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Abstract. Abstract definitional interpreters are an approach to devel-
oping abstract interpretation-based static analyses in which language
semantics are expressed through monadic recursive interpreters. These
interpreters are then instantiated with an abstract value domain and ex-
ecuted in a suitable monadic context that carries abstract program state.
Unfortunately, correctly implementing these definitional interpreters re-
mains a difficult task. Moreover, instantiating analyses requires config-
uring many components. In this tool paper, we present the design of a
framework called Monarch that provides reusable components to pro-
grammers for implementing abstract definitional interpreters. Our design
consists of the following components: abstract domains, a framework for
expressing program semantics, and analysis instantiation techniques. Fi-
nally, we present an implementation in Haskell and give example instan-
tiations in Scheme and Python to show how these components are used.

Keywords: Abstract Definitional Interpreters · Abstract Intepretation
· Static Analysis.

1 Introduction

Static analyses aim to decide behavioral program properties without actually
running the program. Their use is widespread in compilers, integrated devel-
opment environments, software verification, and so on. Abstract interpretation
is a principled approach to static analysis design where program properties are
computed through an abstraction of concrete program semantics. For example,
whereas a concrete program semantics calculates the value of fac(5) to be 120,
an abstract interpreter might only compute its sign (i.e., +). Abstract definitional
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interpreters [5] (ADI) offer a recipe for constructing such abstract program se-
mantics by deriving them from a recursive evaluation function parametrized by
a computational context (i.e., a monad) and an abstract value domain (e.g., the
sign). This computational context and abstract value domain are then instanti-
ated to obtain a functioning abstract interpretation based static analysis.

Unfortunately, developing such abstract definitional interpreters remains a
non-trivial task. For this reason, we present our design of Monarch, a frame-
work for constructing static analyses based on the abstract definitional inter-
preter approach. We highlight how we use advanced programming language con-
cepts to create reusable building blocks that can be used by analysis developers.

To summarise, we make the following contributions in this tool paper:

– We present a modular design of a framework for static analysis using ab-
stract interpretation called Monarch. Our design consists of foundational
building blocks and combinators for abstract domains, a monadic framework
to specify program semantics, and techniques based on monad transformers
to enable flexible and layered instantiations of program analyses. Our design
focuses on modularity and composability.

– We present two case studies to show how several practical challenges are
addressed, such as non-determinism and control flow (i.e., escaping control
flow using MonadEscape), reusing semantics using effect polymorphism, and
providing an efficient way to represent abstract values (i.e., sparse labeled
products introduced in Section 4.1).

2 Motivation

In this section, we first introduce the key components of abstract definitional
interpreters through the implementation of a toy language derived from the λ-
calculus. Moreover, we will discuss the difficulties in implementing such abstract
definitional interpreters. The toy language is depicted in Listing 1 and consists
of lambda expressions, applications, numbers, if expressions, assignments, se-
quencing, and exceptions. The language lacks booleans for simplicity. Instead,
the number 0 represents falsehood and any other number represents truthiness.

data Exp = Lam String Exp | Num Int | Var String | App Exp Exp
| If Exp Exp Exp | Set String Exp | Seq Exp Exp
| Throw Exp | Catch String Exp Exp

type Env = Map String Val
data Val = Clo Exp Env | NumV Int

Listing 1: A toy language based on the λ-calculus. It supports lambda abstrac-
tion, application, if, assignments, sequencing, exceptions, variables, and number
literals.
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Abstract definitional interpreters derive their semantics starting from a con-
crete recursive interpreter. The listing below depicts an interpreter that consists
of an evaluation function eval and a closure application function called apply.
The evaluation function is executed in a monadic context m which supports ef-
fects for tracking the store and the environment, and for catching and throwing
exceptions. The effects to track the environment and the store are generated
through the MonadEnvironment and the MonadStore type class, respectively.
These type classes contain operations to get the current store and environment,
as well as to change them. The effects to catch and throw exceptions are gener-
ated through the catchError and throwError operations respectively, specified
in the MonadError type class.

eval :: (MonadEnvironment m, MonadStore m, MonadError m)
=> Exp -> m Val

eval (Lam x e) = bind getEnv (\env -> unit (Clo (Lam x e) env))
eval (Num n) = unit (NumV n)
eval (Var x) = lookupEnv x >>= lookupSto
eval (App e1 e2) = do

{ v1 <- eval e1 ; v2 <- eval e2 ; apply v1 v2 }
eval (If e1 e2 e3) = ifM (eval e1) (eval e2) (eval e3)
eval (Set x e) = do

{ v <- eval e ; a <- lookupEnv x ; setSto a v }
eval (Seq e1 e2) = eval e1 >> eval e2
eval (Throw e) = eval e >>= throwError
eval (Catch x e1 e2) =

eval e1 `catchError` (\v -> do env <- getEnv
let clo = (Clo (Lam x e2) env)
apply clo v)

apply :: (MonadEnvironment m, MonadStore m, MonadError m)
=> Val -> Val -> m Val

apply (Clo (Lam x e) lenv) v2 = do
a <- alloc x
updateSto a v2
withEnv (extendEnv a lenv) (eval e)

From this concrete interpreter, an abstract definitional interpreter can be
derived [5,25]. To this end, the concrete interpreter needs to undergo a number of
transformations. First, the concrete values (represented by Val) of the language
need to be abstracted. As an example, closures are abstracted to sets of abstract
closures and numbers to their sign. The goal of this abstraction is to render the
state space finite such that the evaluation terminates for any program input.

Next, several operations within the semantics need to be adapted according
to the change in the value domain. For example, the apply function uses pattern
matching to determine which closure needs to be applied to value v2. When using
sets as an abstraction, this pattern matching needs to be replaced by a traversal
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over all elements of the set in such a way that each closure can be applied to v2
separately and their results can be joined together.

The evaluation of if expressions is another example. As numbers are ab-
stracted to their sign, it is possible that the condition is simultaneously true and
false. To overapproximate the program behavior in this case, operations such as
ifM need to be adapted so that the consequent and alternative of the if expres-
sion are both executed and the results of both branches are joined afterwards.
To support these changes, the evaluation function can be executed in a different
monadic context that supports non-deterministic computations. An example of
such monadic context is the MonadPlus type class. This type class specifies an
mplus function, which executes two computations non-deterministically, and an
mzero function, which represents the empty computation.

Overapproximating exception handling is challenging, as the exception han-
dler (i.e., Catch) must account for both execution paths in which an exception
is thrown and those in which no exception occurs. In this example, we make use
of the MonadEscape type class to accomplish this. This type class is explained
in more detail in Section 4.2.

