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Abstract—Infrastructure as Code is an emerging paradigm to
automate the configuration of cloud infrastructures. Infrastruc-
ture code often processes secret information, such as passwords
or private keys. Mishandling such secrets can lead to information
disclosure vulnerabilities, yet existing efforts to detect them rely
on pattern matching of parameter and variable names, causing
false positives and negatives due to suboptimal string patterns.

This paper aims to address these limitations by assessing
the effectiveness of traditional Machine Learning (ML) and
transformer-based Language Model (LM) classifiers to predict
sensitive module parameters in Ansible, one of the most popular
IaC tools. We collect a dataset of over 160,000 Ansible module pa-
rameters and their documentation, containing more than 16,000
parameters that expect secret data. Then, we train several ML
algorithms and find that the Random Forest algorithm performs
best, achieving 93.5% precision but limited recall (72.7%). In
parallel, we evaluate multiple pretrained zero-shot language
models, which achieve a recall of up to 90.4% at the expense
of a lower precision of up to 88.5%. We subsequently fine-tune
the language models, resulting in nearly perfect precision (99.8 %)
and recall (99.8%) on the ground truth dataset.

We compare the best performing ML and LM classifiers to two
baselines that use string patterns. We find that the ML classifier
achieves a performance comparable to the two baselines, while
the fine-tuned LM outperforms all approaches. A qualitative
comparison reveals that the approaches are complementary to
the baselines, motivating future work to use prediction models
to reduce false positives in reports generated by inexpensive
baselines. However, we also find that the fine-tuned LM misses
several secrets caused by noise in the dataset, highlighting the
importance of fine-tuning on a high-quality ground truth.

Index Terms—Infrastructure as Code, Ansible, Language Mod-
els, Machine Learning, Secrets, Security

I. INTRODUCTION

Infrastructure as Code (IaC) [1] has emerged as an important
practice to automate the deployment of cloud-based server
infrastructures. Configuration management is a central aspect
of IaC, enabling developers to codify the configuration of
their servers in machine-readable code, including creating user
accounts, installing software packages, configuring databases,
etc. Such practices are supported by several tools, among
which Ansible is one of the most popular currently [2], [3].

Infrastructure code frequently handles security-sensitive se-
cret data, such as passwords to create user accounts, private

keys for SSL certificates, and authentication tokens to cloud
providers. Naturally, this sensitive information should be kept
secret. Nonetheless, developers may embed secrets as plain
text into their Ansible code, often referred to as “hardcoded
secrets” [4], which has already caused services to be deployed
with publicly-known passwords [5]. Moreover, even when
secrets are protected in the infrastructure code, they need
to be passed as parameters to Ansible modules that carry
out the required configuration on the target infrastructure.
These modules generally log their invocations and parameter
values to log files, and must thus ensure not to expose the
secrets in doing so. To support this, Ansible provides no_Ilog
annotations to designate sensitive parameters, i.e., those that
accept secret values, which prevents their values from being
logged. However, module developers may forget to add these
designations, which has already caused numerous information
disclosure vulnerabilities [6]—-[10].

A number of approaches have been introduced to prevent
these issues. Researchers have proposed security smell detec-
tors for IaC tools [4], [11]-[13], which, among others, detect
hardcoded secrets in infrastructure code. Ansible also provides
a “sanity check” tool to module developers that, among others,
scans for missing no__1og designations. Both of these identify
secret data by matching variable and parameter identifiers
against predetermined string patterns, checking for tokens such
as “password”, “auth”, etc. However, these patterns may be
incomplete, causing data to be reported incorrectly as secret
(false positives) and actual secrets to be missed (false nega-
tives). In fact, suboptimal string patterns are a leading cause
of low precision and recall in hardcoded secret detection [11].

Prior work has shown that Machine Learning (ML) ap-
proaches outperform string patterns at identifying security-
relevant methods, such as those processing sensitive informa-
tion, when using features such as method names and signa-
tures [14], [15]. Therefore, we expect that a similar approach
can alleviate the inaccuracies of string patterns in Ansible
secret detection. In fact, Ansible module parameters are often
accompanied by natural language documentation, which may
help identify sensitive parameters. Beyond traditional Machine
Learning, approaches using transformer-based Language Mod-
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- name: Configure user account

user:
name: admin
password: !vault |
SANSIBLE_VAULT;1.1;AES256
62323364373 ..

Listing 1: Example Ansible task that configures a user account.

els (LMs), a class of deep learning models relying on the
attention mechanism [16] to process sequences of text, have
been shown to excel at tasks involving Natural Language
Processing (NLP) [16]-[18]. LMs are able to capture se-
mantic information, such as contextual usage, synonyms, and
latent relationships between tokens. Considering the potential
complexity of natural-language parameter documentation, we
expect LMs to perform well at identifying sensitive Ansible
parameters based on their names and descriptions.

To investigate these hypotheses, in this paper, we assess
the capability of several ML and LM classifiers to identify
sensitive Ansible parameters. First, we collect a ground truth
comprising over 16,500 sensitive parameters and more than
145,000 non-sensitive parameters. We then train and evaluate a
set of ML models as well as multiple zero-shot and fine-tuned
pretrained LMs. Afterwards, we compare these approaches
against two baselines, one replicating the sanity check included
in Ansible, the other replicating the secret detection approach
used by a state-of-the-art security smell detector [11].

In summary, this paper makes the following contributions:

o We propose leveraging parameter documentation in addi-
tion to merely parameter names in the identification of
potentially-sensitive Ansible module parameters.

« We extensively evaluate ML and transformer-based LM clas-
sifiers on predicting sensitive Ansible module parameters.

o We conduct manual reviews of model misclassifications, and
a qualitative comparison of the proposed approaches.

All of our data, models, and analysis scripts are available
in an online replication package [19].

II. BACKGROUND

Ansible practitioners write fasks that specify the desired
state of a server’s configuration, such as user accounts, file
contents, and installed packages. Listing 1 depicts an example
of such a task that declares the desired state of a user account.
A task invokes a module, which is a program that is uploaded
to and executed on the host under configuration and aligns
its state with the desired state [20]. Modules take parameters
that specify this desired state. For instance, Listing 1 invokes
the user module (lines 2-6), providing values for its name
(line 3) and password (line 4-6) parameters, the latter being
encrypted using ansible-vault. Modules are bundled
into topical collections distributed via Ansible’s Galaxy reg-
istry! [21], such as community.docker for modules interacting
with Docker, or ansible.windows for Windows automation.

