete Structures
Java compilers expect compilation units that group type declarations together with

4.2. Motivation 43

1 // 1st code snippet
2 // URL: https://stackoverflow.com/questions/21936577
3 Objects.toString(gearBox, "")
4 Objects.toString(id, "")
5

6 // 2nd code snippet
7 // URL: https://stackoverflow.com/questions/8897384
8 Ordering<Map.Entry<Key, Value>> entryOrdering =

Ordering.from(valueComparator)↪→

9 .onResultOf(new Function<Entry<Key, Value>, Value>() {
10 public Value apply(Entry<Key, Value> entry) {
11 return entry.getValue();
12 }
13 }).reverse();
14

15 // 3rd code snippet
16 // URL: https://stackoverflow.com/questions/2319126
17 Iterator<?> i = queue.iterator();
18 ...
19 Object next = i.next();
20 i.remove();

LISTING 3: Real code snippets with different issues related to
their incompleteness.

import statements. On Q&A platforms, in contrast, users frequently post sequences
of standalone Java statements or expressions that do not form a compilation unit.
This is the case for all code snippets in Listing 3, which is an issue for compilers and
most code analysis tools alike.

Missing Variable Declarations
Another source of incompleteness are references to undeclared variables. This is the
case for gearBox and id in Snippet 1, valueComparator in Snippet 2, and queue in
Snippet 3. The natural language semantics of their names or the Q&A text around
them could provide hints about their types, but the information itself is missing from
the code.

Missing Import Statements
Similarly, library types might be referenced by their simple name while an explicit
import statement for the corresponding declaration is missing. Ordering, Map, Func-
tion, and Entry in the second snippet are examples of library types (e.g., from
Google Guava) that are referenced in the snippet without their declaration being
imported.

Name Ambiguities
Missing import statements cause another problem typical of incomplete code snip-
pets: name ambiguities. Many libraries could share the same simple name for types
and methods, encumbering the resolution of a simple name to a fully qualified one.

44 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

For example, the Function name in snippet 2 could be a reference to either of the in-
terfaces java.util.function.Function or com.google.common.base.Function. This
is a problem for both users and tools needing to reuse or reason about the snippets.

Despite their incompleteness, code snippets on Q&A platforms are an important
source of information for both developers and tools. To fully realise their potential,
a reliable and effective approach to resolving the simple name of API types in a code
snippet to their FQNs is needed. The next section proposes such an approach, capa-
ble of predicting the most likely FQN for simple names of API types by leveraging
similarities in name usage contexts among other snippets on the Q&A platform.

4.3 RESICO: A Type Resolution Approach for In-
complete Code Snippets

4.3.1 A Prime on RESICO
RESICO (RESolution in Incomplete COde) is a new learning-based text classifica-
tion approach to the problem of resolving API types in incomplete code snippets.
The approach embraces the hypothesis that the API elements used within a snippet
and the context in which this usage occurs often suffice to resolve the simple name
of a type within the snippet to its fully qualified one. Word2Vec (cf. Section 2.3.2)
plays a fundamental role in RESICO, where it is used to learn vector representations
for the API elements and their usage contexts. Once vector representations or word
embeddings have been learnt, RESICO vectorises the dataset and trains a multi-class
(i.e., each FQN corresponds to a class) machine learning algorithm on the resulting
vectors. RESICO supports using any supervised machine learning classifier to train
on the vectorised datasets and considers FQNs as the label to predict. At resolution
time, RESICO returns the most likely FQNs for all simple names in a given code
snippet, regardless of whether the snippet is incomplete or syntactically incorrect,
thanks to the custom island parser designed to extract information from snippets.

Figure 4.1 shows examples of the output that can be expected. Lines of code from the
input snippet are depicted in black. For this snippet, we removed all import state-
ments from which the FQNs could be resolved. We annotated the API references
to be resolved by RESICO with a rectangle. The line in red and italics depicts the
computed FQN for each API reference.

Configuration c = new Configuration();

c.configure(“hibernate.cfg.xml”);

SessionFactory se = c.buildSessionFactory();

[org.hibernate.cfg.Configuration]

[-]

[org.hibernate.Transaction]

[org.hibernate.Session]

[org.hibernate.SessionFactory]

Session session = se.openSession();

Transaction tran = session.beginTransaction();

[org.hibernate.cfg.Configuration]

[org.hibernate.SessionFactory]

[org.hibernate.Session]

FIGURE 4.1: Example type resolutions computed by RESICO.

In all cases but one, the predicted FQN was correct compared to previously removed
import statements. RESICO could precisely resolve the FQN for most API refer-
ences despite multiple candidates with the same simple name. For example, the

4.3. RESICO: A Type Resolution Approach for Incomplete Code Snippets 45

simple names Configuration, SessionFactory, Session and Transaction ambigu-
ously denote 44, 4, 67 and 14 different FQNs respectively in one of our datasets.

For the simple name not annotated (i.e., a dash is depicted instead), RESICO could
not correctly predict the FQN of the variable c, which was correctly predicted for the
line above (i.e., Configuration). However, if all other predicted FQNs are added via
import statements, the missing FQN will not preclude compilation any more. Before
detailing how RESICO resolves simple names to their FQN, we briefly describe the
Eclipse JDT as it features prominently in the remainder of the chapter.

4.3.2 An Overview of Eclipse JDT for Facts Extraction
Eclipse Java Development Tools (JDT)1 is a set of plugins developed for the Eclipse
platform that enable lightweight static analysis of Java programs. The Eclipse JDT
comprises five components: APT, Core, Debug, Text, and UI. Each component is in-
dependent and specialised in a different purpose. For example, COSTER [106] and
RESICO use the Eclipse JDT Core component for their fact extraction from compi-
lable Java programs (e.g., information about method invocations and variable dec-
larations). It can be used headless without the Eclipse IDE and provides, among
others, ASTs and symbol and type hierarchy information for Java programs. As we
use the Eclipse JDT Core component frequently and none of the other components,
we refer to the former as Eclipse JDT throughout the dissertation.

4.3.3 Training Process
Figure 4.2 depicts the steps in the training process.

This subsection uses the snippet depicted in Listing 4 as a running example.

In the first step of the training process, depicted as action node 1, the Eclipse JDT
is used to I) compile the Java programs in the training corpus, and II) extract the
simple names of API references and their FQNs as follows:

• for variable declarations, the simple name and FQN of the declared type.

• for variable and field accesses, the simple name of the accessed type, the name
of the field, and the FQN of the accessed type.

• for method invocations, the simple name and FQN of the statically-declared
type of the receiver expression, and the identifier of the invoked method.

• the line numbers for each previous construct.

The information provided by the JDT is used to perform this extraction step. For
example, for the method invocation on Line 18 of Listing 4, RESICO first collects
TelephonyManager (the simple name or type of the receiver variable tm), getDeviceId
(the method identifier), and android.telephony.Telephony Manager (the FQN of
the receiver type). The latter represents the label to predict by RESICO, whereas the
former is part of the training data.

Figure 4.2 shows the information collected for each program as data node B. The
gathered data so far is further augmented with the context surrounding the API

1 https://www.eclipse.org/jdt/

https://www.eclipse.org/jdt/

46 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

1 import org.apache.cordova.DroidGap;
2 import android.context.Context;
3 import android.telephony.TelephonyManager;
4 import android.webkit.WebView;
5 import android.webkit.JavascriptInterface;
6

7 public class GetNativeTelephonyManager {
8 private WebView mAppView;
9 private DroidGap mGap;

10

11 public GetNativeTelephonyManager(DroidGap gap, WebView view) {
12 mGap = gap;
13 mAppView = view;
14 }
15 @JavascriptInterface
16 public String getIMEI() {
17 TelephonyManager tm = (TelephonyManager)

mGap.getSystemService(Context.SERVICE);↪→

18 String imeiID = tm.getDeviceId();
19 return imeiID;
20 }
21 }

LISTING 4: Running example for explaining RESICO.

Train
Model

Java
program

API References
& FQNs

Transformation
Step

A B I1 7

Eclipse JDT
Compiler

APIs, FQNs
& Contexts

Obtain
Contexts

Classifier
Model

2 C

FIGURE 4.2: Training based on a corpus of programs.

reference. We define the context of an API reference as the information extracted for
all other API references in the same method body but without their FQNs. In this
way, RESICO can extract the same information from complete and incomplete code
snippets, since the FQNs are used neither in the API reference nor in the contexts.
Finally, RESICO collects the vocabularies for both API references and contexts which
will serve as input to train Word2Vec models later in the process. The vocabulary
for contexts is obtained by adding all contexts into a single set of words. On the
other hand, the vocabulary for the API references comprises the set of API references
themselves.

To continue with our running example, from the API reference tm.getDeviceID on
Line 18, its surrounding context is the following:

TelephonyManager, DroidGap, getSystemService, Context, SERVICE, String, String

Within Figure 4.2, the context extracted for each API reference is depicted as
data node C in addition to the previously collected information. Table 4.1
shows for every API reference (column API Ref.), the line numbers where
they are located (column #), their contexts (column Context) and their respec-
tive FQNs (column FQN) that RESICO is able to extract from the method
getIMEI() from Listing 4. As observed, many API references could be present

4.3. RESICO: A Type Resolution Approach for Incomplete Code Snippets 47

on the same line, enlarging the collected dataset even in small methods such
as getIMEI().

API Ref. Context FQN

17 TelephonyManager DroidGap,getSystemService,Context,SERVICE, android.telephony.TelephonyManager
String,TelephonyManager,getDeviceID,String

17 DroidGap,getSystemService TelephonyManager,Context,SERVICE, org.apache.cordova.DroidGap
String,TelephonyManager,getDeviceID,String

17 Context,SERVICE TelephonyManager,DroidGap,getSystemService, org.android.Context
String,TelephonyManager,getDeviceID,String

18 String TelephonyManager,DroidGap,getSystemService,Context, java.lang.String
SERVICE,TelephonyManager,getDeviceID,String

18 TelephonyManager,getDeviceID TelephonyManager,DroidGap,getSystemService, android.telephony.TelephonyManager
Context,SERVICE,String,String

19 String TelephonyManager,DroidGap,getSystemService,Context, java.lang.String
SERVICE,String,TelephonyManager,getDeviceID

TABLE 4.1: Extracted information from the method getIMEI()
in Listing 4 by RESICO.

Figure 4.3 zooms in on the following transformation step. We use Word2Vec
[86, 87] to vectorise API references and contexts, whereas label categorisation
is used to convert FQNs to label numbers.

Vector per
Word

Vector per
Context

Word2vec
CBoW

Mean of
Vectors

API References

FQNs to Predict Encode Encoded FQNs

Word2Vec
Model Vectorise

C

H

D

E

F

C

3

4

5

6

Contexts
C

API Reference
Vectors

Vector per Term
in Context

Averaged
Vector

Mean of
Vectors

G5E

E

FIGURE 4.3: Transformation step used by the training process.

Word2Vec is used to learn the best possible vector representation of API us-
ages and contexts (columns API Ref. and Context of Table 4.1) and to obtain
a word embedding per word in both cases. Each API reference is consid-
ered as a single word. API reference records with two words (e.g., DroidGap,
getSystemService on line 17) are concatenated with a dot (e.g., “.”) as it is
done for a field or method call. However, words in context records are kept
separate and considered individually in the training phase. This decision
was made because API references can take the form of variable declarations
as well as method calls and field accesses. The former only comprises a single
relevant word (e.g., the name of the API type), while the latter shall consist of
two (e.g., the field or method’s name along with the name of the API type).
Contexts, in contrast, comprise the simple names stemming from surround-
ing API references and each word is therefore considered equally relevant.

Step 3 iterates once over all extracted API references and contexts while us-
ing the Word2Vec CBOW neural network architecture to train the algorithm
(cf. Section 2.3). We used the implementation of the Word2Vec model in

48 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

the Golang programming language2 to take advantage of its Goroutines. We
configured the Word2Vec training for the API usages and contexts, similarly,
relying on the CBOW architecture, a batch size of 1000 words, 20 generated
features, negative sampling as the optimiser, five words of window size, a
minimum occurrence of a word equals to one (i.e., considering all words),
and five iterations for the training of the model. The number of features was
set to 20 to enable us to perform the following steps (e.g., hyperparameter
optimisation) more efficiently without reducing the ability to capture the se-
mantic differences between the labels to predict. The number of iterations for
the learning was set to five to keep the training process as simple as possible.
The batch size considers numerous words per training batch with a window
size of five to take short segments around the word to learn. The latter is also
the default window size for the Word2Vec implementation in the Python li-
brary Gensim as it is the selection of negative sampling as optimiser.3 No
other changes specific to the domain were made.

The resulting models or word embeddings were saved in external files and
are depicted as the data node D, one for the API references and another one
for the contexts. Once the word embeddings have been learnt, step 4 trans-
forms the input data into the learnt vectors. The vectors obtained for each
word (data node E) are kept in the case of the API references and further av-
eraged in the case of contexts in step 5. Data node F depicts the averaged
vectors per context.4

To illustrate the transformation described above, Table 4.2 depicts the vector
representation of the information in Table 4.1. In this case, column API Vector
denotes a transformed API reference, whereas column Cont. Vect. denotes
the corresponding vector for each word in its context. The averaged vector
of all vectors in a context is shown in column Av. Cont. Vect.. This vector is
stored in data node F, which will be used in the following steps. The column
FQN remains the same, and it will be transformed in a subsequent step.

A final averaged vector is obtained in data node G by considering each vector
of API references and its corresponding averaged context vector. In parallel
to the vectorisation, step 6 encodes the FQNs collected in data node B. A
natural number is assigned to each FQN, denoting the label to be predicted
by the classifier. Table 4.3 exemplifies this last transformation step for our
dataset. Column Av. Embedding Vector contains the final averaged vector,
and column FQN contains the transformed FQNs as numbered labels. In
machine learning concepts, the former is the training dataset, while the latter
corresponds to the class to predict.

The last step in the training process (action node 7) is responsible for train-
ing a supervised machine learning classifier (data node I) and for saving the

2 https://github.com/ynqa/wego
3 https://radimrehurek.com/gensim/models/word2vec.html
4 Please remember that contexts are composed of several words.

https://github.com/ynqa/wego
https://radimrehurek.com/gensim/models/word2vec.html

4.3. RESICO: A Type Resolution Approach for Incomplete Code Snippets 49

API Vector Cont. Vect. Av. Cont. Vect. FQN

17 [0.684, . . ., 0.457] [-0.158, . . ., -0.378], [-0.332, . . ., 0.643] android.telephony.TelephonyManager
. . ., [-0.728, . . ., -0.629]

17 [-0.154, . . ., 0.254] [0.029, . . ., -0.916], [0.378, . . ., -0.173] org.apache.cordova.DroidGap
. . ., [0.904, . . ., 0.601]

17 [-0.804, . . ., 0.915] [0.807, . . ., 0.092] [0.155, . . ., 0.791] org.android.Context
. . ., [0.277, . . ., 0.592]

18 [0.218, . . ., 0.613] [0.167, . . ., -0.805], [-0.464, . . ., 0.608] java.lang.String
. . ., [0.767, . . ., 0.466]

18 [0.349, . . ., 0.505] [0.092, . . ., 0.397], [0.047, . . ., 0.927] android.telephony.TelephonyManager
. . ., [-0.336, . . ., 0.719]

19 [0.218, . . ., 0.613] [0.167, . . ., -0.805], [-0.464, . . ., 0.608] java.lang.String
. . ., [0.767, . . ., 0.466]

TABLE 4.2: Transformed API references and contexts from Ta-
ble 4.1 by the Word2Vec models.

Av. Embedding Vector FQN

17 [-0.756, . . ., 0.628] 0

17 [0.118, . . ., 0.112] 1

17 [0.860, . . ., -0.145] 2

18 [0.253, . . ., 0.183] 3

18 [0.092, . . ., -0.792] 0

19 [0.253, . . ., 0.183] 3

TABLE 4.3: The last transformation step in the RESICO process.
The previous context vector is further averaged with the API

vector, and FQNs are converted into numbers.

resulting model into a file. RESICO supports the use of any supervised ma-
chine learning classifier with the data extracted at this point. For our exper-
iments, we selected four machine learning classifiers previously used in text
classification tasks: KNN, Random Forests, Ridge Linear, and Support Vector
Machines (cf. Chapter 2). The outcome of the training process is a model
to predict a numbered FQN given an averaged vector. The averaged vector
is the mean of a vector A for an API reference and a vector B which is the
mean vector of all vectors in the surrounding context of the mentioned API
reference.

4.3.4 Resolution Process

The resolution process for code snippets depicted in Figure 4.4 resolves all
API type references within a code snippet to their FQNs. The process has
to parse a snippet in a non-standard way due to the many issues a SO code
might have (cf. Section 4.2). RESICO uses a custom island parser [88] (action
node 8) configured to parse SO code snippets regardless of their syntactical

50 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

API
References

Vector per
Word

Vectorise Word2Vec
Models

Obtain FQN
Recommendations

Recommended
Encoded FQNs

K

M

D

E9

48

Code
Snippet

J

Island
Parser

Obtain
Contexts

API References
& Contexts2 L

I

Classifier
Model

Vector per
Context

Mean of
VectorsF 5

Averaged
Vector

Mean of
Vectors

G 5 E

E

API Reference
Vectors

Vector per Term
in Context

FIGURE 4.4: Resolution process for API type references in code
snippets.

correctness. Such parsers focus on the constructs of interest (i.e., API ref-
erences in our case) and consider the remainder of the code as water. It is
implemented using the framework Parboiled5 for Java.

API references are gathered in data node K, for which our supervised ma-
chine learning models will predict missing FQNs. The contexts of API refer-
ences are also collected similarly as previously described for a complete code
example.

After gathering API references and their respective contexts in an incomplete
code snippet, RESICO will transform the input to make it suitable for the res-
olution phase. The vectorisation of API references and their contexts relies
on the formerly trained Word2Vec models saved in external files (data node
D), respectively. The availability of each API reference word and its con-
text words are checked in the trained Word2Vec models. If the API reference
word cannot be found (i.e., the API Word2Vec model was not trained with
it), the process stops since API references are fundamental for the prediction.
However, if one or multiple context words cannot be found (i.e., the context
Word2Vec model was not trained with them), the resolution process contin-
ues with other context words as this scenario is more likely to happen, and
contexts are usually composed of several words. Nonetheless, if there are no
context words, RESICO will also likely fail since in this case, it only depends
on the API reference word.

Each vector is processed to obtain an averaged vector that will serve as in-
put to the trained models in data node I. These trained models are loaded
from the previously saved files. Classifiers have different ways of predicting
the class for an unseen input; for example, KNN calculates the closest neigh-
bours and takes the majority class among them. The outcome of the machine
learning model therefore depends on how the classifier calculates the most
likely class for its final prediction. In general, their output takes the form of a
number that corresponds to a particular FQN and needs to be mapped back
to the original FQN.

5 https://github.com/sirthias/parboiled

https://github.com/sirthias/parboiled

4.4. Evaluation 51

4.3.5 Providing Top-K Recommendations

Most supervised machine learning classifiers predict the class with the
highest probability for a certain input vector. This probability is calcu-
lated based on the similarity of the input vector to already trained vectors
in the model. By default, trained models make a Top-1 prediction, return-
ing the class that achieved the highest probability for a certain input vector.
However, it is common for implementations to provide access to the internal
probabilities for all predicted classes. For example, in the Python Scikit-Learn
framework, method predict_proba6 is provided by most implementations.
RESICO will therefore return a Top-K with 1 ≤ K ≤ N_Classes for its resolu-
tions of API type references. If the actual FQN of the reference is among the
Top-K resolutions returned by RESICO, the resolution is considered success-
ful; otherwise, the resolution represents a failure of the trained model.

4.4 Evaluation

We describe the design and results of the empirical evaluation conducted
to assess the RESICO machine learning classifiers (from now onwards,
RESICO classifiers) for API type resolution. The evaluation compares our
approach to COSTER [106], an information retrieval-based approach, which
outperforms in several circumstances earlier methods such as StatType [95]
and BAKER [119]. We contacted COSTER’s authors to verify that we config-
ured and used the tool correctly before conducting our evaluation.

Our study aims to answer the following research questions:

RQ1 What are the best hyperparameter combinations for the classifiers used
within RESICO?

RQ2 How well do COSTER and the RESICO classifiers perform on instances
extracted from the dataset used for training?

RQ3 What is the performance of the COSTER and RESICO classifiers when
evaluated on unseen datasets?

RQ4 How much time is needed to train COSTER and the RESICO classifiers?

RQ5 To what extent do ambiguities in simple names influence the perfor-
mance of the approaches?

Figure 4.5 depicts a graphical overview of the steps we took to answer these
research questions. Our evaluation started by gathering the datasets needed
to train and evaluate RESICO and COSTER. We collected one dataset to train
and evaluate the models, and three additional datasets to analyse the predic-
tion capabilities of the trained models. Given the imbalanced nature of the
dataset used to train the models, we applied data balancing. The same bal-
anced dataset is also used to optimise the hyperparameters of the RESICO

6 https://github.com/scikit-learn/scikit-learn/blob/f3f51f9b6/sklearn/
neighbors/_classification.py#L256

https://github.com/scikit-learn/scikit-learn/blob/f3f51f9b6/sklearn/neighbors/_classification.py#L256
https://github.com/scikit-learn/scikit-learn/blob/f3f51f9b6/sklearn/neighbors/_classification.py#L256

52 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

Training
Data

Balance
Dataset

Balanced
Training
Dataset

ML
Classifiers

Hyperparameter
Optimisation

List of best
parameters

Internal
Evaluation

External
Evaluation

Select
Best Model

Best
Model

Ambiguity
Analysis

RQ 1

RQ 2

RQ 3
RQ 5

External
Datasets

FIGURE 4.5: Overview of our evaluation approach.

classifiers in RQ1. In RQ2, we use the best configuration of hyperparam-
eters for each RESICO classifier to conduct an internal evaluation with the
balanced dataset and compare our approach against COSTER. We also per-
form an external evaluation in RQ3 to assess the performance of the two ap-
proaches on other datasets. For RQ4, we present the performance results in
terms of training time required by each approach. Finally, we perform an
ambiguity analysis in RQ5 on the best RESICO and COSTER models.

4.4.1 Datasets Collection

In this section, we report on the datasets used in our empirical study: the
dataset used to train and tune models and to evaluate their performance on
similar data in RQ2, and the three datasets used to evaluate the obtained
models on different data in RQ3.

Internal Dataset

We relied on the 50K-C dataset to answer RQ1, RQ2 and train the models
(i.e., COSTER and all RESICO classifiers) that are further evaluated on ex-
ternal datasets in RQ3. The dataset was extracted from a collection of 50K
compilable Java projects mined from GitHub [85]. We followed the same
extraction process previously used by Saifullah et al. [106] for COSTER, us-
ing the same Eclipse JDT extractor configuration for the internal datasets of
the two approaches. We did it this way to ensure that the internal datasets
on which COSTER and RESICO are trained and evaluated were constructed
with the same API references and to avoid bias in the evaluation towards
either approach. After the API references are extracted, we build the sur-
rounding contexts for each and store the API reference, its context and its
corresponding FQN.

We consider not only the 100 most frequent libraries as reported in Saifullah
et al. [106] but all 5,356 libraries provided by the 50K-C dataset. From an
initial pool of 50,000 projects, we extracted the API references, contexts, and
FQNs for 48,951 (i.e., 98%). The resulting dataset contains 19,088,813 records,
each representing an API reference.

4.4. Evaluation 53

Data Balancing
The dataset gathered in the previous step is highly imbalanced. As can be
expected, it contains more instances related to some commonly used FQNs
(e.g., java.lang.String with more than 2M occurrences) and lacks instances
of some rarely used FQNs (e.g., java.sql.Statement[] with only one occur-
rence). Figure 4.6 shows a fragment of the data distribution for the three most
and three least frequent types out of the 39,643 unique FQNs in the dataset.

2,316,291

855,927

851,022

1

1

1

com.vloxlands.ui.TextButton[]

java.sql.Statement[]

org.wikipedia.Wiki.Revision[]

java.util.List

java.io.PrintStream

java.lang.String

0 500K 1M 1,5M 2M
Frequency

F
Q

N

FIGURE 4.6: The three most and least frequent FQNs in the
gathered dataset.

In this highly unbalanced setting, we decided to sample the previously ex-
tracted dataset to balance the training data and, thus, avoid introducing a
bias towards any FQN to be predicted. We selected a threshold of 50 occur-
rences, as this threshold was previously selected in COSTER [106]. The FQNs
with fewer occurrences than the defined threshold are not considered for the
training phase and are therefore excluded. Those records with more FQNs
than the threshold are randomly sampled into 50 instances. The resulting
balanced dataset consists of 4,860 unique FQNs with 50 instances per FQN,
amounting to 243,000 records. The new balanced dataset constitutes the in-
ternal training dataset, and it will be also used for the internal evaluation of
both approaches.

External Datasets

Three external datasets are used to increase the generalisability of the re-
sults and to answer RQ3. Table 4.4 shows the characteristics of the datasets
considered for the evaluation. Eclipse JDT can parse and compile the snip-
pets in these datasets to (I) extract the referenced API types and their sur-
rounding contexts and (II) use their FQNs as ground truth.

Two of the datasets COSTER-SO [106] and StatType-SO [95] contain 401 and
245 code snippets respectively (col. Snippets), which have been previously
used to assess COSTER.7 After processing the code snippets, the number of

7 https://zenodo.org/record/7244690

https://zenodo.org/record/7244690

54 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

Dataset Snippets Fs I-Fs E-Fs U-Fs UI-Fs UE-Fs

COSTER-SO 401 1,373 1,330 43 30 20 10
StatType-SO 245 1,827 431 1,396 167 39 128
RESICO-SO 371 1,741 596 1,145 215 47 168

TABLE 4.4: Datasets used for the external evaluation of
COSTER and RESICO.

records extracted from COSTER-SO and StatType-SO were 1,373 and 1,827
respectively (col.Fs), including API references, their contexts and FQNs.

A closer look at the FQNs of COSTER-SO raises concerns about their distri-
bution in the dataset. 1,330 out of the 1,373 references (96.7%) belong to the
Java standard library (col.I-Fs) (i.e., the default Java Runtime Environment).
Simple names with FQN prefixes starting with java.lang or java.io are con-
sidered as always observable8 and thus, less significant for the potential users
of the approaches. Therefore, a more diverse dataset with a prevalent num-
ber of non-default FQNs is desirable.

Alternatively, the StatType-SO dataset contains an increased number of exter-
nal FQNs (76.4%) (col.E-Fs) with regards to COSTER-SO. Such a behaviour is
also reflected in the number of unique external FQNs (col.UE-Fs) with only 10
for COSTER-SO and 128 for StatType-SO. To further increase the evaluation
setup, we created another dataset (RESICO-SO) that replicates the distribu-
tion of FQNs in the StatType-SO dataset and possibly improves the number
of unique external FQNs compared to previous datasets. This new dataset
represents the third dataset considered to verify the generalisability of the
results.

We randomly selected 371 code snippets from Stack Overflow referencing
the same 11 libraries as COSTER-SO and StatType-SO. The 371 code snippets
represent a statistically significant sample from the 11,047 Java code snippets
with import statements in the SOTorrent dataset [13] dated March 15th, 2020
(95% Confidence Level and 5% Confidence Interval). We manually ensured
that the snippets could be parsed and compiled using Eclipse JDT. The new
dataset, named RESICO-SO, comprises 1,741 API references, their contexts,
and FQNs. Most records (1,145 i.e., 65.8%) are references to external FQNs.
At the same time, RESICO-SO exhibits a more extensive number of unique
FQNs (215) with a larger number of unique internal (47) and external (168)
FQNs. These aspects make the new dataset more challenging to predict than
previous ones and might reinforce the results obtained for the StatType-SO
with which it shares a similar FQN distribution.

8 https://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7.4.3

https://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7.4.3

4.4. Evaluation 55

4.4.2 RQ1. What are the best hyperparameter combinations
for the classifiers used within RESICO?

Design
This research question investigates the best hyperparameter configuration
on the selected machine learning classifiers for the RESICO approach (cf.
Chapter 2).

All considered classifiers have default hyperparameters in their implemen-
tation. These default parameters should have an average performance in
various applications and are not optimised for any particular task or dataset.
Each classifier has a different set of hyperparameters with a range of possible
values to choose from, representing a search space.

The search space for some hyperparameters is strictly limited to a group of
options in a list, e.g., the hyperparameter weights for the KNN classifier re-
stricts the possibilities to ’uniform’ and ’distance’ to calculate the space be-
tween neighbours.9 In other cases, this limitation does not exist; therefore,
the search space for such hyperparameters could be infinite. For instance, the
parameter alpha of the Ridge linear classifier10 can take any possible float as
value. Additionally, a set of hyperparameters usually consists of more than
one parameter, rendering searching for the best parameters a multi-objective
optimisation problem.

We relied on the optimisation libraries Optuna11 and HyperOpt12 to perform
the multi-objective search. Optuna was used for those machine learning al-
gorithms that do not heavily demand computer resources, such as KNN, the
Ridge linear classifier (RL) and the linear Support Vector Classifier (SVC). We
took advantage of the distributed hyperparameter optimisation of HyperOpt
to search for the best parameters for the Random Forest classifier without in-
curring memory overflow issues. The setup of the two libraries was similar,
with 200 trials for each classifier and using the Tree of Parzen Estimators
(TPE) [19]. Using TPE is recommended over other search space algorithms
such as Random Search [18].

In addition to the similar setup, we also defined a similar goal for each search.
More specifically, the goal was to minimise a loss function defined as 1 −
F1. In other words, the search for the best hyperparameter tried to min-
imise the difference between the maximum F1 score (e.g., 1) and the obtained
score. When the difference reached a minimum, the optimal parameters were
found.

Table 4.5 shows the selected machine learning classifiers, their hyperparam-
eters, a brief description, and their configured search space.

9 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

10 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
RidgeClassifier.html

11 https://optuna.org/
12 https://hyperopt.github.io/hyperopt/

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://optuna.org/
https://hyperopt.github.io/hyperopt/

56 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

Classifier Hyperparameter Brief descrip-
tion

Search Space

K-Nearest Neighbors (KNN)

n_neighbours Number of
neighbours.

2 ≤ x ≤ 1E3

weights Weight func-
tion.

[’uniform’, ’distance’]

algorithm Algorithm to
compute the
nearest neigh-
bours.

[’ball_tree’, ’kd_tree’,
’brute’]

leaf_size Leaf size passed
to BallTree or
KDTree.

2 ≤ x ≤ 1E3

Random Forest (RF)

n_estimators Number of trees
in the forest.

10 ≤ x ≤ 200

criterion Function to
measure the
quality of a
split.

[’gini’, ’entropy’]

min_samples_leaf Minimum num-
ber of samples
to be at a leaf
node.

1 ≤ x ≤ 20

min_samples_split Minimum num-
ber of samples
to split an inter-
nal node.

0.0 ≤ x ≤ 1.0

Ridge Linear (RL) alpha Regularization
strength.

1.0 ≤ x ≤ 1E10

solver Solver to use
to compute the
Ridge coeffi-
cients.

[’auto’, ’svd’, ’cholesky’,
’lsqr’, ’sparse_cg’,

’sag’, ’saga’]

Support Vector Classifier (SVC) C Regularization
parameter.

1.0 ≤ x ≤ 1E10

TABLE 4.5: Hyperparameters of the classifiers and their search
space configuration

Note that we had to bound some hyperparameters with unbounded limits
to sufficiently large limits when tuning the classifiers. Also, note that some
intervals are floating point ranges while others consist of integer numbers.
When the limits are shown as floats in Table 4.5, the range of possible values
belongs to the former case, whereas integer values indicate the latter case.