The final step is to render the number of calls to eval finite. To ensure
termination, the number of inputs need to be finite and the outputs should
converge to a stable value. This is usually accomplished by caching the results
of eval for any given input, and returning the cached result if eval is executed
another time with input that has been evaluated before.

eval :: ( MonadPlus m , MonadEscape m ,
MonadEnvironment m, MonadStore m)

=> Exp -> m AVal
eval (Lam x e) = bind getEnv (\env ->

unit ( Set.singleton (Clo (Lam x e) env)))

eval (Num n) = unit (NumV ( sign n))
eval (Var x) = lookupEnv x >>= lookup
eval (App e1 e2) = do

{ v1 <- eval e1 ; v2 <- eval e2 ; apply v1 v2 }
eval (If e1 e2 e3) = mplus (eval e2) (eval e3)
eval (Set x e) = do

{ v <- eval e ; a <- lookupEnv x ; update a v }
eval (Seq e1 e2) = eval e1 >> eval e2
eval (Throw e) = eval e >>= throw
eval (Catch x e1 e2) =

eval e1 `catch` (\v -> do
env <- getEnv
let clo = (Clo (Lam x e2) env)
apply ( Set.singleton clo) v)

apply :: ( MonadPlus m , MonadEscape m ,
MonadEnvironment m, MonadStore m)
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=> AVal -> AVal -> m AVal
apply clos v2 =

foldr mplus mzero (Set.map
(\case (Clo (Lam x e) lenv) -> do

a <- alloc x
updateSto a v2
withEnv (extendEnv a lenv) (eval e)

(NumV _) -> mzero)
clos )

The code listing shown above depicts the changes necessary for rendering
our concrete interpreter abstract. Highlighted in orange are changes made to
render the value domain abstract and finite, highlighted in blue are changes
concerning the semantics. This example illustrates the intersection of various
analysis concerns, as well as the need for suitable abstractions for implementing
these analysis concerns. In the rest of this paper, we propose a set of abstractions
formulated as type classes to address these concerns.

3 Background

In this section we review the concepts underpinning the design of abstract defini-
tional interpreters. We start by recalling the concept of a monad which enables
expressing computational effects in a definitional interpreter. Next, we illus-
trate how functions that are polymorphic in their computational effects can be
expressed, and show how they are used to configure an abstract definitional
interpreter for a specific analysis.

3.1 Monads

Monads are a key ingredient of our conceptual framework. Monads enable sep-
arating computational effects from the actual results of a computation [18, 19].
They are characterised by two functions (depicted below): a unit and a bind.
The unit function embeds an effect-free computation a into an effectful compu-
tation m a, while the bind function extracts the value from an effectful compu-
tation and applies an effectful function to it, essentially providing the ability for
two computations to be executed in sequence.

class Monad m where
unit :: a -> m a
bind :: m a -> (a -> m b) -> m b

In Haskell, to avoid having to nest bind expressions, the so-called do-notation
can be used. The code listing below demonstrates its usage and its bind.

example = do
a <- m1
b <- m2
return (a + b)

example =
bind m1 (\a ->

bind m2 (\b ->
return (a+b))



6 B. Vandenbogaerde et al.

A classic example of monadic computations is computations that carry state.
Such computations can be characterised by the interface described in MonadState.

class (Monad m) => MonadState s m | m -> s where
put :: s -> m ()
get :: m s

The MonadState type class states that for some monad m and state s, the
interface can be used if functions put and get are implemented. A suitable
candidate for m in this case is a function forall a . s -> (a, s) for some fixed
s. We will refer to such functions with the type State s. The implementation
of these instances for the Monad and MonadState type classes are shown below.

type State s = forall a . s -> (a, s)
instance Monad (State s) where

unit v = \s -> (v, s)
bind m f = \s -> let (a, s') = (m s) in (f a) s'

instance MonadState s (State s) where
put s = \_ -> ((), s)
get = \s -> (s, s)

3.2 Effect Polymorphism

The previous section introduced the MonadState type class. One might wonder
why such a type class is needed, as computations carrying state can be readily
expressed using State s. Encoding MonadState as a type class enables effect
polymorphism. Consider, for example, a function inc (depicted below) that im-
plements incrementing an integer statefully. The function is not concerned with
the internal representation of this state in the monadic structure. Thus, its type
reflects that it can be executed in any monadic context m, given that this context
implements the MonadState type class and provides functions put and get.

inc :: MonadState Int m => m ()
inc = bind get (\n -> put (n+1))

In Section 4.2, we discuss how this effect polymorphism enables reusable
semantics for different analysis instantiations.

4 Architecture

Figure 1 depicts the architecture of Monarch. The framework consists of three
major parts. The domain part depicted in the bottom left provides building
blocks for abstract domains. It is detailed in Section 4.1. Section 4.2 presents
the semantics part depicted in the bottom right, which provides monadic in-
terfaces for specifying abstract semantics. In Section 4.3, the final part analysis
(depicted at the top) is discussed. This part provides building blocks for instanti-
ating an abstract semantics into a static program analysis. It does so by providing
monad transformers that implement the monadic interfaces of the semantics.
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Monarch
Analysis

Domain Semantics

instantiates

Lattice infrastructure
PartialOrd, Joinable, BottomLattice, SplitLattice, ...

Primitive Domains
DictionaryLattice, ListLattice, NumberDomain, ...

Combinators
Labeled Sparse Product
Primitive Domain Instantiations
Constant Propagation, Interval, Set, ...

configures

Standard ADI type classes
MonadStore, MonadEnv, MonadAlloc, MonadCtx, ...

Control flow abstractions
MonadJoin, MonadEscape, MonadFix

Caching
MonadCache

Marker layers JoinT, CacheT
Standard ADI layers StoreT, EnvT, AllocT, CtxT, ...
Fixpoint layers IntraAnalysisT, WorkListT, MapT, ComponenTrackingT 

Fig. 1. Architecture of Monarch.

4.1 Domain

In this section we first introduce the primitive building blocks for creating rep-
resentations of abstracted primitive values. Next, we propose combinators to
combine these primitive building blocks into representations of abstractions of
more complex values. Finally, we discuss efficiency and performance implications
of such representations and we propose a memory-efficient and type-safe one.

Primitive Building Blocks: Lattices Monarch follows a similar design
as [3], using lattices. Lattices are a mathematical structure formed using par-
tially ordered sets for which each finite subset has a supremum and an infimum.
Mathematically, it is sufficient to define the elements of the set and its partial
ordering relation. However, in practice, it is often more efficient to formulate the
operations for computing the supremum and infimum explicitly. These opera-
tions are called the join and meet of a lattice respectively. For the purposes of
this paper, we discuss join only. Thus we arrive at a structure with two oper-
ations and two elements: a partial order, a join, a top element, and a bottom
element.

class PartialOrder v where
leq :: v -> v -> v

class (PartialOrder v) => BottomLattice v where
bottom :: v

class (PartialOrder v) => TopLattice v where
top :: v

class (PartialOrder v) => Joinable v where
join :: v -> v -> v

All abstract domains are an instance of a join semi-lattice which is described
in Monarch by four type classes: PartialOrder, Joinable, BottomLattice
and TopLattice (depicted above). Splitting the operations of a join semi-lattice
in this way provides more flexibility for creating instances of these type classes
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when a type does not implement all of them. For example, the top element of
a powerset lattice of closures cannot be defined without access to the analyzed
program, and thus lacks an implementation for TopLattice.