Most modules are written as Python scripts and follow
a conventional structure, as exemplified in Listing 2. This

Thttps://galaxy.ansible.com/

DOCUMENTATION = """ .
options:
name:
description:
password:

description:
wun

Name of the user to manage.

Password of the user.

from ansible.module_utils.basic import AnsibleModule

# module functions
def main() :
module = AnsibleModule (

argument_spec=dict (
name=dict (type='str', required=True),
password=dict (type='str', no_log=True),
# more parameters...
) 4
)

# ...module Iimplementation...
Listing 2: Conventional structure of an Ansible module.

structure embeds documentation as a global constant, describ-
ing the module and its parameters. Moreover, these Python
modules often use the AnsibleModule abstraction provided
by Ansible, which offers many utilities, including parsing and
validating arguments according to an argument specification.
Lines 17-21 of Listing 2 exemplify part of the argument
specification for the user module, specifying that it accepts
the name and password parameters, that the former is
required, and that both are expected to be strings.
Importantly, the password parameter is marked as
no_log, signifying to AnsibleModule that its value is
secret and must not be logged. This is necessary because
AnsibleModule logs every invocation of the module to a
log file on the configured server. This log file can be read by
anyone with file system access to the server, even those who
do not have access to the automation code or its secret values.
For instance, consider the case where two users, who must
not know each other’s passwords, are created using the user
module. If the no_log designation had been omitted on
user’s password parameter, their passwords would have
been logged to a file readable by both, thereby revealing
their private information to one another. It is thus crucial
that parameters whose values may be secret are marked
appropriately to prevent information disclosure vulnerabilities.

III. APPROACH

To assess the applicability of ML and LM approaches in
detecting sensitive Ansible module parameters, our study aims
to answer the following research questions:

+« RQq: How accurate are traditional ML approaches in
predicting sensitive parameters? In this RQ, we train and
evaluate several traditional ML classifiers to assess how
accurately they predict sensitive Ansible module parameters.
e RQ;: How accurate are transformer-based LM ap-
proaches in predicting sensitive parameters? To answer
this RQ, we evaluate the accuracy of multiple pretrained and
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fine-tuned transformer-based LM classifiers in predicting
sensitive parameters.

e RQ3: How do ML and LM approaches compare to
approaches based on string patterns? Having evaluated
both traditional ML and LM classifiers, we compare the
performance of the best classifiers from RQ; and RQ;
against two baseline approaches that are based on predefined
string patterns. This comparison will reveal whether the
classifiers provide benefits in practice.

e RQ4: Do the approaches find secrets in unannotated
parameters? Finally, we apply the best classifiers and
the baseline approaches to unannotated data to investigate
whether they can uncover previously-unknown secrets.

A. Data Collection

Training and evaluating the models requires a dataset of An-
sible module parameters, annotated with whether they accept
secrets. To this end, we rely on no_1og annotations (cf. Sec-
tion II) specified by Ansible module developers. To collect this
dataset, we build upon the dataset constructed by Opdebeeck et
al. [21], comprising 188 high-quality collections from Ansible
Galaxy. We first extract all modules, their parameters, and their
documentation (Section III-A1). Afterwards, we combine the
documentation and argument specifications, yielding a dataset
of annotated Ansible module parameters (Section III-A2).

1) Extracting module parameters and documentation: Ta-
ble I summarises the different steps in the collection process.

First, based on the collections’ directory structure, we
identify 11,956 unique modules across 161 collections. We
manually inspected the remaining 27 collections to verify
that they contain no modules. We omit 181 modules not
written in Python, which thus do not follow the conventional
structure (cf. Section II), and 1009 modules without any
implementation, which therefore cannot contain parameters.

Subsequently, we extract the documentation and argument
specification® (cf. Section II) for the remaining 10,766 mod-
ules using Ansible’s internal “module validator”. This com-
ponent is used by Ansible’s sanity checks to validate a mod-
ule’s implementation against best practices, including marking
sensitive parameters with no_1og. The module validator per-
forms dynamic analysis to extract the argument specifications
through introspection and patching the Ansible module imple-
mentation, yielding the module’s parameter names, types, and
other constraints. Moreover, it extracts and parses documenta-
tion from the module implementations. We successfully extract
this information for 10,248 modules in 146 collections. The
module validator failed to process the remaining modules for
various reasons, such as missing dependencies and malformed
documentation. We omit a further 107 parameterless modules
and 37 modules whose documentation is empty. Finally, we
omit 2 modules that contain documentation and parameters,
but do not document their parameters.

2) Combining argument specifications and documentation:
We continue by extracting individual module parameters

2 Ansible incorrectly refers to parameters as “arguments”.

TABLE I: Dataset filtering stages and resulting dataset sizes.

Step Plugins Coll.  APlugins
All modules 11,956 161 0
Python modules 11,775 161 -181
Non-empty modules 10,766 154 -1009
Processable modules 10,248 146 -518
Modules with parameters 10,141 144 -107
Modules with documentation 10,104 143 -37
Modules with documented parameters 10,102 142 -2

TABLE II: Ground truth of sensitive parameters.

Parameter type no_1log value Count
Explicitly secret no_log = True 16,509
Explicitly non-secret no_log = False 1213
Implicitly non-secret ~ Default, but no_log present in module 145,215

from the modules’ argument specifications and documentation.
From the argument specifications, we extract 190,941 param-
eters and their basic information, such as their name, expected
type, any default value, and crucially, whether they are secret
(no_log = True). From the documentation, we extract
211,707 parameter names and their description, ignoring 252
parameters whose description is empty. In both cases, we
recursively flattened parameters with nested options, as the
nested options can individually be marked as secrets.