Results
The overview of the hyperparameter optimisation process for the classifiers
is shown in Figure 4.7. Categorical parameters are encoded as numbers.

For example, for KNN, the values of the hyperparameter algorithm are trans-
formed as follows ball_tree → 0, brute → 1, kd_tree → 2 and the values of
the hyperparameter weights are converted as distance → 0, uni f orm → 1.

4.4. Evaluation 57

For the RidgeLinear classifier the values of solver are changed to auto →
0, cholesky → 1, lsqr → 2, sag → 3, saga → 4, sparse_cg → 5, svd → 6. Lastly,
the values of the RF hyperparameter criterion are transformed to gini →
0, entropy→ 1.

1,000,000,0001,000,000,0001,000,000,0001,000,000,0001,000,000,000

2,000,000,0002,000,000,0002,000,000,0002,000,000,0002,000,000,000

3,000,000,0003,000,000,0003,000,000,0003,000,000,0003,000,000,000

4,000,000,0004,000,000,0004,000,000,0004,000,000,0004,000,000,000

5,000,000,0005,000,000,0005,000,000,0005,000,000,0005,000,000,000

6,000,000,0006,000,000,0006,000,000,0006,000,000,0006,000,000,000

7,000,000,0007,000,000,0007,000,000,0007,000,000,0007,000,000,000

AlphaAlphaAlphaAlphaAlpha

0.00.00.00.00.0

0.50.50.50.50.5

1.01.01.01.01.0

1.51.51.51.51.5

2.02.02.02.02.0

2.52.52.52.52.5

3.03.03.03.03.0

3.53.53.53.53.5

4.04.04.04.04.0

4.54.54.54.54.5

5.05.05.05.05.0

5.55.55.55.55.5

6.06.06.06.06.0
SolverSolverSolverSolverSolver

0.580.580.580.580.58

0.600.600.600.600.60

0.620.620.620.620.62

0.640.640.640.640.64

0.660.660.660.660.66

0.680.680.680.680.68

0.700.700.700.700.70

0.720.720.720.720.72

0.740.740.740.740.74

0.760.760.760.760.76

0.780.780.780.780.78

0.800.800.800.800.80
LossLossLossLossLoss

Firefox http://localhost:8000/index_linear.html

1 of 1 15/10/2022, 12:51

1,000,000,0001,000,000,0001,000,000,0001,000,000,0001,000,000,000

2,000,000,0002,000,000,0002,000,000,0002,000,000,0002,000,000,000

3,000,000,0003,000,000,0003,000,000,0003,000,000,0003,000,000,000

4,000,000,0004,000,000,0004,000,000,0004,000,000,0004,000,000,000

5,000,000,0005,000,000,0005,000,000,0005,000,000,0005,000,000,000

6,000,000,0006,000,000,0006,000,000,0006,000,000,0006,000,000,000

7,000,000,0007,000,000,0007,000,000,0007,000,000,0007,000,000,000

CCCCC

0.3210.3210.3210.3210.321

0.3220.3220.3220.3220.322

0.3230.3230.3230.3230.323

0.3240.3240.3240.3240.324

0.3250.3250.3250.3250.325

0.3260.3260.3260.3260.326

0.3270.3270.3270.3270.327

0.3280.3280.3280.3280.328

0.3290.3290.3290.3290.329

0.3300.3300.3300.3300.330

LossLossLossLossLoss

Firefox http://localhost:8000/index_svc.html

1 of 1 15/10/2022, 12:51

0.00.00.00.00.0

0.20.20.20.20.2

0.40.40.40.40.4

0.60.60.60.60.6

0.80.80.80.80.8

1.01.01.01.01.0

1.21.21.21.21.2

1.41.41.41.41.4

1.61.61.61.61.6

1.81.81.81.81.8

2.02.02.02.02.0
AlgorithmAlgorithmAlgorithmAlgorithmAlgorithm

100100100100100

200200200200200

300300300300300

400400400400400

500500500500500

600600600600600

700700700700700

800800800800800

900900900900900

LeafLeafLeafLeafLeaf

100100100100100

200200200200200

300300300300300

400400400400400

500500500500500

600600600600600

700700700700700

800800800800800

900900900900900

NeighboursNeighboursNeighboursNeighboursNeighbours

0.00.00.00.00.0

0.10.10.10.10.1

0.20.20.20.20.2

0.30.30.30.30.3

0.40.40.40.40.4

0.50.50.50.50.5

0.60.60.60.60.6

0.70.70.70.70.7

0.80.80.80.80.8

0.90.90.90.90.9

1.01.01.01.01.0
WeightsWeightsWeightsWeightsWeights

0.150.150.150.150.15

0.200.200.200.200.20

0.250.250.250.250.25

0.300.300.300.300.30

0.350.350.350.350.35

0.400.400.400.400.40

0.450.450.450.450.45

0.500.500.500.500.50

0.550.550.550.550.55

0.600.600.600.600.60

0.650.650.650.650.65

0.700.700.700.700.70
LossLossLossLossLoss

Firefox http://localhost:8000/index_knn.html

1 of 1 15/10/2022, 12:25

0.00.00.00.00.0

0.10.10.10.10.1

0.20.20.20.20.2

0.30.30.30.30.3

0.40.40.40.40.4

0.50.50.50.50.5

0.60.60.60.60.6

0.70.70.70.70.7

0.80.80.80.80.8

0.90.90.90.90.9

1.01.01.01.01.0
CriterionCriterionCriterionCriterionCriterion

22222

44444

66666

88888

1010101010

1212121212

1414141414

1616161616

1818181818

2020202020
Min_Samples_LeafMin_Samples_LeafMin_Samples_LeafMin_Samples_LeafMin_Samples_Leaf

0.10.10.10.10.1

0.20.20.20.20.2

0.30.30.30.30.3

0.40.40.40.40.4

0.50.50.50.50.5

0.60.60.60.60.6

0.70.70.70.70.7

0.80.80.80.80.8

0.90.90.90.90.9

Min_Samples_SplitMin_Samples_SplitMin_Samples_SplitMin_Samples_SplitMin_Samples_Split

2020202020

4040404040

6060606060

8080808080

100100100100100

120120120120120

140140140140140

160160160160160

180180180180180

N_EstimatorsN_EstimatorsN_EstimatorsN_EstimatorsN_Estimators

0.30.30.30.30.3

0.40.40.40.40.4

0.50.50.50.50.5

0.60.60.60.60.6

0.70.70.70.70.7

0.80.80.80.80.8

0.90.90.90.90.9

LossLossLossLossLoss

Firefox http://localhost:8000/index_rf.html

1 of 1 15/10/2022, 12:27

KNN

RFRidgeLinear

SVC

FIGURE 4.7: Hyperparameter optimisation for the classifiers
considered in RESICO.

Figure 4.7 highlights in blue those parameter values resulting in the lowest
and therefore most optimal loss after 200 trials. In some cases, the figure
indicates a convergence towards a particular parameter for the best result,
such as weights for the value 0 (i.e.,’distance’) in the K-Nearest Neighbors
classifier. Other best hyperparameters have a majority indicating the likely
best selection as is for the value 2 (i.e., kd_tree) for the parameter algorithm
in KNN. Nonetheless, there are some cases where value changes in the pa-
rameter do not seem to influence the loss. Examples of the former are solver
in the Ridge Linear classifier, where all optimal losses contain values from all
possible solvers and C in the Support Vector Classifier, where the loss does
not improve significantly regardless of the selected hyperparameter value.

The best hyperparameter configuration overall for each classifier is:

KNN n_neighbours = 2, weights = distance, algorithm = kd_tree, lea f -
_size = 63.

RF n_estimators = 173, criterion = gini, min_samples_lea f = 14, min_sam-
ples_split = 3E− 4.

RL alpha = 6473.18, solver = sag.

58 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

SVC C = 11.14.

We will use the optimal values for each hyperparameter for training the mod-
els that will be evaluated in the next research questions. The optimised pa-
rameters allow us to obtain models tailored to predict FQNs from incomplete
code snippets.

The machine learning algorithms employed within RESICO provide
default values for hyperparameters that might be suboptimal for the
problem at hand. However, several parameters can be tuned effec-
tively, while the values for others do not influence the loss minimi-
sation. The optimal values resulting from the hyperparameter opti-
misation are used to train the models used in the remaining research
questions.

4.4.3 RQ2. How well do COSTER and the RESICO classifiers
perform on instances extracted from the dataset used
for training?

Design
This research question investigates the performance of COSTER and each
of the RESICO classifiers on the internal dataset described in Section 4.4.1.

To this end, we trained and evaluated the approaches using a 10-fold cross-
validation technique [117], where nine folds are considered for training, and
the remaining fold is considered for evaluation. This process iterates over
each of the folds until they are all evaluated. Furthermore, we adopted a
more reliable partition technique called stratified cross-fold validation [109].
This technique improves the folding partition of the data by ensuring that
each fold contains approximately the same distribution of labels to predict.
In such a way, the training and evaluation processes avoid (I) training a la-
bel without an evaluation and (II) evaluating a label not part of the training
data. We use the implementation of the stratified cross-validation technique
provided by the Python Scikit-learn library.13

For COSTER, we use its implementation for training and evaluation. We
kept the configuration of COSTER’s parameters as provided, only disabling
the parameter concerning the minimum number of required contexts (named
fqnThreshold in the command-line options). This parameter is set to 50
by default and heavily influences the selection of FQNs, establishing a high
mark many FQNs cannot reach. These instances would be consequently ex-
cluded from the training and evaluation processes; therefore, we set COSTER
to consider all FQNs in the balanced dataset described in Section 4.4.1. We
configure RESICO to use the machine learning classifiers described in previ-
ous sections with the optimised hyperparameters obtained in Section 4.4.2.

13 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedKFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

4.4. Evaluation 59

For each evaluated fold, we queried the Top-K predictions related to the most
likely FQN with K equals to 1, 3, and 5. If the actual value is among the Top-K
predictions, we counted the prediction as a success; otherwise, as a failure.
This process allowed us to build sets of actual and predicted instances for all
top predictions per fold.

Once the prediction data is gathered for each fold, we evaluate the perfor-
mance of COSTER and each RESICO-trained model using Precision, Recall
and F1-Score for each Top-K. For example, considering a particular FQN as
FQNA, for each of them we define precision as the number of correctly pre-
dicted FQNs out of the number of predicted FQNA (Equation (4.1)). Simi-
larly, we define recall as the number of correctly predicted FQNA out of the
number of actual FQNA (Equation (4.2)). Lastly, for each FQNA, its F1-Score
is the harmonic mean of both Precision and Recall defined in Equation (4.3).

Precision =
correctly predicted FQNA

total # predicted FQNA
(4.1)

Recall =
correctly predicted FQNA

total # actual FQNA
(4.2)

F1-Score = 2 · Precision · Recall
Precision + Recall

(4.3)

Since our labels are multi-class, we adopted the “micro” averaging approach,
which is recommended for multi-class problems when the focus is on the
general performance instead of rare classes [74]. Micro-average precision
and recall are computed as follows, whereas the micro-average F1-Score is
computed similarly to Equation (4.3) but taking into account micro-average
precision and recall.

Micro-average Precision =

k

∑
i=1

correctly predicted FQNi

total # predicted FQNs
(4.4)

Micro-average Recall =

k

∑
i=1

correctly predicted FQNi

total # actual FQNs
(4.5)

Finally, we average the metrics for all folds and report them.

Results

Figure 4.8 shows the averaged results for the trained models on the internal
dataset for the Top-1, 3, and 5 predictions. Each row of bar charts represents

60 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

58 5858

90 9090

81 8181

68

76
72

44

74

55

69 6969

92 9292
88 8888

77
8079

59

81

68

73 7373

92 9292 90 9090

80 8281

64

82

72

Top−5

Top−3

Top−1

COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC

0%

25%

50%

75%

0%

25%

50%

75%

0%

25%

50%

75%

Classifier

S
co

re

Metric

F1−Score

Precision

Recall

FIGURE 4.8: Performance of the models on the internal dataset.

the Top-K evaluation on the internal dataset for a particular value of K. The
individual bars within a bar chart depict the performance of the particular
classifier denoted on the horizontal axis. A cell (i, j) on the intersection of
row i and column j denotes the performance of the classifier j considering
the Top-K in i. We selected F1-Scores as performance comparison metric as
they represent the harmonic mean between precision and recall; thus, we can
observe the average performance of classifiers.

The performance of the two approaches increases along with the number
of provided recommendations (i.e., K). In the specific case of COSTER, it
starts with a reported Top-1 performance of 58% according to the F1-Score.
This performance increases substantially (11% more) for the Top-3, whereas it
grows only a 4% from the Top-3 to the Top-5 recommendations. Nonetheless,
we note that overall, COSTER performs well, predicting most of the FQNs for
this internal dataset.

Most RESICO classifiers (3 out of 4) outperform COSTER in all Top-K config-
urations. The KNN classifier performs best in all three Top-K, starting with
an excellent performance of 90% for the Top-1 and slightly improving 2%
in the remaining cases. The RF classifier ranked second with good scores,
especially in Top-3 and Top-5, where it can correctly predict 88% and 90%
of the FQNs, respectively. In the case of SVC, lower scores were achieved
w.r.t. the previous classifiers but still superior to COSTER’s scores. Lastly, the

4.4. Evaluation 61

RL classifier was the least performing classifier of all considered approaches.
However, it is worth noting that the slight F1-Score differences compared to
COSTER are due to the low precision of the RL since it performs similarly to
SVC in terms of recall.

We conclude that the best classifier of our approach (i.e., KNN) is more effec-
tive than COSTER on this dataset. The API references and their surrounding
contexts were correctly captured and learned by the Word2Vec and classifi-
cation processes allowing to improve the prediction results of the RESICO
classifiers.

COSTER achieves good performance on the balanced internal dataset
with a maximum of 73% for the Top-5 recommendations. RESICO
presents excellent results, with the best Top-1 recommendations of 90%
and Top-5 of 92% for the KNN classifier, thus, outperforming COSTER
on the internal dataset.

4.4.4 RQ3. What is the performance of the COSTER and RESICO
classifiers when evaluated on unseen datasets?

Design
This research question investigates the performance of COSTER and all
RESICO models previously trained on the internal dataset and applied to
external and unseen datasets.

We trained the approaches on the full version of the balanced internal dataset
to answer this research question. Once the models are trained on the data, we
use them to predict the extracted types from the external datasets COSTER-
SO, StatType-SO, and RESICO-SO. Please note that the snippets in the datasets
must be compilable because a ground truth of FQNs is needed to verify the
effectiveness of the trained models. FQNs of API references are challenging
to determine in incomplete code snippets, hindering obtaining the ground
truth needed for an accurate evaluation of the models.

All snippets in the three datasets are compilable; hence, information about
API references, their surrounding contexts, and FQNs can be extracted using
Eclipse JDT. For each API reference, their specific context is extracted either
using the configuration of COSTER (cf. Saifullah et al. [106]) or RESICO (cf.
Section 4.3.3). When leveraging RESICO, the extracted information has to be
transformed into a vector (cf. Section 4.3.4) before sending it as input to the
trained model.

We match the predicted FQNs to the true FQNs, similarly to the previous
research question. For each API reference and context (e.g., 1, 3, or 5), the
likely FQNs are predicted and checked against the true FQN. The prediction
is successful when the actual value is present; otherwise, it represents a fail-
ure. Finally, we compute the Top-K micro Precision, Recall, and F1-Score for
each external dataset and report them.

62 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

Results

15 1615

85 8786

76 7877 75
8078

70

77
73

21 2322

86 8887
83 8483 83 8484

77

85
81

25 2626

86 8887 86 8686 84 8585

79
84

81

Top−1 Top−3 Top−5

COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC

0%

25%

50%

75%

COSTER−SO

26

31
28

75
78

76

60
6362

51

61

56

34

54

42

36
40

38

78
8079

73
7574

64

72
69

49

70

58

41
44

42

78
8079

75
7776

67

72
69

55

74

63

Top−1 Top−3 Top−5

COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC

0%

25%

50%

75%

S
co

re

StatType−SO

19

30

23

68
7270

59

65
62

52

70

59

38

70

50

28

41

33

70
7371

66
7068

60

69
64

49

75

59

32

38
35

70
7371 69

7271

62

71
66

53

80

64

Top−1 Top−3 Top−5

COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC COSTER RESICO−KNN RESICO−RF RESICO−RL RESICO−SVC

0%

25%

50%

75%

Classifier

Metric F1−Score Precision Recall

RESICO−SO

FIGURE 4.9: Performance of the models on the three external
datasets.

Figure 4.9 depicts the results of COSTER and the RESICO trained models on
the external datasets. Here, each row corresponds to one external dataset.
Each bar chart within a row corresponds to the particular Top-K being con-
sidered denoted at the top. Each bar within a bar chart corresponds to the
precision, recall, or F1-score for the approach denoted on the horizontal axis.

RESICO outperforms COSTER on all three datasets. The difference in F1-
Score is considerable for some configurations. For example, there is a 71%
performance difference between the F1-Scores of COSTER and RESICO-KNN
when analysing the first predictions (i.e., Top-1) on the COSTER-SO dataset.

The best performance overall was RESICO-KNN, as in the previous research
question (cf. Figure 4.8). This model showed a relevant performance start-
ing with 87% F1-Score for the Top-1 recommendations in the COSTER-SO
dataset. Although inferior to the COSTER-SO performance, RESICO-KNN
still predicts with good accuracy the FQNs in the StatType-SO and RESICO-
SO datasets. The F1-Score metrics are above 70% for the last two datasets
considering all Top-Ks.

The performance difference of the models across the three external datasets
can be explained by the number of records per FQN (e.g., 50) and the balanc-
ing of the training dataset. In the data balancing step (cf. Section 4.4.1), we
limited the number of records per FQN to 50. The results in Figure 4.9 show

4.4. Evaluation 63

that COSTER might need more occurrences to improve its performance. On
the other hand, most of the RESICO classifiers have good generalisability
with this limited number of examples per FQN. Additionally, data balancing
allowed us to harmonise the importance of each FQN, hence, widespread
types such as java.lang.String have the same relevance as other less fre-
quent FQNs. In such a way, the trained models are not biased towards any
FQN, enabling better performance than other methods, such as COSTER,
without this feature.

In the three external datasets considered to evaluate the generalisabil-
ity of the performance, RESICO-trained models outperform COSTER
with a notable difference in some cases. Some decisions made when
designing the machine learning models, such as data balancing and
hyperparameter optimisation, allow RESICO to achieve better predic-
tive capabilities than the COSTER approach.

4.4.5 RQ4. How much time is needed to train COSTER and
the RESICO classifiers?

Design
This research question investigates the computational cost of COSTER and
RESICO. The experiments were conducted on a Dell PowerEdge R730 with 2
Intel Xeon 2637 CPUs, each with four cores at 3.5 GHz with HyperThreading
and 256 GB of RAM.

For each approach, we measured the time employed to extract the informa-
tion from the projects in the initial corpus [85] and the time to train the model
in the balanced internal dataset (cf. Section 4.4.3). Additionally, for RESICO,
we measure the embedding time, i.e., the time required to transform the API
references and contexts into vectors suitable for a machine learning algo-
rithm. We do not consider the encoding time of FQNs to label numbers since
it is a simple mapping whose execution time is negligible.

Results
Table 4.6 depicts the time measurements for all experiments.

Approach Token Extraction Context Embedding Model Training Total

COSTER

11h 49m 4s

- 25s 11h 49m 29s
RESICO-KNN

3m 43s

671ms 11h 52m 48s
RESICO-RF 29m 6s 12h 21m 53s
RESICO-RL 52m 16s 12h 45m 3s
RESICO-SVC 4m 43s 11h 57m 30s

TABLE 4.6: Computational cost of the approaches. Time is mea-
sured in hours (h), minutes (m), seconds (s) and milliseconds

(ms).

64 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

The extraction time (col. Extraction) is the same for the two approaches. As
COSTER and RESICO rely on the same extraction procedure built on top of
Eclipse JDT with slight differences related to the handling of contexts, for
every processed FQN, two outputs were written to two different datasets.

The total time (col. Total) required by COSTER is lower than that required
by RESICO. In Table 4.6, we show the time needed to extract the tokens, the
time needed to embed the contexts, if any, and the time needed to train the
models using the sampled data. COSTER does not need embeddings, saving
the time needed to craft them.

Fact extraction takes the longest, with nearly 12 hours for processing the data
of 50K projects. After sampling and balancing the dataset, the remaining
training data consists of 243,000 records. Note that embedding the API ref-
erences takes less than a second, whereas embedding their contexts takes
almost 4 minutes. These running times can be considered efficient for the
specified dataset, however, with a more complex dataset, embedding times
could increase drastically. The learned embeddings for the API references
and their surrounding contexts allowed most RESICO classifiers to outper-
form COSTER both on the internal dataset (cf. Figure 4.8) and the three ex-
ternal datasets (cf. Figure 4.9).

Finally, concerning the training times for the RESICO classifiers and the COS-
TER approach, the fastest overall is RESICO-KNN with less than a second
used for its training on the balanced dataset. COSTER also trained quickly
with only 25 seconds, followed by RESICO-SVC, requiring almost 5 min-
utes. The slowest approaches are RESICO-SVC, with nearly 30 minutes and
RESICO-RL, with more than 50 minutes to complete their respective training.
For SVC, its training time agrees with its design since it is not an easy task
to search for an optimal hyperplane in high-dimensional data. A hypothesis
for why the RL model takes the longest to train might be the challenges in
linearly differentiating the classes in a multi-class data scenario.

The fact extraction times of COSTER and RESICO are the same as they
both rely on the same Eclipse JDT Core extension. On the dataset con-
sidered for training, embedding the tokens does not take considerable
time while it does improve the predictions, as shown in the results of
RQ2 and RQ3. The classifiers that take the longest to train are those of
which characteristics of our internal dataset pose challenges to their de-
sign and implementation (e.g., multi-class and high-dimensional data).

4.4.6 RQ5. To what extent do ambiguities in simple names
influence the performance of the approaches?

Design
Name ambiguities affect the type resolution conducted by COSTER and RESI-
CO. This research question analyses the resolution failures and how am-
biguities could have impacted them. Consider an incomplete code snippet

4.4. Evaluation 65

having the simple name Element. It could resolve to org.jdom.Element or
org.jsoup.nodes.Element within an incomplete code snippet. There are 17
FQN candidates in the internal balanced dataset for this simple name alone.
The more ambiguous a simple name is, the more challenging it is for a re-
solver to predict its exact FQN effectively.

We analyse the erroneous type resolutions made by the COSTER and RESI-
CO models, which were trained on the internal balanced dataset, by investi-
gating whether the root cause for their incorrect resolutions produced on the
external datasets is an ambiguous simple name. Specifically, we consider the
models of COSTER and RESICO-KNN for this research question, the former
being the approach to compare with and the latter the best RESICO model
overall. We only consider the Top-1 predictions from the models on the ex-
ternal datasets since they have most of failures compared to the other two
(i.e., Top-3 and Top-5).

Model Dataset # Uniq. Mis. # Mis. # Amb. % Amb.

COSTER
COSTER-SO 27 1,173 4 0.34
StatType-SO 155 1,355 37 2.73
RESICO-SO 197 1,412 16 1.13

RESICO-KNN
COSTER-SO 18 205 31 15.12
StatType-SO 96 458 108 23.58
RESICO-SO 112 553 73 13.2

TABLE 4.7: Ambiguity analysis for COSTER and RESICO-KNN
trained models on the external datasets.

Results
The results of the ambiguity analysis are depicted in Table 4.7. The number
of unique misclassifications (col. Uniq. Mis.) for the COSTER-SO dataset
is lower compared to the other datasets. However, those numbers increase
when counting the total number of misclassifications regardless of their uni-
queness (col. # Mis.). The COSTER model produces more misclassifications
than RESICO-KNN on all datasets, as previously reported in RQ3.

Interestingly, only a minority of the type resolution failures are due to am-
biguous simple names. Column # Amb. of Table 4.7 demonstrates that in all
datasets but one, less than 100 misclassifications correspond to such cases.
Only a tiny percentage (col. % Amb.) of FQNs could have been misclassified
because other FQNs share the same simple name. The StatType-SO dataset
with the RESICO-KNN model combination has the highest percentage of
ambiguous misclassifications compared to other combinations. A closer look
indicates that only 31 unique misclassifications occurred but were repeated
multiple times. For example, the FQN org.hibernate.Session is predicted
as org.hibernate.classic.Session and as javax.websocket.Session, 35
and 3 times respectively.

66 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

These findings indicate that the main reason for failures from the models is
not the presence of ambiguous simple names. A likely reason for the mis-
predictions might be the close similarity of the contexts around different API
references. The closer the contexts around API references are, the more prone
the models might be to recommend distinct FQNs as similar.

The number of unique mispredicted FQNs is the highest for both mod-
els on the StatType-SO and the RESICO-SO datasets, illustrating their
challenging nature. Only a tiny percentage of incorrect type resolutions
is due to ambiguous simple names. The main reason for the mispredic-
tions might not be ambiguous simple names, but rather, closer contexts
could mislead the trained models towards failures.

4.5 Discussion

This section discusses the results, limitations, and potential impact of RESI-
CO.

4.5.1 Context-based Approaches to API Type Resolution

The approaches considered in the previous evaluation section (cf. Section 4.4)
are based on the contexts surrounding API references to resolve API types.
Indeed, both RESICO and COSTER capture the contexts around API usages.
Then, they recommend a FQN based on similar contexts in incomplete code
snippets. Despite this similarity between the approaches, they have many
differences, such as their context definitions and the usage of machine learn-
ing versus information retrieval techniques.

COSTER captures the API references, their surrounding contexts, and the
FQNs of the referenced API element, and stores them into a Lucene14 database
to be queried later. RESICO, in contrast, starts three learning processes after
a similar extraction process to improve its final prediction (cf. Section 4.3.3).
After the learning processes, a classifier uses the learned embeddings in the
form of vectors to learn to distinguish different contexts corresponding to
FQNs. The embeddings and classifier models are stored in files for posterior
use at resolution time.

We noticed that even though our approach takes slightly more time (around
3 minutes) and thus more computational resources than COSTER (cf. Ta-
ble 4.6), it can resolve API types more effectively (cf. Figure 4.8, Figure 4.9).

Concerning type resolution failures, our experiments found that most are
due to the contexts in which the same or different simple names occur be-
ing overly similar. For example, Figure 4.10 depicts different FQNs close to
each other because of the similarity of their contexts. The figure was built by
extracting the averaged vectors between API references and contexts of 14

14 https://lucene.apache.org/

https://lucene.apache.org/

4.5. Discussion 67

FIGURE 4.10: Similar FQNs by their context vectors.

randomly selected misclassified FQNs by RESICO. Afterwards, we reduced
the dimensions of these vectors to 2 using TSNE15 to facilitate their plotting.
Figure 4.10 shows the context similarity of different FQNs. The colours and
the text on the points identify each FQN in the 2-dimensional cartesian space.
The points corresponding to the vectors of org.joda.time.DateTimeZone and
org.joda.time.DateTime are close to each other since they might be used in
a similar environment. The same happens to the points of the Apache and
Java collections, such as MultiMap from the former and List and Map from the
latter. Lastly, PeriodFormatterBuilder, PeriodFormatter, and PeriodType
from the joda library share context similarities and the trained models strug-
gle to distinguish them in some cases effectively.

In addition, we made an analysis based on the effectiveness of the approaches
at the library level for the external datasets evaluated on RQ3. Table 4.8
shows how COSTER and RESICO-KNN (our best model) perform per library
for the StatType-SO dataset. The analysis for the remaining datasets can be
found in our online repository.16

For a total of 12 libraries in the StatType-SO dataset, the green entries in Ta-
ble 4.8 show that RESICO-KNN outperforms COSTER on 10 libraries. For
only 2 libraries, the approaches achieved the same score. In the case of the
Org-JSON library, no approach could correctly resolve any of the seven API
types. In the case of KSoap2, the approaches successfully predicted all five
types.

Table 4.8 also shows RESICO-KNN scores more success than failure cases in
all but two libraries (Org-JSON and Apache-Log4J). COSTER, in contrast, has
a majority of failures instead of successes except for XStream, Apache-Commons
and KSoap2. Interestingly, most failures for both approaches are located in the

15 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
16 https://github.com/softwarelanguageslab/resico-paper

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/softwarelanguageslab/resico-paper

68 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

Library Total COSTER RESICO-KNN
Success Failure Success Failure

JDK 665 46 619 453 212
GWT 350 149 201 303 47
Hibernate 319 65 254 242 77
Joda-Time 250 56 194 170 80
XStream 173 139 34 144 29
Apache-Http 29 1 28 26 3
Apache-Commons 15 10 5 14 1
Apache-Struts 7 0 7 7 0
Org-JSON 7 0 7 0 7
Dom4J 5 1 4 4 1
KSoap2 5 5 0 5 0
Apache-Log4J 2 0 2 1 1

TABLE 4.8: The accuracy of the best models per approach
shown per library in the StatType-SO dataset. Highlighted in
green and red are the largest successes and failures, respec-

tively.

JDK library, with a very low success rate for COSTER (7%) and a relatively
low one for RESICO (32%).

4.5.2 Limitations

RESICO cannot handle multiple versions of the same library, just like previ-
ous approaches (e.g., COSTER). They recommend the old and the new FQNs
when a class is moved to another package.

The approach should be equally applicable to other languages with explicit
import statements (e.g., Python). Some relatively small extensions will be
required to support import statements with wildcards, which import several
API types simultaneously without analysing the corresponding library files.

To support languages featuring import statements that load a library defi-
nition at run time will require more extensive work. For such languages,
we envision run-time analysis of the libraries. Note that we are not gauging
the modifications required based on whether the language is dynamically or
statically typed but on the type of import statements that would occur in its
snippets.

Finally, RESICO is based on word embeddings. Like other approaches re-
lying on this technique, it suffers from Out-Of-Vocabulary errors when the
model must predict a term that is not in the training set. RESICO will fail to
resolve the API type for such a term. Nonetheless, the NLP community has
proposed mitigation strategies such as enriching the vectors with subword

4.6. Threats to Validity 69

information [22, 81], which are not currently included in the implementation
and are part of our future agenda.

4.5.3 Potential Impact

As revealed by our experiments, RESICO scores high on all considered data-
sets. Researchers and practitioners can use our approach to design and im-
plement tools that analyse SO posts, e.g., API usages and the natural lan-
guage around the code. Our approach and trained model provide type res-
olution to client analyses and tools requiring type information, even for syn-
tactically incorrect and incomplete code snippets. One example tool could,
for instance, help developers who rely on SO solutions and frequently copy
their code into an IDE by providing import statements for all referenced li-
brary types.

4.6 Threats to Validity

We now discuss the threats that might affect the validity of our study for
learning-based API type resolution in incomplete code snippets.

4.6.1 Threats to Construct Validity

RESICO relies upon a Word2Vec implementation provided by the Golang
programming language to obtain the word embeddings and four classifiers
from the Scikit-Learn framework for building and evaluating the machine
learning models. RESICO uses these libraries extensively, so their inclusion
constitutes a threat to validity. Nevertheless, they are among the most popu-
lar open-source machine-learning libraries.

4.6.2 Threats to Internal Validity

We chose the Continuous Bag of Words (CBOW) architecture for the Word2Vec
algorithm instead of the alternative Skip-gram. Our selection was motivated
by the faster processing times of the former approach compared to the latter.
CBOW tries to infer a word given its context, whereas Skip-gram attempts
to infer a context given a word. Skip-gram might produce slightly different
results; however, as reported by Mikolov et al. [87], CBOW can also produce
reliable vector representations while reducing the learning time.