Primitive Building Blocks: Domain Lattices form domains by extending
them with domain-specific operations. For example, lattices for representing
numbers can form a number domain by implementing abstract versions of oper-
ations such as +, *, etc. These operations are combined into type classes.

A minimal domain needs an operation for converting concrete values to values
belonging to that domain and an operation to check whether a concrete value is
covered by an abstract value. We combine these operations into a Domain type
class (depicted below), which serves as the superclass for more specific domains.

class (PartialOrder v) => Domain v c where
alpha :: c -> v
gamma :: c -> v -> Bool
gamma c v = leq (alpha c) v

The alpha function converts concrete values c to abstract values v, while
the gamma function checks whether a concrete value is covered by the abstract
value. These functions borrow their names from Galois connections, which are
often used to describe abstract semantics in abstract interpreters.

Combinators: Products We conclude this section by discussing how to com-
bine multiple domains. Program analyses typically require combinations of do-
mains to reason about program behavior. These combinations are usually com-
posed of multiple primitive domains and can be expressed as their product. The
main problem of product values is their memory consumption when implemented
naively. A naive implementation could represent this product as a structure with
a field for each possible value. Some of these fields would then be set to ⊥ to indi-
cate their absence in the abstract value. However, this means that most product
values will contain only a few distinct values (as most values are absent and thus
⊥), resulting into inefficient memory utilisation.

We demonstrate this using empirical evidence gathered by running static
analyses on a total of 129 Scheme benchmark programs, grouped into six bench-
mark suites. Table 1 shows the origin of these benchmark suites, as well as their
number of lines of code excluding comments and blank lines.

We show the inefficiency by measuring the number of distinct values within
a product on a number of Scheme programs. The benchmark analysis is based
on the modular analysis of Nicolay et al. [20, 24] and computes an abstraction
of the program’s memory. The analysis is configured as follows:

– Domain: we configured the analysis to compute its analysis results in a
constant propagation domain (i.e., for computing the set of constant vari-
ables), except for pointers and closures which are stored as sets of abstract
addresses and pairs of expressions with their environment, respectively.
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Table 1. LoC for programs in each benchmark.

count mean min 50% max
benchmark

ad 20 105.55 23 52 604
gabriel 11 109.00 19 46 570
gambit 25 154.68 1 33 632
scp1 57 42.60 4 26 318
toplas98 3 317.67 188 188 577
wcr2019 13 119.46 1 51 437

– Context sensitivity: we configured the analysis to be context insensitive
meaning that calls are only differentiated based on the closure being called
and not, for example, based on the call-site.

These parameters affect the precision of the resulting analysis. We chose these
parameters since, in practice, they offer a good trade-off between precision and
performance. However, we argue that our results present a best-case estimation
of the real memory usage when using a naive implementation of a product.

Table 2. Percentage of values of a certain size, computed for 119 benchmark programs.

1 2 3 4 5 6 7 8

min 32.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 86.10 1.72 0.00 0.00 0.00 0.00 0.00 0.00
50% 92.63 5.58 0.88 0.00 0.00 0.00 0.00 0.00
75% 98.05 9.34 2.04 0.21 0.00 0.00 0.00 0.00
max 100.00 65.25 20.64 25.46 12.04 1.58 56.57 22.33

Table 2 depicts the results of our study. We instrumented the analysis to keep
track of the number of constituents for each product value being created. The
Scheme domain implemented in the analysis consists of 18 constituents. However,
in our benchmarks, only 8 distinct constituents were inhabited. The table shows
the minimum, maximum, and median values for the number of values in each
category.

Our results demonstrate that in most cases, abstract product values contain
only one constituent. In more precise analyses with more precise domains and
choice for sensitivity, the proportion of values with only one constituent is likely
to increase. This is because a value with more constituents is less precise than
values with fewer constituents. A more precise domain gives rise to more precise
analysis results therefore increasing the likehood of fewer constituents in the
product. Note that we measure the number of values created during an analysis
in order to show the potential impact on memory consumption. Our results do
not show the precision of the final analysis result.
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Based on the results of our empirical study, we recommend implementing
product values as sparse labeled products. To this end, Monarch provides a
SparseLabeledProduct data structure that is internally implemented as a het-
erogeneous map. Its function is to express the product’s constituents at a type-
level, while providing an efficient run-time memory representation. An excerpt
of the sparse labeled product for representing Scheme values is depicted below.

data SchemeType = IntType | BoolType | PaiType |
CloType | PrimType | ...

type Values = '[ IntType ::-> CP Integer,
BoolType ::-> CP Bool,
PaiType ::-> Set Addr,
CloType ::-> Set (Exp, Env),
PrimType ::-> Set String, ...]

type SchemeVal = LabeledSparseProduct Values

The constituents of the sparse labeled product are expressed as a type-level
list of key-value pairs (denoted by key ::-> value). At run time key types are
demoted to data values so that they can be used as keys in a map datastruc-
ture. This enables the efficient memory representation of the labeled product,
since absent constituents do not need to be stored in the map datastructure.
Moreover, expressing the product as a type-level list enables reasoning about its
constituents through typeclass constraints.

This representation renders the combination of various abstract domains triv-
ial. Moreover, it provides both type-safety and a memory-efficient run-time rep-
resentation that only stores the present subdomains.

4.2 Semantics

In Monarch, programming language semantics are expressed as recursive defini-
tional interpreters. These interpreters are rendered compatible with the abstract
interpretation framework through a library of monadic type classes that allow
expressing programming language semantics. Most of our monadic type classes
are standard for abstract definitional interpreters [1, 5, 13]. Monarch provides
type classes for interacting with abstract environments (MonadEnvironment),
abstract stores (MonadStore) and abstract memory allocation (MonadAlloc).

In addition to these standard type classes, Monarch defines interfaces for
expressing conditional control flow and escaping control flow, as well as for ex-
pressing and automatically deriving fixpoint combinators.

Environments Most languages provide variables for keeping track of arbitrary
state or for naming complex program terms. These variables also need to be
modeled by the abstract interpreter. To do so, a mapping from variables to their
memory locations (address) needs to be provided. This can also be seen in the
toy example fron Section 2. This mapping can be summarized through three
functions: lookupEnv, withEnv and getEnv, shown below.
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class (Monad m) => MonadEnvironment adr m where
lookupEnv :: String -> m adr
withEnv :: [(String, adr)] -> m a -> m a
getEnv :: m [(String, adr)]

The lookupEnv function returns a computation that results in the address of
the given variable name. The withEnv function runs the given computation m a
(e.g., a call to eval) in the environment described by the list of mappings in the
first argument. Finally, the getEnv function captures the current environment,
which is needed for implementing language features such as closures.