We then combine both sources based on the module and
parameter names. However, 33,802 documented parameters
could not be matched against entries in the argument spec-
ifications. Similarly, 13,036 parameters extracted from the
argument specification could not be matched to documentation
entries. These entries were subsequently ignored. Therefore,
our final dataset comprises 177,905 parameters along with
their specifications and textual descriptions. Of these parame-
ters, 16,509 are marked as secret, 1213 are explicitly marked
as non-secret, and the remaining 160,183 have no no_log
value set and are thus implicitly non-secret.

Howeyver, this classification exhibits some issues. First, the
explicit non-secret designations are likely meant to suppress
false alarms raised by Ansible’s built-in sanity checks, so
solely using the explicit designations as the ground truth may
not generalise well. Second, although the parameters without
a no_log value set are implicitly non-secret, it is impossible
to know whether developers consciously chose to apply the
default or whether the parameters are in fact sensitive and
developers overlooked this designation. As a heuristic, we
use the presence of an explicit no_log designation on any
other parameter in the module as indicative of developers
having scrutinised their module for sensitive parameters. We
consider unmarked parameters in those modules as implicitly
non-secret, amounting to 145,215 parameters. The remaining
14,968 parameters, which are part of modules of which no
parameters are marked as sensitive, are considered unknown.
Our final ground-truth dataset is summarised in Table II.

B. RQ;: Traditional ML to Predict Sensitive Parameters

This section presents the research method followed to an-
swer RQq. Our ML classifier training and evaluation pipeline



covers feature extraction and selection (if applicable), data
balancing, model validation, and model selection.

1) Tokenization and feature extraction: As a first step,
we need to convert the textual input to numerical vectors
for each independent textual variable separately, i.e., the
name, description, and type of the parameters. We preprocess
this data by replacing missing values with empty strings
and removing English stopwords using the NLTK stopword
list. Then, we experiment with two widely used approaches:
COUNTVECTORIZER? and WORD2VEC*.

COUNTVECTORIZER converts text into sparse high-
dimensional vectors based on token frequency. We tokenise
words using a regular expression that preserves alphabetic and
underscore-containing tokens with at least two characters. We
transform the resulting token counts into fixed-length sparse
vectors, where each dimension corresponds to the frequency
of a token in the vocabulary learned from the training set.

For WORD2VEC, we train a Skip-gram model using the
Gensim library on the preprocessed dataset, configured with
a vector_size of 100, a context_window of 2, and a
minimum word_frequency threshold of 2. For each input,
we compute the sentence embedding by averaging the vector
representations of all known tokens in the text. If no known
tokens are available (e.g., due to out-of-vocabulary words), we
use a zero vector as a fallback. We concatenate the resulting
vectors of each attribute to form a unified input representation.

2) Feature selection: Given the high dimensionality of the
representations generated by COUNTVECTORIZER, we apply
a feature selection step to retain only the most informative fea-
tures [22]. Specifically, we compute mutual information scores
via mutual_info_regression from SCIKIT-LEARN to
evaluate the dependency between each token feature and the
target variable. We discard features with a score below 0.005,
sort the remaining features by their importance, and use them
to train the classifiers. This analysis allows us to measure the
benefit certain predictors provide to the models.

3) Data balancing: Class imbalance is a major obstacle for
proper classification by supervised learning algorithms [23].
This is particularly true for our dataset, as sensitive parameters
represent only a small fraction of all annotated instances. To
mitigate class imbalance, we experiment with two widely used
data balancing techniques: Random Undersampling and Ran-
dom Oversampling. The former randomly removes instances
from the majority class to balance the class distribution, which
can reduce training time and mitigate bias, but can lead to
losing valuable information. The latter balances the dataset by
randomly replicating instances from the minority class. While
random oversampling may increase the risk of overfitting due
to duplication, we found it to be effective and computationally
inexpensive in our setup. We do not consider more complex
balancing techniques such as SMOTE or ADASYN, as we
need to maintain a lightweight pipeline in light of the training
time across multiple experimental configurations.

3https://scikit-learn.org/stable/modules/generated/sklearn. feature_
extraction.text.CountVectorizer.html
“https://www.tensorflow.org/text/tutorials/word2vec

4) Model validation: To assess the performance of the
resulting models, we use stratified 10-fold cross-validation
[24] on the dataset, which randomly partitions the data into
10 equally-sized folds and maintains the correct proportion
of sensitive and non-sensitive parameters in every split. It
iteratively selects a single fold as a test set while the other
9 are used for training.

5) Selecting Machine Learning algorithms: We experiment
with a set of classifiers of different families that have been
widely used in software defect prediction, configuration error
detection, and security smell identification [25]-[29]. The
goal of such extensive experimentation is to (i) understand
which machine learning algorithm excels at detecting sensitive
Ansible module parameters and to (ii) increase the generalis-
ability of our results. Concretely, we assess Support Vector
Machine [30] as a basic classifier, Random Forest [31] as
an ensemble technique, and K-Nearest Neighbors (KNN) as
a non-parametric method which classifies instances based on
the majority class among the k closest training samples.

We systematically evaluate all combinations of tokenisation
strategies, data balancing techniques, and machine learning
algorithms. Each configuration is assessed using standard
metrics, namely precision, recall, accuracy, and FI-score.

C. RQ;: Language Models to Predict Sensitive Parameters

This section describes the research method used to answer
RQ,. We evaluate several pretrained transformer-based lan-
guage models (LMs) in both zero-shot and fine-tuned settings.

Pretrained models obviate the need for task-specific training,
instead leveraging extensive pretraining on diverse data. This
enables them to generalise to various tasks, including those
not part of their training data. Hugging Face® provides a wide
range of pretrained models for various use cases.

1) Zero-shot LMs: We select pretrained models from Hug-
ging Face’s “Natural Language Processing: Zero-Shot Clas-
sification” category, containing models that can classify text
without prior training on the specific categories. Specifi-
cally, we use the following models, representing the 5 most-
downloaded® models in this category:

« facebook/bart-large-mnli: A large BART model [32] fine-
tuned on the Multi-Genre Natural Language Inference
(MNLI) dataset [33].
MoritzLaurer/bge-m3-zeroshot-v2.0: A BGE-M3 model
[34] fine-tuned on 33 datasets (5 NLI and 28 non-NLI)
covering 389 different classes [35].

o MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli: A De-
BERTa model [36] fine-tuned on the MNLI [33], FEVER
[37], and ANLI [38] datasets.

o MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33: De-

BERTa model [36] fine-tuned on the previously-mentioned

33 datasets [35].

mjwong/e5-base-v2-mnli-anli: An E5 model [39] fine-

tuned on the MNLI [33] and ANLI [38] datasets.