Data balancing was used to equalise the internal dataset extracted from the
50K-C corpus, thereby avoiding biased training towards imbalanced classes.
Data balancing should in general be applied to the training dataset and not
to the testing dataset. In Section 4.4.3, we balanced the full dataset before
the stratification and posterior training and testing, to verify whether our
model could detect FQNs from a dataset similar to the training one. The pos-
sible implications of this decision are minimal for a two-fold reason. On the
one hand, all evaluated methods (e.g., COSTER and all RESICO classifiers)

70 Chapter 4. API Type Resolution for Incomplete Code Snippets on Stack Overflow

use the same balanced dataset for training and testing, making the evalua-
tion fair. On the other hand, we conducted a second evaluation on external
datasets, showing similar results.

4.6.3 Threats to External Validity

An external threat might be due to the comparisons between both approaches,
COSTER [106] and RESICO. For an unbiased comparison, we first extracted
information from the same API references in the 50K-C dataset [85]. Second,
the training dataset is balanced to avoid bias towards any particular label,
and the approaches are trained on this balanced dataset. Third, we eval-
uated both approaches on the datasets initially employed for assessing the
quality of COSTER (e.g., COSTER-SO and StatType-SO). Lastly, we created a
third external dataset (e.g., RESICO-SO) of code snippets that reference the
same set of libraries present in the previous datasets.

Another external threat concerns the classifiers and the word embedding al-
gorithm (i.e., Word2Vec) used in RESICO. We chose four different classifiers
as instantiations of RESICO which have been used in ML-based software en-
gineering solutions [39, 52] as well as in previous text classification works [31,
71, 111, 160]. Likewise, Word2Vec has been successfully used in other stud-
ies [57, 91, 152].

4.6.4 Threats to Conclusion Validity

The metrics used to evaluate our approach (i.e., Precision, Recall, and F1-
Score) are widely used among recommenders, including the reference work
(i.e., COSTER). To evaluate to what extent programs in the 50K-C dataset can
be used to predict fully-qualified names with similar context, we adopted
a 10-fold stratified cross-validation [117] after a previous balancing of the
dataset. For datasets which are not completely balanced, the number of in-
stances per fold will correspond to a similar distribution of the full dataset.
Since we have a balanced dataset, it is not only ensured that each fold follows
the general distribution but also that each of them contains the same number
of instances per class.

4.7 Conclusion

This chapter proposes a new learning-based approach to resolving the fully-
qualified name of API types referenced by their simple name in code snippets
from online Q&A platforms such as Stack Overflow. The approach, called
RESICO, extracts API references, their surrounding contexts and their as-
sociated FQNs from a dataset of 50K compilable GitHub projects. A data
balancing technique is applied to balance the dataset from where COSTER
and RESICO train and learn to distinguish API types in incomplete code.
RESICO uses Word2Vec to transform API references and their contexts into

4.7. Conclusion 71

vector representations and class categorisation to convert FQNs into num-
bers. The vectors of the API references and contexts are combined into the
input of machine learning classifiers, whereas the numbered FQNs are the
labels to predict. The approach is instantiated with four machine learning
classifiers, namely KNN, Random Forests, Ridge Linear, and Support Vector
Machines. Before evaluating the resulting models, hyperparameter optimi-
sation is applied to find an optimal configuration for these classifiers.

We have compared the RESICO machine learning models and COSTER ex-
tensively on four datasets: one gathered from a corpus of 50K compilable
GitHub projects and three datasets that serve as external validators for the
trained models.

Our approach is more complex than COSTER since it involves training sev-
eral machine learning models; hence, it consumes more computational re-
sources during training. More specifically, RESICO involves training two
Word2Vec models to learn embeddings and one classification algorithm. Our
best classifier (KNN) is slightly slower to train than COSTER. However, once
deployed, most of the RESICO-trained models outperform COSTER in the
10-fold cross-validation on an internal dataset and on three external datasets.
Finally, we showed that incorrect type resolutions produced by RESICO and
COSTER might not be due to ambiguous simple names but mainly to similar
contexts around usages.

73

Chapter 5

Uncovering Library Features from
Stack Overflow Posts

5.1 Introduction

Contemporary software development commonly uses features from third-
party libraries [15] to reduce development time and potentially improve over-
all system quality [2]. Each library targets at least one particular domain
(e.g., graphical user interface, persistence, etc.) and offers features to client
systems through its API, facilitating the implementation of a particular task
(e.g., displaying a dialog, serialising to JSON, etc.).

Software ecosystems such as Maven or NPM host an ever-increasing num-
ber of software libraries1. As the number of libraries in software ecosystem
grows, some are bound to offer similar features. For example, Maven cur-
rently has 81 different libraries providing reusable implementations of collec-
tion datatypes.2 From the brief description of each library, one can infer that
they provide different kinds of collections (e.g., maps, sets, queues, stacks,
etc.) but the range of features offered is not immediately clear (e.g., persis-
tent collections, specific utility methods for sorting or reversing collections),
neither how these features can be used (e.g., a call to a single static method, a
call to an instance method of a class that needs to be instantiated, three meth-
ods that need to be called together), nor how each library compares to other
libraries with similar features. Ultimately, developers need to select the most
suitable library from the available ones for the task at hand.

When selecting a library to reuse from a vast ecosystem, it becomes essen-
tial for developers to know the features offered by each library. Previous
works in Chapter 3 propose definitions that are aligned with our idea of a
feature. For example, Kanda et al. [64] consider a set of API calls accom-
panied by a corresponding name as a feature. Additionally, Antoniol and
Guéhéneuc [9] define a feature as “a set of data structures (i.e., fields and
classes) and operations (i.e., functions and methods) participating in the re-
alisation of the functionality”. We adopt their definition in this dissertation

1 http://www.modulecounts.com/
2 https://mvnrepository.com/open-source/collections

http://www.modulecounts.com/
https://mvnrepository.com/open-source/collections

74 Chapter 5. Uncovering Library Features from Stack Overflow Posts

so that features comprise the API elements that realise them, as well as their
textual description.

This chapter presents the second contribution of the dissertation, namely the
discovery of features, their relevance, and potential influence on the usability
of libraries. First, a motivation section will motivate the need for automated
approaches that describe a library in terms of the feature it offers. Second, our
early works AutoCat and MUTAMA, towards discovering features from li-
braries are presented and discussed. AutoCat and MUTAMA are not focused
on fine-grained features, but target more coarse forms of features such as cat-
egories and tags. Limitations of these coarse-grained feature descriptions are
also discussed. Third, our approach to uncovering features from SO posts is
presented. We describe the implementation of our approach in a tool called
LiFUSO and demonstrate its usage in a case study. Next, we conduct an
extensive empirical evaluation on the quality of the extracted features com-
pared to those found in official library tutorials and usage cookbooks. Sixth,
a discussion section explores the results obtained from our approach and its
current limitations and impact. Validity threats for both our approach and
tool are discussed to conclude the chapter.

The approach proposed in this chapter extracts features from SO code snip-
pets. One of the requirements of our approach LiFUSO is that the name of
the analysed library must be part of the tags list in an SO post. Although
this decision might restrict SO answers to those certainly using a library, it
might also miss other posts not correctly tagged. Therefore, LiFUSO will be
further extended in Chapter 6 with the assistance of our RESICO approach
(cf. Chapter 4).

5.2 Motivation

We highlight some motivational arguments towards the development and
adoption of automated approaches to produce descriptions of the features
offered by a library.

5.2.1 Support for Comparing Libraries

Developers rely on metrics such as the number of downloads, votes, stars
on GitHub, open and closed issues, release frequency, etc., when comparing
libraries to use [42, 133]. Several ecosystem indices such as NPMCompare3,
NPMTrends4 or NPMS5 have therefore been proposed. These enable com-
paring libraries in terms of metrics and quality scores. Figure 5.1 depicts an
example of such a comparison provided by NPMCompare.

The focus on popularity-based metrics, however, tends to bias the selection
process towards the more popular and older libraries [156]. In addition,

3 https://npmcompare.com/
4 https://www.npmtrends.com/
5 https://npms.io/

https://npmcompare.com/
https://www.npmtrends.com/
https://npms.io/

5.2. Motivation 75

newly-introduced libraries with superior features or with an API requiring
less boilerplate code to use might take a while to be adopted due to their
low popularity metrics. Furthermore, none of the software ecosystems is sup-
ported by tools that enable comparing libraries based on the features offered,
nor on the API usage that is required to use them. A desired tool would make
library comparisons based on the features that libraries propose and not on
the popularity-derived metrics.

FIGURE 5.1: Comparison of two libraries based on popularity
metrics.

5.2.2 Support for Exploring Ecosystems

Likewise, tool support for exploring an ecosystem is lacking, with most offi-
cial ecosystem indices being limited to browsing through community-curated
or maintainer-provided categories and library tags. Some ecosystem indices
support natural language queries against the short description of the indexed
libraries, but such documentation might be lacking and there is no standard
format for documenting the functional features provided by each library.
With an automated means for uncovering library features, ecosystem indices
could provide a richer browsing experience. For instance, users could inspect
a list of features that are commonly or rarely implemented by the libraries in
a selected category.

Ecosystem indices could also support queries against the uncovered textual
descriptions, as well as the API elements that realise each feature. For in-
stance, the query “resize an image”, could return the API usage required for
different libraries that support this task. Users could inspect the API usage
required for a particular library and immediately navigate to a competing
library for which less boilerplate code is required to use the same feature or
of which the API is more aligned with the project’s own coding conventions
(e.g., a fluent or a regular API). Even more, developers that need multiple
features, ideally want to inspect to what extent each library supports these
features, e.g., developers might need to “resize an image" and “convert im-
age to pdf". Current tool support does not allow developers to efficiently
evaluate and compare candidate libraries with respect to all the desired fea-
tures.

Given the previous arguments, there is a need for automated approaches
that describe a given library in terms of its features. The features, however,

76 Chapter 5. Uncovering Library Features from Stack Overflow Posts

can be described at several levels of granularity, from the artifact level to
the code level. We propose three approaches of increasing granularity. The
first, called AutoCat, automatically categorises a library into one of the top-
level library categories used by ecosystem indices. The second, MUTAMA,
describes a library in terms of a collection of tags used on such indices. The
third, LiFUSO, describes a library in terms of features consisting of the API
elements that implement them and a natural language description.

5.3 AutoCat: Automatic Library Categorisation

For the Maven software ecosystem, there are at least two web-based views
that have been developed to assist developers in the library selection process:
SonaType6 and MVNRepository7. The former supports search based on the
matched queried text to the name or to the description of libraries. The latter
supports two types of searches for exploring the vast number of libraries in
the ecosystem:

Metadata-based search A developer searches for an artifact providing infor-
mation such as groupId, artifactId or version.

Category-based search A developer searches for a specific category of arti-
facts related to a search criterion.

Metadata-based searches are of little help without knowledge of the precise
metadata of the artifact. Category-based searches assist users who do not
have a specific library in mind, but are rather exploring the ecosystem or
inspecting alternatives to an already adopted library.

MVNRepository features 150 library categories covering various domains such
as Databases, I/O Utilities or Mocking. Therefore, categories could also be seen
as very coarse descriptions of the features offered by libraries. For example,
libraries in the I/O Utilities category have features related to I/O. The total
number of libraries in these 150 categories is 37,934. However, considering
that the number of libraries reported by [17] is 73,653, over 30,000 libraries in
the Maven ecosystem remain uncategorised.

We propose an approach called AutoCat to automatically assign libraries
to an appropriate category by analysing the bytecode of their implementa-
tion. A new “uncategorised” library can be automatically classified into one
of the existing categories, the libraries of which it will share similar features
with.

The proposed approach is based on text classification machine learning al-
gorithms trained and evaluated on a corpus of text extracted from the li-
braries. We obtain this corpus of text by extracting the identifiers of public

6 https://search.maven.org/
7 https://mvnrepository.com/

https://search.maven.org/
https://mvnrepository.com/

5.3. AutoCat: Automatic Library Categorisation 77

classes and methods from a library’s JAR file using the Apache BCEL8 li-
brary. For those identifiers following the CamelCase naming convention (e.g.,
getAccountNumber), we separate the identifier into distinct words (e.g., get,
Account, Number).

In order to feed the extracted corpus of text to a machine learning algorithm,
we vectorise it using Word2Vec [86]. Fixed-length vectors are generated for
each word in the vocabulary (i.e., words from class and method identifiers
extracted through the previous step). The generated vectors capture the con-
text around a word (e.g., a window size of five tokens); hence it is possible
to relate different words by the surrounding context. Default parameters for
the Word2Vec process are selected for its training.

The task of the machine learning algorithm is to learn and predict a dis-
crete label for each vector that corresponds to the MVNRepository category to
which the library belongs. We consider five machine learning algorithms to
instantiate our approach: Gaussian Naive Bayes (GNB) as well as Bernoulli
Naive Bayes (BNB) [63], Support Vector Machines (SVC) [56], K-Nearest Nei-
ghbors (KNN) [38] and Random Forest (RF) [24, 58] (cf. Section 2.4.2).

5.3.1 Evaluation

We train and evaluate our approach on five MVNRepository categories: Col-
lections, Dependency Injection, Http Clients, Compression and JSON libraries.
From each category, we select 15 libraries (i.e., JAR files). These 15 libraries
are divided into 10 libraries for training and evaluation, and 5 for validation.

Classifier Precision Recall F1-Score

GNB 0.75 0.79 0.77

BNB 0.88 0.91 0.89

SVC 0.95 0.96 0.95

RF 0.97 0.98 0.97

KNN 0.96 0.98 0.97

TABLE 5.1: Scores achieved by the trained classifiers on the au-
tomatic classification of libraries. Highlighted in bold are the

best models according to their F1 score.

Table 5.1 depicts the results of the used 10-fold stratified cross-validation
[109] method according to precision, recall and F1 metric on each trained
model. All models produced good to excellent results with KNN and RF
achieving the highest scores with 97% for the F1 metric each. This small ex-
periment (i.e., only 15 libraries) returns promising results regarding the au-
tomatic classification of libraries based on their implementation. Moreover,

8 https://commons.apache.org/proper/commons-bcel/

https://commons.apache.org/proper/commons-bcel/

78 Chapter 5. Uncovering Library Features from Stack Overflow Posts

it demonstrates that libraries within a category are likely to share com-
mon public tokens and features. Despite the encouraging results shown in
Table 5.1, the AutoCat approach also fails to meet our goal of feature uncov-
ering due to the limitations discussed below.

5.3.2 Limitations of Category-based Approaches to Feature
Uncovering

The library categories maintained by ecosystem indices such as MVNRepos-
itory can be considered very coarse-grained descriptions of the features
provided by a library. However, it is clear that two libraries within the same
category can still offer different features. The MVNRepository only maintains
150 categories9 for all its libraries. Furthermore, a library can provide more
than a single feature for reuse. Moreover, a category alone does not convey
which API types comprise the feature.

5.4 MUTAMA: Multi-label Library Tagging

As discussed above the categories maintained by indexing platforms for li-
braries describe the features provided by a library in a too coarse-grained
manner. The MVNRepository indexing platform therefore also describes li-
braries in terms of platform-wide tags.

Tags on MVNRepository are intended to correspond to the features of a library.
The Apache library Commons-CLI10, for example, has been labeled with the
tags command-line, cli and parser. The library does indeed provide reusable
features for parsing command line arguments. Unfortunately, not all libraries
indexed by MVNRepository have been tagged this precisely. This is often the
case for libraries that have only recently been contributed to the ecosystem or
libraries not enjoying widespread use. An automated approach to suggesting
feature tags for a software library could overcome this problem and thereby
facilitate ecosystem search.

We now describe the details of our learning-based approach MUTAMA
(MUlti-label TAgging in MAven) to assigning tags for libraries in a soft-
ware ecosystem. The approach is trained on a dataset of libraries that have
already been tagged with two or more tags, corresponding to the coarse-
grained features offered by the library.

Figure 5.2 shows the steps comprising the training phase of MUTAMA. The
Main Pipeline box at the top of the figure depicts how a trained model is ob-
tained by training a multi-label classifier on the corpus of tagged libraries.
The first step entails transforming this group into a format that is suitable for
such a classifier.

9 This was consulted on January 10th, 2024.
10 https://mvnrepository.com/artifact/commons-cli/commons-cli

https://mvnrepository.com/artifact/commons-cli/commons-cli

5.4. MUTAMA: Multi-label Library Tagging 79

Vector per
Line

Word2vec
Skip-gram

Vectorisation Step

Lines of
Extracted APIs

Word2Vec
Model

Training Text Transformation

Vectorising

JARs
Downloaded

Download
JARs

Extract
APIs

Extracted
Line

Vectorisation
Step

Multi-Label Classifiers
Training/Evaluation

Trained
Model

Vectors

Data Transformation

Data
Transformation

Main Pipeline

Tags Binarise
Tags

Tags
Binarised

Pair
Back

(Library, Tags) …

(Library, Tags) … Library

(Vector, Binarised Array) …

FIGURE 5.2: The steps followed by tools following the MU-
TAMA approach.

The Data Transformation step is depicted in the middle of the figure. For each
library version, it takes as input a pair of a triplet groupId - artifactId -
version and the set of associated tags. It then downloads the binary corre-
sponding to each library version triplet. Next, the downloaded binaries are
processed using the ByteCode Engineering Library (BCEL)8 to extract the
class and method names of their public API. This ensures that the machine
learning classifier will learn patterns in the public interface of the libraries
that have been tagged similarly, which is the same interface clients have ac-
cess to. To help generalise the data, we split camel cased names into their
constituent tokens. The resulting pieces of texts are appended into a single
line per library version triplet.

Next, the extracted lines with textual information for all libraries are vec-
torised. We use Word2Vec [86, 87] due to its ability to recognise words that
are semantically similar because they often occur in close contexts. Two neu-
ral network architectures can be used for Word2Vec. The CBOW (cf. Chap-
ter 2) architecture predicts a target token from the context, whereas Skip-
gram predicts context from a token. In this case, a token is one of the obtained
words after the camel case split and its context is the surrounding five tokens
selected as a default hyperparameter. We selected the CBOW architecture
described by Mikolov et al. [86]. The vectorisation itself requires two steps,
depicted at the bottom of Figure 5.2. The first training step takes a corpus
of documents (i.e., the lines extracted for each of the libraries) and iterates
over a shallow neural network until a threshold or convergence is reached.

80 Chapter 5. Uncovering Library Features from Stack Overflow Posts

The learnt weights correspond to vectors for each of the unique tokens in
the corpus. As a second step, we transform each document in the corpus by
mapping the tokens at each line to their corresponding vectors. All vectors
corresponding to tokens in a line are then averaged into a single vector per
line.

Concurrently, in the middle of Figure 5.2, the set of tags associated with each
line of library text is transformed into a binary array. For each library, MU-
TAMA constructs a zeroed vector (i.e., a vector only containing zeros) with a
length equal to the total number of tags in the dataset. It then replaces zeros
with ones at those positions corresponding to a tag of the library. In such
a way, the transformed dataset is ready to be used by multi-label machine
learning classifiers.

Tying everything together, at the top of Figure 5.2, the Word2Vec vectors
stemming from each library’s bytecode represent the input to a multi-label
machine learning classifier. The binary arrays stemming from each library’s
tags on MVNRepository represent the classes to predict by the classifier. The
result is a trained model which can be used to automatically tag those un-
tagged libraries in the Maven ecosystem.

5.4.1 Evaluation

The performance of MUTAMA depends on the multi-label classifier it is in-
stantiated with, and on the quality of the dataset of tagged libraries this clas-
sifier is trained on. We will therefore first describe how we collected such a
dataset from the MVNRepository website, before training several candidate
classifiers and comparing their performance.

Collecting a Corpus of Tagged Libraries
To collect a dataset of tagged libraries, we implemented one crawler to obtain
their binaries and one crawler to obtain their tags.

The first crawler operates on the Maven package repository.11 From this
source we gathered the groupId - artifactId - version triplet for each li-
brary and its associated bytecode. We only consider the latest version of each
library in this study. In total, we collected 235,011 Java and Scala libraries in
this way.

For the remainder of the evaluation, we extracted a statistically significant
sample from this data. A confidence level of 99% and a confidence interval
of ± 2 were used as parameters for the online Sample Size Calculator tool.12

The result is a recommended sample size of 4,088 libraries.

The second crawler operates on the MVNRepository indexing platform7. Be-
sides tags, categories and usage statistics are collected on this platform. Our

11 https://repo1.maven.org/maven2/
12 https://www.surveysystem.com/sscalc.htm

https://repo1.maven.org/maven2/
https://www.surveysystem.com/sscalc.htm

5.4. MUTAMA: Multi-label Library Tagging 81

crawler retrieves the tags for each of the 4,088 libraries in our random sam-
ple. As expected, not all sampled libraries are tagged. Figure 5.3 depicts the
distribution of the number of tags in our library sample. Only 3,137 libraries
have been tagged with one or more tags, representing 77% of the sample. In
the remainder of the evaluation, we will restrict the data to libraries carrying
two or more tags, corresponding to the 59% of libraries with at least one tag.
As we will illustrate below, we do not deem a single tag sufficient to facilitate
searching through an ecosystem nor for training an automated classifier.

951

1282

932

465 458

0

500

1000

0 1 2 3 > 3
Number of Tags

N
um

be
r

of
 li

br
ar

ie
s

FIGURE 5.3: Distribution of the number of tags for the 4,088
sampled libraries.

Instantiating MUTAMA with Multi-label Classifiers
We use the open source MEKA13 tool to instantiate our MUTAMA approach
with a multi-label classifier and its base classifier.

Classifier 2 Tags 3 Tags >3 Tags
A F1-M F1-m HL A F1-M F1-m HL A F1-M F1-m HL

BR [129] 0.01 0.01 0.03 0.05 0.07 0.08 0.16 0.08 0.19 0.21 0.42 0.06
CC [103] 0.02 0.03 0.06 0.05 0.1 0.11 0.18 0.09 0.21 0.23 0.45 0.06
RaKel [130] 0.01 0.01 0.03 0.05 0.08 0.1 0.16 0.09 0.15 0.18 0.35 0.07
EML(BR) [102] 0.04 0.05 0.08 0.05 0.12 0.13 0.24 0.09 0.24 0.24 0.47 0.07
EML(CC) [102] 0.24 0.29 0.32 0.09 0.17 0.21 0.29 0.12 0.27 0.31 0.46 0.09

TABLE 5.2: Performance metrics of MUTAMA instantiated
with different multi-label classifiers. The best results for each

metric are highlighted in bold.

Table 5.2 depicts the results for the different instantiations of MUTAMA on
the collected dataset. Results of the multi-label classifiers (cf. Section 2.4.2)
were obtained using 10-fold cross-validation, where nine folds are consid-
ered for training and one for evaluation. The metrics for each of the folds are
later averaged to get the numbers depicted in Table 5.2. The table is divided
into three regions for the analysis of libraries that carry two, three, and more
than three tags. As can be seen from the table, the results differ between the
regions.

13 https://sourceforge.net/projects/meka/

https://sourceforge.net/projects/meka/

82 Chapter 5. Uncovering Library Features from Stack Overflow Posts

O 1 O
O O O

1 1
1 1

True Data

Predicted Data

O 1 O
O O O

1 1
1 1

TN TPFN FP FN

FIGURE 5.4: A binary array example, its predictions and poste-
rior classifications into TP, TN, FP, FN.

The metrics considered in the evaluation are Accuracy (A), F1 macro score (F1-
M), F1 micro score (F1-m) and Hamming loss (HL). Accuracy is described by
Equation (5.1) and describes how the classifiers are generally performing for
all tags.

A =
TP + TN

FP + FN + TP + TN
(5.1)

Figure 5.4 provides an explanation for true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN) in the context of multi-label tag
classification. The binary array on the top left is the true data marking three
tags to be predicted by the classifiers (i.e., elements that are “1” in the array)
out of five tags (i.e., number of elements in the array). The bottom left binary
array is the predicted data for a classifier, e.g., only two tags out of five are
predicted in this case. The right side of the figure shows the same arrays
but highlighting the specific classifications per element. For example, the
first element is TN as the prediction is the same as the true data marking
that this tag should not be selected. The third element also has similar true
and prediction data, however, they both indicate the presence of a tag in the
array and a TP prediction. Dissimilar data can be observed for the second,
fourth and fifth elements. The second and fifth elements in the array are
equally indicating an FN as the predicted value shows an absence of a tag,
whereas in reality such a tag should be present. Lastly, the fourth element
in the binary array is FP because the prediction marked this tag as present
where in reality is not.

F1 macro score refers to the average of the F1 scores per predicted tag, that
is, it reflects the quality of the individual predicted tags. F1 micro score is
computed by considering the prediction of all tags in the dataset instead of
predictions per tag as in the F1 macro. F1 macro and micro are computed
with the same formula as in Equation (4.3) but considering macro or micro
precision and recalls. Indeed, F1 macro uses macro precision and recall in
Equation (5.2) and Equation (5.3), respectively. On the other hand, F1 micro
is computed by considering Equation (5.4) and Equation (5.5), respectively.

5.4. MUTAMA: Multi-label Library Tagging 83

Macro-Precision =

|N|

∑
i=1

Pi

|N| (5.2)

Macro-Recall =

|N|

∑
i=1

Ri

|N| (5.3)

Micro-Precision =

|N|

∑
i=1

TPi

|N|

∑
i=1

TPi + FPi

(5.4)

Micro-Recall =

|N|

∑
i=1

TPi

|N|

∑
i=1

TPi + FNi

(5.5)

|N| refers to the number of classes in the dataset, whereas Pi and Ri refer to
the precision and recall respectively for a specific class i. TPi, FPi and FNi are
the TP, FP and FN for class i, respectively.

Hamming Loss is the ratio of incorrectly predicted tags to the total number
of tags. This loss function described by Equation (5.6) should be optimised
by the considered classifiers, zero being its optimal value. |D| refers to the
number of instances in the data while y is true binary array and ŷ is the
predicted array in Figure 5.4. Elements in the arrays are indicated by the i, j
indexing (e.g., ˆyi,j).

HL =
1

|D| · |N|

|D|

∑
i=1

|N|

∑
j=1

XOR(yi,j, ˆyi,j) (5.6)

The results for libraries with only two tags are low for all classifiers except
EML in combination with the base classifier CC (i.e., EML(CC)). There is, a
noticeable gap between the F1 micro score for the best (0.32) and the second-
best classifier (0.08). The same can be said about the results for the F1 macro
metric. This reflects the effectiveness of ensemble algorithms in general, and
the classifier chain ones in particular. Surprisingly, the classifier scoring best
on accuracy, F1 micro, and F1 macro scores the lowest on the Hamming loss
metric. However, the difference of 0.04 can be considered negligible.

84 Chapter 5. Uncovering Library Features from Stack Overflow Posts

Library True Tags Predicted Tags

Akka HTTP distributed, actor, akka, distributed, actor, akka,
Backend concurrency, client, http concurrency, http

AWS SDK Scala.js scala, aws, amazon, scala, aws, amazon,
Facade QuickSight scalajs, sdk scalajs, sdk

TestNG Interface io, testing testing

Camel Labs IoT github, io -
Components Device IO

Gradle Code Quality tools, build, build-system, -Tools Plugin plugin, groovy, gradle

TABLE 5.3: Multi-tag predictions made by the best trained
multi-label model.

The results for the libraries that carry exactly three tags are similar. The en-
semble classifier EML(CC) once more obtains the best scores for the accuracy,
F1 micro, and F1 macro metrics but the worst score for the Hamming loss
metric. The gap between this classifier and the others is again noticeable.
The other ensemble classifier EML(BR) consistently ranks as the second best.

The results for libraries that carry more than three tags in the ground truth
are considerably interesting. We had expected the classifiers to score lower
than before as more tags need to be predicted. Their performance is better
than before. The two mentioned ensemble classifiers once again achieve the
best scores.

5.4.2 Discussion

The differences in performance of the classifiers on libraries with two, three,
or more than three tags could stem from differences in their respective distri-
bution in the dataset. These differences are apparent from Figure 5.3, which
depicts the number of libraries in each group in a lighter shade of blue. More
importantly, each group is imbalanced as some tags are simply more preva-
lent on the MVNRepository indexing platform. The use of traditional cross-
validation in our evaluation does not help in this case, as it does not consider
data distributions in its assignment of instances to folds. Although some
stratification techniques have been proposed to address imbalanced datasets
for multi-label problems [30], they are not yet available in the MEKA tool
suite which we used to instantiate MUTAMA.

For five randomly selected libraries, Table 5.3 depicts the ground truth and
the predictions made by the best performing EML(CC) classifier. The predic-
tion for library Akka HTTP Backend in the first row is only missing the client
tag. As this library focuses on the backend, a server tag might have been more
appropriate both in the ground truth and in the prediction. In the second
row, all tags in the ground truth for library AWS SDK Scala.js are predicted.

5.5. LiFUSO: An Approach to Discover Features from API Usages on Stack Overflow 85

For the third row, the classifier failed to predict that library TestNG is some-
how linked to io operations. Again, this failure might as well be attributed
to mistakes or unexpected tags in the data on the MVNRepository indexing
platform. The tags on the platform are, after all, maintained by volunteers
who might wrongly assign a tag or miss appropriate ones. Finally, for the
libraries on the last two rows, the classifier was unable to predict a single tag.

We believe that such failures could be caused by several reasons. First, the
number of libraries for each combination of tags is small. Machine learning
classifiers train better with a higher number of instances from which they
can extract patterns. Relevant patterns between library APIs and combina-
tions of tags may therefore remain unlearnt. Second, the API information
extracted from the binaries might not be representative enough. Information
relevant for tagging purposes might be hiding in the implementation of the
API. Finally, word embeddings of class and method names might not suffi-
ciently capture the features of a library. Alternatives such as the ASTs of their
source code, traces of their static symbolic execution, or execution logs on
Travis CI14 could be explored as complementary sources of information.

5.4.3 Limitations of Tag-based Approaches for Features Dis-
covery

A set of tags does indeed form a more descriptive kind of documentation of
the features provided by a library. As shown in Table 5.3, features can be
effectively captured using tags which may facilitate discovering libraries in
a vast ecosystem. However, on platforms such as MVNRepository or Stack
Overflow, the number of tags given to a library is usually limited to a few
(e.g., most of the time to five). This limits the library feature information
one can obtain from those websites. More importantly, until this point, the
automatically computed feature descriptions have not included examples of
code snippets that illustrate how to use a feature. Both the category-based
and tag-based approaches result in feature descriptions that are too coarse-
grained and lack information about how the API of the library should be
used for each feature. Therefore, we decided to consider Stack Overflow
posts as a source of library information, which provides API-level granular-
ity and natural language text surrounding library usages. We refer the reader
to Section 2.1 for an overview of Stack Overflow and the information its posts
provide.

5.5 LiFUSO: An Approach to Discover Features from
API Usages on Stack Overflow

Figure 5.5 depicts an overview of our approach LiFUSO and the sequencing
of its computational steps to uncover features from SO library usages. The

14 https://travis-ci.org/

https://travis-ci.org/

86 Chapter 5. Uncovering Library Features from Stack Overflow Posts

Select
Library

Selected
Library

Collect Library
Information

groupID,
artifactID

1 A

Collect Answers from
Stack Overflow

Answers
from SO

Name

Public Class
Names for Library

B

3 C

Filter Answers
with Code

Filtered
Answers

Filter Answers
with API Usages4

5D

API
Usage

Textual
Information

Text
Vectorisation E

Combine
Vectors

Vectors
CombinedCluster

Clusters of
SO Usages

Features

Name
Clusters

F

H

J

L

7911

2

6

Calculate
Similarity

Similarity
Matrix

I
8

A
B

C
D

Selection of
Clusters

10

Selected
ClustersK

FIGURE 5.5: Overview of the approach to extract features from
SO posts.

steps are denoted by a number (e.g., 1, 2), while letters indicate the data serv-
ing as input to or resulting from a step (e.g., A, B). Figures 5.6 and 5.8 zoom
in on the internals of composite steps. The remainder of this section details
each of the steps.