Stores A store provides a mapping from addresses to values and models the pro-
gram’s memory. In a concrete semantics, functions lookupSto and updateSto
(depicted below) suffice to express the interactions with the store. However, ab-
stract interpretation necessitates an additional function which we call extendSto.

class (Monad m) => MonadStore adr v m where
lookupSto :: adr -> m v
extendSto :: adr -> v -> m ()
updateSto :: adr -> v -> m ()

The difference between updateSto and extendSto is that updateSto changes
the value of an existing address, while extendSto adds a new address to the
store and associates a value with it. This distinction is required for enabling
support for strong updates since they need to differentiate between an existing
binding being updated or a new binding being introduced in the store. Note that
depending on the analysis, both extendSto and updateSto could join the new
value with the previously stored value. They merely signal the intention of the
semantics to introduce a new address (i.e., extendSto) or to update an existing
one (i.e., updateSto).

Nondeterminism In contrast to a single execution path in a concrete inter-
pretation of the program, an abstract interpretation might explore multiple ex-
ecution paths. This is because the interpreter has to reason with approximate
values. For instance, evaluating the condition of an if expression can yield true,
false or both meaning that both of its branches have to be approximated.

To this end, Monarch exposes the MonadJoin type class, which executes
two monadic computations and combines their results together. Its definition,
depicted below, consists of two functions: mjoin and mbottom. This type class
is similar to MonadPlus where mjoin corresponds to mplus and mbottom cor-
responds to mzero. In contrast to MonadPlus, however, MonadJoin adds lattice
constraints on the output of its computations m a. This is because implemen-
tations of MonadJoin can either choose to combine all results into a set, akin
to the non-determinism monad, or to join results of two computations together
using join. Therefore, a Joinable constraint is required for mjoin.
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class (Monad m) => MonadJoin m where
mjoin :: Joinable a => m a -> m a -> m a
mbottom :: BottomLattice a => m a

This MonadJoin interface can be used to implement over-approximating con-
ditional control flow. Below, we present the cond function for expressing this
conditional control flow. It uses the MonadJoin interface to combine computa-
tions of the consequent and alternative branches of if expressions. It uses the
mbottom function to represent empty computations. This is the case when the
condition for one of the branches becomes infeasible.

cond :: (BoolDomain b, MonadJoin m, Joinable v, BottomLattice v)
=> m b -> m v -> m v -> m v

cond cnd csq alt = mjoin t f
where t = cnd >>= (\b -> if isTrue b then csq else mbottom)

f = cnd >>= (\b -> if isFalse b then alt else mbottom)

As an example, we implement semantics for evaluating if expressions. This
implementation is straightforward because if expressions almost directly trans-
late to cond actions. The semantics essentially states that the condition (cnd) is
evaluated first, and based on its result the consequent (csq), alternative (alt), or
both are evaluated. This implementation is nearly identical to a concrete seman-
tics, but our framework enables the use of cond for expressing non-deterministic
if expressions (when the condition could be both true or false).

eval (If cnd csq alt) = cond (eval cnd) (eval csq) (eval alt)

Escaping Control Flow We define escaping control flow as control flow that
interrupts normal sequential program execution. Examples of escaping control
flow are not only exceptions or program errors, but also more complex language
features such as early function returns, loop breaking, and so on. Monarch ab-
stracts from these language features through a single monadic type class called
MonadEscape which is depicted in the code listing below.

class MonadEscape m where
type Esc m :: Type
throw :: JoinLattice a => Esc m -> m a
catch :: JoinLattice a => m a -> (Esc m -> m a) -> m a

MonadEscape resembles the MonadError type class from the well-known mtl
library1. Both type classes contain methods for signalling an escaping or error
condition through escape and throwError respectively. Moreover, both fea-
ture a method for catching potential errors that occur in a given computation
through catch (catchError resp.). They differ, however, in their constraints.

1 From: https://hackage.haskell.org/package/mtl
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Whereas MonadError does not constrain the output of its monadic computa-
tions, MonadEscape constrains the output to a JoinLattice which is an alias for
a combination of Joinable, PartialOrder and BottomLattice. This is because
an implementation of catch needs to potentially account for both an escaping
program path and a normal program path by joining the results of its handler
with the results from the normal program path.

Error Esc m is typically set to an abstract representation of potential program
errors. For example, to represent errors of type Error abstractly, a Set Error
can be used. In general, developers can use a Domain constraint to provide this
mapping from a concrete error to its abstract representation:

type EscapeConstraints m = (Domain (Esc m) Error, MonadEscape m)

Fixpoint Infrastructure The key idea of abstract definitional interpreters
is that they express abstract program semantics through a recursive evalua-
tion function. Unfortunately, naively applying this evaluation function might
lead to undesired non-termination issues. Instead, abstract definitional inter-
preter frameworks typically require some additional bookkeeping. For instance,
to make sure that the analysis terminates, an in-out caching [5] mechanism can
be employed through open recursion. This in-out caching mechanism keeps track
of earlier inputs to the evaluation function and their outputs, and returns the
associated output when applied more than once to the same input.

We support these mechanisms through two type classes. The first, MonadFix,
provides a fixpoint function that transforms Kleisli arrows [16] (monadic com-
putations that still require an input) into cached Kleisli arrows.

type Kleisli m b c = b -> m c -- Kleisli arrow
class MonadFix b c m where

fix :: (Kleisli m b c -> Kleisli m b c) -> Kleisli m b c

The first argument of fix corresponds to a version of an evaluation function
using open recursion. This can be seen by replacing b with Exp and c with v.
This results in the following function signature:

eval :: (Exp -> m v) -> Exp -> m v
eval recur e = _
-- or equivalently with Kleisli arrows
eval :: Kleisli Exp v -> Kleisli Exp v

Then, when a cached version of eval is required, the recur function can be
used. This enables polymorphism over the caching and fixpoint mechanism.

The second type class to support in-out caching mechanisms is MonadCache.
The methods in this type class compute the complete inputs and outputs to the
evaluation function. These inputs and outputs also include values encapsulated
by the monad in addition to the value specified by the return type of the eval-
uation function. The MonadCache type class, along with its associated methods
and types, is depicted in the code listing below.
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class MonadCache m where
type Key m k :: Type
type Val m v :: Type
type Base m :: Type -> Type
key :: k -> m (Key m k)
val :: Val m v -> m v
run :: (k -> m v) -> Key m k -> Base m (Val m v)

Associated type families Key and Val compute the type of input and output
respectively. Note that Key is also indexed by a type k which represents the input
to the evaluation function —or in general to the Kleisli arrow— being cached.
Val is indexed similarly by the output type of the cached Kleisli arrow. Functions
key and val allow the current input to be extracted and the given output to be
restored respectively. The run function takes the cached Kleisli arrow and runs
it by supplying it with the expected input. Base computes the type of the first
layer in a monadic stack that does not require caching, which can be the identity
monad or some other monad. This enables expressing effects that are global to
the fixpoint iteration, such as a global store [9].