Shttps://huggingface.co/
6As of March 15", 2025.
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All selected models are transformer-based language models
fine-tuned for natural language inference tasks, making them
appropriate for zero-shot classification tasks. We evaluate
these models on their ability to classify Ansible parameters
as either sensitive or non-sensitive using their specifications
and descriptions, by measuring the models’ precision, recall,
accuracy and FI-score on the entire dataset.

2) Fine-tuned LMs: Pretrained models can be further fine-
tuned to improve their performance on specific tasks through
transfer learning [40]-[42], which trains an existing model
on a smaller, task-specific dataset to learn task-specific pat-
terns. This requires fewer samples than training a model
from scratch, as the pretrained model already has a general
understanding of the language. Fine-tuning is common in NLP
and has been shown to significantly improve performance.

Several frameworks exist to fine-tune pretrained models. We
use Hugging Face’s Transformers’ as it provides a convenient
interface for training and evaluating models, facilitating exper-
imentation with different architectures and hyperparameters.

We apply supervised fine-tuning on the 5 pretrained models
selected for the zero-shot classification task. To this end, we
provide them the parameters’ name, argument specification
(type, default value, etc.) and description as input features,
and whether the parameter is sensitive as the feature to be
predicted. The input features are concatenated into a single
string, which is tokenised and converted into a numerical
vector representation. Likewise, the feature to be predicted is
converted to a binary representation, where sensitive parame-
ters are assigned 1, and non-sensitive parameters assigned 0.
Then, we train the models, adjusting the model’s parameters to
minimise the loss function. Due to class imbalance (cf. Sec-
tion III-B), we also experiment with Random Oversampling
and Random Undersampling of the dataset in addition to not
applying data balancing. Analogously to the ML models (cf.
Section III-B), we use stratified 10-fold cross-validation. We
evaluate the fine-tuned models by averaging precision, recall,
accuracy, and F1-score across all iterations of cross-validation.

D. RQj3: Comparing Classification Models Against Baselines

To assess the practical benefits of the ML and transformer-
based LM classifiers, we compare them against two baselines
that identify sensitive parameters using simple string patterns.
The first replicates Ansible’s “sanity check” for unannotated
sensitive parameters, whereas the second replicates the string
patterns used to detect hardcoded secrets in GASEL [11],
a state-of-the-art security smell detector for Ansible. Both
baselines test whether predefined security-related tokens (e.g.,
“pass” for passwords) appear in parameter names, and apply a
filter on the argument type (e.g., boolean values are unlikely to
be secret). However, they differ in the concrete string patterns
employed. We reimplement both checks within our experimen-
tal framework, basing ourselves on the most recent commit in
Ansible’s codebase and GASEL’s replication package.

We apply both baseline implementations to the parameters
in our ground truth dataset (cf. Table II) and calculate their

7https://huggingface.co/docs/transformers/en/index

precision, recall, accuracy, and FI-score. Then, we compare
these metrics to those achieved by the best-performing tradi-
tional ML (RQ;) and transformer-based LM (RQ,) classifiers.
Finally, we investigate the overlap between the different ap-
proaches to assess whether they discover the same or different
sets of sensitive parameters.

E. RQy: Classifying Previously-Unseen Parameters

Recall from Section III-A that 14,968 parameters are not
included in our ground-truth dataset, as we could not automat-
ically identify whether they are sensitive. They have therefore
not been used in the training or evaluation of classifiers and
baselines. Our final research question applies the best models
from RQq and RQ;, and the baselines from RQ3 on this set
of non-annotated parameters. We conduct a manual review of
all parameters flagged by any of the approaches, consulting
their documentation and the implementation of their respective
modules where necessary. This enables us to evaluate the
approaches’ performance on unseen data, and to potentially
uncover previously-unknown sensitive parameters.

IV. RESULTS

This section presents the results for each research question.

A. RQ;: Accuracy of the Machine Learning Classifiers

Training and evaluation of the various ML configurations
described in Section III-B was conducted on a DELL POW-
EREDGE R730 server, equipped with two INTEL XEON E5-
2637 processors, 256 GB of RAM and a 1.6 TB SSD. Due to
space constraints, we only discuss the best configuration and
refer to our replication package [19] for the remaining results.

COUNTVECTORIZER combined with the feature selection
step establishes the best configuration pipeline. Its perfor-
mance is summarised in Table III for the analysed ML
algorithms and data balancing techniques. We observe that the
Random Forest classifier without data balancing consistently
outperforms the other configurations, achieving the highest FI-
score (81.7%) and maintaining high precision (93.5%), recall
(72.5%), and accuracy (96.7%). This suggests that Random
Forest is robust against class imbalance in this specific setup.

We observe that using data balancing improves the recall
of all algorithms yet substantially decreases their precision,
overall leading to slightly lower FI-scores. Apart from KNN,
the choice between oversampling and undersampling seems
to have little impact. However, KNN combined with ran-
dom undersampling achieves a particularly poor FI-score of
43% and a precision of only 30%, showing its inability to
effectively capture the underlying patterns when significant
portions of the data are discarded. These results suggest
that applying data balancing to our problem domain can
result in a more balanced performance, whereas omitting
data balancing causes the models to learn more distinctive
patterns of sensitive parameters. Such considerations may
be important when integrating these approaches into tools,
as models trained without data balancing may report fewer
false alarms. Conversely, models trained with data balancing
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TABLE III: Performance comparison of ML algorithms for different balancing techniques. All scores are in percentages.

Model No Balancing Random Oversampling Random Undersampling
Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.
KNN 9525 65.06 7731 96.13 7542 72776  74.06  94.83 3045 77.38 43770 798
Random Forest 93.57 72.65 81.79 96.72 8292 7747 80.1 96.1 82.83 7747 80.06 96.09
SVM 9479  70.3 80.73  96.59 82.42 7743 79.85 96.04 8236 7747 79.82 96.03

TABLE IV: Selected features and mutual information scores.