5.5.1 Data Collection (Steps 1-3)

The first step of the approach corresponds to the selection of a target library
for which we uncover the API features. Our prototype implementation re-
quires that the groupId and artifactId (e.g., com.google.guava and guava
respectively) of at least one version of the library is published in the Maven
central repository. Once the user has selected a target library, the approach
automatically collects information about its public API from its published
JAR files (steps 2.1 and 2.2 in Figure 5.6) and example usages of this API
from SO snippets (step 3 in Figure 5.5).

To collect information about the public API of a library (cf. Figure 5.6), our
approach considers all versions of the library published on Maven central
and thus downloads their JAR files (data 2.A). Next, step 2.2 extracts the
names of the public classes in these JAR files using the Apache BCEL8 library.
Apache BCEL allows extracting information from Java Bytecode files (e.g.,
*.class) such as those in JAR artifacts. Although the public API of a library
might evolve over time, we collect all class names that were once considered
part of it. We opt for this strategy because API usage examples on SO rarely
mention the exact library version that they exemplify. Moreover, the first au-
tomated approach [153] to determining the compatible library versions for
the API usage within a given code snippet still produces version ranges.

Step 3 in Figure 4.2 collects SO answers from the SOTorrent dataset [12]15 that
are likely to contain API usages of the selected library. Our approach uses a
heuristic that considers all answers of which the question has been tagged
with the name of the library (e.g., guava, pdfbox). More relaxed heuristics
could also be used, such as requiring the library name to appear in the title

15 November 16th, 2020 version from https://zenodo.org/record/4287411

https://zenodo.org/record/4287411

5.5. LiFUSO: An Approach to Discover Features from API Usages on Stack Overflow 87

Selected
Library

Obtain
Versions

All Library
Versions

Extract Public
Interface

2.1

2.2

A 2.A

B

Public Class
Names for Library

FIGURE 5.6: Collecting the public interface of a library for all
its versions.

or in the body of the question. We opted for the tags heuristic as it is com-
putationally inexpensive and because its strictness minimises false positives.
In Chapter 6 we will revisit this heuristic by considering the API types pre-
dicted by RESICO (cf. Chapter 4) for an SO snippet.

In addition to the body of the answer, step 3 also collects the title, tags, and
the body of the question for further analysis.

5.5.2 Data Processing (Steps 4-5)

Selecting SO answers based on the tags of their question ensures that the
question concerns the target library. Unfortunately, not all answers associ-
ated with a question contain code snippets from which API usage exam-
ples can be extracted. For the Weka library16, for instance, we found that
around 57% of the answers about questions tagged with weka do not contain
any code. Weka can be used as a library as well as an independent applica-
tion for machine learning. Step 4 in Figure 5.5 therefore filters out all answers
without code.

At this point in the approach, the class names within the public API of the se-
lected library (data B) and the answers from SO with code snippets in which
the API of the library is likely to be used (data C) have been collected. Step 5
identifies answers with code snippets that use the public API of the selected
library. To this end, it relies on a robust parser generated by a custom-built
island grammar. Parsers generated by an island grammar [88] focus on some
constructs of interest (i.e., islands) and consider the remainder of the text to
parse as irrelevant (i.e., water). They have been shown well-suited to pars-
ing and lightweight analysis of code that is grammatically incomplete (e.g.,
a statement without a surrounding method) or that contains syntax errors
(e.g., three dots instead of an expression) such as the snippets on SO. Pon-
zanelli et al. [97, 98], for instance, have used an island parser to recognise
code snippets within the natural language of SO posts.

As our data processing focuses on the public API of a library, our own island
parser focuses on the syntactic constructs in which method invocations can
occur. Figure 5.7 depicts an example of its output for the code snippet shown

16 https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

88 Chapter 5. Uncovering Library Features from Stack Overflow Posts

Island
Parser

FIGURE 5.7: The API usages extracted by our island parser and
its lightweight analysis for the code snippet on the left.

on the left. For a single method invocation within a variable declaration or
expression statement, it produces the name of the statically declared type of
the receiver expression followed by the name of the invoked method. For a
chain of successive method invocations, common for libraries with a fluent
API, it produces the statically declared type of the first receiver expression
followed by the names of the successively invoked methods. Note that it is
not possible to resolve the receiver types of an invocation within the chain
without resorting to more heavyweight program analyses.

We implemented our island parser, and its lightweight analysis that extracts
API usage information using the parboiled17 framework. The parser pushes
constructs of interest to an internal stack whenever islands are encountered
in the sea of water. For the encountered variable declarations and parame-
ters, it pushes the variable type and identifier. For the encountered method
invocations, it pushes the method name and the receiver expression (instance
method) or type name (static method). Upon the completion of parsing,
the lightweight analysis inspects the lexical scopes on the stack for potential
matches between the identifiers in receiver expressions and those in variable
and parameter declarations. The receiver expressions for which there is a
match, are replaced by the type of their corresponding variable or parameter
declaration. As a result, the analysis retrieves the simple name of the receiver
type of both instance and static method invocations.

With the API usage within each code snippet extracted by the island parser,
step 5 merely must match the type and method names against those of the
public API of the library (i.e., data B). SO answers without any match are
discarded. For the remaining answers, the extracted API usage information
is kept (i.e., data E) along with the natural language in their body as well as
the title and the natural language in the body of the question to which the
answer belongs (i.e., data F).

5.5.3 Data Transformation (Steps 6-8)

The next step in our pipeline is to transform the collected data. The transfor-
mation (i.e., box with dashed lines containing steps 7 and 8) independently
process two inputs (e.g., text and code) and produces a similarity matrix per
input.

The transformation process is twofold where I) the text data is pre-proce-
ssed and a TF-IDF model [147] is trained and II) both code and text data are

17 https://github.com/sirthias/parboiled/wiki

https://github.com/sirthias/parboiled/wiki

5.5. LiFUSO: An Approach to Discover Features from API Usages on Stack Overflow 89

Vector per
Word

Vector per
Context

Word2vec
CBoW

Mean of
Vectors

API References

FQNs to Predict Encode Encoded FQNs

Word2Vec
Model Vectorise

C

H

D

E

F

C

3

4

5

6

Contexts
C

API Reference
Vectors

Vector per Term
in Context

Averaged
Vector

Mean of
Vectors

G5E

E

FIGURE 5.8: Vectorisation of the textual information.

transformed into vectors. Figure 5.8 details how the vectorisation proceeds
for the textual information (i.e., data F). Step 6.1 removes all stop words, the
name of the programming language (i.e., Java), and the name of the library.
Symbols such as commas, question marks, and dots are also removed in this
pre-processing step.

Next, step 6.2 applies a TF-IDF vectoriser to the pre-processed data. Once
its model has been trained (data 6.B), the vectors for 3 text-related attributes
are calculated, namely: the body of the question, the body of the answer,
and the title. Therefore, three text-based vectors will be produced for each
of the considered SO answers (data G). In the case of code data (data E),
no pre-processing or model training is needed. The following code-related
attributes are sent to step 7: the original method names, the method names
after splitting camel case, and the API usage itself as extracted by the island
parser.

Step 7 combines a preconfigured selection of attributes. Text-based vectors
are averaged, and code-based attributes are concatenated. This is to sup-
port our empirical study into whether a single vector, a combination of some
vectors, or all vectors produce more cohesive clusters. Regardless of the se-
lected attribute to combine, the outcome of this step will be a single vector of
numbers or code (e.g., classes and methods) per SO answer for text or code
inputs, respectively. A similarity matrix resulting from computing a similar-
ity metric between all vectors of all different answers, is finally calculated in
step 8. We use cosine similarity to compute the distance between text-based
vectors and Jaccard similarity for code-based vectors. Cosine similarity is a
well-known metric to compute distances in text-related data, while Jaccard
is more suitable for precise information such as code [55]. The generated
matrices are the input to the next step.

5.5.4 Clustering, Selecting and Naming (Steps 9-11)

Step 9 applies hierarchical clustering (cf. Section 2.6) to the similarity matrix
of either API usages, or the textual information extracted for each SO answer.
We use a bottom-up dynamic cutting approach to determine the clusters
of elements based on their API usages or their textual information. The
resulting clusters (i.e., data J) are groups of which the elements are close to
one another yet far from the elements in other clusters.

90 Chapter 5. Uncovering Library Features from Stack Overflow Posts

The ideal cluster would be that one in which the feature is clearly depicted.
However, this might not always be the case. We use the local outlier factor
(LOF) [25] (step 10) to check the most common elements within a cluster. In
those cases where LOF does not determine a frequent element (or outlier),
the cluster is discarded.

To facilitate interpreting the results, step 11 provides a name for the features
by computing the most frequent terms that appear within each selected clus-
ter. From the textual information (i.e., title, question, and answer bodies) of
each SO answer, we compute the semantic tree of each sentence [84] (cf. Sec-
tion 2.5). For each noun and verb, we analyse the direct typed dependencies
on another verb or noun to extract pairs of the form noun-verb or verb-noun.

Frequencies are calculated for each pair. Finally, the most frequent pairs are
obtained through LOF as previously used for the most relevant code ele-
ments. Data L will ultimately contain a feature with related natural language
terms corresponding to its name (e.g., fig. 5.9) and API usages.

FIGURE 5.9: A name for an uncovered feature suggesting oper-
ations on cache.

5.6 Instantiation of the LiFUSO Approach

5.6.1 Implementation

Features can now be extracted from library usages according to our previ-
ously described approach (cf. Section 5.5). However, an instantiated ver-
sion of our approach still needs a way to represent features to the devel-
oper. Figure 5.10 presents how to instantiate a tool from the approach in
Section 5.5. Depicted within the red square are the steps we chose to follow
when instantiating our approach into the LiFUSO tool.

In step Representing Features, the tool selects the top-5 most frequent verb-
noun pairs as the representation of the name of the feature. We found that
selecting more frequent pairs (e.g., top-10, top-20) hinders discerning inter-
esting features among several displayed next to one another and encumbers
understanding individual features displayed in isolation. As the representa-
tion for the API references in the clustered snippets, the LiFUSO tool displays
only those extracted through the LOF technique in a previous step. As such,
clusters with the most frequent name pairs and API references are outputted.

The actual visualisation is produced in the Creating Visual Interface step. De-
pending on the view selected by the developer, the features common to a set

5.6. Instantiation of the LiFUSO Approach 91

Library

Answers
from SO

Public API
Names

Answers
with Code

Filtered
Answers

Island
Parser

Cluster Name
Clusters

Calculate
Similarity

Similarity
Matrix

Selected
Clusters

Collecting Information Filtering

API Usage
Information

Clustering and Naming

Representing Features
Named
Clusters

Name
Selection

Named Clusters
with

Selected Names

API Reference
Selection

Processed
Clusters

Creating Visual Interface
Calculate Shared and

Unique Features
Features per Library and

Comparison Features

Render Visual InterfaceLiFUSO GUI

Instantiation

FIGURE 5.10: Described approach implemented by the LiFUSO
tool. The instantiation steps are within the red square.

of libraries as well as features unique among a set of libraries are computed
and displayed. Individual features can be inspected in detail too.

The LiFUSO tool implements the approach in Figure 5.10 using a series of
components, each responsible for a separate data processing step. All steps
up to and including the computation of the shared and unique features are
pre-computed and their results are persisted. The tool’s graphical user inter-
face (GUI) uses the pre-computed information, so navigation is swift. The
following choices were made in the implementation of each component:

Collecting Public API Names Implemented in Scala, this component uses
the requests library18 to query Maven Central for all versions of a li-
brary. Once their JAR files have been downloaded, the names of the
public API elements are extracted by processing their bytecode using
the Apache BCEL8 library.

Collecting SO Answers with Code The Scala implementation of this com-
ponent uses the JSoup19 library to process the HTML of each SO answer
that has the name of the library among its tags. Answers without a code
block are discarded.

Extracting Natural Language Terms The Java implementation of this com-
ponent uses the Stanford NLP Toolkit20 to extract the natural language
terms from the title of and the text surrounding the remaining SO an-
swers.

Extracting API Usage Information We constructed an island parser with the
help of the parboiled21 library. Using the API usage information ex-
tracted by the parser for each SO answer, we used the Jaccard similarity
to construct a similarity matrix.

18 https://github.com/com-lihaoyi/requests-scala
19 https://jsoup.org/
20 https://nlp.stanford.edu/software/
21 https://github.com/sirthias/parboiled

https://github.com/com-lihaoyi/requests-scala
https://jsoup.org/
https://nlp.stanford.edu/software/
https://github.com/sirthias/parboiled

92 Chapter 5. Uncovering Library Features from Stack Overflow Posts

Clustering To compute the clusters given the similarity matrix, we used the
hclust function in the stats package from the R standard library and re-
lied on the dynamic tree cut feature of the third-party dynamicTreeCut22

library.

Cluster Selection and Naming To discard low-quality clusters without fre-
quent API references, we used the LOF implementation provided by
the scikit-learn23 library of Python. We rely on reticulate24 for the inter-
operability between R and Python. All other data between components
is exchanged through CSV and TXT files. The previously extracted nat-
ural language terms are now used to name each remaining cluster.

Extracting Feature Representations As mentioned, the top-5 most frequent
verb-noun pairs are extracted as the name representation whereas API
references filtered by LOF are selected for the code part of the feature.
The usage frequency of the API references in all clustered code snip-
pets is also calculated and included in the feature information. We
implemented these frequency calculations using the R programming
language.

Calculating Common and Unique Features Every pair of two libraries in the
ecosystem is considered and their features are compared. The compar-
ison focuses on the names produced for their features: if two features
from different libraries have a common name (i.e., a verb-noun pair),
then these features are included in those considered shared by the two
libraries. Conversely, if no other library has a feature with the same
name, then that feature is considered unique to the library under anal-
ysis. We implemented this comparison in the Julia programming lan-
guage.

Graphical User Interface We used the Nuxt25 framework for JavaScript to
implement the tool’s graphical user interface. Through this interface,
users can explore features present in an ecosystem and compare li-
braries to one another. Currently, the interface only supports selecting
two libraries for comparison. Future improvements will support com-
paring a selection of multiple libraries.

The polyglot nature of our implementation is due to our decision to select
a programming language and the third-party libraries for each component
separately.

5.6.2 Graphical User Interface

Figure 5.11 depicts the main interface through which users can explore the
features of a library. The tab bar surrounded by the rectangle labelled A, en-
ables switching between the feature Search and the library Compare features

22 https://cran.r-project.org/web/packages/dynamicTreeCut/
23 https://scikit-learn.org/stable/index.html
24 https://rstudio.github.io/reticulate/
25 https://v3.nuxtjs.org

https://cran.r-project.org/web/packages/dynamicTreeCut/
https://scikit-learn.org/stable/index.html
https://rstudio.github.io/reticulate/
https://v3.nuxtjs.org

5.6. Instantiation of the LiFUSO Approach 93

(A)

(B)

(C)
Library Names

Feature Names

API References

FIGURE 5.11: Front page of the LiFUSO tool with the Search
feature tab activated.

of the tool. The Search tab is active by default and contains the elements with
labels B and C. The search box with label B enables searching through the fea-
tures uncovered for the ecosystem using natural language queries, which are
matched against the feature names. Example queries include “collection”,
“filter collection”, “create chart”, or “extract image”.

Features that match the query are displayed in a grid of feature views la-
belled C. Each individual feature view depicts the following information:

Library Name Centered in red at the top of the box (e.g., jfreechart).

Feature Name Collection of frequent verb-noun pairs describing the feature.
Each noun is rendered in a bolder font, and followed by the verbs that
are commonly used together with that noun.

API References The most frequent API references from SO posts to that fea-
ture are shown in a darker colour at the bottom of the box. The per-
centage shown next to each reference corresponds to the frequency at
which the reference occurs within the SO posts clustered together for
the feature.

Figure 5.12 shows the Compare tab activated and its widgets. The two combo
boxes in the rectangle labelled D are populated with the libraries in the ecosys-
tem and enable selecting the two libraries of which the features need to be
compared. Section 5.8.4 will demonstrate more of the LiFUSO user interface
in a case study.

94 Chapter 5. Uncovering Library Features from Stack Overflow Posts

5.7 Evaluation

Our LiFUSO approach is assessed by measuring the cohesiveness of the
generated clusters, by comparing the obtained features with ground truth
code in cookbooks or tutorials, and lastly by matching non-covered fea-
tures in sampled GitHub projects. The evaluation of our approach focuses
on the API calls of the generated features.

Specifically, our evaluation aims to answer the following research questions:

RQ1. Which combination of SO answer attributes produces the most cohe-
sive clusters?

RQ2. How similar are the automatically uncovered features to documented
tutorial features?

RQ3. To what extent do the uncovered features that do not match docu-
mented tutorial features correspond to actual API usage in client projects?

5.7.1 Selection of Libraries

As candidate subjects for the evaluation of our approach, we consider any
Java library from the Maven software ecosystem. We restrict candidate li-
braries to those that are used in SO snippets, so our approach can extract
features from this usage. Moreover, candidate libraries need to have pub-
licly available cookbooks or tutorials that illustrate the proper usage of the
library. This is to enable comparing the features extracted by our approach
with those documented for the library that will serve as ground truth.

We selected the 50 most popular Maven libraries, measured in terms of Git-
Hub repositories that use them according to the Libraries.io dataset.26 From
the initial population, we were able to find usage examples of features in
tutorials or cookbooks in seven libraries: Guava, HttpClient, JFreeChart, JSoup,
PDFBox, Apache POI-OOXML and Quartz. These libraries form the subject
systems for our evaluation and cover diverse application domains.

Guava is a multi-purpose library collecting various auxiliaries related to data
structures, I/O, caching, hashing, etc. HttpClient enables sending HTTP re-
quests and process their responses. JFreeChart provides an API for creating
and exporting graphics. JSoup facilitates manipulating elements present in
web pages (e.g., links, divs). Similarly, Apache POI facilitates processing doc-
uments created with the Microsoft Office suite. We selected the sub-library
dedicated to Excel worksheets (i.e., Apache POI-OOXML). Finally, Quartz al-
lows launching and scheduling jobs programmatically.

Table 5.4 depicts the number of SO code snippets from where API usages are
extracted for each library.

26 https://libraries.io/api

https://libraries.io/api

5.7. Evaluation 95

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Snippets 1,522 628 882 3,465 945 2,010 511

TABLE 5.4: SO code snippets making use of the libraries.

5.7.2 Features Terminology

For disambiguation purposes, we consider it necessary to define some ter-
minology before starting with the evaluation. We consider three types of
constructs referred to as features or possibly containing a feature. First, we
refer to the features generated by our approach as “uncovered features”,
i.e., clusters that contain related API usages. Second, we refer to the fea-
tures which we extracted manually from cookbooks as “tutorial features”.
We use these tutorial features as a first ground truth to compare our uncov-
ered features with. Third, the “GitHub API usages” correspond to usages
of a library at the method level in a GitHub client project depending on
the library. The GitHub API usages form our second ground truth in the
evaluation below.

5.7.3 RQ1. Which combination of SO answer attributes pro-
duces the most cohesive clusters?

Design
This research question investigates which of the attributes related to API us-
age examples on SO produce more cohesive clusters and therefore more de-
fined features (i.e., features with API calls present solely in one cluster).

To this end, we recall the attributes extracted from a SO post: the title of the
question, the body of the question, the body of the answer, method names,
method names splitted by CamelCase (CC), and complete API calls. Sec-
tion 5.5 categorised these attributes into a text attribute category and a code
attribute category.

We check the cohesiveness of the clusters resulting from clustering solely on
each attribute, as well as from clustering on combinations of attributes (e.g.,
question bodies combined with titles). Each vector in an attribute matrix
represents the combination corresponding to one code snippet for that at-
tribute (or the combination of several attributes). Once our approach obtains
a matrix for each attribute, it proceeds to generate combinations with other
matrices. The number of possible combinations equals 14 when considering
combinations of size 1 to 3 for the attributes in each category; hence each
category will produce 7 matrix combinations. For the 8 cases where a combi-
nation involves more than one attribute, a mean matrix (between the matrix
attributes’ vectors) results from the average of matrices in the combination.
Therefore, 14 matrices, one per combination, will be analysed below.

96 Chapter 5. Uncovering Library Features from Stack Overflow Posts

We apply hierarchical clustering to each computed matrix and compute the
quality of the resulting clusters. We determine the cohesiveness of the clus-
tering of each combination using the Silhouette score [104]:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(5.7)

where i represents one vector in the matrix, a(i) calculates the distance be-
tween a vector i and its j cluster neighbours,

a(i) =
1

|Ci| − 1 ∑
j∈Ci,i ̸=j

d(i, j) (5.8)

whereas b(i) measures the distance between the vector i and other vectors j
that are part of a different cluster,

b(i) = min
k ̸=i

1
|Ck| ∑

j∈Ck

d(i, j) (5.9)

The Silhouette score is in the range [-1, 1]; values closer to 1 imply more
cohesive clusters, on the other hand, values closer to -1 imply clusters with
incorrectly grouped elements. In other words, more cohesive clusters are
groups of which the elements are close to each other and at the same time
further away from the elements of other clusters.

Results

Table 5.5 shows the Top-K Silhouette scores for all combinations with K rang-
ing from 1 to 3. The best attribute combinations are very similar for most of
the libraries. Methods CC appear in the Top-3 for all libraries. Other com-
binations are frequent throughout libraries such as Methods and Methods +
Methods CC. Methods, Methods CC and Methods + Methods CC are the most fre-
quent in the Top-1 with 3 appearances each (notice the same score for Top-2
and Top-3 in some cases).

The mean of the Top-1 scores is 0.48, indicating that clusters are sufficiently
cohesive and differentiated. Their quality, on average, is on the borderline of
what Kaufman and Rousseeuw [66] term “reasonable structure”. A vast ma-
jority of the combinations are vectors formed by single attributes (e.g., Meth-
ods) denoting lower scores for combinations of more attributes. Finally, all
combinations in Table 5.5 refer to code attributes instead of textual attributes.
Code information is more concise and less ambiguous than textual informa-
tion, as a feature can be expressed in many ways using natural language text.
Moreover, the text information present in each SO answer is rather specific
to the solved task and might not be related to other answers.

5.7. Evaluation 97

Library K=1 K=2 K=3

Guava Methods (0.6) Methods CC (0.6) Methods +
Methods CC (0.59)

HttpClient API Calls (0.46) Methods (0.45) Methods CC (0.45)

JFreeChart Methods (0.38) Methods CC (0.38) Methods +
Methods CC (0.38)

JSoup API Calls (0.63) Methods CC (0.51) Methods (0.51)

PDFBox Methods + Methods CC (0.36) Methods (0.36)
Methods CC (0.37)

Apache-POI Methods (0.52) Methods CC (0.52) Methods +
Methods CC (0.51)

Quartz Methods + Methods CC (0.42) API Calls (0.42)
Methods CC (0.45)

TABLE 5.5: Top-K scores for all combinations of library at-
tributes. Between parentheses is the obtained Silhouette score.

Among the 14 considered attribute combinations, the singleton at-
tribute combination Methods CC is the most frequent among those re-
sulting in the Top-3 most cohesive clusterings. The Top-1 attribute
combinations achieve a mean score of 0.48, and the formed clusters
exhibit reasonable structure on average.

5.7.4 RQ2. How similar are the automatically uncovered fea-
tures to documented tutorial features?

Design
For each of the 7 selected libraries, we manually extracted the usages from
their tutorial features, similar to the outcome of the island parser in Fig-
ure 5.7.

Tutorial features are compared one by one with all uncovered clusters. A
tutorial feature is matched to an uncovered feature based on the class and
method names within each other. When matches occur, we store the un-
covered feature identifier (i.e., a number) and the tutorial feature that was
matched. Classes and methods in both types of features (i.e., tutorial and
uncovered) could be fully or partially matched. For example, for HttpClient
chained API calls are common in its SO answers. A tutorial may split these
chains into separate invocations over several lines that produce the same out-
come. Conversely, a single tutorial feature could illustrate the usage of more
than one of our uncovered library features.

As API calls of a tutorial feature could be underrepresented in the uncovered
feature’s population, i.e., other classes or methods might appear in the latter

98 Chapter 5. Uncovering Library Features from Stack Overflow Posts

which are not part of the former, we assess our approach using a relevance
score:

relevance = avg(relc + relm) (5.10)

where relevance is the average between relc and relm that measure the rele-
vance of the uncovered feature classes and methods, respectively. In turn,
relc and relm are defined as:

relc =

NCF

∑
i=1

NCi

CA
NCF , relm =

NMF

∑
j=1

NMj

CA
NMF

where NCi is defined as the number of SO answers in the uncovered feature
that contains the tutorial class i, while CA denotes the total number of SO
answers in the uncovered feature. Similarly, NMj denotes the number of SO
answers in the uncovered feature that contains the tutorial method j. Finally,
NCF and NMF represent the number of classes and methods respectively that
comprise a tutorial feature.

relc measures the average percentage of SO answers in the uncovered fea-
ture that contain each tutorial feature class, and accordingly relm measures
the percentage for methods. Both relc and relm are within the range [0, 1]
thus bounding the relevance score in Equation (5.10) within the same range.
Values closer to 0 or 1 indicate weak or strong relevance of the uncovered
features with respect to the tutorial features, respectively. We aggregate rel-
evance values for uncovered features of a library by averaging the relevance
scores of each feature.

In a similar way to the relevance score, we compute an overflow metric that
calculates the number of classes and methods, within an uncovered feature,
that differ from the tutorial features. The overflow metric is defined as:

over f low = avg(overc + overm) (5.11)

overc =
CF\CC

NCF −
CC\CF
NCC , overm = MF\MC

NMF −
MC\MF

NMC

where NCF and NMF are defined in Equation (5.10), NCC and NMC are de-
fined as the number of classes and methods within an uncovered feature,
respectively. CC and CF are the classes of uncovered and tutorial features
respectively; equivalently MC and MF represent the methods also in uncov-
ered and tutorial features, correspondingly. The overflow ranges from [-1, 1]
with a score closer to -1 meaning an abundance of classes and methods in
uncovered features not being present in tutorial features. In contrast, values
closer to 1 allow concluding that the tutorials contain several elements from
the uncovered features. An overflow metric close to 0 means that a tutorial
and an uncovered feature are at an average distance of zero from each other.
A value of 0 can arise in two possible scenarios: I) there is a similar dispar-
ity between overc and overm but with different signs (e.g.,-0.5 and 0.5), or II)

5.7. Evaluation 99

there is a similar set of classes and methods between the tutorial and the un-
covered feature. Scenario II is desirable because it will mean that the ground
truth and the uncovered features are closer to each other.

Finally, we measure the accuracy of the matches, i.e., how many uncovered
features match tutorial ones. Other metrics considering the total number of
features (e.g., recall) are not realistic since those found in tutorials might only
represent a fragment of the features of a library.

Results
Table 5.6 presents the results for the matches between uncovered and tutorial
features. The second column of the table shows the number of tutorial fea-
tures for each of the libraries, while the third column displays the number of
matches between the uncovered features and the tutorial features. Also, we
report the number of tutorial features that are not found in our data (fourth
column), and the scores of accuracy, relevance and overflow in the last four
columns. Note that a tutorial feature might be present in several uncovered
features with different relevance scores, however, we select the cluster with
the highest relevance. A higher relevance implies similar classes and meth-
ods between the features in comparison. The averages of highest relevances
and overflows per library are shown in Table 5.6.

Library No. Feat. Match. Not Found Acc. R-Acc. Relv. Over.

Guava 30 22 7 0.73 0.97 0.71 -0.28
HttpClient 12 9 3 0.75 1.0 0.71 -0.23
JFreeChart 9 8 0 0.89 0.89 0.73 -0.26
JSoup 15 11 0 0.73 0.73 0.95 -0.51
PDFBox 15 8 4 0.53 0.73 0.82 -0.30
Apache-POI 20 10 3 0.50 0.59 0.75 -0.39
Quartz 22 12 5 0.55 0.71 0.65 -0.58

TABLE 5.6: Analysis of the matched features per library.

A total of 123 features (sum of No. Feat.) were collected. Our approach
achieves high accuracy for the JFreeChart library with 89% and at least 50%
for all libraries in the analysis. It achieves more modest accuracy scores on
Apache-POI, PDFBox and Quartz with 50%, 53% and 55% respectively.

Interestingly, the features that our approach did not recover comprise API
calls that were not found in SO. For Guava, 7 out of 30 tutorial features were
missing from the SO data, representing around 23% of Guava’s features. The
same goes for HttpClient, for which 3 out of 12 (25%) of the tutorial features
did not have SO snippets involving their API calls. Column R-Acc. therefore,
depicts the accuracy of uncovered features, but this time only considering the
tutorial features of which the API usage also appears in SO snippets. Here,
our approach improves its accuracy by 13% with respect to the Acc. column.

100 Chapter 5. Uncovering Library Features from Stack Overflow Posts

The relevance results (Relv. column in Table 5.6) shows good performance
generally. The average relevance achieved for the libraries is 76% with a stan-
dard deviation of ±9, with the lowest score being achieved for Quartz. The
highest relevance score, 95%, was achieved on the JSoup library. This library
does not have a great variety of classes and methods; hence, the generated
clusters cover the majority of classes and methods referenced in tutorials.

The overflow metric (Over. column in Table 5.6) shows negative scores on
average for all libraries indicating the presence of classes and methods in the
uncovered features not being in the tutorial features. The overflow results
combined with the relevance scores suggest that tutorial features are in their
majority covered, but there might be additional classes or methods in the
uncovered feature that are frequently used.

Uncovered features have an average accuracy of 67%, which increases
to 80% when comparing only to tutorial features with calls that appear
in SO code snippets. High relevance scores indicate that uncovered
features are highly similar to tutorial features. Our uncovered features
are very likely to contain additional classes or methods, as indicated by
the scores on the overflow metric.

5.7.5 RQ3. To what extent do the uncovered features that do
not match documented tutorial features correspond to
actual API usage in client projects?

Design
Tutorial features might cover but a fragment of the features of a library. As
the complete set of features is not well-defined by developers nor by the
community, tutorials do not allow us to fully evaluate the features uncov-
ered by our approach. We therefore investigate alternative sources to verify
the unmatched uncovered clusters from the previous research question (cf.
Section 5.7.4). We select GitHub as such an alternative source. Numerous
GitHub projects can depend on a particular library, each using a diverse set
of library features.

To obtain the API usage from GitHub clients for a particular library, we
first query the API of Libraries.io to retrieve candidate client projects with
a declared dependency on the library under analysis. Note that these client
projects declare a dependency to libraries in their configuration file, but do
not necessarily contain actual API usage of the library in their source code
[114]. We therefore discard GitHub client projects without actual API usage
of the library under analysis. We continue this filtering process until we have
collected, for each library in our evaluation, a statistically significant sample
of GitHub client projects from Libraries.io with a confidence level of 95% and
a confidence interval of 5%.12

We clone the sampled GitHub repositories, extract the bodies of their method
declarations, and obtain the API usages within each method using our island

5.7. Evaluation 101

parser. We only extract and keep the API usage that belongs to the library
under analysis.

We then compare the resulting API usages to the non-matched clusters from
RQ2. In this experimental setting, the relevance (Equation (5.10)) and over-
flow (Equation (5.11)) scores are also computed to compare GitHub API us-
ages with the uncovered features produced by our approach.