To illustrate this, we depict an instance of MonadCache for the StateT monad
transformer below. For its Key it adds the input state s to input k, and does so
similarly for its output state for Val. The implementation of key and val are
straightforward since they simply extract the input state and restore the output
state respectively. Monarch provides instances of MonadCache for all major mtl
monad transformers in a similar manner.

instance MonadCache m => MonadCache (StateT s m) where
type Key (StateT s m) k = Key m (k, s)
type Val (StateT s m) v = Val m (v, s)
type Base (StateT s m) = Base m
key k = StateT $ \s -> (,s) <$> key (k, s)
val = StateT . const . val
run f = run (\(k,s) -> runStateT (f k) s)

4.3 Analysis

A semantics can be instantiated into an analysis by instantiating all type pa-
rameters used in the evaluation function. These type parameters correspond to
different static analysis concerns. In Monarch, these type parameters corre-
spond to abstract domains and monad transformer stacks.

We discuss several areas of interest. The first is the instantiation of the do-
main. Next, we discuss effect layering, which enables combining effects into a
single monad that supports all expected effects. Third, we explore some instanti-
ations of monad transformers. Finally, we discuss integrating fixpoint algorithms.

Domain Instantiation In addition to descriptions of abstract domains through
a set of interfaces represented as type classes, Monarch also provides a number
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of type class instances for these domains. For example, the CP a type provides
a constant propagation lattice for any type a, while CP Integer implements
a number domain. Similarly, Monarch provides instances for other frequently
used domains such as strings, lists, dictionaries, booleans, and so on. Moreover,
Monarch enables composing these instantiations into powerful domains using
domain combinators such as the sparse labeled product described in Section 4.1.

Effect Layering Monads do not compose [10], meaning that their operations
(i.e., unit and bind) cannot be readably expressed as the composition of their
individual operations. Instead, monad transformers [17] have been proposed,
which are best described as monads with “a hole”. Consider the state monad
transformer, depicted in the code listing below, as an example.

newtype StateT s m a = StateT (s -> m (a, s))

The monad is parametrized by the type of state s, its result type a, but also
by a monad m. It essentially allows for additional effects to be added around
the resulting value and the output state. The idea is that computational effects
can be composed using a set of smaller monads that are stacked on top of
each-other by lifting operations from monads lower in the stack. Typically,
monad transformers are presented as a library of transformers and their type
classes. For example, StateT implements the type class MonadState. The idea
is that all other transformers also implement this type class, and delegate state
operations down to a state monad lower in the stack. Therefore, the entire stack
now implements the required type class and becomes a suitable instantiation.

The example shown below declares the type of a stack that introduces effects
for tracking an environment and store. This stack can subsequently be used for
running semantics that require environment and store effects.

type EvalM =
StoreT Address Value (EnvT String Address Identity)

The main problem with monad transformers is that for each new type class
and transformer combination a corresponding instance needs to be implemented,
which leads to poor scalability. This is because not all operations can be ex-
pressed simply as a lifting of lower operations.

Therefore, monad transformers do not seem a suitable candidate for instanti-
ating our semantics. Instead, inspired by the Haskell layers library2, we propose
a class called MonadLayer. This type class consists of two functions: upperM and
lowerM. The former fulfils the role of lift. The latter is somewhat more com-
plex, and fulfils the role of “lowering” a monadic computation into the stack.

class MonadLayer l where
upperM :: Monad m => m a -> l m a
lowerM :: (forall b . m b -> m b) -> l m a -> l m a

2 From: https://hackage.haskell.org/package/layers

https://hackage.haskell.org/package/layers
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lowerM is a function that accepts two arguments. The first is another function
that executes a monadic action on the lower layer. The second argument is a
monadic computation l m a where l is a monad transformer, m is the monad one
level below the transformer, and a is the result from the monadic computation.

It is important to note that type variable b is universally quantified inside
the function in the first argument. This is because implementations of lowerM
need to “push” information about their effects into the lower layer so that they
are not lost in composition. For example, to remove a layer from StateT it needs
to be executed with some initial state s. The output of this execution is a pair
that consists of a value a and a new state s. Therefore, to execute an action
on the lower layer, this pair needs to be part of the monadic computation. To
illustrate, we provide the instance of MonadLayer for StateT below.

instance MonadLayer (StateT s) where
upperM = lift
lowerM f (StateT run) = StateT (f . run)

Below, we demonstrate how a MonadLayer can be used to delegate monadic
actions to a lower monad. The code listing depicts an instance of MonadEnvironment
for any monad layer l. The lookup and getEnv function can be implemented
using upperM, while withEnv needs to be implemented using lowerM. Essentially,
to delegate withEnv computations, the second argument of withEnv needs to be
lowered into the layer below, so that the lower withEnv can be executed.

instance (MonadLayer l, MonadEnvironment m)
=> MonadEnvironment (l m) where

getEnv = upperM getEnv
lookup var = upperM (lookup var)
withEnv bds ma = lowerM (withEnv bds) ma

Effect Locality Monad transformers and layers do not necessarily commute.
The combination of a Maybe with a State monad for instance yields very dif-
ferent results depending on the order in which they are combined. For instance,
composing Maybe after State results in a computation that can fail but retains
its state up to the failure, while reversing this order results in a computation that
can fail but loses its final state. This becomes more apparent when unfolding the
type signature of the different composition orderings:

newtype MaybeT m a = MaybeT (m (Maybe a))
MaybeT (StateT Identity) a = s -> (Maybe a, s)
StateT (MaybeT Identity) a = s -> Maybe (a, s)

Thus, the depth of the monad transformer stack provides a locality dimension.
The lower a monad is in the stack, the more global its effects become. In the
earlier example, MaybeT is located lower in the stack, thus its failures are more
global than the state so that the state is discarded when failure occurs.
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Monad Transformers For instantiating the monadic computation, the analy-
sis developer is expected to construct a stack of monad transformers that provide
implementations for each type class constraint of the evaluation function. To this
end, Monarch provides a library of monad transformers that have instances for
these type classes. For example, to satisfy the MonadStore constraint, the frame-
work provides a StoreT transformer that supports weak updates.

Interestingly, some monadic type classes have multiple implementations. One
example is non-determinism, for which we describe two transformers that satisfy
the MonadJoin constraint: JoinT and NonDetT. Recall that after one or more
paths have been explored, their results need to be merged. The JoinT monad
layer enables this by joining the results together so that only one path remains
with a joined value (as is typically done when using traditional dataflow anal-
yses). Alternatively, NonDetT can be used to accumulate each result into a list
so that the semantics continues with the result of each path separately (as is
typically done when using the AAM approach [25]).

newtype JoinT m a = JoinT (m a) deriving (Monad)
instance MonadJoin (JoinT m) where

mzero = return bottom
mjoin (JoinT ma) (JoinT mb) = join <$> ma <*> mb

runJoinT :: JoinT m a -> m a
runJoinT (JoinT m) = m

Essentially, mjoin runs both paths sequentially and then joins their results
together. NonDetT works similarly but uses a list monad to capture all results.

newtype NondetT m a = NondetT (ListT m a) deriving (Monad)

The operations of MonadJoin can be trivially implemented as the empty list
for mzero and as list concatination for mjoin.