Feature Score Feature Score
ansible_password 0.04301 axapi 0.00652
password 0.04025 generated 0.00652
authenticating 0.02522 azure 0.00641
ibm 0.01916 mutual 0.00610
provided 0.01615 based 0.00606
classic 0.01527 ansible_net_password 0.00596
infrastructure 0.01358 cred 0.00581
access_token 0.01337 avi_credentials 0.00569
ibmcloud_api_key 0.01311 collection_name 0.00563
ic_api_key 0.01311 aws 0.00552
iaas_classic_username 0.00849 vmware_password 0.00518
iaas_classic_api_key 0.00846 token 0.00518
softlayer 0.00845 log_mode 0.00515
argument 0.00735

may uncover more sensitive parameters at the expense of
more false positive reports. Overall, although data balancing
enhances recall and compensates for imbalanced distributions,
COUNTVECTORIZER combined with feature selection suffices
for Random Forest to achieve strong, stable results without
further adjustments, making it the most effective and reliable
ML configuration in this experimental setting.

Table IV reports the most relevant features extracted during
the feature selection step. We can observe terms such as
ansible_password, password, access_token, and
ibmcloud_api_key, which directly relate to credentials
and authentication. This suggests that the classifier has suc-
cessfully learned to associate semantic and lexical patterns
that are indicative of sensitive parameters. The appearance of
such features with high mutual information scores highlights
the model’s ability to identify relevant textual features even
when such parameters are not explicitly marked as sensitive
by developers. Additionally, several features refer to specific
cloud providers or infrastructure platforms, such as ibm,
azure, softlayer, and aws. These tokens likely reflect
the application domains in which sensitive parameters are fre-
quently used, e.g. cloud authentication workflows. Moreover,
terms like argument, authenticating, generated,
and log_mode suggest that the model is sensitive not only
to explicit secrets but also to contextual evidence about how
parameters are used within modules. These features may signal
behaviours or conditions under which secrecy is typically
required (e.g., authentication steps, logging configurations).

Answer to RQ;: The combination of COUNTVECTOR-
IZER, feature selection, no data balancing and Random
Forest achieves the highest precision (93.6%) and F1-score
(81.8%). Additionally, we observe that data balancing in-
creases recall but decreases precision.

B. RQ;: Accuracy of the Transformer-based LM Classifiers

The evaluation of the transformer-based language models
was performed on a system equipped with an AMD RYZEN
9 7950X 16-core processor, 128 GB of DDR5 RAM, and an
NVIDIA GEFORCE RTX 4090 GPU with 24 GB of VRAM.
Table V depicts the results for the zero-shot and fine-tuned
models, which we discuss in separate subsections.

1) Zero-shot performance: In the zero-shot setting, the
language models achieve high precision (84%—-89%) and high
recall (89%-91%). The Fl-scores (85%—-88%) highlight a
balanced precision and recall, while the accuracy (89%—
91%) shows that the models classify most parameters in the
dataset correctly. This indicates that the models are effective
at identifying most of the sensitive parameters in the dataset
while raising few false alarms. This also suggest that the pre-
trained models generalise well to the task of detecting sensitive
Ansible parameters, even without task-specific training.

The language models outperform the traditional machine
learning approaches, which achieved a maximum FI-score of
82% (cf. Table III). This demonstrates the effectiveness of
their attention mechanism [16] and their extensive pretraining
on diverse text corpora [17], which enable capturing complex
patterns and relationships in the data without needing task-
specific training. This in turn enables them to understand
the context and semantics of parameters, leading to improved
performance in detecting sensitive Ansible module parameters.

2) Fine-Tuned LLM Performance: Fine-tuning further im-
proves the precision and recall of the pretrained language
models. Specifically, most of the fine-tuned models achieve
precision, recall, Fl-score, and accuracy values above 98%.
We observe that data balancing has little impact on the
fine-tuned models’ performance, with random oversampling
slightly improving all metrics. The only exception is bart-
large-mnli fine-tuned with oversampling, whose precision and
recall decreased to 79.95% and 81.77%, respectively, which
is lower than the corresponding pretrained model.

Four of the models (bart-large-mnli, DeBERTa-base-mnli,
deberta-base-zeroshot and e5-base-v2-mnli-anli) achieve a
similar performance in the unbalanced fine-tuning setting, with
Fl-scores ranging between 99.76% and 99.80%. Their near-
perfect precision and recall indicate that they produce almost
no misclassifications. This shows that fine-tuning enables the
models to learn the specifics of the Ansible dataset, improving
their performance in identifying sensitive parameters.

Finally, we investigate which tokens carry the most impor-
tance in the classification task. To this end, we inspect the
tokens with the highest attention scores, which are calculated
by the language models’ attention mechanism [16] to assess
the importance of a given token for the task at hand. In our



TABLE V: Performance comparison

of zero-shot and fine-tuned transformer-based LMs. All scores are in percentages.

Model Zero-shot Fine-tuning (Under) Fine-tuning (Over) Fine-tuning (Unbalanced)

Prec. Rec. F1  Acc. Prec. Rec. Fl1  Acc. Prec. Rec. Fl  Acc. Prec. Rec. Fl Acc.
bart-large-mnli 84.62 89.27 85.81 89.27 99.37 99.33 99.34 99.33 79.95 81.77 80.12 81.77 99.79 99.79 99.79 99.79
bge-m3-zeroshot 87.35 90.13 87.13 90.13 99.19 99.13 99.15 98.13 99.82 99.82 99.82 99.82 97.89 98.80 98.32 98.80
DeBERTa-base-mnli 85.33 89.46 86.15 89.46 99.02 98.93 99.95 98.93 99.81 99.81 99.81 99.81 99.77 99.77 99.77 99.77
deberta-base-zeroshot 88.46 90.43 87.14 90.43 98.95 98.84 98.87 98.84 99.79 99.79 99.79 98.79 99.76 99.76 99.76 98.76
e5-base-v2-mnli-anli 87.51 90.15 86.56 90.15 99.19 99.13 99.14 99.13 99.81 99.81 99.81 98.81 99.80 99.80 99.80 98.80

TABLE VI: Most relevant tokens identified by the attention
mechanism of the fine-tuned deberta-base-zeroshot model.