Results

Library Clients Sample No. Methods

Guava 103,158 383 7,198
HttpClient 71,540 382 1,672
JFreeChart 2,830 338 3,829
JSoup 33,203 380 4,575
PDFBox 3,703 348 2,017
Apache-POI 35,517 380 1,769
Quartz 17,460 376 1,737

TABLE 5.7: Client projects information from GitHub.

Table 5.7 presents information about the GitHub projects that use each li-
brary. The number of client projects (second column in Table 5.7) ranges from
approximately 3K to more than 100K. This is expected since a multi-purpose
library such as Guava is useful across application domains.

Library No. Feat. M-RQ2 U-RQ2 M-RQ3 % Relv. Over.

Guava 110 22 14 91 95 0.45 0.00
HttpClient 38 9 7 24 77 0.50 0.05
JFreeChart 70 8 5 55 85 0.35 0.02
JSoup 81 11 11 52 74 0.60 -0.21
PDFBox 44 8 7 32 86 0.42 0.01
Apache-POI 81 10 9 53 74 0.50 -0.10
Quartz 31 12 5 19 73 0.48 0.00

TABLE 5.8: Newly matched features from GitHub client
projects.

Table 5.8 presents the information with respect to matching the uncovered
features with GitHub API usages. Note that we split our results since we I)
perform a second evaluation for the uncovered features that were matched to
tutorials in RQ2 (cf. Section 5.7.4) and II) evaluate the remaining clusters, i.e.,
those features that were not matched against tutorials in RQ2. Columns No.
Feat. and M-RQ2 refer to the number of uncovered features extracted by our
approach and the number of matched tutorial features from the cookbooks
(cfr. RQ2) respectively. The features matched in RQ2 (column M-RQ2) were
inspected to check unique matches in column U-RQ2.

102 Chapter 5. Uncovering Library Features from Stack Overflow Posts

Features in U-RQ2 were removed from the uncovered features (column No.
Feat.) to compute the new matches. Values in the column M-RQ3 show the
number of new matched features found in GitHub API usages and their cov-
erage percentages (column %).

GitHub API usages cover the unmatched uncovered features to a high de-
gree, with the highest coverage scores being realised for Guava, PDFBox and
JFreeChart with 95%, 86%, and 85% respectively. This finding reveals that
many tutorials paint an incomplete picture of a library’s features. Moreover,
some of the unmatched ones might still be used in a project outside of our
sample or they might represent rare features.

We measure once again the relevance (column Relv.) of the uncovered fea-
tures with respect to the GitHub usages to quantify the similarity of the
two types of data. Relevance in Table 5.8 is on average lower in this case.
Lower relevance is related to the overflow metrics (column Over.) which
have positive values for most of the libraries, in contrast to Table 5.6. Al-
though overflow scores are positive, they are still close to zero; however, a
closer inspection reveals that the overflow of classes remains mostly nega-
tive whereas methods are in their majority shifted to positive values, hence
the mean seems steady towards zero. This finding (reflected in Table 5.9)
suggests that the GitHub methods from which we extracted the API usage
either tend to use several uncovered features together in their body, or that
the way developers group API calls together into client methods does not
align with the boundaries of our grouping into uncovered features.

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Classes -0.18 0.03 -0.21 -0.27 -0.15 -0.30 -0.24
Methods 0.18 0.06 0.26 -0.15 0.17 0.10 0.24

TABLE 5.9: Detailed overflow scores per library.

The majority of the uncovered features are found in sampled GitHub
client projects. On average, the uncovered features are considered rel-
evant with respect to the API usage within GitHub client methods.
GitHub usages might be less focused or encompass more than one of
our features.

5.8 Discussion

This section discusses the results, limitations, and potential impact of the
approach to discover features from API usages in SO posts.

5.8.1 Clusters as Features

Our LiFUSO approach uses a set of attributes about SO posts to obtain a co-
herent clustering of API usages. The evaluation shows that the best clusters

5.8. Discussion 103

1 // draw line, use chart, add jpanel, ...
2 XYSeries.add(...);
3 ChartFactory.createXYLineChart(...);
4 // show value, show percentage, change size, ...
5 DefaultPieDataset.setValue(...); // or
6 DefaultCategoryDataset.setValue(...)
7 ChartFactory.createPiechart(...);

LISTING 5: Examples of features uncovered for JFreeChart.

1 // convert image, convert pdf
2 PDDocument.load(...);
3 PDDocument.getPage(...);
4 PDPageContentStream.drawImage(...);
5 PDDocument.save(...);
6 // merge file, reuse PDFMergerUtility, ...
7 PDFMergerUtility.mergeDocuments(...);

LISTING 6: Examples of features uncovered for PDFBox.

are formed under attribute configurations that include the methods that are
involved in an API usage (see Table 5.5). The combination Methods + Meth-
ods CC might initially introduce a repetition of the information, especially in
methods with no CamelCase style. However, many of the libraries (6 out of
7) in Table 5.5 present a different score for the mentioned combination and
their constituents, except for JFreeChart. Although small, these differences in-
dicate some degree of CamelCase usage and therefore, different information
to be analysed.

Some of the resulting clusters even contain calls to API methods that belong
to different classes. For example, one of the clusters obtained for Guava has
the transform API method as the most frequent element. This feature is in-
tended for transforming one collection data type into another. As a result,
several classes implement it such as Lists and Maps.

Features can also include several API method calls that have to be used to-
gether. Listings 5 and 6 depicts examples from JFreeChart and PDFBox re-
spectively.

However, LiFUSO also produces some clusters that are difficult to interpret
as features of a library. Listing 7 depicts clusters that consist of a single API
call, which should not be used on its own but together with other calls. Line
2 could be used as a closing statement for an HTTP response, line 4 as an
additional attribute to the axis configuration of charts, and lines 6 and 8 as
predicates within a conditional. Such clusters are likely to result from calls
that appear in isolation without further context within the text of an answer.

104 Chapter 5. Uncovering Library Features from Stack Overflow Posts

1 // Feature from HttpClient
2 CloseableHttpResponse.close();
3 // Feature from JFreeChart
4 CategoryPlot.setAxisOffset(...);
5 // Feature from Apache-POI
6 POIXMLDocument.hasOOXMLHeader(...);
7 // Feature from Quartz
8 JobDetail.equals(...);

LISTING 7: Examples of non-feature clusters uncovered.

5.8.2 Limitations

The lack of previous work on automatically uncovering features for libraries
represents an obstacle to the evaluation of our approach. There is no ground
truth of features for a library. The feature set uncovered by our LiFUSO ap-
proach may not be complete itself. The results in Table 5.8 already indicated
that some API usage in GitHub client projects does not match any of the fea-
tures uncovered from SO data. This might be due to our approach producing
an incorrectly formed cluster that does not correspond to a feature, or due to
the API usage in the client project corresponding to a rarely used feature for
which little SO data is available. As such cases are rare, however, the eval-
uation strengthens our believe that crowd knowledge (i.e., SO data) covers
many of library features. The fact that most uncovered features was found in
client projects strengthens our confidence in their correctness.

Another limitation of our approach is that it relies on SO posts being tagged
with the name of the library for which features need to be uncovered. In
other words, in the description of our approach in Section 5.5, we mention
the selection of those SO posts having the name of the selected libraries as
part of their tags. More specifically, step 3 checks the library’s name in the
tags and excludes posts not fulfilling the requirement. This heuristic might
exclude posts have not been tagged, but that might make use of a library.
Therefore, Chapter 6 will propose another post selection technique that does
not rely on tags, thereby possibly improving the results achieved by LiFUSO.

5.8.3 Potential Impact

As revealed by our evaluation, a substantial number of library features is
not documented in any tutorial for their library. Our approach can help
users to understand the features offered by a library, and library maintain-
ers to document these features. Once applied to all libraries within a soft-
ware ecosystem, our approach will enable comparing competing libraries in
terms of their feature sets. This might help developers in selecting the most
appropriate library for the task at hand, and library maintainers to assess
the ease of use of the APIs of different libraries for the same feature. This
could stimulate cross-pollination between libraries and increase the dissem-
ination of novel ideas within a library domain, thereby improving the health

5.8. Discussion 105

of the ecosystem. Lastly, developers could take advantage of the tool instan-
tiation of LiFUSO (cf. Section 5.6) to compute a set of uncovered features for
a given library and explore them. This exploration could enhance the process
of library selection which tends to be biased towards older libraries, and the
process of library comparison by founding it on uncovered feature sets.

5.8.4 Case Study

We now report on a small case study in which we use the tool for a feature-
based comparison of the ITextPDF27 and PDFBox28 libraries. This small
study will demonstrate the current capabilities of the proposed approach.
While the considered libraries differ in their actual API, we expect them
to offer similar features as both are intended for manipulating PDF files.
We should, therefore, be able to spot shared natural language terms for the
names of the features computed by LiFUSO, as well as some that are unique
to each library.

We configured the tool with the appropriate groupId and artifactId for the
two libraries. The number of initial SO answers with at least one tag with
the name of the libraries is 8,511 and 2,643 for ITextPDF and PDFBox respec-
tively. The remaining number of answers after the processing is 3,004 and
945 respectively.

(D)

FIGURE 5.12: Shared features for the studied libraries.

The tool was able to compute 70 features for ITextPDF and 36 features for
PDFBox. We used the Compare tab of the GUI to select these two libraries.
Figure 5.12 depicts features in common to each of the libraries.

27 https://itextpdf.com
28 https://pdfbox.apache.org

https://itextpdf.com
https://pdfbox.apache.org

106 Chapter 5. Uncovering Library Features from Stack Overflow Posts

First, a list of checkboxes is displayed, each of which corresponds to a shared
feature. The number of features being shared is 13. Upon any checkbox
activation, the corresponding features in each library with the same name are
shown in the view below the checkboxes. The left and right sides of the view
depict the shared features of the library selected in the left and right combo
box respectively. This view enables seeing how two competing libraries offer
the same feature in different ways, and to inspect their API differences. In
the case of Figure 5.12, the feature create pdf is shared by both libraries and
is therefore displayed on both sides of the view. ITextPDF has four features
that include create pdf as name, whereas PDFBox has two.

FIGURE 5.13: Unique features for the studied libraries.

Several features are unique to ITextPDF and PDFBox, as depicted in Fig-
ure 5.13. In particular, the features about scale image, draw line and use
font seem to be unique to the ITextPDF library. Alternatively, PDFBox ap-
pears to have some unique features about converting or rendering an image
(e.g., convert image) and merging two PDF documents (e.g., merge file,
etc.). Other interesting unique features of ITextPDF are related to tables and
bookmarks such as add table, add cell and read bookmark. Conversely,
replace image, lock field and contain field seem unique to PDFBox.

5.9. Threats to Validity 107

To verify whether the unique features of a library are not implemented in the
library being compared to, we might need to consult the developers of both
libraries or to manually inspect their documentation. We leave this for our
immediate future work. Note, however, that we have already compared the
features computed for PDFBox against online tutorials for the library during
the actual quantitative evaluation of the approach underlying the tool (cf.
Section 5.5).

5.9 Threats to Validity

5.9.1 Threats to Construct Validity

Our approach considers an SO post to be related to a library if the library’s
name appears among the tags of the post. This heuristic minimises false
positives, but more relaxed ones could be used (e.g., library name in question
body). Nonetheless, our final contribution in Chapter 6 adopts a learning-
based approach to determine whether a SO post without the name of a library
in its tags, is related to the library.

There is also a minor risk that some GitHub projects considered for RQ3 (cf.
Section 5.7.5) might have copied their code from SO. However, we believe
that the impact of this threat is very low because the results of RQ2 (cf. Sec-
tion 5.7.4) align with the results of RQ1 (cf. Section 5.7.3).

5.9.2 Threats to Internal Validity

We chose TF-IDF for the vectorisation of text attributes, even though more
semantic approaches such as Word2Vec have recently been proposed. An ini-
tial experiment with Word2Vec resulted in less than five clusters per library
where one cluster grouped most of the elements, but other vectorisation al-
gorithms might still outperform TF-IDF. For the clustering algorithm, we
selected hierarchical clustering based on its speed, effectiveness, and prior
successes in API classification [55]. Other clustering algorithms such as e.g.,
K-Means or DBSCAN might produce different results.

5.9.3 Threats to External Validity

The success of our approach cannot be generalised readily to other Maven
libraries, as it depends on the extent that their features are used in SO an-
swers. Our approach might fail to uncover features for less popular libraries
for which there is little usage in SO answers (cf. Table 5.4). Nonetheless,
many of the designed steps in the LiFUSO approach could be adopted in
techniques exploring features of libraries from other sources. For example,
the clustering and NLP processing might also be adopted by methods relying
on unit test cases and their text descriptions as alternative to SO API usages.
In this way, this approach could possibly be expanded to more cases since
most libraries include a test suite.

108 Chapter 5. Uncovering Library Features from Stack Overflow Posts

5.9.4 Threats to Conclusion Validity

Our selection of the best-performing attribute combinations relies on the Sil-
houette score. The score is a proven technique for analysing the quality of
clusterings [66, 104, 112]. Other metrics proposed in Section 5.7.4 compute
the relation of the uncovered features to tutorial and GitHub API usages.
When analysed in depth, the metrics are designed to calculate such similar-
ities without introducing bias towards the results. Moreover, as Table 5.6
and Table 5.8 indicate, there is no indication that the equations are inclined
towards any library in the study.

5.10 Conclusion

This chapter proposed the LiFUSO data-driven approach to uncovering li-
brary features from API usage in Stack Overflow answers. We use a clus-
tering technique (i.e., hierarchical clustering with dynamic tree cutting) to
group the answers based on vectorised attributes. Our approach extracts
the API references from possibly incomplete code snippets by means of a
tailor-made island parser. Similarities between the API references within the
snippets are calculated to finally return features as clusters, named according
to the most frequent noun-verb pairs in the surrounding sentences. Natural
language processing techniques are also used to name the clusters. A LOF
technique is used to select clusters that correspond to features.

We evaluated our approach on seven popular libraries with cookbook-style
documentation of their features. We achieve good performance for our un-
covered features since accuracies and relevances are 67% and 76% on av-
erage, respectively. Uncovered features are highly covered by GitHub API
usages (81% on average), however they might be part of larger usages as our
results indicate.

We also instantiated LiFUSO into a data-driven tool for enumerating the fea-
tures offered by the libraries in the Maven software ecosystem. The tool in-
stantiation is completely based on the previously described approach. We
have described the engineering aspects of the tool and reported on a case
study in which we conducted a feature-based comparison of two libraries
in the same domain. The tool is publicly available and can be used and ex-
tended to other popular libraries in the Maven software ecosystem.

The proposed approach and its tool instantiation represent an alternative to
the current library selection process. The LiFUSO tool puts the focus on the
features of libraries instead of popularity metrics. A case study using the tool
demonstrated its potential for boosting the exploration and comparison of
libraries in the Maven software ecosystem by providing feature descriptions
with examples of the required API usage.

109

Chapter 6

Uncovering Library Features based
on Resolved Code Snippets

6.1 Introduction

The approaches and tools discussed in previous chapters might be seen as
isolated solutions to different problems. However, there is a connecting thread
that enables their fusion into a single and cohesive approach. On the one
hand, RESICO (cf. Chapter 4) provides API type resolution for incomplete
code snippets such as those found in Stack Overflow posts. On the other
hand, LiFUSO (cf. Chapter 5) discovers library features from API usages in
Stack Overflow, taking advantage of their surrounding natural language de-
scriptions.

The fusion point can be found in one of the steps of the LiFUSO approach in
Figure 5.5. More precisely, step 3 is related to collecting answers from Stack
Overflow. This step checks that the library name is among the tags in the
post tag list. Posts without such a tag are discarded. This heuristic permits
LiFUSO to be confident about the SO data in the analysis since posts with a
library name in their tag list most likely contain API usages of the referenced
library. Although the heuristic is precise, it might omit content posted by
users that do not comply with the tagging policy of Stack Overflow.1 There-
fore, there might still exist a group of questions and answers in Stack Over-
flow that are related to libraries but which are not correctly tagged. RESICO,
as an API resolution approach, could assist in solving the above problem.

The resolution capabilities of RESICO might help LiFUSO move beyond the
tag heuristic. Our API resolution approach has demonstrated correct classifi-
cations for incomplete code snippets (cf. Section 4.4). RESICO can resolve the
FQN of an API reference given previous training on the context where the ref-
erence is used without requiring syntactically correct and complete code. As
such, RESICO may be able to recognise snippets on Stack Overflow that are
likely using a particular library, thereby providing LiFUSO with more data
from which to extract library features. However, the evaluation of RESICO
was conducted in a controlled environment, its robustness in the wild is yet

1 https://stackoverflow.com/help/tagging

https://stackoverflow.com/help/tagging

110 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

to be shown. This chapter provides material to judge whether RESICO can
perform effectively in the wild and, additionally, how well it serves as a sup-
porting technique for LiFUSO.

LiFUSO is based on the tags heuristic to extract SO posts related to the us-
age of a particular library. In this chapter we complement the heuristic with
an alternative technique. The information we extract solely from SO posts
that satisfy the tags heuristic is precise but, as we hypothesise, incomplete.
Considering more posts for extraction might offer the following benefits:

Discovery of additional features Considering more data to mine likely en-
ables the discovery more features. Although this depends on the num-
ber of newly considered posts, we might expect new features to be dis-
covered.

Enrichment of already mined features It might also be that new data does
not provide new features but enhances already mined ones. For in-
stance, considering more natural language information might refine the
feature description.

Inclusion of previously discarded features The LiFUSO extraction process
discards library usage patterns that do not occur with sufficient fre-
quency. With the included data, some of these discarded patterns might
gain sufficient support to be reconsidered as features.

In the following sections, we will detail the design and implementation
of strategies to expand the analysis of SO posts related to the LiFUSO
libraries. This expansion is based on the re-training of RESICO on a new
GitHub corpus and its application to the whole SO dataset. Additionally, we
present the results of our strategies through various evaluation methods. As
part of the evaluation, we investigate the effects of the newly mined data on
the LiFUSO extraction process. The discussion section dives into the results
obtained in the evaluation and discusses the limitations of the new strategies.
We list some threats to the validity of the evaluation and lastly conclude the
chapter.

6.2 GitHub API Usages as RESICO Training Data

The RESICO approach produces a trained classification model resulting from
a learning process on complete and syntactically correct code. Recall that
Chapter 4 describes how the RESICO approach is trained on a corpus of 50K
compilable Java projects [85]. The extracted information consists of API us-
ages, their contexts and FQNs, the last ones serving as prediction for the
multiclass classification model. However, the corpus of 50K projects is not
focused on any particular usage of a library. Rather, the requirement for
a Java project to be included in the repository is that it can be successfully
compiled. Some libraries might not be used at all in the corpus. Therefore,
we analysed the usage of the libraries considered in the LiFUSO approach

6.2. GitHub API Usages as RESICO Training Data 111

(cf. Chapter 5) to investigate whether to keep the RESICO model trained
on the 50K-C dataset or to re-train it on new data.

An alternative source for API usages is GitHub and its recently included de-
pendency graph network.2 This network allows the exploration of depen-
dencies and dependents for a GitHub repository. The latter is useful in our
case because we look for API usages of libraries, and since many Maven li-
braries are also on GitHub, an exploration of the library repository depen-
dents might yield many usage examples. Dependents are all projects in any
programming language that include a library in their configuration files.

We used a tool3 to obtain the dependents of each LiFUSO library. Each de-
pendent includes at least the library under analysis in its build file (e.g.,
pom.xml). The presence of a library in the build file does not necessarily mean
usage in the project code. To further explore the library usage, we relied on
an API usage extractor that analyses the code in all Java files and extracts
usage from the libraries. We built a custom API extractor inspired on a pre-
vious tool based on Eclipse JDT parser (cf. Chapter 4). New functionalities
are added in this extractor such as the extraction of commit hash numbers,
file location, among others (cf. Table 6.1).

Lastly, we measured the API coverage of the LiFUSO libraries across all
50K compilable Java projects. API coverage refers to the percentage of API
method calls in a library used at least once by a project or GitHub reposi-
tory. Similarly, we performed the same measurement for 48,312 dependent
GitHub repositories and compared for which dataset of projects (i.e., the 50K-
C or the GitHub dependents) we obtain more API coverage. More API usage
implies that a RESICO model will be trained on more simple names of API
types and will, therefore, have better classification capabilities.

Figure 6.1 shows the coverage of unique API elements (i.e., public types,
fields and methods) of the Quartz library in the GitHub-dependent repos-
itories. As depicted, the API coverage increases as more GitHub projects
are explored. However, this increase is not steady. On the contrary, once
the most popular parts of an API have been used by the first few reposito-
ries, coverage of the remaining uncovered API elements increases slowly by
newly-considered repositories. This observation agrees with the findings of
Harrand et al. [53] who discovered that just a fraction of a library’s API is
used by its clients. Indeed, as seen in Figure 6.1 the repositories explored last
do not result in an increase in the usage of the API. The API element coverage
graphs for the remaining LiFUSO libraries are similar.4

Figure 6.2 depicts the API element coverage for the dataset RESICO was
trained on (i.e., 50K-C) and the extracted data from GitHub dependents. The
data in the figure shows unequivocally a higher coverage of the API elements
in the GitHub dependents than in the 50K-C dataset. For libraries such as

2 https://docs.github.com/en/code-security/supply-chain-security/
understanding-your-software-supply-chain/about-the-dependency-graph

3 https://github.com/github-tooling/ghtopdep
4 The API element coverage figures other LiFUSO libraries can be found on the Appendix A.

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://github.com/github-tooling/ghtopdep

112 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

12.72

17.72

21.51

23
23.8

24.46
25.4 25.96 26.34 26.41

26.86
27.55 27.62

28.25 28.28 28.28 28.32 28.42 28.42 28.42

1-374
1-748

1-1122
1-1496

1-1870
1-2244

1-2618
1-2992

1-3366
1-3740

1-4114
1-4488

1-4862
1-5236

1-5610
1-5984

1-6358
1-6732

1-7106
1-7473

0

5

10

15

20

25

Coverage Evolution Library: quartz

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE 6.1: API element coverage of the LiFUSO library
Quartz from its dependent GitHub repositories.

PDFBox, POI-OOXML and Quartz, coverage in the 50K-C dataset was only
around 3%. Their coverage is much higher in their GitHub dependents. In-
deed, these results confirm that one would find more usages in the reposito-
ries that use a library as a dependency than in a dataset with compilable Java
projects without any particular library as a target. Based on the results of
Figure 6.2, we opted for the data from GitHub-dependent repositories since
they cover more library API elements.

6.3 Extending the LiFUSO Dataset with Additional
SO Posts

This section proposes a new technique to find and consider additional
posts related to the libraries under analysis. The technique complements
the tag-based heuristic previously used by LiFUSO and is based on the
API-type resolutions from RESICO. In addition to the RESICO model, the
technique incorporates learnt rules. Rules are learnt from a SO post dataset
constructed through an ambiguity analysis and manual inspection of SO post
characteristics. The trained rules take the form of if-then clauses such as: if
#classes > X then library_post else not_library_post, where X is also
learnt.

6.3. Extending the LiFUSO Dataset with Additional SO Posts 113

16.32

9.65

21.25

3.95

13.46

3.36 3.23

54.3
55.74 56.32

27.84

36.02

13.27

28.42

guava jfreechart jsoup pdfbox httpclient poi-ooxml quartz
0

10

20

30

40

50

Coverage-50KC(%)
Coverage-GitHub(%)

Libraries

A
PI

 C
ov

er
ag

e
(%

)

FIGURE 6.2: Comparison of API element coverage for each
LiFUSO library between the 50K-C and GitHub-dependent

datasets.

GitHub
Dependents

Explorer
Dependent

Repositories

groupID,
artifactIDSelected

Library
Filter

Repositories
Filtered

Repositories
API

Extractor

Context
Creation

Dataset with
APIs, Contexts

and FQNs
Vectorisation

Vectorised APIs

RESICO
Training

RESICO
Model

Vectorised
Dataset (All)

Vectorised Contexts

API Usage
Information

FIGURE 6.3: Approach to recognising posts related to a library
- Part I.

6.3.1 Part I: Extraction of GitHub Data and Re-Training of
RESICO

Repository Mining and Filtering

Figure 6.3 presents the first part of the designed approach that goes beyond
the tags heuristic to recognise SO posts related to a library of interest. The
new approach starts similarly to LiFUSO (cf. Figure 5.5) with the selected
library from which features are to be extracted. This library is described by
its groupId and artifactId. The next step extracts the GitHub-dependent
repositories from the GitHub location of the library. Section 6.2 previously
detailed how such an extraction is performed and the convenience of adopt-
ing this source instead of the former 50K-C dataset. We first extract all depen-
dent repositories as a list of GitHub repository links to explore. These repos-
itories, however, might contain forks, which may change only a small part
of the original repository they were forked from. Therefore, the approach
removes forks, thus only retaining unique repositories.

114 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

1 mvn dependency:copy-dependencies -DoutputDirectory=JARS_FOLDER/

LISTING 8: Command to obtain all library dependencies from
a Java repository into a specific folder.

Filtered repositories form the input for the next step about extraction of API
usages. Several steps are involved in the API extraction, which have been
detailed in Figure 6.4.

Filtered
Repositories

Clone
Repositories

Cloned
Repository

Pull Repository
Dependencies

Repository with
Dependencies

Extract API
Information

API Usage
Information

FIGURE 6.4: The extraction of API usages from GitHub reposi-
tories.

The first step is to clone the cleaned repositories from GitHub. For each lo-
cally cloned repository, the Maven build tool mvn gets the library dependen-
cies declared in the pom.xml file. To obtain all dependencies in the form of
JARs we rely on the command depicted in Listing 8.

As the code in Listing 8 indicates, all library dependencies are copied to the
specified folder JARS_FOLDER. This folder is used in the next step to extract
API usages and their corresponding FQNs. It is relevant to mention that
the command in Listing 8 does not succeed for all repositories. Failures in
the execution of the command might be caused due to several reasons: local
libraries not being included in the project, errors in the compilation of the
project, etc. Regardless of the execution state, the repository is explored with
all possible JAR files the command could download. The next step is to ob-
tain API usage information from the cloned GitHub repositories about the
library considered by LiFUSO.

API Extraction and Context Creation

The API extraction information step is based on the Eclipse JDT library pre-
viously used in Chapter 4 to create a dataset from the 50K-C corpus. Eclipse
JDT requires, among other things, the location of the necessary JARs to ex-
tract complete information about all elements in the analysed projects. If not
all required JARs are provided, only the information the Eclipse JDT can ex-
tract can be further analysed. Here, the JARS_FOLDER directory in Listing 8
is used to inform the Eclipse JDT processing. The extracted API informa-
tion from the GitHub-dependent repositories includes the fields described in
Table 6.1.

Each saved record is precise enough in case a future re-visit to the repository
is required. The gathered information is employed in subsequent steps to
form contexts surrounding the API usage.

6.3. Extending the LiFUSO Dataset with Additional SO Posts 115

Field Name Description

Project Name The name of the GitHub-dependent repository.
Commit Hash Number The specific commit hash number in case the

information is accessed at a different commit in
the future.

Date of Access The date when the repository was accessed.
File Location The exact path of the Java file in the project

being analysed.
Method Name The name of the method in the

GitHub-dependent project being analysed.
Method Start Line The line number in the file where the method in

the GitHub-dependent project starts.
Method End Line The line number in the file where the method in

the GitHub-dependent project ends.
API Usage The code fragment where the API is used, either

for a method call or a variable declaration.
FQN The fully qualified name of the previous API usage.
API Line Number The line number in the file where is the API usage.
Type The type of API usage, either a variable

declaration or a method invocation.

TABLE 6.1: Extracted fields from the GitHub-dependent repos-
itories and their descriptions.

Once the information is collected from all GitHub-dependent repositories,
the next step in the pipeline creates contexts around API usage. Recall that
our RESICO approach requires surrounding contexts at the method level to
learn the Word2Vec vector representations. The contexts’ creation is also de-
picted as a composite step in Figure 6.3. The details about this process can be
observed in Figure 6.5.

API Usage
Information

Dataset with
APIs, Contexts

and FQNs
Clean FQNs Dataset with

Cleaned FQNs
Context
Creation

FIGURE 6.5: The process to create contexts from the previously
extracted API usage information.

The first step is discarding usages of API types with FQNs that might conflict
with those of the LiFUSO libraries. Such cases of FQNs might be found in
repositories that have adopted the clone-and-own strategy [41] and include
a variant of the original library into their code. According to Dubinsky et
al. [41], a common reason for clone-and-own includes: “the freedom to change
the original library code”. We check whether the API types are defined in the
binary JAR file of the library or defined, and possibly modified, in the source
code of the repository under analysis. Usages of the latter API types are
discarded.

116 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

The creation of contexts follows the above cleaning of the collected data. This
step first groups all API usages extracted in the same method since RESICO’s
scope is at that level of granularity. Each group is then analysed by consid-
ering usages of the library’s API as input and the other API usages in the
method as context. This second step is done similarly as described in Sec-
tion 5.5. As a result of the processing, a dataset is constructed where the
columns are the API usage, the context of this usage, and the FQN of the
used API element. The collected dataset contains all the necessary informa-
tion for the following vectorisation step.

Vectorisation and Training

The gathered API usage information is vectorised similarly to RESICO (cf.
Section 4.3.3). In other words, we used Word2Vec to transform textual in-
formation into vector representations. As contexts are composed of multiple
words, we used the averaged vector of all vectors in a context. This step vec-
torises API usages and contexts to later average them into a single vector per
record with an associated numbered FQN.5

The final step in the first part of the new approach are related to re-training
the RESICO classification model. Training a new model also involves more
than one internal step as described in Figure 6.6.

Vectorised
Dataset (All)

RESICO
Model

Cut
Data

Reduced
Dataset

Hyper-parameter
Optimisation

Best Hyper-parameters
for Selected Classifier

Train Classifier with
Best Hyper-parameters

Trained RESICO
Model

Save Trained
Model

FIGURE 6.6: Steps to (re)train the RESICO classification with
the previously GitHub-dependent dataset.

A pre-processing of the vectorised data is first performed in which the num-
ber of occurrences per FQN is analysed. The dataset must be filtered as some
instances might occur only once or twice. The cutting threshold to exclude
unpopular instances should not be as high as in the RESICO evaluation (cf.
Section 4.4, where SO was used) since there is no other approach with estab-
lished thresholds to base oneself on (i.e., Section 4.4 borrowed the threshold
from COSTER [106]). The higher the threshold, the more data will be ex-
cluded from the training process. However, we should also consider that
API usages with FQNs with low occurrences (e.g., less than 10) might be
problematic in a 10-fold cross-validation approach. Therefore, we opted for
putting the threshold to 10 and avoid future problems in the pipeline.

The reduced dataset is used in the next step to learn the best hyperparam-
eters for a KNN classification algorithm. KNN was selected because it was
deemed the best ML classifier in the RESICO evaluation in Section 4.4. Since
the dataset changed from the 50K-C to GitHub dependents, hyperparameters

5 Same as in Section 4.3.3

6.3. Extending the LiFUSO Dataset with Additional SO Posts 117

must be re-learnt. As before, we used the Optuna optimisation framework
to select the best parameter combination for the selected classifier. The best
combination is used to train the classifier and finally save a local copy of the
resulting model. The trained model is further employed to classify the FQN
of an API usage given its surrounding context. All trained models, includ-
ing the new RESICO model and the API and contexts vectors, will be used
in the next part of the pipeline. This part is responsible for the library usage
determination and the relatedness rule learning.

6.3.2 Part II: Library Usage Determination and Relatedness
Rule Learning

Extract APIs and
Surrounding Contexts

SO
Dataset

Filter Answers
with Code

Filtered
Answers

SO APIs and
Contexts

Vectorisation of
APIs and Contexts

Vectorised APIs

Vectorised Contexts

Vectors of
API Usages

Predict
FQNs

APIs with
Predicted

FQNs
Process

Predictions
Dataset with

Answer Prediction
Characteristics

Rule Training
and Application

RESICO
Model

Dataset with
all Related Answers

Dataset with
Tags

FIGURE 6.7: Approach to classify posts related to a library -
Part II.