Constructing Cached Fixpoint Computations Finally, we briefly discuss
instantiating an analysis with a fixpoint algorithm. To this end, we consider a
simple evaluation function with the following constraints:

type EvalM v m = (MonadFix m Exp v, MonadJoin m, MonadStore m)
eval :: EvalM v m => Exp -> m v

The Key type (from MonadCache) gives rise to a component. A component typ-
ically represents a part of a program that is to be analyzed until its end and whose
analysis does recurse infinitly. More concretely, it is the input to the evalutation
function. Thus, most analyses can be structured as an intra-component analy-
sis (i.e., eval) and an inter-component analysis. The inter-component analysis
drives the intra-component analysis until it reaches a fixpoint.

The code listing below illustrates how to express this in our framework. We
first define the monadic stack for the intra-analysis and separate out the remain-
ing type class constraints. Then, we run the inter-component analysis. While do-
ing so, we satisfy the remaining type class constraints by adding the appropriate
monad transformer to the transformer stack.
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type IntraT m = MonadStack '[ JoinT, CacheT ] m
type Cmp = Key (IntraT Identity) Exp
type Res = Val (IntraT Identity) Val
type InterM = (MonadStore m, MapM Cmp Res)
intra :: InterM m => Cmp -> m ()
intra e = runFixT @(IntraT (AnalysisT Cmp m) (eval e)

& runAnalysisT e
-- computing a fixpoint over the intra analysis
inter = lfp intra
-- adding global effects and running the analysis
analyze :: Exp -> (Map Adr Val, Map Cmp Res)
analyze e = inter e & runStoreT emptyStore

& runWithMapping @Cmp @Res & runIdentity

The result of this analysis is an abstraction of the heap (through MonadStore
and runStoreT) and a mapping from each component in the program to its
evaluated value (i.e., Res). Monarch allows developers to instantiate the anal-
ysis with different fixpoint strategies. Some fixpoint strategies require additional
bookkeeping that needs to be added to the set of global effects at the bot-
tom of the monad transformer stack. Such bookkeeping can be added to the
runAnalysisT monad transformer but is omitted for brevity. This design also
allows reordering monad transformers to obtain different semantics [5], similar
to Section 4.3. For example, moving StoreT to the intra-component analysis
results in an analysis with local stores rather than a global store analysis [25].

Interestingly, this design also allows for effects that are neither global nor
local, but sit somewhere in between. For instance, a flow-sensitive store is typi-
cally implemented by widening the store at the component level, keeping track
of the store at the start (in-store) and at the end (out-store) of the analysis for
that component. When components are function calls, on each function call the
“in-store” is joined with the contents of the store at the call-site of the function.
Then, the function body gets analyzed, after which the “out-store” is changed
to the contents of the store at the end of the function body. This “out-store”
is finally used to continue evaluation after calling the analysed function at each
call-site.

This design can be implemented by moving the StoreT layer between the
caching transformer and join transformers. The change causes the store to be
no longer cached, as it is below the caching layer. Keeping the store above the
join transformer ensures that stores are joined rather than threaded along mul-
tiple nondeterminstic program paths. Additional manual plumbing is required
to update the store contents as described above. This is depicted below.

1 type IntraT = MonadStack '[ CacheT, StoreT, JoinT ]
2 intra :: forall obj m . AnalysisM m obj => Cmp -> m ()
3 intra e = runIntraAnalysisT e m
4 where m = do s <- fromJust <$> get (StoreIn e)
5 r <- cache e (runCallT (uncurry callFix) . eval)
6 & runStoreT s
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7 & runJoinT
8 put (StoreOut e) s'
9 return r

10 callFix :: Exp -> IntraT m Res
11 callFix bdy = do e' <- key bdy
12 spawn e'
13 changed <- joinWith (StoreIn e') =<< currentStore
14 if changed then mbottom
15 else do rv <- cached e'
16 rs <- get (StoreOut e')
17 v <- maybe mbottom return rv
18 s <- maybe mbottom return rs
19 putStore s
20 return v

In this version, the transformers in the stack are rearranged to place the
store transformer in between the caching and the joining layer. As mentioned
before, this causes the store to be omitted from the keys and values of the cache,
therefore becoming part of the global analysis state instead of the components
themselves. The open recursion of the evaluation function through runCallT
ensures that function calls are treated differently in order to change the contents
of the store. The function calling semantics is depicted in the callFix function
which takes the body of the function, checks whether the function has already
been analyzed, and if so reads its result from the cache. Then, the function’s
“in-store” is updated to include the contents of the current store (i.e., the one
at the call-site of the function). Then, after the function has been analyzed, the
store at the call-site is updated through putStore (line 19).

Since the join and store transformers are no longer part of the cache, the
cache (line 5) and runIntraAnalysisT (line 3) functions will no longer auto-
matically run these layers. Hence, runJoinT and runStoreT need to be manually
called after the cached layers have been executed through cache.

5 Instantiating the Framework

To illustrate the framework’s use in practice, we discuss two case studies in
which we instantiate two different types of analyses for two programming lan-
guages. The first analysis is for the Scheme language. The second analysis is for
a subset of the Python language. Both analyses compute an abstraction of the
program’s memory, as well as its read, write and call effects. The languages dif-
fer significantly in their syntax, semantics, and types of run-time values. Table 3
summarizes the similarities and differences of the corresponding analysis imple-
mentations and connects them to the architecture of our framework (cf. Fig. 1).
For each implementation, we present the abstract domain, relevant semantics,
and show how the analysis is instantiated using layers of monad transformers.
The source code for our case studies is available in the artifact.
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Table 3. Overview of ADI configuration per language

Python Scheme

Domain
Primitive Integer, Real, String Integer, Real, Symbol
Combinator sparse product in primitive fields,

Dictionary, Tuple
coproduct abstracted as sparse
product, Vector, Pair

Semantics
Store environment frames, objects vector, pairs, strings, variables
Escape return, break, errors errors
Join yes yes

5.1 Domain

We use the labelled sparse product lattice proposed in Section 4.1 to represent
Scheme’s abstract domain. An excerpt of its implementation is depicted below.
Labels and values are separated by a ::->. Its definition is parametrized by a
configuration m (represented by a type-level association list) which configures the
domain with specific subdomains for each type of value.

type Values m = '[ IntKey ::-> Assoc IntConf m,
BoolKey ::-> Assoc BoolConf m,
PaiKey ::-> Set (Assoc PaiConf m),
CloKey ::-> Set (Assoc ExpConf m, Assoc EnvConf m),
PrimKey ::-> Set String, ...]

type SchemeValue m = LabeledSparseProduct (Values m)

For instance, abstract closures are allocated at CloKey and are represented as
sets of pairs consisting of an expression and an environment. Another example is
the abstraction of Scheme numbers, which are allocated at the IntKey and map
to a primitive integer sub-domain as configured by the IntConf key. The entire
implementation of this Scheme domain is done in roughly 500 lines of code.