Token Accumulative  Token Accumulative 80
Att. Score Att. Score

authentication 26703.14 target 10438.49 g

command 1567721 environment 9863.49 §

field 13139.85 password 9644.76 s

object 11843.74 name 9075.32

value 11123.35 state 8604.56

setting, this enables the language models to identify the tokens
that are more likely to indicate sensitive parameters, even if
the parameter names or descriptions do not follow conventions
or are embedded in complex linguistic structures. We calculate
the accumulative attention score as the sum of the attention
scores for each token across all layers of the model. We focus
on nouns, as they are more likely to describe parameters
in Ansible modules. Table VI depicts the 10 most relevant
nouns identified by the attention mechanism of the fine-tuned
deberta-v3-base-zeroshot-v1.1-all-33 model, one of the best
performing models (cf. Table V). Several relevant tokens
(e.g., authentication and password) directly relate to
authentication, whereas others are generic (e.g., command,
value, etc.) but may be necessary for the language model to
understand the context in which the parameters are used.

Answer to RQ,: Pretrained transformer-based language
models achieve high precision (84-89%) and recall (89—
91%). Fine-tuning the models enables them to achieve near-
perfect results, with FI-scores up to 99.8%.

C. RQj;: Comparison of the Approaches

RQ; and RQ; revealed that the Random Forest without
data balancing and the fine-tuned deberta-base-zeroshot
classifiers achieve the best performance as traditional ML and
transformer-based LM approaches. We compare their results
to two baseline approaches, namely Ansible’s sanity check
and GASEL'’s string patterns [11], which reported 14,548 and
11,355 sensitive parameters, respectively. Figure 1 compares
the precision, recall, and F1-score of the four approaches.

We observe that Ansible’s sanity check baseline achieves
lower precision but relatively high recall compared to the
GASEL baseline. This highlights a key difference between the
two baselines, namely that Ansible’s sanity check is aggressive
by aiming to identify as many sensitive parameters as possible,
whereas GASEL is conservative by attempting to avoid false
alarms. The performance of Random Forest is situated between
the two baselines, achieving precision on-par with GASEL
while almost matching the recall of Ansible’s sanity check.

100.0%
94.0%93.5%
88.5%

100.0%
96.8%96.0% 96.7%

20 Ansible sanity check
W GASEL string pattern
mm Random Forest
= Fine-tuned LM

Precision Recall F1 Accuracy

Fig. 1: Comparison of precision, recall, and FI-score for the
best-performing ML and LM approaches and baselines.
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Fig. 2: Overlap between parameters flagged by the approaches.

The fine-tuned deberta-base-zeroshot LM classifier outper-
forms all other approaches, achieving near-perfect precision
and recall on the ground truth dataset. The high precision yet
lower recall of the other approaches may indicate that many
sensitive parameters employ naming patterns or descriptions
that are difficult to distinguish from normal parameters without
the deep semantic understanding that language models offer.

Figure 2 summarises the number of overlapping reports
between the four approaches as a Venn diagram. It shows that
there is considerable overlap between the approaches, with
many parameters being reported by all approaches together.
On the other hand, the large number of reports originating
only from the baseline approaches or only from the prediction
models suggests that the approaches may be complementary
to one another. However, considering the high performance of
the language model and the lower precision of the baselines, it



is also possible that the reports that are unique to the baselines
are in fact false positives according to the ground truth dataset.
This will be investigated in more detail in Section V-B.

TABLE VII: Examples of misclassifications by the Machine
Learning model. (A = Actual value, P = Predicted value)

Answer to RQj3: The Random Forest model without data
balancing achieves performance comparable to the baselines,
whereas the fine-tuned language model outperforms all ap-
proaches. The approaches may complement one another.

D. RQy: Classifying Unseen Parameters

After running the baseline approaches and prediction mod-
els from RQj3; on the 14,968 unseen parameters, we obtain
241 unique new reports of potentially sensitive parameters,
with some parameters being reported by multiple approaches.
Specifically, the Random Forest model flags 224 parameters,
while 13, 8, and 4 parameters are reported by the language
model, the GASEL baseline, and the Ansible sanity check,
respectively. After manually reviewing these reports, we iden-
tified only 2 reports as correct, both for parameters partially
named pwd, with their documentation describing them as
passwords. Both parameters were reported by both the GASEL
baseline and the LM, but not by the Ansible sanity check
nor the Random Forest model. Considering that only 2 of the
14,968 unseen parameters were correctly flagged as secrets,
this strongly suggests that the modules in our dataset without
no_log annotations in fact contain no sensitive parameters.

We also identified several recurring reasons for false pos-
itives among the approaches. For instance, all approaches
reported parameters that took paths to files containing secrets.
Such paths are themselves not secret, yet the approaches
reported them as the parameter names did not sufficiently indi-
cate that the parameter expects a path (e.g., a parameter named
“private_key” instead of “private_key_path”). Sim-
ilarly, the approaches often struggled to distinguish public
from private cryptographic keys, with only the latter needing
to be secret. This suggests that improving Ansible module
parameter naming may further decrease false alarms.

Answer to RQ4: Only 2 new sensitive parameters are
detected by both the LM and the conservative baseline,
suggesting that Ansible module developers annotate most
sensitive parameters correctly as such.

V. DISCUSSION

In this section, we discuss the implications of our findings
and potential avenues for future research.

A. Manual Analysis of Misclassifications

To gain qualitative insights into the reason for misclassifi-
cations by the classifiers, we conducted a manual investigation
of their false positives and negatives against the ground truth.

1) Misclassifications of the ML classifier: Table VII reports
some examples of misclassifications by the best-performing
ML model, while our replication package [19] contains the
results for each single row classified.