SO Extraction, Vectorisation and Model Classification

The second part of the approach to extract related information from Stack
Overflow is depicted in Figure 6.7. The input to this second part is the SO
dataset with all Java posts and answers. A necessary step to follow is to
consider answers only containing some form of code since we focus on the
API usage of a library. To filter answers without code fragments, we use the
same approach as in LiFUSO (cf. Section 5.5), which considers only those
with the HTML tags <pre> and <code>. If an answer does not contain such
tags, it is considered codeless and is therefore discarded.

Filtered answers with code are processed by our island parser which extracts
API usages and their contexts. Recall that many of the code snippets in this
step are incomplete and syntactically incorrect, thus, the usage of a regular
parser such as the Eclipse JDT is unfeasible. Our island parser, on the other
hand, is flexible enough to recognise variable declarations and method in-
vocations in otherwise syntactically incorrect snippets. The outcome of the
extraction step is the referenced (i.e., by the answer id) API usages and their
corresponding contexts. A local copy of the SO answers having the name of
the library in their tag list is stored for later usage. This copy is highlighted
in red in Figure 6.7.

Extracted API usages and their contexts from all SO Java posts data need to
be vectorised to further serve as input for the RESICO model. The vectori-
sation step employs previously trained Word2Vec vectorised API usage and

118 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

contexts from the GitHub-dependent repositories. Each API usage and each
word in its context are mapped to a Word2Vec vector in the stored vector
files. As with RESICO, if an API usage is not in the trained data, the analysis
is aborted for such a record. However, if a context word was not considered
in the training, the analysis continues with the rest of contextual words. A
surrounding context is expected to be more variable than the API usage. As
before, all successfully mapped context vectors are averaged to calculate the
mean between such averaged context vector and the API usage vector re-
sulting in a single vector per API usage. The computed vector encapsulates
the API usage and context in a suitable form to be the input of the formerly
trained RESICO model.

The previously described transformation results in vectors for all extracted
API usages and their contexts. The references to the SO answer and post
IDs are also kept for future inspection. In addition, the code from the snip-
pets from where API usages and contexts are extracted is also conserved for
an upcoming analysis. This analysis employs the trained RESICO model to
classify FQNs by providing it with the API usage vectors as input. As one
can imagine, for every vector fed as input to the model, there is a correspond-
ing outcome. The model responds with the numbered FQN assigned to the
most similar vector in its training dataset. For many cases, however, the out-
come does not match the simple name of the used API element in the code
snippet. Therefore, we check that the FQN classified by the model ends with
the simple name of the API. If this matches, the classification is likely to be
correct. Otherwise, representing a failure from the model, we treat the record
as unclassified.

Processing RESICO’s Classifications

Only records with a classification that satisfies our sanity check proceed to
the next. Although records have been classified at this point in the pipeline,
there may still be misclassifications by the model. To detect such cases and
to improve RESICO’s classifications, we gathered the characteristics of SO
answers related to ambiguous cases. A box with dashed grey lines in Fig-
ure 6.7 indicates that the processing classification step includes an ambiguity
analysis depicted in Figure 6.8.

APIs with
Predicted

FQNs

Dataset with
Answer Prediction

Characteristics

Filtered
Answers

Extract Import
Statements

Import
Statements

Perform Ambiguity
Analysis

Ambiguity
Information

Ambiguity Analysis

Group APIs
per Answer

Grouped
APIs

Extraction of
Characteristics per

Answer

FIGURE 6.8: Steps to extract characteristics from answers with
classifications.

6.3. Extending the LiFUSO Dataset with Additional SO Posts 119

Current classifications are based on a single API usage and its context in an
SO answer. However, the purpose of our new approach is to detect whether
answers are related to a library of interest. Therefore, the analysis continues
by grouping all API usages by their SO answer in the dataset. The grouping
is based on the AnswerIDs each API usage record has. Once all API usages
have been grouped by the answers they are part of, the ambiguity analysis is
conducted.

The FQNs classified by RESICO can be erroneous due to ambiguous simple
names. One disadvantage of the GitHub dependents dataset is that the focus
has been placed on a handful of libraries and their usages, thereby restricting
in this way the vocabulary for the Word2Vec models. A more limited vocab-
ulary gives rice to more ambiguous cases among the FQNs since just a few
libraries are covered. In Section 4.4.6, we performed an ambiguity analysis
of the misclassifications by RESICO on the external datasets considered for
the evaluation. Similarly, we investigated the ambiguity of simple names in
SO Java posts as shown in Figure 6.8.

The analysis comprises multiple steps that start with extracting all import
statements from code snippets. These snippets are used in the first steps of
the pipeline in Figure 6.7. Each import statement is parsed, and its simple
name (if it exists) is extracted for comparison purposes. Import statements
that include all elements of an API (i.e., ending with the star (*) character) are
discarded since it is impossible to extract simple names from them. After the
extraction, all simple names are compared by computing the unique FQNs
from where they were extracted. A JSON file, where the keys are simple
names and the values are arrays of FQNs for the name in the reference, is
locally stored for later consultation. These characteristics will improve the
classifications by RESICO and are described in Table 6.2.

Characteristic Description

AnswerID The ID of the answer in the analysis.
Classes The number of API classes in an answer.
Methods The number of API methods in an answer.
Ambiguity The number of API classes in an answer that are

ambiguous simple names.
Imports The import statements in the analysed answer.
Classified Library The library classified by the re-trained RESICO model.
Confirmed Library Whether the library in the analysis is confirmed

to be used in the answer.

TABLE 6.2: Group of answer characteristics extracted to im-
prove RESICO’s classifications.

The information extracted from each SO answer is AnswerID, Classes, Methods
and Import statements. The Ambiguity of classes is computed by checking the
existence of their simple names in the previously extracted JSON file. A clas-
sification of the RESICO model is also kept in the dataset. The last column in
the dataset indicates whether it has been confirmed that the classified library

120 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

is used in the answer. Such a confirmation is only possible at this stage of the
pipeline by checking whether the classified library is part of the tag list in the
post where the answer appears. For cases where it is not possible to confirm
a usage, an undetermined mark (e.g., a dash (-)) is used instead.

Dataset with
Answer Prediction

Characteristics

Dataset Tag
Separation

Dataset without
Tags

Dataset Import
Separation

Dataset without
Imports

Dataset with
Imports

Make Training
Dataset

Dataset for
Rule Training

Manual Inspection
of Dataset

Fixed Dataset for
Rule Training

Rule
Training

Trained
Rules

Trained Rules
Application

Classified
Dataset

Selection of
Classified
Answers

Gather All
Classified

Information
Related Classified

Answers
Dataset with

all Related Answers

FIGURE 6.9: Steps to train and apply a rule-based model to im-
prove RESICO classifications. Highlighted in red are the data

elements related to the usage of LiFUSO libraries.

Dataset Creation for Rule Training

Once the dataset with the described characteristics per answer has been ex-
tracted, the approach starts by processing it to assess the RESICO classifica-
tions. The steps in Figure 6.9 provide details about the final stages of the
approach. The initial steps in the figure focus on separating the collected
dataset into sub-datasets. First, instances in the dataset with a library usage
confirmation are separated. The confirmation, as previously described, is de-
termined by the library name in the tag list and placed in the Library Used
column of the dataset. Cases where two or more tags correspond to LiFUSO
libraries are discarded as our goal is to create a library-isolated dataset of SO
posts. Confirmed instances were previously stored in a separate dataset (i.e.,
Dataset with Tags highlighted in red in Figure 6.7).

The remaining instances, i.e., those not confirmed to be using library, go
through another split step. This time the separation is based on the pres-
ence of import statements since they represent another form of library usage
confirmation. Therefore, the second split of the dataset results in one dataset
with import statements, and another one without. The dataset with no im-
port statements will remain untouched until a future step in the pipeline. For
now, we focus on the dataset containing imports.

The next step confirms whether the library classified by RESICO is among in-
stances with import statements. This can be quickly done by checking if any
import statement in the answer starts with the import pattern of the classified
library. For example, the Guava library has com.google.common as an import
package structure. Instances with a confirmed usage according to the check
mentioned above are labelled as used in the Confirmed Library column, other-
wise, the label indicates that there is no usage. Confirmed classified instances
are also stored in a separate dataset (e.g., Dataset with Imports highlighted in
red), which will be joined with the previously saved tag-based dataset in the
final step of the approach.

6.3. Extending the LiFUSO Dataset with Additional SO Posts 121

The classified dataset with import statements is useful for classifying the re-
maining instances without imports. Indeed, this dataset is valuable as we
can automatically determine whether instances are classified correctly or in-
correctly by the RESICO model. An incorrect classification is not possible in
the previous tag-based dataset since all instances comply with the tag pol-
icy. The presence of binary labels (i.e., correct and incorrect classifications),
in addition to already computed attributes, makes the task of determining
the usability of a library suitable for a learning-based technique. Therefore, a
logical following step is the creation of a training dataset for a new model.

We selected three attributes: Classes, Methods and Ambiguity to classify the
target Confirmed Library. As we wanted the dataset to be balanced according
to its two classes, we selected all instances of the minority class and a random
sample of the majority class with the same number of instances as the former.
Once the training dataset is formed, we shuffled all its instances to avoid bias
in the learning process. Our decision process for classifying an instance as
likely to be using a library is as follows:

• If possible, it has a low number of ambiguous API class references. The
lower the ambiguity, the simpler it is to identify usages belonging to a
library.

• If possible, uses more than one method of the library to reinforce the
usage of classes.

• If possible, it uses a high number of classes of the library. The more
classes are used, the more likely a classified library is employed.

The more an instance adheres to these conditions, the higher the likelihood
of a veridical classification. We inspected all instances and re-label those that
do not satisfy these conditions.

The manual work is not performed per instance. Since we deal with vectors
of numbers corresponding to attributes, we can rely on the cosine similar-
ity6, and assign the same label to similar instances in the dataset. We im-
plemented a simple yet effective labelling mechanism that checks bulks of
similar vectors for their assigned label. The algorithm allowed us to label
multiple instances at the same time. We also made it flexible enough to only
label certain elements instead of a group. The re-labelled dataset represents
the input for the next step in which we train an automated classifier.

Classifier Training and Gathering of a New LiFUSO Input Data

Provided with the re-labelled dataset, any learning technique can perform
optimally. However, because of several reasons, we selected a technique that
produces rules from the instances. First, generated rules are based on the dis-
tribution of the attribute values on the dataset, i.e., the outcome is if-then

6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.
cosine.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html

122 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

clauses. Second, since these techniques are based on the values of the at-
tributes, we can interpret learnt rules and see whether they agree with our
previously defined goals.

To proceed with the training, we selected a decision tree classifier named J48
that generates rules from a dataset. The algorithm is easily accessible from
the Weka tool [145], from where it is also possible to configure the evaluation
strategy. Weka additionally saves all output of the training process including
learnt rules and scores achieved in the evaluation method. The resulting
rules are transformed into code as executable if-then clauses.

Rules are applied to all instances that do not contain any import statement or
tags that may hint the usage of a library. Once the rules have been applied,
we select instances that are deemed to use a library. Those instances carry a
confirmation by the RESICO model and by the learnt rules. The last step in
the pipeline gathers all usages of the library under analysis by concatenating
all highlighted rectangles in Figure 6.7 and Figure 6.9 into a single dataset.
The resulting dataset contains all API usages related to a library that can be
extracted from the SO data. Figure 6.10 depicts its integration with LiFUSO
(cf. Figure 5.5).

Select
Library

Selected
Library LiFUSOLibrary Usage

Post Assessment (I)
Library Usage

Post Assessment (II)
Dataset with

all Related Answers

FIGURE 6.10: Integration of the new approaches into the Li-
FUSO pipeline.

As observed, the approaches described in this section are highlighted in da-
shed red lines. The input of the Library Usage Post Assessment (I) (cf. Sec-
tion 6.3.1) is the same as the input to LiFUSO. The output of the Library Usage
Post Assessment (II) (cf. Section 6.3.2) seamlessly provides the necessary infor-
mation to continue with the remaining steps in LiFUSO. The steps described
in this section therefore integrate the RESICO (cf. Chapter 4) and LiFUSO (cf.
Chapter 5) approaches into one coherent approach.

6.4 Evaluation

In this section, we describe the design and the results of the evaluation con-
ducted on the incorporation of RESICO into LiFUSO. The evaluation assesses
the performance of the approach and the impact of a more extensive dataset
on LiFUSO.

Our evaluation aims to answer the following research questions:

RQ1 How well does the rule-based classifier perform on the manually la-
belled dataset?

RQ2 What is the impact of the new SO answer dataset on the features un-
covered by LiFUSO?

6.4. Evaluation 123

6.4.1 Datasets Collection

In this subsection, we report on the datasets collected through the different
steps of our approach. We describe the source and the characteristics of the
dataset, i.e., the number of records, their attributes, etc.

The dependent GitHub repositories dataset (described in Section 6.2) consists
of GitHub repositories that include one of the LiFUSO libraries in their build
files. As previously explained, we obtain the dependents of a library using
the ghtopdep tool. The number of dependent repositories for each LiFUSO
library is depicted in Table 6.3.

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Dependents 14,147 75,069 8,416 83,851 14,626 4,289 53,542

Cleaned dependents 12,569 58,069 7,358 64,422 12,899 3,910 36,349

TABLE 6.3: Dependent GitHub repositories for each LiFUSO
library before and after the cleaning.

Table 6.3 also contains a second row about the number of client projects re-
maining after the cleaning described in Section 6.2. Each library has fewer
unique dependent repositories afterwards, which is mainly due to the exis-
tence of repository forks. API usage information is extracted from the re-
maining repositories.

The reader might notice that the coverage figures in Figure 6.1 and in Ap-
pendix A do not add up the number of repositories reported in Table 6.3.
For some libraries where the number of repositories is considerably large
(e.g., JSoup and HttpClient), we aborted the analysis early. For many large
repositories, the API usage extraction is computationally expensive since it
includes the download of all dependencies, a compilation of the project, and
the actual extraction. When analysing more projects resulted in less than 1%
additional API usage being discovered, we halted the extraction and moved
forward with the information collected thus far.

Once the API extractor has processed the cleaned repositories, we proceed
with a filtering step. As described in Section 6.3.1, we discard each API usage
record of which the FQN occurs fewer than 10 times to facilitate later cross-
validation. The number of discarded records is 1,713 out of 3,152,837 (only
0.05%), representing a minor reduction of our dataset.

Next, we vectorise the API usages and their contexts which are the training
data for RESICO. The size of the vocabulary for the collected API usages is
14,500. The size of the vocabulary for the contexts is 63,372 words. Once
RESICO is trained, these API and context vectors are used to classify FQNs
from incomplete SO code snippets.

Therefore, another fundamental data source is the SO Java dataset from where
LiFUSO features can be extracted. The initial number of Java answers from
SO is 3,017,471; all posterior datasets are derived from this set. From that
initial group, 2,198,731 answers contain at least one code fragment. The API

124 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

usage extractor described in the approach can successfully filter 1,591,763 an-
swers with at least one surrounding context. Cases where this is not possible,
include, for example, a single word of code surrounded by natural language
text.

The vectorisation of contexts and API usage (cf. Section 6.3.1) from SO code
snippets depends on whether they are present in the RESICO training dataset.
This means that words which are not in the training data will not have a
learnt vector to be mapped, and therefore, no transformation will occur. We
excluded answers where the mapping to API elements is unsuccessful, or no
context word is transformed. The result of the transformation and filtering
process is 75,365 SO answers.

Once the API usages and their contexts have been vectorised for each SO an-
swer, a classification is made. The trained RESICO model takes as input a
vector and classifies the most likely FQN for it. This vector is the average be-
tween the API usage vector and the resulting vector from averaging all con-
text vectors. Each answer can contain more than one API usage to resolve the
FQN of. Therefore, we might have multiple API classifications, each keeping
their AnswerID reference. As previously described in Section 6.3.2, a sanity
check verifies the correctness of each classification with the simple name of
the API usage. We obtained 100,363 classified API elements within 45,787
answers for the LiFUSO libraries.

The ambiguity analysis described in Section 6.3.2 is based on the import state-
ments in the 45,787 answers. There are 26,730 unique import statements. The
number of ambiguous simple names is 213.

As shown in Figure 6.9, the current dataset of 45,787 answers is divided and
each part analysed. The first portion consists of 10,495 answers with the
name of the classified library in their tag list. These are many of the an-
swers considered in Chapter 5 to uncover library features.7 The other 35,292
answers are further divided according to whether they have import state-
ments. This is the case for 4,829 answers. The 30,463 answers without import
statement are left to be checked by the learnt rules.

RESICO classifies the FQNs from the API references in an SO answer. As
such classifications are limited to the libraries considered by LiFUSO, only
FQNs from them are recommended. All classifications in an answer are, in
most cases, about one of the LiFUSO libraries. Therefore, we consider the li-
brary with more classifications as the most relevant library in the SO answer.
The few cases were we obtain an equal number of classifications for more
than one library are manually inspected since the process cannot automati-
cally determine the most important one.

Confirmed answers containing a match between classification and imports
are 1,068. The remaining 3,761 answers have been misclassified by the RESI-
CO model. As we can see, relying only on the classifications by the RESICO

7 The increment of 532 (i.e., Table 5.4 previously reported 9,963 instances) may be because we
consider a more recent SO snapshot than in Chapter 5.

https://archive.org/download/stackexchange_20221005

6.4. Evaluation 125

model leads to false positives. Therefore, we selected all positively confirmed
answers and a random sample of the negatively verified records to train a
rule-based model. We constructed a binary balanced dataset of 2,136 in-
stances: 1,068 are labelled with one (i.e., confirmed answers with a match)
and the other half with zero (i.e., confirmed answers with no match).

6.4.2 RQ1. How well does the rule-based classifier perform
on the manually labelled dataset?

Design
This research question investigates the performance of the rule-based classi-
fier on the manually-labelled dataset of SO answer characteristics.

To achieve this goal, we trained and evaluated a J48 decision tree using 10-
fold cross-validation as previously considered for RESICO (cf. Section 4.4.3).
We used stratified cross-fold validation: each fold contains approximately
the same distribution of labels to classify. The implementation of stratified
cross-validation and of the J48 decision tree itself are provided by Weka.

Once the model’s classifications have been gathered for each fold, we com-
pute Precision, Recall and F1-Score. We use the standard definition of these
metrics. In this binary setting, precision is defined as the number of true
positives out of the number of true positives and false positives (cf. Equa-
tion (6.1)). The recall is the number of true positives out of the true positives
and false negatives (cf. Equation (6.2)). The harmonic mean of Precision and
Recall (i.e., F1-Score) follows the definition by Equation (4.3).

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

In Equation (6.1) and Equation (6.2) True Positives (TP) refer to those SO
answers labelled as using one of the LiFUSO-related libraries and classified
as such by the model. False Negatives (FN) are SO answers labelled as using
a LiFUSO library but falsely classified as not so. False Positives (FP) are SO
answers that do not use a LiFUSO library, yet were classified as doing so by
the rule-based model. Finally, we average the metrics for all folds and report
them for each binary class.

Results

We report on the results obtained by the rule-based trained classifier.

Listing 9 shows the decision tree produced by the J48 classifier trained on
the manually-validated dataset. The decision tree is represented as if-then
clauses by the Weka framework. This representation has advantages such as

126 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

1 if ambiguity == 0:
2 if methods == 0:
3 return 'N'
4 return 'Y'
5 else:
6 if classes <= 4:
7 if methods == 0:
8 return 'N'
9 else:

10 if ambiguity <= 1:
11 if classes <= 2:
12 return 'N'
13 return 'Y'
14 return 'N'
15 else:
16 if ambiguity <= 2:
17 return 'Y'
18 else:
19 if classes <= 8:
20 if ambiguity <= 3:
21 if classes <= 6:
22 return 'N'
23 return 'Y'
24 return 'N'
25 else:
26 if ambiguity <= 7:
27 if ambiguity <= 5:
28 return 'Y'
29 else:
30 if classes <= 13:
31 return 'N'
32 return 'Y'
33 else:
34 if classes <= 18:
35 return 'N'
36 else:
37 if methods <= 19:
38 return 'Y'
39 return 'N'

LISTING 9: Trained rules of the J48 decision tree based on the
manually labelled dataset.

6.4. Evaluation 127

being transparent about the learnt knowledge and that it can be translated to
any programming language.

Some insights can be gained from the rules in Listing 9. For example, the
presence of ambiguous class references is a decisive factor in the classification
since SO answers without such ambiguity are likely to be using the library (cf.
Lines 1-4). The combination of ambiguity, a low number of class references
and no method calls indicate that the library might not be used in the answer
(cf. Lines 5-8). Finally, the order of the generated rules is also relevant as
many instances may satisfy the initial but not the last checks.

Class Precision Recall F1-Score

N 95.9 99.8 97.8

Y 99.8 86.3 92.2

Act.
Pred.

N Y

N 1,630 4

Y 69 433

TABLE 6.4: Performance metrics (Left) and confusion matrix
(Right) of the trained rules on the manually labelled dataset.

As depicted in Table 6.4, the performance metrics of the trained rules are
outstanding. Precision is excellent for both classes in the dataset, surpassing
95% effectiveness in each class. The recall metric is still exceptional for the
‘N’ class, and relatively good for ‘Y’ class with a score above 85%.

Table 6.4 also includes a confusion matrix on the right. As expected from
the previous metrics, most instances are located on the matrix’s main diag-
onal, indicating correct classifications. Another aspect of the confusion ma-
trix is also noticeable: class imbalance is present in the manually-labelled
dataset. We therefore, re-trained and measured the performance of the rule-
based model on a new balanced version of the manual dataset. However, the
metrics report an F1-Score of 92.9% and 93.5% for classes ‘Y’ and ‘N’, respec-
tively, which when averaged (93.2%) are worse than the averaged metrics
for the imbalanced dataset (95%). This observation agrees with previous re-
search on interpretable rule-based classifiers and class imbalance. For exam-
ple, Tantithamthavorn et al. [121] and Gao et al. [43] have explored the im-
pact of balancing techniques on the performance of interpretable classifiers.
They found that re-sampling might not be beneficial for some classifiers, es-
pecially rule-based ones for which re-balancing may change the distribution
of the training data.

The interpretable rules produced by the J48 decision tree classifier to
determine whether an SO answer is likely to use a LiFUSO-supported
library, have an excellent performance according to the precision, re-
call and F1 metrics. A re-balance of the manually-labelled dataset does
not improve the performance metrics, in accordance with previous re-
search in the domain.

128 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

6.4.3 Rule-based Model Application on the Manually-labe-
lled Dataset

The manually-labelled dataset is used to train and evaluate the rule-based
model as described in the previous section. The obtained model will clas-
sify whether the unclassified 30,463 SO answers remaining in the dataset are
related to the LiFUSO libraries. The number of SO answers positively classi-
fied as related by the rule model is 2,702, whilst the other 27,761 SO answers
are classified as likely unrelated. The final dataset of LiFUSO-related SO an-
swers comprises the previous answers that have the name of a library in their
tag list (10,495), the answers that import library types through import state-
ments (1,068) and answers of which the library usage has been confirmed by
the rule-based model (2,702) and counts 14,265 SO answers in total.

Guava HttpClient JFreeChart JSoup PDFBox POI Quartz

Old Tagged Answers 1,522 628 882 3,465 945 2,010 511
New Tagged Answers 1,473 733 869 3,552 1,034 2,317 517
Untagged library-using Answers 1,373 1,564 49 189 101 437 57
Total New Answers 2,846 2,297 918 3,741 1,135 2,754 574

TABLE 6.5: Previous and newly collected SO answers that use
a LiFUSO library.

Table 6.5 details the composition of the newly collected dataset. The number
of answers deemed to be using a LiFUSO-related library has increased for
all libraries. The growth is the highest for the Guava and HttpClient libraries,
whereas the JFreeChart library saw the smallest growth. The new dataset of
SO answers will serve as input to the LiFUSO approach in the next research
question.

6.4.4 RQ2. What is the impact of the new SO answer dataset
on the features uncovered by LiFUSO?

Design
This research question analyses the impact of the newly constructed dataset
of SO answers on the features uncovered by LiFUSO.

To this end, we compare LiFUSO’s outcome on the new dataset to its out-
come on the dataset with only tagged answers. However, before compari-
son, we have split the dataset into seven smaller ones each dedicated to a
single LiFUSO library. As explained in Section 5.5 and also depicted in Fig-
ure 6.10, information about a single library is required each time features are
computed. In other words, a dataset containing mixed posts about multiple
libraries is not desired. A few answers use two or more LiFUSO libraries
(e.g., JFreeChart and PDFBox) at the same time. We manually inspected each
of those answers to select the most appropriate library.

Once each library has its own two datasets of tagged and tagged + untagged
found SO answers, we applied LiFUSO to each. LiFUSO applies its island
parser to each answer to extract API usages (cf. Section 5.5.2), and then

6.4. Evaluation 129

constructs a similarity matrix with all the collected usages. The similarity
matrix reflects closeness between all usages using the Jaccard metric (cf. Sec-
tion 5.5.3). The matrix, along with answer information such as natural lan-
guage terms and links to SO, is passed to the LiFUSO clustering method (cf.
Section 5.5.4). The LiFUSO clustering method is executed, and a book of fea-
ture descriptions is obtained as HTML files. These description files contain
all the information about the features of the LiFUSO libraries. For example,
they are labelled with a number (e.g., Feature 10), described in natural lan-
guage terms (e.g., “save image”), and their usage is illustrated using example
code (cf. Listing 6).

The generated documentation files enable us to automatically compare old
and new features. We use three comparison methods on the features un-
covered for each library. The first comparison approach counts how many
features are obtained for each dataset. The second comparison measures the
impact on the obtained features by calculating the average of API calls per
code snippets comprising each feature. This comparison investigates how
different in size, on average, the code snippets that comprise the features are.
Lastly, the third comparison investigates the number of API calls on aver-
age for all code snippets of all features. This last comparison investigates the
changes in method call usages and their effect on the features.

Results

Library #F #NF ∆F AA NAA ∆AA AM NAM ∆AM

Guava 114 174 +60 1.83 (±4.79) 1.94 (±3.13) -0.11 1.79 (±4.28) 1.80 (±3.24) -0.01

HttpClient 41 80 +39 3.78 (±9.28) 6.01 (±11.09) -2.23 4.61 (±10.57) 6.33 (±10.46) -1.72

JFreeChart 85 85 0 1.66 (±1.35) 1.66 (±1.35) 0.00 1.38 (±0.87) 1.38 (±0.87) 0.00

JSoup 91 92 +11 7.25 (±19.94) 6.75 (±17.28) +0.50 4.57 (±7.64) 4.35 (±6.86) +0.25

PDFBox 51 57 +6 2.45 (±2.67) 2.28 (±2.33) +0.17 2.02 (±1.83) 1.89 (±1.94) -0.13

POI 99 99 0 2.86 (±5.49) 4.25 (±13.70) -1.39 2.26 (±2.91) 3.51 (±9.90) -1.25

Quartz 34 32 -2 2.94 (±5.66) 3.22 (±6.55) -0.28 3.12 (±4.78) 3.31 (±5.06) -0.19

TABLE 6.6: Comparison between old and new features.

Table 6.6 reports on the comparison of features from tagged SO answers and
the newly obtained features from the combined tagged and untagged infor-
mation. Column names and their descriptions are as follows:

#F The number of features extracted from the usages of each library in the
tagged dataset.

#NF The number of features extracted from the combined dataset.

∆F The difference between the features from the tagged and combined data-
sets.

AA The averaged number of API calls in the snippets of the tagged dataset.
Between parentheses is the standard deviation of the averaged value.
The same applies to the remaining columns.

130 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

NAA The averaged number of API calls in the snippets of the combined
dataset.

∆AA The delta value between NAA and AA. This number could be either pos-
itive or negative.

AM The averaged number of method calls in the snippets of the tagged
dataset.

NAM The averaged number of method calls in the snippets of the combined
dataset.

∆AM The delta between NAA and AA. Both positive and negative values ap-
pear here.

As shown in Table 6.6 the new additions of untagged answers enable extract-
ing more features for most libraries. This is reflected in column ∆F, where all
deltas are positive, except for the Quartz library with two features less and the
JFreeChart and Apache-POI libraries with no new features extracted. Guava is
the library for which the most additional features have been uncovered (i.e.,
60).

On average, the size of the snippets comprising features differs for all li-
braries except for JFreeChart with no changes. The most significant differ-
ences are found in the libraries JSoup with an increment of +0.50 and Http-
Client with a decrement of -2.23. This finding indicates that in the newly
constructed dataset, there are on average almost two less API calls for Http-
Client features. The result also reflects a significant decrease in API calls in
the Apache-POI features.

The differences in the number of method calls are, in contrast, minimal (cf.
column ∆AM). All library features report changes that do not exceed one unit
of difference, except for HttpClient (with -1.72) and Apache-POI (with +0.25).
Guava merely reports a delta of -0.01, meaning that almost the same number
of methods are used in the tagged and combined datasets. This agrees with
the characteristics of this library, e.g., most of its features contain few method
calls.

More features were discovered in the newly constructed dataset of
SO answers, with Guava having the highest growth and Quartz with
a slight decrement. The size of the snippets integrating the features
changed significantly, whereas, on average, the number of used meth-
ods remained similar.

6.5 Discussion

This section discusses the results obtained above and describes the limita-
tions that remain in combining RESICO and LiFUSO.

6.5. Discussion 131

6.5.1 Newly Discovered Features

As shown in Table 6.6, new features are discovered for all LiFUSO libraries.
These new features result from newfound API usage patterns in the newly
populated dataset.

1 // Library Guava
2 // compare char, declare range
3 CharMatcher.anyOf(...);
4 CharMatcher.inRange(...).or(...);
5 // describe graph, define graph
6 MutableGraph.putEdge(...);
7 MutableGraph.addNode(...);
8

9 // Library JSoup
10 // get sibling, select sibling
11 Element.siblingElements(...);

LISTING 10: Some examples of newly discovered features for
the LiFUSO libraries.

The features in Listing 10 are a sample of the newly discovered features for
the LiFUSO libraries. As shown in the listing, features are still generated
from patterns containing either a single or multiple API calls. Some features
that were already present have been improved with respect to their natural
language description. In other words, more terms related to the code in the
features have been incorporated into their description.

This is illustrated by Listing 11. Some features see new verb-noun pairs added
to their description. In other cases where the frequency of terms is low, they
are replaced by new and more meaningful natural language terminology. As
the patterns’ frequency increases, a greater number of natural language terms
emerges resulting in extracted descriptions that are increasingly coherent.

6.5.2 Limitations

This chapter combines the RESICO and LiFUSO approaches proposed in
Chapter 4 and Chapter 5, respectively. However, their combination still has
some limitations. For example, some manual input is required for parts of
the proposed pipeline such as the meta-data of a library (e.g., groupId and
artifactId) as well as its corresponding tag name. Additionally, the GitHub
repository hosting the library is required as input to the ghtopdep tool, which
retrieves the dependent repositories. All this information is required to exe-
cute our pipeline.