The implementation of the Python analysis takes a different approach. In
Python all values are modelled as objects that have their own methods and
associated class. Thus, a sparse product representation is no longer suitable
to represent those values. Instead, we use an abstraction of dictionary values
(similar to [7]) which stores method identifiers and field names as keys, and their
abstracted value as values. An instantiation of this domain is depicted below.
Again, parameter m is a configuration which configures the Python domain with
specific primitive subdomains for each type of value.

data PyObj m = PyObj
{ dct :: CPDictionary String (Assoc ValueConf m),

prm :: LabeledSparseProduct (PyPrm m) }

Our LabeledSparseProduct appears again here, to implement so-called prim-
itive fields. These primitive fields are used to represent primitive values such as
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integers or lists which cannot be represented as an object and class, but can
still be extended from in a class hierarchy. Thus we represent them as fields in
every object that might be set if the object represents a primitive value such as
integers. The definition of PyPrm is similar to Values and is left out for brevity.
The implementation of the domain for Python objects is done in approximately
250 lines of code in total.

Conclusion. Real-world abstract domains often consist of many subdo-
mains. We provide modular, reusable primitive building blocks to represent
these different subdomains and combinators to combine them. This saves
analysis developers from performing the tedious and error-prone tasks of
implementing abstract domains themselves.

5.2 Semantics

Depicted below are the type class constraints on the evaluation function for im-
plementing the Python semantics (PyM, left) and the Scheme semantics (SchemeM,
right) respectively. Both sets of constraints are similar: they both have a type
class that describes their abstract domain (PyObj for Python and SchemeValue
for Scheme), they both need MonadJoin and MonadEscape, and they need a rep-
resentation of environment and store. Furthermore, we also use a monad called
AllocM which enables the allocation of memory addresses.

type PyM m obj = (
PyObj' obj, MonadJoin m,
MonadEscape m,
MonadEnvironment m ObjAdr PyEnv,
MonadStore m ObjAdr obj,

AllocM m PyLoc ObjAdr,
AllocM m FrmLoc ObjAdr

)

type SchemeM m v = (
SchemeValue v, MonadJoin m,
MonadEscape m,
MonadEnvironment m (Adr v) (Env v),
MonadStore m (PAdr v) (PaiDom v),
MonadStore m (Adr v) (VarDom v),
MonadStore m (VAdr v) (VecDom v),
MonadStore m (SAdr v) (StrDom v),
AllocM m Ide (Adr v),
AllocM m Exp (PAdr v),
AllocM m Exp (VAdr v),
AllocM m Exp (SAdr v))

The language semantics differ more. We focus on the representation of prim-
itive operations (e.g., arithmetic operations) since they show the interaction of
language semantics with the abstract domains.

In the interpreter for Scheme, primitives are implemented as ordinary Haskell
functions that accept a list of argument values as input. The interpreter applies
an operation from the abstract domain and returns the result. In the abstract
domain, primitives are then represented as sets of strings which are used as
keys to find the associated Haskell function in a table of primitives. Below, we
depict a number of simple arithmetic functions from the Scheme analysis. The
full implementation of all Scheme primitives is approximately 150 lines of code.

fix2 :: String
-> (forall m . PrimM m v => v -> v -> m v) -> Prim v
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fix2 nam f = Prim nam (\_ [v1, v2] -> f v1 v2)
allPrimitives = [ fix2 "*" times, fix2 "+" plus,

fix2 "-" minus, ...]

Note that function fix2 which constructs primitives from ordinary Haskell func-
tions allows the primitive to be executed in a monadic context m. This monadic
context is necessary for primitives that need access to the store (i.e., MonadStore)
or that might result in a failure (i.e., MonadEscape).

Primitives are implemented differently in the Python analysis. Instead of
looking them up from a table by their name, primitives are represented as meth-
ods that operate on primitive fields (cf. Section 5.1). The latter is illustrated
below by the implementation of prim2 which is the equivalent of fix2. The full
implementation of all Python primitives is approximately 200 lines of code.

prim2 f loc [a1, a2] = do
{ o1 <- pyDeref' a1 ;

o2 <- pyDeref' a2 ;
r <- f o1 o2 ;
pyAlloc loc r }

This example illustrates that before applying a primitive operation repre-
sented as an ordinary Haskell function f, abstractions of Python objects first
have to be dereferenced and looked up in the abstract memory. The final line
shows that the result is an object and has to be allocated and stored in memory.

Finally, we show how the usage of MonadEscape differs between the Python
and Scheme analyses. One major difference between Python and Scheme is the
existence of escaping control flow. In Scheme, ignoring call/cc, the only way to
return from a function is by evaluating its last expression. In contrast, Python
supports a number of control flow statements that enable an early return from
code blocks. For instance, break stops a loop iteration early.

These cases are supported by our MonadEscape infrastructure. Shown below
is the evaluation of a return statement. The Python semantics support return
statements that include expressions which evaluate to the return value of the
enclosing function. If no expression is given, the enclosing function returns None.

execRet :: PyM pyM obj => Maybe PyExp -> pyM ()
execRet (Just exp) = eval exp >>= (escape . Return)
execRet Nothing = escape (Return None)

This Return escape value needs to be intercepted at the top level of the
evaluation so that it can be returned. This is shown below, highlighting the
usefulness of our framework and its cond, escape, catch, etc. constructs.

evalBdy (FuncBdy _ bdy) = catchRet (exec bdy $> constant None)

catchRet :: PyM m obj => m PyVal -> m PyVal
catchRet = (`catch` \esc -> cond (return $ isReturn esc)

(getReturn esc) (throw esc))
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Another example of how our analysis framework facilitates implementing
complex language features is depicted below. It shows the implementation of
attribute lookup for Python objects. First, it checks whether the object contains
the attribute, and looks it up in the fields of its class otherwise. Our framework
enables expressing abstract semantics close to the concrete, as can be seen in
hasAttr, getAttr, etc. These return abstract values which lead to approximation
in the semantics, but the way they are expressed is close to a concrete semantics.

lookupAttr loc attr =
pyDeref $ \adr obj ->

cond (return $ hasAttr attr obj)
(return $ getAttr attr obj)
-- if not found locally => look in the class
(do cls <- atAttr "__class__" obj

lookupAttrInClass loc attr adr cls)

Conclusion. Our type classes form a framework for defining abstract
language semantics. Our case studies have shown that the framework is
applicable to two very different semantics which demonstrates its power
and expressiveness.

5.3 Analysis

Below we present the analysis instantiations for Scheme and Python. Both are
implemented as a pair of functions intra and analyze. The former defines the set
of layers which are cached by the caching mechanism and whose input and output
will be used by the fixpoint iterator. The latter defines all the layers outside of
the cache. This boundary is set by the runBaseT layer at the bottom of the stack
defined in intra. Both instantiations place the store monad transformer below
the cache layer. This is because the analyses use a global store which requires
the store to remain outside of the cached state.