We observed that false negatives were commonly caused
by descriptions that do not include any of the tokens reported

Param. Name Parameter Description AP
tls_psk_ TLS connection uses this PSK identity string. The T F
identity PSK identity string will be transmitted unencrypted
over the network. Therefore, you should not put any
sensitive information here. |[...]
radkey Authentication key (shared secret text string) for RA- T F
DIUS clients and servers to exchange. [...] Password
that is required for logging on to the server.
ospf_auth_ The authentication key for OSPFv2 authentication T F
text_key type text
access_key AWS access key ID. See the AWS documentation for F T
more information about access tokens. [...]
aggregate. Specifies one or more SSH public key(s) to configure F T
sshkey for the given username. This argument accepts a

valid SSH key value.

in Table IV and extracted during classification. The parameter
descriptions may use more generic terms, such as “sensitive
information” or “secret text” (cf. Table VII). The absence
of more details could lead the classifier to underestimate
their secrecy. Furthermore, some descriptions rely solely on
vendor-specific acronyms or protocols (e.g., “OSPFv2” or
“NXOS”) without including generic security keywords. For
instance, although the ospf_auth_text_key parameter’s
description contains the term key (cf. Table VII), the ML
model merged this term with more frequent credential uses
(e.g., “ansible_net_password”) and therefore underval-
ued the term when it is not connected by contextual tokens
like “access_token”.

As for false positives, we observe that a frequent cause
of misclassifications arises when the classifier associates the
parameter name “access_key” (and related AWS-specific
tokens) with secret credentials. However, the AWS Access
Key ID is in fact a public identifier, while the AWS Se-
cret Key contains the private data. While keywords such as
“access_key” strongly indicate secrecy to the ML classifier,
developers correctly marked it as non-secret. Similar cases
can be observed for SSH public keys, which the model
considers secret because of keywords such as “SSH” and
“key”. However, SSH public keys are intended to be shared
without exposing sensitive information, while the correspond-
ing private key must remain secret. In summary, the ML model
often raises false alarms because it cannot reliably distinguish
between public and private credentials.

2) Misclassifications of the language model classifiers: The
deberta-v3-base-zeroshot-v1.1-all-33 classifier reports only
12 misclassifications (7 false positives and 5 false negatives),
which are depicted in Table VIIL. Only 11 elements are shown
as the first two share the same description.

We observe that some parameters, such as the 2nd gpd 5t
rows, were correctly reported by the classifier as secrets, but
the developers failed to mark them as such. The model’s ability
to identify these parameters suggests that it can enhance the
security of Ansible modules by detecting secrets that have
been overlooked by developers.



TABLE VIII: Misclassifications by the deberta-v3-base-
zeroshot-v1.1-all-33 model. (A = Actual, P = Predicted)

Parameter Description

Name of the key chain.

Password that is required for logging on to the server.

The username with which to authenticate to the Citrix node.
Sendgrid API key to use instead of username/password.

Vault token. Token may be specified explicitly.

Authentication key for clients and servers to exchange.
Secondary password that users might have to provide.
Dictionary set by a CyberArk authentication containing the values
to perform actions on a logged-on CyberArk session.

The source snapshot used to create this disk. You can provide this
as a partial or full URL to the resource.

10 Pass credentials to all domains.

11 Specify which groups should have access to what permissions for
the storage-system.
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Conversely, the model predicted some parameters as not
secret, while developers marked them as such. Some of these
are clearly false negatives, such as the 4", 6% 7% and
10" rows in Table VIII. This shows that despite the model’s
strengths, it may still produce wrong classifications that can
cause sensitive parameters to not be properly identified.

B. Qualitative Comparison of the Approaches

To gain qualitative insights into the overlap between the
two best classifiers and the baseline approaches, we manually
reviewed a random sample for each group of overlapping
reports depicted in Fig. 2. We reviewed up to 25 instances
per group, i.e., 333 instances in total.

We observed that instances reported only by the ML model
or only by either of the baselines are almost always false
positives. However, parameters flagged by multiple approaches
were often true positives, especially those also reported by the
language model. This strongly suggests that the approaches are
complementary. Therefore, future work could investigate post-
processing an inexpensive baseline’s reports with a more costly
ML or LM approach to reduce false positives. Alternatively,
due to the resource requirements of the prediction models
(e.g., models can be multiple gigabytes in size), the prediction
models could be used as a final check before releasing an
Ansible collection rather than on every code change.

We also encountered some sensitive parameters that were
reported by both baselines, but not by either of the prediction
models. These belong to a few collections in the dataset in
which not all secrets were properly marked. This noise appears
to have taught the models, especially the language models,
to not treat those parameters in those collections as secret,
although they clearly are (e.g., parameters named “password”).

Conversely, the language model managed to identify secrets
that the baselines missed because the parameter names did
not follow their predefined string patterns. For instance, the
LM was the only approach to correctly identify a common
parameter named “service_account_contents” in the
google.cloud collection as secret, as it may contain private
credentials. It also appears that the fine-tuned LM has learned
conventions, as some collections mark usernames as secret
information, while others do not. The fine-tuned LM manages

to distinguish between these, and only suggests usernames as
secret in collections that adopt that convention.

Finally, we observe that the baseline approaches frequently
misclassified parameters with ambiguous names (e.g., “key”,
“password_file”), whereas the prediction models could
leverage the description to disambiguate their secrecy. This
is especially common for edge cases such as public SSH
keys and public AWS access keys (cf. Section V-Al), which
the baselines often report as secret. We theorise that general-
purpose LLMs (e.g., GPT-4) may be able to better distinguish
such cases due to their vast knowledge base and enhanced
reasoning capabilities. However, we did not evaluate such
LLMs due to their prohibitive costs and the already excellent
results of the fine-tuned language model classifiers.

C. Implications of Findings

For practitioners: Our findings uncovered several short-
comings in the baseline approaches. For instance, Ansible’s
sanity check’s inability to discriminate public and private keys
leads to many false positives, while GASEL frequently raises
false alarms on parameters that take a path to a file containing
secrets. Further improvements to the string patterns used by
these approaches could enhance their capabilities. Moreover,
during the manual analyses, we identified multiple sensitive
parameters that were not marked with a no_1log annotation,
which can lead to information disclosure vulnerabilities. We
therefore implore Ansible module maintainers to scrutinise
the module parameters to identify missing secret annotations.