Another limitation covers the quality of the natural language terms. Some
descriptions are not in exact agreement with the code required to use a fea-
ture. This could be caused by a mediocre quality of the posts. New language

132 Chapter 6. Uncovering Library Features based on Resolved Code Snippets

1 // Library JSoup
2 // extract text, parse html Added -> (extract node, parse tag)
3 Element.dataNodes(...);
4 // select parent, select child Added -> (iterate element, get element)
5 Element.parents(...);
6

7 // Library Guava
8 // use api, have method Replaced by -> (use set, get set)
9 Sets.union(...);

10

11 // Library JFreeChart
12 // set break Replaced by -> (calculate histogram, display bar)
13 HistogramDataset.addSeries(...);
14 ChartFactory.createHistogram(...);

LISTING 11: Examples of improved features for the LiFUSO li-
braries.

generation models with capabilities such as code interpretation (e.g., Code-
Parrot8 and InCoder9) might help improve the quality of the feature descrip-
tions.

6.6 Threats to Validity

The threats to validity discussed in this section are similar to those discussed
in Chapter 4 and Chapter 5. Many are inherited from RESICO and LiFUSO,
but some have been mitigated by their combination.

6.6.1 Threats to Construct Validity

The vocabulary of the RESICO model used in this chapter was limited to the
usages of the seven LiFUSO-supported libraries (i.e., those used for the eval-
uation of LiFUSO in Chapter 5). A limited vocabulary may lead to more erro-
neous API type resolutions due to the presence of ambiguous simple names.
We mitigated this risk by training a rule-based model on the characteristics
of code snippets that assesses whether a RESICO resolution is likely using a
library in a given snippet.

6.6.2 Threats to Internal Validity

The internal threats are very much aligned with those in Chapter 5. TF-IDF is
selected for the vectorisation of text attributes, even though techniques such
as Word2Vec exist. Our experiments with Word2Vec resulted in less than five
clusters per library, where one cluster grouped most of the elements. Once
again, we selected hierarchical clustering as a clustering algorithm based on

8 https://huggingface.co/codeparrot
9 https://huggingface.co/facebook/incoder-6B

https://huggingface.co/codeparrot
https://huggingface.co/facebook/incoder-6B

6.7. Conclusion 133

its speed and effectiveness. As previously mentioned, language generation
models might improve our feature descriptions. We deem this part as future
work to improve the already discovered features.

6.6.3 Threats to External Validity

Our approach is currently not ready to be generalised to an important num-
ber of Maven libraries as it depends on the extent to which their features are
used in SO answers. LiFUSO might fail to uncover features for less popular
libraries. LiFUSO has the potential to be adopted in techniques exploring
features of libraries from other sources apart from SO. For example, GitHub
usages and the natural language elements surrounding them such as method
and variable names, docstrings, or messages of the commits where they are
introduced. Another alternative source of information are unit test cases and
their text descriptions, which may scale to many libraries since most of them
include a test suite.

6.7 Conclusion

This chapter proposes a combination of the RESICO and LiFUSO approaches
introduced in Chapter 4 and Chapter 5, respectively. We used the API type
resolution of RESICO to enlarge the dataset of SO answers used by the Li-
FUSO approach. This improvement started with an analysis of the original
training dataset of RESICO with respect to the usage of LiFUSO libraries. We
noticed that dependent GitHub repositories cover more of the libraries’ API
than the original training dataset of 50K compilable Java programs.

We therefore retrained RESICO on the GitHub repository that depend on
the LiFUSO libraries, but noticed that the narrow focus on these libraries
may limit the vocabulary known to RESICO. A limited vocabulary affects its
API type resolutions in the presence of ambiguous simple names. Therefore,
we trained a rule-based model to complement the RESICO’s classifications.
We evaluate the rule-based model on a manually-labelled dataset. The re-
sults show that learnt rules are capable of determining with a high F1-Score
whether an SO answer uses the library output by RESICO. RESICO and the
accompanying rule-based model are used to enlarge the input dataset of SO
answers to LiFUSO.

We have also measured the impact of the newly constructed dataset on the
features uncovered by LiFUSO. New features are discovered for all consid-
ered libraries. Furthermore, the natural language terms of some features are
improved as a consequence of the newly gathered data.

135

Chapter 7

Conclusion and Future Work

It is common in contemporary software development to reuse features pro-
vided by third-party libraries. The number of libraries in a popular software
ecosystem is so abundant that selecting the most suitable library becomes a
problem for developers. This selection problem is aggravated due to the lack
of tools that help developers by recommending a library with the sought-
often features.

This dissertation presents research on the automatic discovering of library
features. Features are defined as API usage patterns with a corresponding
description in natural language. We first investigated the feasibility of sev-
eral sources of information about library features. We selected Stack Over-
flow as our information source due to its popularity, its large community and
the possibility to mine API data about popular libraries. However, many
Stack Overflow answers lack completeness and syntactical correctness. We
therefore proposed the RESICO approach to resolving API references in such
answers to fully qualified names. A second approach called LiFUSO, takes
advantage of the API usage patterns and the natural language terms within
Stack Overflow answers to uncover the features provided by a library. Fi-
nally, we have shown how RESICO can help enlarger the dataset of SO an-
swers LiFUSO operates on.

This chapter recapitulates these approaches and the contexts they were intro-
duced in. Section 7.1 provides a summary of the dissertation by highlight-
ing the most important conclusions of each chapter. Section 7.2 restates the
contributions made by RESICO, LiFUSO, and the approach combining them.
Section 7.3 discusses possible directions for future work, while Section 7.4
concludes the dissertation.

7.1 Summary

Chapter 1 provided an introduction to this dissertation. We defined the con-
cept of library features, and the problems developers face in selecting an
appropriate library from a vast software ecosystem. Current approaches to
library recommendation and comparison are based on straightforward met-
rics such as the number of stars or test coverage. Instead, we propose to

136 Chapter 7. Conclusion and Future Work

base these recommendations and comparisons on automatically uncovered
representations of the features provided by a library.

Chapter 2 explained the techniques, algorithms, and sources of information
our approaches are based on. First, the chapter detailed the different sources
from where knowledge about a library can be extracted. We analysed these
sources considering aspects such as the availability of code snippets and
natural language illustrating the API through which library features can be
reused. We selected Stack Overflow as our source of information and de-
tailed the SOTorrent dataset. The chapter then moved onto the background
on the techniques that we use to process this information, including text to
vector transformations such as TF-IDF and Word2Vec. Details about text
classification, Phrase-Structure trees and hierarchical clustering are also dis-
cussed in the chapter.

The current state of the art on the research topics covered in this dissertation
is discussed in Chapter 3. The chapter described previous work operating on
SO information, analyses of incomplete code snippets, and machine learning
embeddings proposed for software engineering tasks. The state of the art
on automated approaches to library usage comprehension, recommendation
and documentation is also covered. We concluded with the need for our
contributions to the field.

Chapter 4 presented RESICO, the first contribution of this dissertation. RESI-
CO resolves the simple names of API types in incomplete Stack Overflow
snippets to their fully qualified names. The absence of import statements that
qualify simple names encumbers the use of code snippets by users and tools
alike. RESICO leverages a dataset of library API usage within complete and
correct code to learn word embeddings and the most likely fully qualified
name for a simple name in a specific context. We instantiated the approach
with several machine learning algorithms and evaluated the resulting ma-
chine learning models against the state-of-the-art approach COSTER. Most
models outperform COSTER in all experiments we conducted. Moreover,
our best classifier is faster to train.

Chapter 5 presented LiFUSO, an automated approach to uncovering the fea-
tures provided by a library from Stack Overflow answers. The approach is
motivated by the need for better support for software ecosystem exploration,
library selection, and comparison. As stepping stone towards LiFUSO, we
presented two approaches that adopted categories and tags as high-level and
coarse-grained descriptions of library features. LiFUSO itself uncovers fea-
tures in the form of named patterns of API usage, which it mines from Stack
Overflow answers. The evaluation reveals that the features uncovered by
the approach align with those documented in tutorials and cookbooks about
the considered libraries. The approach was instantiated into a tool which
enabled us to demonstrate its potential.

Chapter 6 presents a combination of RESICO and LiFUSO. Following an

7.2. Contributions 137

analysis of the coverage of the libraries’ API considered in the LiFUSO evalu-
ation, the RESICO model from Chapter 4 was retrained on a dataset that com-
prises their dependent GitHub repositories. Next, the API type resolutions
of the retrained model were used to determine whether a given SO answer
is related to a particular LiFUSO library. However, since retraining RESICO
on a more focused dataset reduced its vocabulary, its type resolutions suffer
more from the presence of ambiguous names. Therefore, we complemented
RESICO with a new rule-based classifier that determines the likelihood that
an SO snippet uses the library predicted by RESICO. Through this combina-
tion, we are able to enlarger the dataset of Stack Overflow posts analysed by
LiFUSO and thus enrich the features it uncovered.

7.2 Contributions

This dissertation presented three contributions: the RESICO and LiFUSO ap-
proaches and their combination.

7.2.1 RESICO: API Resolution for Incomplete Code Snippets

First, we identified the problem that many code snippets of Stack Overflow
posts are incomplete and syntactically incorrect (Chapter 1 and Chapter 4).
The lack of import statements that qualify the simple names of API types,
encumbers the use of SO snippets in automated analyses and tool support.
Therefore, we designed and implemented a learning-based approach capable
of resolving the simple name of an API type to its likely fully qualified name
for a given SO code snippet (Chapter 4). The corresponding contributions
are:

• The design and implementation of the RESICO automated approach
which extracts the fully qualified names of API types involved in API
usage within complete project repositories, learns their surrounding
contexts, and resolves simple names for API types within incomplete
code snippets to their corresponding fully qualified name within a given
context.

• A thorough evaluation on three datasets in which RESICO outperforms
the state-of-the-art approach COSTER.

• A study into the behaviour of the approach on ambiguous cases, an
investigation into the origin of faulty predictions, and an overview of
the technical limitations of our prototype implementation.

• A replication package containing the RESICO implementation, the data-
sets used in its evaluation, and all scripts required to conduct our ex-
periments.1

1 https://github.com/softwarelanguageslab/resico-paper

https://github.com/softwarelanguageslab/resico-paper

138 Chapter 7. Conclusion and Future Work

7.2.2 LiFUSO: Uncovering Library Features from their Stack
Overflow Usage

Second, we found that the current library selection process can benefit from
automatically generated enumerations of the features offered by a library
(Chapter 1 and Chapter 5). We proposed LiFUSO, an approach that analy-
ses the API usage of a library within Stack Overflow posts to uncover library
features in the form of named API usage patterns (Chapter 5). The corre-
sponding contributions are:

• The design and implementation of an automated approach that collects,
processes and clusters API usage from Stack Overflow code snippets
into named feature descriptions.

• An extensive evaluation comparing features uncovered by the approach
to the way they are described in tutorials, cookbooks, and to the way
they are used within GitHub repositories.

• An instantiation of the LiFUSO approach into a tool that enables search-
ing for features given a description in natural language and enables
comparing different libraries based on their features.

• A case study in which the tool is used to compare two libraries tar-
getting the same application domain based on their shared and unique
features.

• A replication package containing the LiFUSO approach implementa-
tion and tool instantiation and the datasets used in the evaluation of
the approach.2,3

7.2.3 Feature Uncovering on Resolved Code Snippets

Third, we combined the RESICO and LiFUSO approaches described in Chap-
ter 4 and Chapter 5 into a single approach that leverages the former’s capa-
bilities for resolving API types in incomplete code snippets with the latter’s
ability to enumerate the features provided by a library (Chapter 6). Specif-
ically, we noticed that RESICO can be used to overcome the limitation of
LiFUSO that requires Stack Overflow posts to be tagged with the name of
the library under analysis. The corresponding contributions are:

• The design and implementation of an approach that combines RESICO
and LiFUSO.

• An analysis of extent to which the original dataset on which RESICO
has been trained covers the APIs of the libraries for which LiFUSO has
been evaluated.

• A new dataset for training RESICO derived from the GitHub reposito-
ries that depend on a LiFUSO library.

2 https://github.com/softwarelanguageslab/lifuso
3 https://github.com/cvelazquezr/lifuso-ui

https://github.com/softwarelanguageslab/lifuso
https://github.com/cvelazquezr/lifuso-ui

7.2. Contributions 139

• A rule-based classifier which supports RESICO API-type resolutions
based on code snippet characteristics.

• An in-depth evaluation on the effectiveness of the rule-based classifier,
and of the impact on the quality of the uncovered library features of
using RESICO and the rule-based classifier to enlarger the dataset of
Stack Overflow snippets considered by LiFUSO.

• A replication package containing the combined approach implementa-
tion and the resulted datasets from our research.4

7.2.4 Advantages and Limitations of Data-Driven Approaches

All our previously listed contributions are data-driven. This means that they
analyse a considerably large number of instances in a dataset to learn pat-
terns. Our API type resolution approach RESICO learns the contexts sur-
rounding API references to later resolve simple names to their FQN from
a large dataset of over 200,000 records. Similarly, LiFUSO, our feature ex-
traction approach, can uncover features offered by a library from a dataset
containing more than 10,000 code snippets.

One of the advantages of data-driven tools is that the discovered patterns
may be used by most users. The learnt patterns might cover many of the use
cases, and may also reflect what is considered a “standard” by users. Another
advantage is that they might provide a solution (or an initial approxima-
tion) to problems where algorithm-based solutions fall short. For example,
algorithmic solutions to the incompleteness problem in SO code snippets are
limited to the information provided in the snippet. Data-driven solutions, on
the other hand, can take advantage of similar usages and propose a resolu-
tion for an incomplete API reference (e.g., RESICO).

Despite the mentioned advantages, data-driven approaches also have limita-
tions. Our two approaches are based on frequent patterns, therefore, a par-
ticular use case might not be found or resolved. An infrequent API method
might not be resolved by RESICO. Similarly, an infrequent feature might not
be extracted by LiFUSO. Another limitation of these approaches is their com-
putationally intensive training. Since the goal is to learn patterns from mas-
sive amounts of data, achieving it may be costly. Lastly, obtained models
might need to be re-trained whenever new data not initially considered in
the original training is ready to be processed. For RESICO and LiFUSO, this
might be needed when the API of a library has been updated with new fea-
tures and has been widely adopted by the developer community. Re-training
implies re-running our pipelines from scratch. To facilitate this process, we
have provided links to executable scripts. However, these scripts need to be
maintained and need to co-evolve with the data source (e.g., Stack Overflow
or GitHub APIs).

4 https://github.com/cvelazquezr/RESICO-LiFUSO

https://github.com/cvelazquezr/RESICO-LiFUSO

140 Chapter 7. Conclusion and Future Work

7.3 Future Work

This dissertation investigates two main lines of research as described in Chap-
ter 4 and Chapter 5. The first research line comprises the analysis of incom-
plete code snippets in general and API type resolution in particular. The
second research line comprises the automated uncovering of library features
from their API usage on Stack Overflow, where natural language text accom-
panies the code. We foresee future research in these two areas and discuss
their avenues in detail below.

7.3.1 API Type Resolution

Regarding API type resolution for incomplete code snippets, we envision
two possible directions for future work:

Hybrid API Type Resolution
One of the reasons for selecting Stack Overflow as our library information
source is the availability of natural language text related to code snippets
(cf. Chapter 2). The text enables us to assign a library feature name to each
mined API usage pattern. Additionally, in many cases, the surrounding text
provides hints about the API types used within the code snippets. For ex-
ample, they might indicate links to the API documentation, class or method
names within the code, or simply refer to the library name. Although some
approaches have been proposed to extract code from text [79, 80], we are not
aware of research further relating the extracted code information to API type
resolution. Future work could investigate improving API type resolutions
by emulating the manual process of users searching for references in the text
surrounding code snippets.

Other Cases of API Type Resolution
Developers often use code snippets to explain, through code, some concept
or feature. However, in many cases, these code snippets might lack refer-
ences to used fields, methods or classes. API type resolution using our ap-
proach might assist in finding missing references. Moreover, the automatic
analysis of Git diff files could benefit from our ability to analyse incomplete
code snippets. Approaches extracting incomplete code from video tutorials
[33, 99] may also benefit from our work. Finally, Discord and Slack bots may
also complete code snippets shared during discussions using our work.

7.3.2 Uncovering Library Features

In relation to automated library feature uncovering, we foresee five avenues
for future work:

Analysis of Features in the Library’s Architecture
The architecture of each library has been designed and implemented by their
maintainers. Features, as mentioned before, are named usage patterns from
the library API and are independent of its architecture. An interesting avenue
of research concerns the investigation of how features are dispersed across

7.4. Concluding Remarks 141

the library’s implementation. In this way, the architecture could be visualised
from the features’ perspective and depict how different modules relate to
each other.

Feature Lag
Different studies have investigated the technical lag of library version adop-
tion in source code [154, 155]. Library features often consist of multiple API
members, which might be adopted by developers at different speeds. Feature
lag might therefore, represent an interesting avenue for future work.

Feature Migration
Extracting named features from library API usage patterns opens up the pos-
sibility of comparing libraries, as demonstrated in Chapter 5. Similar features
from different libraries targetting the same application domain might be in-
terchangeable in the client’s code. Some existing work on library migration
[46, 67] might benefit from automatically mined feature descriptions.

Feature Co-Usage Analysis
Features may be used in client code alongside other features from the same
library or with those provided by different libraries. Future work may there-
fore investigate which libraries or library features are often used together in
client code.

Alternative Feature Extraction Sources
We selected Stack Overflow as the source of information for feature extrac-
tion in this dissertation. Future work may investigate alternative sources.
For example, library unit test cases or API usage within GitHub repositories.
This entails finding an equivalent for the natural language text available on
Stack Overflow. For library tests and GitHub repositories, these could be
comments, class and method names, the message of the commit that added
them, etc. Although not as rich as Stack Overflow’s text, these natural lan-
guage substitutes could also be valuable, especially considering the some-
times low quality of the text in SO posts.

7.4 Concluding Remarks

This dissertation presented approaches for automatically uncovering library
features based on their API usage. We believe our work can be used to im-
prove the library selection process for large software ecosystems. LiFUSO,
supported by the automatic API type resolution RESICO, realises this goal.
Currently, our work supports popular libraries from the Maven ecosystem;
however, we may target lesser-known libraries or other software ecosystems
in the future. To conclude the dissertation, we summarise our results.

First, we proposed RESICO which resolves missing FQNs for API types in
incomplete code snippets such as those found on Stack Overflow. RESICO
is essential to automatically analyse posts that lack import statements for
API types. Based the context surrounding an API usage, a machine learn-
ing classifier proposes the most likely FQN for the API usage. Our results

142 Chapter 7. Conclusion and Future Work

outperform the current state-of-the-art approach in most of the conducted
experiments. The analysis of ambiguous simple names of API types led us to
conclude that with sufficient vocabulary, similar usage contexts are the cause
of incorrect resolutions. Finally, RESICO supports any library as long as us-
age examples of this library exist that can serve to train the machine learning
classifier, so it can recommend a likely FQN given a similar context.

Second, we proposed LiFUSO which uncovers features from library API us-
age in Stack Overflow posts. LiFUSO mines library usage from Stack Over-
flow to gather examples and to extract their surrounding natural language
text. An unsupervised machine learning algorithm is used to form clusters
of API usage. A filtering process removes clusters without a clearly distin-
guished API usage pattern. The remaining clusters are then named to form
library features, by processing the natural language information in the corre-
sponding SO posts. The uncovered features are compared to those suggested
in tutorials and cookbooks of the libraries under analysis. Our results indi-
cate that LiFUSO is able to recommend similar features to those in tutorials
and cookbooks. Moreover, we also observed that most uncovered features
are found in GitHub client projects. Finally, LiFUSO is library-agnostic as
long as there exist API usages and related natural language descriptions.

Third, a combined approach is also proposed in this dissertation. To ex-
plore RESICO’s ability to assist LiFUSO in its uncovering of library features,
we analysed the training dataset of the former approach. Results indicate
that an alternative GitHub-based dataset covers more of the APIs of the li-
braries analysed by LiFUSO, and is therefore worthwhile to retrain RESICO
on. However, the newly collected dataset focuses only on the LiFUSO li-
braries which leads to a more restricted vocabulary. The vocabulary restric-
tion implies that the training process will result in a model that is more vul-
nerable to ambiguous simple names. Therefore, a rule-based classifier assists
RESICO with its resolutions by considering the characteristics of the answers
where the API usage occurs. The evaluation of the rule-based classifier shows
that it is able to determine the correctness of RESICO’s resolutions with a
high precision and recall. Supported by the rule-based classifier, RESICO
identifies additional Stack Overflow posts to be used as input to LiFUSO.
Moreover, the newly gathered posts allow LiFUSO to uncover additional li-
brary features and to improve those already suggested.

143

Appendix A

Appendix

25.79

35.79

39.11
41.36

43.25
45.47 46.49

47.1 48.32
50.31 50.95 51.15 51.41

51.94 52.38 52.75
53.13 53.75 53.92

54.3

1-352
1-704

1-1056
1-1408

1-1760
1-2112

1-2464
1-2816

1-3168
1-3520

1-3872
1-4224

1-4576
1-4928

1-5280
1-5632

1-5984
1-6336

1-6688
1-7037

0

10

20

30

40

50

Coverage Evolution Library: guava

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.1: API element coverage of the LiFUSO library
Guava from its dependent GitHub repositories.

144 Appendix A. Appendix

18.86

20.79

23.33
24.54

25.98
27.8 28.19 28.63

32.1 32.38
33.26 33.65 33.81

34.25 34.58 34.86 34.97
35.41 35.8 36.02

1-540
1-1080

1-1620
1-2160

1-2700
1-3240

1-3780
1-4320

1-4860
1-5400

1-5940
1-6480

1-7020
1-7560

1-8100
1-8640

1-9180
1-9720

1-10260

1-10791

0

5

10

15

20

25

30

35

Coverage Evolution Library: httpclient

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.2: API element coverage of the LiFUSO library Http-
Client from its dependent GitHub repositories.

25.77

29.7
31.1

32.57
34 34.45 34.78 35.1 35.65 36.34

36.92 37.61 37.83
38.22 38.57 38.81

55.35 55.53 55.57 55.74

1-260
1-520

1-780
1-1040

1-1300
1-1560

1-1820
1-2080

1-2340
1-2600

1-2860
1-3120

1-3380
1-3640

1-3900
1-4160

1-4420
1-4680

1-4940
1-5188

0

10

20

30

40

50

Coverage Evolution Library: jfreechart

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.3: API element coverage of the LiFUSO library
JFreeChart from its dependent GitHub repositories.

Appendix A. Appendix 145

40.61
43.09

46.04
48.52

50.06
51.24 51.83 52.3 52.3 53.01 53.13

54.19 54.43 54.43 54.9 54.9 55.61 55.96 56.08 56.32

1-474
1-948

1-1422
1-1896

1-2370
1-2844

1-3318
1-3792

1-4266
1-4740

1-5214
1-5688

1-6162
1-6636

1-7110
1-7584

1-8058
1-8532

1-9006
1-9478

0

10

20

30

40

50

Coverage Evolution Library: jsoup

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.4: API element coverage of the LiFUSO library JSoup
from its dependent GitHub repositories.

16.64

20.47
21.38 21.79

22.96
24.18 24.56

24.78 24.85 25.22
25.43 25.56 25.98

26.12 26.34
26.94 27.37

27.65 27.71 27.84

1-319
1-638

1-957
1-1276

1-1595
1-1914

1-2233
1-2552

1-2871
1-3190

1-3509
1-3828

1-4147
1-4466

1-4785
1-5104

1-5423
1-5742

1-6061
1-6366

0

5

10

15

20

25

Coverage Evolution Library: pdfbox

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.5: API element coverage of the LiFUSO library PDF-
Box from its dependent GitHub repositories.

146 Appendix A. Appendix

4.61
5.25 5.44

5.88

6.64
7.13

9.77
10.28

10.57 10.76
10.95 11.05

11.3 11.59 11.85
11.95 12.15

12.48 12.55

13.25

1-99
1-198

1-297
1-396

1-495
1-594

1-693
1-792

1-891
1-990

1-1089
1-1188

1-1287
1-1386

1-1485
1-1584

1-1683
1-1782

1-1881
1-1979

0

2

4

6

8

10

12

Coverage Evolution Library: poi-ooxml

Projects

A
PI

 C
ov

er
ag

e
(%

)

FIGURE A.6: API element coverage of the LiFUSO library POI-
OOXML from its dependent GitHub repositories.

147

Bibliography

[1] Toufique Ahmed, Premkumar Devanbu, and Vincent J Hellendoorn.
“Learning lenient parsing & typing via indirect supervision”. In: Em-
pirical Software Engineering 26 (2021), pp. 1–31.

[2] Samuel A. Ajila and Di Wu. “Empirical study of the effects of open
source adoption on software development economics”. In: Journal of
Systems and Software 80.9 (2007). Evaluation and Assessment in Soft-
ware Engineering, pp. 1517–1529. ISSN: 0164-1212. DOI: https : / /
doi . org / 10 . 1016 / j . jss . 2007 . 01 . 011. URL: https : / / www .
sciencedirect.com/science/article/pii/S0164121207000076.

[3] A A Al-Subaihin et al. “Clustering Mobile Apps Based on Mined Tex-
tual Features”. In: The 10th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (2016), pp. 1–10. DOI: 10.
1145/2961111.2962600.

[4] Miltiadis Allamanis, Hao Peng, and Charles Sutton. “A Convolutional
Attention Network for Extreme Summarization of Source Code”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 2091–
2100.

[5] Miltiadis Allamanis et al. “Suggesting Accurate Method and Class
Names”. In: Proceedings of the 2015 10th joint meeting on foundations of
software engineering. 2015, pp. 38–49.

[6] Uri Alon et al. “code2seq: Generating Sequences from Structured Rep-
resentations of Code”. In: arXiv preprint arXiv:1808.01400 (2018).

[7] Uri Alon et al. “code2vec: Learning Distributed Representations of
Code”. In: Proceedings of the ACM on Programming Languages 3.POPL
(2019), p. 40.

[8] Sven Amann et al. “A Systematic Evaluation of Static API-Misuse
Detectors”. In: IEEE Transactions on Software Engineering 45.12 (2019),
pp. 1170–1188. ISSN: 0098-5589. DOI: 10.1109/tse.2018.2827384.

[9] Giuliano Antoniol and Yann-Gaël Guéhéneuc. “Feature Identification:
A Novel Approach and a Case Study”. In: The 21st IEEE International
Conference on Software Maintenance (ICSM’05) (2005), pp. 357–366. DOI:
10.1109/icsm.2005.48.

[10] Maram Assi et al. “FeatCompare: Feature comparison for competing
mobile apps leveraging user reviews”. In: Empirical Software Engineer-
ing 26 (2021), pp. 1–38.

[11] Alberto Bacchelli et al. “Extracting Structured Data from Natural Lan-
guage Documents with Island Parsing”. In: 2011 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE 2011).
IEEE. 2011, pp. 476–479.

https://doi.org/https://doi.org/10.1016/j.jss.2007.01.011
https://doi.org/https://doi.org/10.1016/j.jss.2007.01.011
https://www.sciencedirect.com/science/article/pii/S0164121207000076
https://www.sciencedirect.com/science/article/pii/S0164121207000076
https://doi.org/10.1145/2961111.2962600
https://doi.org/10.1145/2961111.2962600
https://doi.org/10.1109/tse.2018.2827384
https://doi.org/10.1109/icsm.2005.48

148 Bibliography

[12] Sebastian Baltes et al. “SOTorrent: Reconstructing and Analyzing the
Evolution of Stack Overflow Posts”. In: The 15th International Confer-
ence on Mining Software Repositories (MSR 2018). 2018, pp. 319–330.

[13] Sebastian Baltes et al. “SOTorrent: Reconstructing and Analyzing the
Evolution of Stack Overflow Posts”. In: Proceedings of the 15th interna-
tional conference on Mining Software Repositories (MSR). 2018, pp. 319–
330. ISBN: 9781450357166. DOI: 10.1145/3196398.3196430. eprint:
1803.07311.

[14] Madeleine Bates. “Models of natural language understanding”. In:
Proceedings of the National Academy of Sciences 92.22 (1995), pp. 9977–
9982.

[15] Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. “A Struc-
tured Approach to Assess Third-Party Library Usage”. In: 28th IEEE
International Conference on Software Maintenance (ICSM). 2012, pp. 483–
492. DOI: 10.1109/ICSM.2012.6405311.

[16] Amine Benelallam et al. Maven central dependency graph. Nov. 2018.
DOI: 10.5281/zenodo.1489120. URL: https://doi.org/10.5281/
zenodo.1489120.

[17] Amine Benelallam et al. “The Maven Dependency Graph: A Temporal
Graph-Based Representation of Maven Central”. In: Proc. of the 16th
Int. Conf. on Mining Software Repositories (MSR). 2019.

[18] James Bergstra, Daniel Yamins, and David Cox. “Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimen-
sions for Vision Architectures”. In: International Conference on Machine
Learning. PMLR. 2013, pp. 115–123.

[19] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”.
In: Advances in neural information processing systems 24 (2011).

[20] Vishwanath Bijalwan et al. “KNN based Machine Learning Approach
for Text and Document Mining”. In: International Journal of Database
Theory and Application 7.1 (2014), pp. 61–70.

[21] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition
and Machine Learning. Vol. 4. 4. Springer, 2006.

[22] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Infor-
mation”. In: Transactions of the Association for Computational Linguistics
5 (2017), pp. 135–146. ISSN: 2307-387X.

[23] Ameni Bouaziz et al. “Short Text Classification Using Semantic Ran-
dom Forest”. In: International Conference on Data Warehousing and Knowl-
edge Discovery. 2014, pp. 288–299.

[24] Leo Breiman. “Random Forests”. In: Machine learning 45.1 (2001), pp. 5–
32.

[25] Markus M Breunig et al. “LOF: Identifying Density-Based Local Out-
liers”. In: The 2000 ACM SIGMOD International Conference on Manage-
ment of Data. 2000, pp. 93–104.

[26] Allan G Bromley. “Charles Babbage’s Analytical Engine, 1838”. In:
Annals of the History of Computing 4.3 (1982), pp. 196–217.

[27] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. “InferCode: Self-Supervised
Learning of Code Representations by Predicting Subtrees”. In: 2021

https://doi.org/10.1145/3196398.3196430
1803.07311
https://doi.org/10.1109/ICSM.2012.6405311
https://doi.org/10.5281/zenodo.1489120
https://doi.org/10.5281/zenodo.1489120
https://doi.org/10.5281/zenodo.1489120

Bibliography 149

IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE. 2021, pp. 1186–1197.

[28] Liang Cai et al. “BIKER: A Tool for Bi-information Source Based API
Method Recommendation”. In: Proceedings of the 27th Joint Meeting on
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE19). 2019, pp. 1075–1079.

[29] William E Carlson et al. “Introducing Ada”. In: Proceedings of the ACM
1980 annual conference. 1980, pp. 263–271.

[30] Francisco Charte et al. “Addressing imbalance in multilabel classifi-
cation: Measures and random resampling algorithms”. In: Neurocom-
puting 163 (2015), pp. 3–16.

[31] Haihua Chen et al. “A Comparative Study of Automated Legal Text
Classification using Random Forests and Deep Learning”. In: Informa-
tion Processing & Management 59.2 (2022), p. 102798.

[32] Noam Chomsky and David W Lightfoot. Syntactic Structures. Walter
de Gruyter, 2002.

[33] Nathan Cooper et al. “It Takes Two to Tango: Combining Visual and
Textual Information for Detecting Duplicate Video-Based Bug Reports”.
In: 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). IEEE. 2021, pp. 957–969.

[34] Corinna Cortes and Vladimir Vapnik. “Support-vector Networks”. In:
Machine learning 20.3 (1995), pp. 273–297.

[35] Chris Cummins et al. “PROGRAML: A Graph-based Program Rep-
resentation for Data Flow Analysis and Compiler Optimizations”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 2244–
2253.