-- Scheme
intra :: (SchemeDomain v, AnalysisM m v) => Exp -> m v
intra e = eval e & runAlloc (PaiAdr @ctx)

& runAlloc (VecAdr @ctx)
& runAlloc (StrAdr @ctx)
& runAlloc (EnvAdr @ctx)
& runCtx ctx & runJoinT & runBaseT

analyze e = lfp (intra e)
& runStoreT initialSto
& runWithStore @(Map StrAdr (StrDom v))
& runWithStore @(Map VecAdr (VecDom v))
& runWithStore @(Map PaiAdr (PaiDom v))
& runIdentity

-- Python
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intra :: AnalysisM m obj => PyBdy -> m ()
intra bdy = evalBdy bdy & runMayEscape

& runEnvT initialEnv
& runAlloc (const . allocPtr)
& runAlloc (const . allocFrm)
& runCtxT () & runJoinT & runBaseT

analyze prg = lfp (intra prg)
& runWithStore @(Map ObjAdr obj) @ObjAdr
& runIdentity

The instantiations for Python and Scheme follow the same structure: both
use the same fixpoint iterator function called lfp, need an environment and
context, and use the JoinT layer for merging results from different paths in
the analyzed program. Both instantiations are implemented in approximately
150 lines of code each. The major difference between the Scheme and Python
analyses is in their use of stores. To run a Python analysis only a single store
is required while a Scheme analysis requires four. This is because the Scheme
analysis uses four memory segments: variable segment, vector segment, string
segment and pair segment (in contrast, in Python everything is an object, and
hence only an object segment is required). We chose this design because our
memory allocation strategy never allocates values from different segments on
the same address. Physically segmenting the stores allows enforcing this design
at the type level. This usage also highlights how the MonadStore interface pro-
vides the correct lookup function by traversing the monad transformer stack,
and uses the store that is applicable for the type of address used.

Conclusion. We instantiated an analysis for Python and for Scheme sub-
sets. These instantiations are similar, demonstrating that our monad trans-
former stack facilitates expressing effects for different semantics.

6 Related Work

In this section, we present other static analysis tools based on (definitional)
abstract interpreters and discuss how our framework differs.

Monadic Abstract Interpreters. Sergey et al. [23] propose monadic abstrac-
tions for abstracting a CESK machine. To this end, they start from the AAM
approach and derive monadic components. Although their work is the first to
introduce monads in the context of abstracting abstract machines, it does not
deal with the definitional aspect of the interpreter, nor does it integrate monad
transformer stacks for composing different aspects of the analysis together.

Definitional Interpreters through Arrow Combinators. Keidel et al. [15]
propose a library of arrow combinators [8] for expressing sound and composable
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abstract program semantics. Similar to their work, we also present a collection
of type classes to describe the semantics of the analyzed language. However, we
encode the expected abstractions as monads instead of arrows. We argue that
arrow transformers are quite new and less supported by the Haskell ecosystem.
Moreover, their abstraction of ArrowPlus (MonadJoin in our implementation)
lacks a Joinable and BottomLattice constraint. This makes the implementation
of this type class as a join of the values across program branches more difficult, as
a layer within the monad transformer stack cannot assume the lattice structure
of the values captured within the monadic computations.

In a follow-up work, Keidel et al. [14] propose fixpoint combinators for ex-
pressing the fixpoint algorithms for abstract definitional interpreters. Our work
follows similar strategies but is specifically tailored to monadic abstract inter-
preters, rather than arrow transformers. The MonadCache type class essentially
implements a caching mechanism specifically for Kleisli arrows. However, next
to caching, the MonadCache type class also serves a more practical purpose: it
allows to run a (part of) a monad transformer stack.

Abstract Definitional Interpreters without Monads. Brandl et al. [1]
propose a Scala framework for implementing abstract definitional interpreters.
In contrast to our work, their framework proposes to eliminate the monad trans-
former stack by representing computational effects through an imperative ef-
fect stack. This reduces compilation times as the compiler no longer needs to
aggressively inline each monadic operation across the transformer stack, but
requires careful implementations of effect handlers to store and restore global
state when appropriate. For instance, combining a store effect handler with a
non-determinism handler requires that the store handler restores its state im-
peratively after the first branch is evaluated and before the execution moves on
to the next branch. Monad transformers do not have an imperative state and do
not require separate restore logic.

Other Abstract Interpretation Frameworks. MAF [24] is a framework
for implementing modular analyses for higher-order programming languages.
This work focuses on the ModX [20] approach to modular analyses and does
not present abstractions for expressing abstract program semantics. Moreover,
support for combining abstract domains is limited.

The MOPSA analyser [11] is a modular OCaml platform used to build sound
semantic static analysers based on abstract interpretation. In contrast to our
work, MOPSA does not follow the abstract definitional interpreter design.

LiSA [6] is a library for building analyses based on abstract interpretation.
LiSA uses a control flow graph representation, allowing analysis implementers
to reuse the library’s existing analyses by only writing a parser and control flow
graph builder for the language they want to analyse. In Monarch this can be
achieved by implementing an evaluation function for the language of interest.
Other static analysis tools such as Soot [12], Phasar [22], . . . also rely on control
flow graphs but are tailored to specific programming languages such Java or
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LLVM IR. Although Monarch currently focusses on Scheme and Python, it is
designed in a language-agnostic manner.

CiaoPP [2] is an abstract interpretation-based preprocessor and analyser
for Ciao Prolog programs. Similar to our work, the tool provides an interface
to instantiate client analyses and the ability to configure the analysis in several
ways. However, the tool is specialised to the Ciao Prolog programming language,
while Monarch provides many language-agnostic building blocks to allow anal-
ysis developers to create new analyses for other languages (as demonstrated by
our case studies in Section 5).

Staged Abstract Interpreters. [26] Shows how an abstract interpreter can
be specialised to a program to optimise it. Although this paper does not present
any novel ideas specifically for abstract definitional interpreters, their optimisa-
tion steps could be of interest to integrate into the Monarch framework.

Overall, our work follows a long tradition in abstract interpretation [4] and (ab-
stract) definitional interpreters [14, 21, 23]. Monarch combines this tradition
into a single framework and proposes abstractions in the form of MonadJoin,
MonadEscape and MonadCache. Moreover, our framework provides a strong foun-
dation for building abstract domains through its rich set of primitive domains
and its powerful domain combinators, such as sparse labeled products.

7 Conclusion

We have presented our framework called Monarch for implementing abstract
definitional interpreters in Haskell. Our design consists of three parts: abstract
domains, abstract program semantics, and analysis instantiation. We have pre-
sented the key features of each part and how they integrate with one another.
For its domain component, we found that a rich library of primitive domains and
combinations thereof are the most suitable for representing abstract domains. We
also found that type-level data structures are paramount for implementing com-
plex abstract domains succinctly and efficiently by providing abstractions that
reason about all subdomains automatically. For defining programming language
semantics, we found that, similar to other abstract definitional interpreters, im-
plementing language semantics is best performed in a polymorphic context ex-
pressed using a set of monadic type class constraints. Moreover, although nearly
identical to their standard mtl counterparts, monadic type classes for abstract
definitional interpreters require additional type class constraints relating to lat-
tices and strong updates. We have also shown that caching infrastructure can
be expressed in a generic manner through a MonadCache type class constraint
without the need for less common representations of computations such as ar-
rows. Finally, we discussed two different instantiations of analyses for Scheme
and Python and showed how our design facilitated implementing these analyses.
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