For researchers: Our qualitative comparison of the ap-
proaches (Section V-B) indicates that the ML and LM clas-
sifiers are complementary to the baselines. This further moti-
vates future work to integrate such prediction models to re-
duce false alarms raised by inexpensive approaches based
on string patterns [43], [44]. Moreover, we found that fine-
tuned LM classifiers excel at distinguishing secret from non-
secret data when extensive documentation is present. These
insights motivate further research in applying transformer-
based language models for other security-sensitive classi-
fication tasks, such as identifying sources and sinks for taint
analysis [15], [45]. However, our experiments also show that
fine-tuned language model classifiers may be sensitive to noisy
data in the ground truth. Therefore, care must be taken to use
high-quality datasets when fine-tuning LM classifiers.

VI. THREATS TO VALIDITY

Multiple factors might have biased the conclusions drawn
in our empirical assessment [46]. This section overviews the
main threats faced and how they were mitigated, discussing
them based on their impact on our study.

a) Internal Validity: The selection of Ansible module
parameters considered in our dataset may have an impact on
our results. To mitigate this threat, we used a dataset of mature,
well-maintained and popular Ansible collections proposed by
prior work. Second, our classifiers rely on developer-provided
documentation, which may be inaccurate or ambiguous. Al-
though this may cause misclassifications, we argue that the



classifiers need to be able to process suboptimal documen-
tation if applied in practice. Finally, considering parameters
that have no no_log annotation as implicitly non-secret
could cause incorrect entries in the ground truth dataset if
developers omitted such annotations. We mitigated this by only
considering such parameters if the module contains another
parameter with an explicit annotation, suggesting developers
scrutinised their modules for sensitive parameters. The results
of RQy confirmed that this heuristic was appropriate.

b) Conclusion Validity: The presence of confounding
features, i.e., features providing a similar contribution to the
performance of the machine learning models, may increase
noise when training ML algorithms, biasing its performance
[47]. To account for this potential threat, we computed the
information gain provided by each feature used to train the
models [22]. This allowed us to verify that the tokens ex-
tracted in the first step of the machine learning pipeline were
orthogonal and contributed individually to the built models.

We did not have a baseline for ML algorithms experimented
with, as our work is the first to study ML for sensitive Ansible
parameter detection. As such, we experimented with multiple
techniques to identify the best algorithm, and compared its
result to non-ML baselines. Due to space constraints, we
did not discuss all the results in Section III-B. However,
our replication package [19] includes all our findings, which
researchers can use to understand, reproduce, and extend
our ML pipelines to detect sensitive Ansible parameters, or
replicate our approach to similar problem domains.

VII. RELATED WORK
A. Infrastructure as Code

Infrastructure as Code is an emerging research domain [48],
[49]. Of particular relevance to our work are security smell de-
tection approaches, such as SLIC [4], SLAC [12], GLITCH [50],
and GASEL [11], which employ string patterns to identify hard-
coded secrets in infrastructure code. Our study improves upon
their detection mechanism through ML and LM classifiers.

Other work in [aC has focused on training ML models
to identify defects [26], [51] and code smells [52]. More
recently, several approaches have been proposed to automati-
cally generate and repair infrastructure code using LLMs [53]-
[55]. Most closely related to our work is that of Borovits et
al. [56], who identify linguistic inconsistencies between the
implementation and documentation of Ansible tasks. Similarly
to our work, they leverage textual documentation and a variety
ML algorithms for prediction tasks. Our approach differs from
this prior work, as our goal is to leverage documentation
to identify sensitive parameters rather than implementation
inconsistencies, defects, or code generation and repair.

Whereas most research on IaC has focused on the infras-
tructure code itself, some works instead study the IaC tool im-
plementations. Prior work has studied testing practices for An-
sible modules [57], defects in IaC tool implementations [20],
[58], and software supply chains backing IaC tools [21]. Our
work is complementary to these studies, as we aim to identify
sensitive information within the tool implementation.

B. Predicting Sensitive Information

Due to the dangers associated with embedding secret infor-
mation in source code, a large body of research has focused on
identifying such hardcoded secrets. Early detection approaches
identified potential secrets based on the entropy of hardcoded
text, using regular expressions for known structured secrets
(e.g., AWS keys), or using regular expressions on variable
identifiers [59], [60]. However, as this generates many false
positives, recent approaches reduce such false reports using
ML models [43], [61], [62] or LLMs [44]. Our approach
differs in that we do not aim to detect the secrets themselves
but rather the parameters that accept them.

Therefore, more closely related to our work are approaches
that identify security-relevant methods, such as sources and
sinks used in taint analysis. Several such approaches leverage
ML models using method names and signatures [14], [15],
[63]-[67]. However, to the best of our knowledge, the only
approach that also uses documentation is DOCFLow [45],
which uses sentence embeddings and prediction models to
identify taint sources and sinks in Android APIs. Contrary
to our work, they do not assess pretrained LM classifiers.

VIII. CONCLUSION

This paper presented an assessment of Machine Learning
and pretrained transformer-based Language Model classifiers
to identify sensitive parameters in Ansible modules. We col-
lected a ground-truth dataset of over 160,000 parameters of
well-maintained Ansible modules, of which more than 16,000
accept secret values. Based on this dataset, we trained a
variety of ML models under various data balancing settings,
as well as pretrained zero-shot and fine-tuned LM classifiers.
We compared the best of these models against two baseline
approaches that use string patterns.

Our findings show that the best ML model, Random Forest
without data balancing, achieves a performance comparable to
the two baselines, achieving a higher precision (93.6%) than an
aggressive baseline and reaching higher recall (72.7%) than a
conservative baseline. The zero-shot pretrained LM classifiers
achieve a similar precision to the other approaches (84.6—
88.5%), while reaching a considerably higher recall (89.2—
90.4%). Finally, fine-tuning the pretrained language models
enables them to achieve near-perfect precision and recall.

A qualitative comparison of the approaches suggests that
they complement one another, with both the LM and the base-
lines identifying sensitive parameters that the others cannot.
This motivates further study of language model classifiers
to predict security-relevant code elements based on their
documentation, as well as integrating prediction models to
reduce false positives caused by inexpensive yet inaccurate
approaches based on string patterns.
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