[36] Barthélémy Dagenais and Laurie Hendren. “Enabling Static Analysis
for Partial Java Programs”. In: Proceedings of the 23rd ACM SIGPLAN
conference on Object-Oriented Programming Systems Languages and Ap-
plications. 2008, pp. 313–328.

[37] Barthélémy Dagenais and Martin P Robillard. “Recovering Traceabil-
ity Links between an API and Its Learning Resources”. In: Proceedings
- International Conference on Software Engineering. 2012, pp. 47–57. ISBN:
9781467310673. DOI: 10.1109/ICSE.2012.6227207.

[38] Belur V Dasarathy. “Nearest neighbor (NN) norms: NN pattern clas-
sification techniques”. In: IEEE Computer Society Tutorial (1991).

[39] Dario Di Nucci et al. “Detecting Code Smells using Machine Learn-
ing Techniques: Are We There Yet?” In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE. 2018, pp. 612–621.

[40] Yiwen Dong et al. “SnR: Constraint-Based Type Inference for Incom-
plete Java Code Snippets”. In: Proceedings of the 44th International Con-
ference on Software Engineering. 2022, pp. 1982–1993.

[41] Yael Dubinsky et al. “An Exploratory Study of Cloning in Industrial
Software Product Lines”. In: 2013 17th European Conference on Software
Maintenance and Reengineering. IEEE. 2013, pp. 25–34.

https://doi.org/10.1109/ICSE.2012.6227207

150 Bibliography

[42] Rehab El-Hajj and Sarah Nadi. “LibComp: An IntelliJ Plugin for Com-
paring Java Libraries”. In: The 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2020), pp. 1591–1595. DOI: 10.1145/3368089.
3417922.

[43] Yuxiang Gao, Yi Zhu, and Yu Zhao. “Dealing with imbalanced data
for interpretable defect prediction”. In: Information and Software Tech-
nology 151 (2022), p. 107016.

[44] Mohammad Ghafari, Konstantin Rubinov, and Mohammad Mehdi
Pourhashem K. “Mining unit test cases to synthesize API usage exam-
ples”. In: Journal of software: evolution and process 29.12 (2017), e1841.

[45] Herman Heine Goldstine, John Von Neumann, and John Von Neu-
mann. “Planning and coding of problems for an electronic computing
instrument”. In: (1947).

[46] Haiqiao Gu, Hao He, and Minghui Zhou. “Self-Admitted Library Mi-
grations in Java, JavaScript, and Python Packaging Ecosystems: A Com-
parative Study”. In: 2023 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). IEEE. 2023, pp. 627–638.

[47] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. “CodeKernel: A
Graph Kernel based Approach to the Selection of API Usage Exam-
ples”. In: The 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE) 00 (2019), pp. 590–601. DOI: 10.1109/ase.
2019.00061.

[48] Xiaodong Gu et al. “Deep API Learning”. In: Proceedings of the 2016
24th ACM SIGSOFT international symposium on foundations of software
engineering. 2016, pp. 631–642.

[49] Yao Guo et al. “What’s Inside My App?: Understanding Feature Re-
dundancy in Mobile Apps”. In: The 26th Conference on Program Com-
prehension (2018), pp. 266–276. DOI: 10.1145/3196321.3196329.

[50] Piyush Gupta, Nikita Mehrotra, and Rahul Purandare. “JCoffee: Us-
ing Compiler Feedback to Make Partial Code Snippets Compilable”.
In: 2020 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). IEEE. 2020, pp. 810–813.

[51] Emitza Guzman and Walid Maalej. “How Do Users Like This Feature?
A Fine Grained Sentiment Analysis of App Reviews”. In: The 22nd
International Requirements Engineering Conference (RE) (2014), pp. 153–
162. DOI: 10.1109/re.2014.6912257.

[52] Tracy Hall et al. “A systematic literature review on fault prediction
performance in software engineering”. In: IEEE Transactions on Soft-
ware Engineering 38.6 (2011), pp. 1276–1304.

[53] Nicolas Harrand et al. “API beauty is in the eye of the clients: 2.2 mil-
lion Maven dependencies reveal the spectrum of client-API usages”.
In: Journal of Systems and Software 184 (2022), p. 111134.

[54] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954), pp. 146–
162.

https://doi.org/10.1145/3368089.3417922
https://doi.org/10.1145/3368089.3417922
https://doi.org/10.1109/ase.2019.00061
https://doi.org/10.1109/ase.2019.00061
https://doi.org/10.1145/3196321.3196329
https://doi.org/10.1109/re.2014.6912257

Bibliography 151

[55] Johannes Härtel, Hakan Aksu, and Ralf Lämmel. “Classification of
APIs by Hierarchical Clustering”. In: The 26th International Conference
on Program Comprehension (ICPC). IEEE. 2018, pp. 233–23310.

[56] Marti A. Hearst et al. “Support Vector Machines”. In: Intelligent Sys-
tems and their applications 13.4 (1998), pp. 18–28.

[57] Jordan Henkel et al. “Code Vectors: Understanding Programs Through
Embedded Abstracted Symbolic Traces”. In: Proceedings of the 26th
Joint Meeting of European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE18). 2018,
pp. 163–174.

[58] Tin Kam Ho. “Random Decision Forests”. In: Proceedings of 3rd interna-
tional conference on document analysis and recognition. Vol. 1. IEEE. 1995,
pp. 278–282.

[59] Yuan Huang et al. “Towards Exploring the Code Reuse from Stack
Overflow during Software Development”. In: 30th IEEE/ACM Inter-
national Conference on Program Comprehension. 2022, pp. 548–559.

[60] Srinivasan Iyer et al. “Summarizing Source Code using a Neural At-
tention Model”. In: Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). 2016,
pp. 2073–2083.

[61] Yuan Jiang et al. “Hierarchical Semantic-Aware Neural Code Repre-
sentation”. In: Journal of Systems and Software 191 (2022), p. 111355.

[62] Thorsten Joachims. Learning to Classify Text using Support Vector Ma-
chines. Vol. 668. Springer Science & Business Media, 2002.

[63] George H John and Pat Langley. “Estimating Continuous Distribu-
tions in Bayesian Classifiers”. In: Proc. of the 11th Conf. on Uncertainty
in Artificial Intelligence (UAI95). 1995, pp. 338–345.

[64] Tetsuya Kanda et al. “Semi-Automatically Extracting Features from
Source Code of Android Applications”. In: IEICE Transactions on In-
formation and Systems E96.D.12 (2013), pp. 2857–2859. ISSN: 0916-8532.
DOI: 10.1587/transinf.e96.d.2857.

[65] Hong Jin Kang and David Lo. “Active Learning of Discriminative
Subgraph Patterns for API Misuse Detection”. In: IEEE Transactions
on Software Engineering 48.8 (2021), pp. 2761–2783.

[66] Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Vol. 344. John Wiley & Sons, 1990.

[67] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. “A Sys-
tematic Review of API Evolution Literature”. In: ACM Computing Sur-
veys (CSUR) 54.8 (2021), pp. 1–36.

[68] Peter Langfelder, Bin Zhang, and Steve Horvath. “Defining clusters
from a hierarchical cluster tree: the Dynamic Tree Cut package for R”.
In: Bioinformatics 24.5 (2008), pp. 719–720.

[69] Daniel Lehmann and Michael Pradel. “Finding the Dwarf: Recover-
ing Precise Types from WebAssembly Binaries”. In: Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 2022, pp. 410–425.

https://doi.org/10.1587/transinf.e96.d.2857

152 Bibliography

[70] Vladimir I Levenshtein et al. “Binary codes capable of correcting dele-
tions, insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8.
Soviet Union. 1966, pp. 707–710.

[71] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. “Support Vector Ma-
chines and Word2vec for Text Classification with Semantic Features”.
In: 2015 IEEE 14th International Conference on Cognitive Informatics &
Cognitive Computing (ICCI* CC). IEEE. 2015, pp. 136–140.

[72] Bin Lin et al. “Pattern-based Mining of Opinions in Q&A Websites”.
In: Proceedings of the 41st International Conference on Software Engineer-
ing (ICSE19). 2019, pp. 548–559.

[73] Chen Lin et al. “Improving Code Summarization with Block-wise Ab-
stract Syntax Tree Splitting”. In: 2021 IEEE/ACM 29th International Con-
ference on Program Comprehension (ICPC). IEEE. 2021, pp. 184–195.

[74] Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy.
“Optimal Thresholding of Classifiers to Maximize F1 Measure”. In:
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2014, pp. 225–239.

[75] Linfeng Liu et al. “Universal Representation for Code”. In: Advances
in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference,
PAKDD 2021, May 11–14, 2021, Proceedings, Part III. Springer. 2021,
pp. 16–28.

[76] Wenjian Liu et al. “Identifying change patterns of API misuses from
code changes”. In: Science China Information Sciences 64 (2021), pp. 1–
19.

[77] Adriaan Lotter et al. “Code Reuse in Stack Overflow and Popular
Open Source Java Projects”. In: 2018 25th Australasian Software Engi-
neering Conference (ASWEC). IEEE. 2018, pp. 141–150.

[78] Kien Luong, Ferdian Thung, and David Lo. “ARSearch: Searching for
API Related Resources from Stack Overflow and GitHub”. In: Proceed-
ings of the ACM/IEEE 44th International Conference on Software Engineer-
ing: Companion Proceedings. 2022, pp. 11–15.

[79] Kien Luong, Ferdian Thung, and David Lo. “Disambiguating Men-
tions of API Methods in Stack Overflow via Type Scoping”. In: 2021
IEEE International Conference on Software Maintenance and Evolution (IC-
SME). IEEE. 2021, pp. 679–683.

[80] Kien Luong et al. “ARSeek: Identifying API Resource using Code and
Discussion on Stack Overflow”. In: Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension. 2022, pp. 331–342.

[81] Minh-Thang Luong and Christopher D Manning. “Achieving Open
Vocabulary Neural Machine Translation with Hybrid Word-Character
Models”. In: arXiv preprint arXiv:1604.00788 (2016).

[82] Gjorgji Madjarov et al. “An extensive experimental comparison of
methods for multi-label learning”. In: Pattern recognition 45.9 (2012),
pp. 3084–3104.

[83] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery
Handbook. 2nd Edition. Springer, 2010.

Bibliography 153

[84] Christopher D Manning et al. “The Stanford CoreNLP natural lan-
guage processing toolkit”. In: The 52nd Annual Meeting of the Associa-
tion for Computational Linguistics: System Demonstrations. 2014, pp. 55–
60.

[85] Pedro Martins, Rohan Achar, and Cristina V Lopes. “50K-C: A dataset
of compilable, and compiled, Java projects”. In: 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR). IEEE.
2018, pp. 1–5.

[86] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and their Compositionality”. In: Proceedings of the 27th Annual Confer-
ence on Neural Information Processing Systems (NIPS13). 2013.

[87] Tomas Mikolov et al. “Efficient Estimation of Word Representations
in Vector Space”. In: arXiv preprint arXiv:1301.3781 (2013).

[88] Leon Moonen. “Generating Robust Parsers using Island Grammars”.
In: The 8th Working Conference on Reverse Engineering (2001), pp. 13–22.
DOI: 10.1109/wcre.2001.957806.

[89] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT press,
2012.

[90] Tam The Nguyen et al. “Learning API Usages from Bytecode: A Sta-
tistical Approach”. In: Proceedings of the 38th International Conference on
Software Engineering. 2016, pp. 416–427.

[91] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. “Map-
ping API Elements for Code Migration with Vector Representations”.
In: Companion to the Proceedings of the 38th International Conference on
Software Engineering (ICSE-C16). IEEE. 2016, pp. 756–758.

[92] Trong Duc Nguyen et al. “Exploring API Embedding for API Usages
and Applications”. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). 2017, pp. 438–449.

[93] Tung Thanh Nguyen et al. “Graph-based Mining of Multiple Object
Usage Patterns”. In: Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT symposium on
the Foundations of Software Engineering. 2009, pp. 383–392.

[94] Terence Parr. The Definitive ANTLR 4 Reference. The Pragmatic Book-
shelf, 2013, pp. 1–326.

[95] Hung Phan et al. “Statistical Learning of API Fully Qualified Names
in Code Snippets of Online Forums”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering (ICSE18). IEEE. 2018, pp. 632–
642.

[96] John C Platt. “Fast Training of Support Vector Machines using Sequen-
tial Minimal Optimization”. In: Support vector learning (1999), pp. 185–
208.

[97] Luca Ponzanelli. “Holistic Recommender Systems for Software Engi-
neering”. PhD thesis. Università della Svizzera italiana, Mar. 2017.

[98] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. “StORMeD: Stack
Overflow Ready Made Data”. In: The 12th International Working Con-
ference on Mining Software Repositories (MSR15). 2015.

https://doi.org/10.1109/wcre.2001.957806

154 Bibliography

[99] Luca Ponzanelli et al. “Automatic Identification and Classification of
Software Development Video Tutorial Fragments”. In: IEEE Transac-
tions on Software Engineering 45.5 (2019), pp. 464–488. ISSN: 19393520.
DOI: 10.1109/TSE.2017.2779479.

[100] Luca Ponzanelli et al. “Mining StackOverflow to Turn the IDE into a
Self-Confident Programming Prompter”. In: 11th Working Conference
on Mining Software Repositories, MSR 2014 - Proceedings (2014), pp. 102–
111. DOI: 10.1145/2597073.2597077.

[101] William H Press et al. Numerical Recipes 3rd edition: The Art of Scientific
Computing. Cambridge University Press, 2007.

[102] Jesse Read. “Scalable Multi-label Classification”. PhD thesis. Univer-
sity of Waikato, 2010.

[103] Jesse Read et al. “Classifier chains for multi-label classification”. In:
Machine learning 85.3 (2011), p. 333.

[104] Peter J Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and Ap-
plied Mathematics 20 (1987), pp. 53–65.

[105] Riccardo Rubei et al. “PostFinder: Mining Stack Overflow posts to
support software developers”. In: Information and Software Technology
127 (2020), p. 106367.

[106] CM Khaled Saifullah, Muhammad Asaduzzaman, and Chanchal K
Roy. “Learning from Examples to Find Fully Qualified Names of API
Elements in Code Snippets”. In: Proceedings of the 34th International
Conference on Automated Software Engineering (ASE19). 2019, pp. 243–
254.

[107] Yasubumi Sakakibara, Kazuo Misue, and Takeshi Koshiba. “Text clas-
sification and keyword extraction by learning decision trees”. In: Pro-
ceedings of 9th Conference on Artificial Intelligence for Applications (AIAI93).
1993, p. 466.

[108] Federica Sarro et al. “Feature Lifecycles as They Spread, Migrate, Re-
main, and Die in App Stores”. In: 2015 IEEE 23rd International require-
ments engineering conference (RE). IEEE. 2015, pp. 76–85.

[109] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas.
“On the Stratification of Multi-label Data”. In: Machine Learning and
Knowledge Discovery in Databases (2011), pp. 145–158.

[110] Faiz Ali Shah, Yevhenii Sabanin, and Dietmar Pfahl. “Feature-Based
Evaluation of Competing Apps”. In: The International Workshop on App
Market Analytics (2016), pp. 15–21. DOI: 10.1145/2993259.2993267.

[111] Kanish Shah et al. “A Comparative Analysis of Logistic Regression,
Random Forest and KNN Models for the Text Classification”. In: Aug-
mented Human Research 5.1 (2020), pp. 1–16.

[112] Ketan Rajshekhar Shahapure and Charles Nicholas. “Cluster Quality
Analysis Using Silhouette Score”. In: The 7th International Conference
on Data Science and Advanced Analytics (DSAA). IEEE. 2020, pp. 747–
748.

https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1145/2993259.2993267

Bibliography 155

[113] Qi Shen et al. “From API to NLI: A new interface for library reuse”. In:
Journal of Systems and Software 169 (2020), p. 110728. ISSN: 0164-1212.
DOI: 10.1016/j.jss.2020.110728.

[114] César Soto-Valero et al. “A comprehensive study of bloated depen-
dencies in the Maven ecosystem”. In: Empirical Software Engineering
26.3 (2021), pp. 1–44.

[115] Pascal Soucy and Guy W. Mineau. “A Simple KNN Algorithm for
Text Categorization”. In: Proceedings - IEEE International Conference on
Data Mining, ICDM (2001), pp. 647–648. ISSN: 15504786. DOI: 10.1109/
icdm.2001.989592.

[116] Karen Sparck Jones. “A statistical interpretation of term specificity
and its application in retrieval”. In: Journal of documentation 28.1 (1972),
pp. 11–21.

[117] Mervyn Stone. “Cross-validatory Choice and Assessment of Statisti-
cal Predictions”. In: Journal of the royal statistical society. Series B (Method-
ological) (1974), pp. 111–147.

[118] Siddharth Subramanian and Reid Holmes. “Making Sense of Online
Code Snippets”. In: IEEE International Working Conference on Mining
Software Repositories (2013), pp. 85–88. ISSN: 21601852. DOI: 10.1109/
MSR.2013.6624012.

[119] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. “Live
API Documentation”. In: Proceedings of the 36th International Conference
on Software Engineering (ICSE14). 2014, pp. 643–652. DOI: 10.1145/
2568225.2568313.

[120] Amann Sven et al. “Investigating Next Steps in Static API-Misuse De-
tection”. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE. 2019, pp. 265–275.

[121] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Matsumoto.
“The Impact of Class Rebalancing Techniques on the Performance and
Interpretation of Defect Prediction Models”. In: IEEE Transactions on
Software Engineering 46.11 (2018), pp. 1200–1219.

[122] Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. “CSnippEx: Au-
tomated Synthesis of Compilable Code Snippets from Q&A Sites”. In:
Proceedings of the 25th international symposium on software testing and
analysis. 2016, pp. 118–129.

[123] Bart Theeten, Frederik Vandeputte, and Tom Van Cutsem. “Import2vec
Learning Embeddings for Software Libraries”. In: Proceedings of the
16th International Conference on Mining Software Repositories (MSR19).
2019, pp. 18–28.

[124] Suresh Thummalapenta and Tao Xie. “PARSEWeb: A Programmer As-
sistant for Reusing Open Source Code on the Web”. In: Proceedings of
the twenty-second IEEE/ACM international conference on Automated Soft-
ware Engineering. 2007, pp. 204–213.

[125] Fuwei Tian and Christoph Treude. “Adding Context to Source Code
Representations for Deep Learning”. In: International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE. 2022, pp. 374–378.

https://doi.org/10.1016/j.jss.2020.110728
https://doi.org/10.1109/icdm.2001.989592
https://doi.org/10.1109/icdm.2001.989592
https://doi.org/10.1109/MSR.2013.6624012
https://doi.org/10.1109/MSR.2013.6624012
https://doi.org/10.1145/2568225.2568313
https://doi.org/10.1145/2568225.2568313

156 Bibliography

[126] Kristina Toutanova et al. “Feature-Rich Part-of-Speech Tagging with a
Cyclic Dependency Network”. In: Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American Chapter of the Associ-
ation for Computational Linguistics. 2003, pp. 252–259.

[127] Kristina Toutanvoa and Christopher D Manning. “Enriching the Knowl-
edge Sources Used in a Maximum Entropy Part-of-Speech Tagger”.
In: 2000 Joint SIGDAT conference on Empirical methods in natural lan-
guage processing and very large corpora. 2000, pp. 63–70.

[128] Christoph Treude and Martin P. Robillard. “Augmenting API Docu-
mentation with Insights from Stack Overflow”. In: Proceedings of the
38th International Conference on Software Engineering (ICSE16). 2016,
pp. 392–403.

[129] Grigorios Tsoumakas and Ioannis Katakis. “Multi-Label Classifica-
tion: An Overview”. In: International Journal of Data Warehousing and
Mining (IJDWM) 3.3 (2007), pp. 1–13.

[130] Grigorios Tsoumakas and Ioannis Vlahavas. “Random k-Labelsets:
An Ensemble Method for Multilabel Classification”. In: European con-
ference on machine learning. Springer. 2007, pp. 406–417.

[131] Gias Uddin, Foutse Khomh, and Chanchal K Roy. “Mining API usage
scenarios from Stack Overflow”. In: Information and Software Technol-
ogy 122 (2020), p. 106277.

[132] Dheeraj Vagavolu, Karthik Chandra Swarna, and Sridhar Chimalakonda.
“A Mocktail of Source Code Representations”. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE.
2021, pp. 1296–1300.

[133] Enrique Larios Vargas et al. “Selecting Third-Party Libraries: The Prac-
titioners’ Perspective”. In: The 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2020), pp. 245–256. DOI: 10.1145/3368089.3409711.
eprint: 2005.12574.

[134] Camilo Velázquez-Rodríguez, Eleni Constantinou, and Coen De Roover.
“LiFUSO: Uncovering Library Features from API Usage on Stack Over-
flow”. In: 38th IEEE International Conference on Software Maintenance
and Evolution, ICSME 2022, Limassol, Cyprus, October 03-07, 2022. IEEE,
2022.

[135] Camilo Velázquez-Rodríguez, Eleni Constantinou, and Coen De Roover.
“Uncovering Library Features from API Usage on Stack Overflow”.
In: 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2022, Hawaii, United States of America, March 15-
17, 2022. IEEE, 2022, pp. 207–217. DOI: 10.1109/SANER53432.2022.
00035. URL: https://doi.org/10.1109/SANER53432.2022.00035.

[136] Camilo Velázquez-Rodríguez and Coen De Roover. “MUTAMA: An
Automated Multi-label Tagging Approach for Software Libraries on
Maven”. In: The 20th International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE. 2020, pp. 254–258.

https://doi.org/10.1145/3368089.3409711
2005.12574
https://doi.org/10.1109/SANER53432.2022.00035
https://doi.org/10.1109/SANER53432.2022.00035
https://doi.org/10.1109/SANER53432.2022.00035

Bibliography 157

[137] Camilo Velázquez-Rodríguez, Dario Di Nucci, and Coen De Roover.
“A Text Classification Approach to API Type Resolution for Incom-
plete Code Snippets”. In: Science of Computer Programming 227 (2023).
DOI: 10.1016/j.scico.2023.102941. URL: https://doi.org/10.
1016/j.scico.2023.102941.

[138] Camilo Velázquez-Rodríguez and Coen De Roover. “Automatic li-
brary categorization”. In: ICSE ’20: 42nd International Conference on
Software Engineering, Workshops, Seoul, Republic of Korea, 27 June - 19
July, 2020. ACM, 2020, pp. 733–734. DOI: 10.1145/3387940.3392186.
URL: https://doi.org/10.1145/3387940.3392186.

[139] Jue Wang et al. “Mining Succinct and High-Coverage API Usage Pat-
terns from Source Code”. In: 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE. 2013, pp. 319–328.

[140] Ke Wang and Zhendong Su. “Blended, Precise Semantic Program Em-
beddings”. In: Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 2020, pp. 121–134.

[141] Yawen Wang et al. “Where is Your App Frustrating Users?” In: Pro-
ceedings of the 44th International Conference on Software Engineering. 2022,
pp. 2427–2439.

[142] Richard L Wexelblat. “History of Programming Languages”. In: Pro-
ceedings of the ACM SIGPLAN History of Programming Languages Con-
ference. 1981.

[143] Maurice V Wilkes et al. The Preparation of Programs for an Electronic
Digital Computer. 1958.

[144] L B Wilson and Robert G Clark. Comparative Programming Languages.
en. International Computer Science Series. Harlow, England: Long-
man Higher Education, 1988.

[145] Ian H Witten et al. “The WEKA Workbench. Online Appendix for
“Data Mining: Practical Machine Learning Tools and Techniques””.
In: Morgan Kaufmann. Elsevier Amsterdam, 2016.

[146] Di Wu et al. “Generating API tags for tutorial fragments from Stack
Overflow”. In: Empirical Software Engineering 26.4 (2021), p. 66.

[147] Ho Chung Wu et al. “Interpreting TF-IDF Term Weights as Making
Relevance Decisions”. In: ACM Transactions on Information Systems (TOIS)
26.3 (2008), pp. 1–37.

[148] Tao Xie and Jian Pei. “MAPO: Mining API Usages from Open Source
Repositories”. In: Proceedings of the 2006 international workshop on Min-
ing software repositories. 2006, pp. 54–57.

[149] Baoxun Xu et al. “An Improved Random Forest Classifier for Text Cat-
egorization”. In: JCP 7.12 (2012), pp. 2913–2920.

[150] Di Yang, Aftab Hussain, and Cristina Videira Lopes. “From Query
to Usable Code: An Analysis of Stack Overflow Code Snippets”. In:
2016 IEEE/ACM 13th Working Conference on Mining Software Reposito-
ries (MSR). IEEE. 2016, pp. 391–401.

[151] Di Yang et al. “Stack Overflow in Github: Any Snippets There?” In:
2017 IEEE/ACM 14th International Conference on Mining Software Repos-
itories (MSR). IEEE. 2017, pp. 280–290.

https://doi.org/10.1016/j.scico.2023.102941
https://doi.org/10.1016/j.scico.2023.102941
https://doi.org/10.1016/j.scico.2023.102941
https://doi.org/10.1145/3387940.3392186
https://doi.org/10.1145/3387940.3392186

158 Bibliography

[152] Xin Ye et al. “From Word Embeddings To Document Similarities for
Improved Information Retrieval in Software Engineering”. In: Pro-
ceedings of the 38th International Conference on Software Engineering. 2016,
pp. 404–415.

[153] Ahmed Zerouali, Camilo Velázquez-Rodríguez, and Coen De Roover.
“Identifying Versions of Libraries used in Stack Overflow Code Snip-
pets”. In: The 18th International Conference on Mining Software Reposito-
ries (MSR). IEEE. 2021, pp. 341–345.

[154] Ahmed Zerouali et al. “A formal framework for measuring technical
lag in component repositories—and its application to npm”. In: Jour-
nal of Software: Evolution and Process 31.8 (2019), e2157.

[155] Ahmed Zerouali et al. “An Empirical Analysis of Technical Lag in
npm Package Dependencies”. In: International Conference on Software
Reuse. Springer. 2018, pp. 95–110.

[156] Ahmed Zerouali et al. “On the Diversity of Software Package Popu-
larity Metrics: An Empirical Study of NPM”. In: The 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE. 2019, pp. 589–593.

[157] Fengyi Zhang et al. “A hybrid code representation learning approach
for predicting method names”. In: Journal of Systems and Software 180
(2021), p. 111011.

[158] Jian Zhang et al. “A Novel Neural Source Code Representation Based
on Abstract Syntax Tree”. In: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE). IEEE. 2019, pp. 783–794.

[159] Tianyi Zhang et al. “Analyzing and Supporting Adaptation of Online
Code Examples”. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE. 2019, pp. 316–327.

[160] Tong Zhang and Frank J Oles. “Text Categorization based on Regular-
ized Linear Classification Methods”. In: Information retrieval 4.1 (2001),
pp. 5–31.

[161] Yingying Zhang and Daqing Hou. “Extracting Problematic API Fea-
tures from Forum Discussions”. In: The 21st International Conference on
Program Comprehension (ICPC). IEEE. 2013, pp. 142–151.

[162] Hao Zhong and Hong Mei. “An Empirical Study on API Usages”.
In: IEEE Transactions on Software Engineering 45.4 (2019), pp. 319–334.
ISSN: 0098-5589. DOI: 10.1109/tse.2017.2782280.

[163] Hao Zhong and Xiaoyin Wang. “Boosting Complete-Code Tool for
Partial Program”. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2017, pp. 671–681.

https://doi.org/10.1109/tse.2017.2782280

	Abstract
	Samenvatting
	Acknowledgements
	Introduction
	Problem Statement
	Overview of the Approach
	Contributions and Supporting Publications
	Outline of the Dissertation

	Background
	API Usages in Library Documentation, Messaging Platforms and Q&A Fora
	Stack Exchange and SOTorrent Stack Overflow Dataset Dumps
	Text Transformation into their Vector Representation
	TF-IDF
	Word2Vec

	Text Classification as a Natural Language Processing Problem
	Text Classification
	Machine Learning Algorithms Used for Text Classification
	K-Nearest Neighbours
	Random Forest
	Ridge Linear Classifier
	Support Vector Machines
	Multi-label Classification Algorithms

	Part-Of-Speech Tagging
	Hierarchical Clustering
	Static and Dynamic Tree Cutting

	State of the Art
	Development Tools Incorporating Stack Overflow Information
	Program Analyses for Stack Overflow Code Snippets
	Embeddings for Source Code Analysis
	Library Usage Comprehension
	Feature Uncovering
	API Usage Analysis

	Limitations and Opportunities for Improvement
	Current Limitations in API Type Resolution
	Current Limitations in API Feature Discovery

	Conclusion

	API Type Resolution for Incomplete Code Snippets on Stack Overflow
	Introduction
	Motivation
	RESICO: A Type Resolution Approach for Incomplete Code Snippets
	A Prime on RESICO
	An Overview of Eclipse JDT for Facts Extraction
	Training Process
	Resolution Process
	Providing Top-K Recommendations

	Evaluation
	Datasets Collection
	Internal Dataset
	External Datasets

	RQ1. What are the best hyperparameter combinations for the classifiers used within RESICO?
	RQ2. How well do COSTER and the RESICO classifiers perform on instances extracted from the dataset used for training?
	RQ3. What is the performance of the COSTER and RESICO classifiers when evaluated on unseen datasets?
	RQ4. How much time is needed to train COSTER and the RESICO classifiers?
	RQ5. To what extent do ambiguities in simple names influence the performance of the approaches?

	Discussion
	Context-based Approaches to API Type Resolution
	Limitations
	Potential Impact

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Conclusion Validity

	Conclusion

	Uncovering Library Features from Stack Overflow Posts
	Introduction
	Motivation
	Support for Comparing Libraries
	Support for Exploring Ecosystems

	AutoCat: Automatic Library Categorisation
	Evaluation
	Limitations of Category-based Approaches to Feature Uncovering

	MUTAMA: Multi-label Library Tagging
	Evaluation
	Discussion
	Limitations of Tag-based Approaches for Features Discovery

	LiFUSO: An Approach to Discover Features from API Usages on Stack Overflow
	Data Collection (Steps 1-3)
	Data Processing (Steps 4-5)
	Data Transformation (Steps 6-8)
	Clustering, Selecting and Naming (Steps 9-11)

	Instantiation of the LiFUSO Approach
	Implementation
	Graphical User Interface

	Evaluation
	Selection of Libraries
	Features Terminology
	RQ1. Which combination of SO answer attributes produces the most cohesive clusters?
	RQ2. How similar are the automatically uncovered features to documented tutorial features?
	RQ3. To what extent do the uncovered features that do not match documented tutorial features correspond to actual API usage in client projects?

	Discussion
	Clusters as Features
	Limitations
	Potential Impact
	Case Study

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Conclusion Validity

	Conclusion

	Uncovering Library Features based on Resolved Code Snippets
	Introduction
	GitHub API Usages as RESICO Training Data
	Extending the LiFUSO Dataset with Additional SO Posts
	Part I: Extraction of GitHub Data and Re-Training of RESICO
	Part II: Library Usage Determination and Relatedness Rule Learning

	Evaluation
	Datasets Collection
	RQ1. How well does the rule-based classifier perform on the manually labelled dataset?
	Rule-based Model Application on the Manually-labelled Dataset
	RQ2. What is the impact of the new SO answer dataset on the features uncovered by LiFUSO?

	Discussion
	Newly Discovered Features
	Limitations

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion

	Conclusion and Future Work
	Summary
	Contributions
	RESICO: API Resolution for Incomplete Code Snippets
	LiFUSO: Uncovering Library Features from their Stack Overflow Usage
	Feature Uncovering on Resolved Code Snippets
	Advantages and Limitations of Data-Driven Approaches

	Future Work
	API Type Resolution
	Uncovering Library Features

	Concluding Remarks

	Appendix
	Bibliography

