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Abstract. Both the precision and performance of abstract interpreters
can be improved greatly through the integration of abstract garbage
collection (GC). Unfortunately, for abstract interpreters that do not
explicitly model the stack (e.g., abstract definitional interpreters), this
integration has proven cumbersome. Existing approaches either fail to
exploit the full precision and performance benefits of abstract GC and
pushdown control flow, and/or require complicated modifications to the
abstract interpreter. In addition, the lack of global store widening, which
is incompatible with abstract GC, often remains an obstacle for scalability.
In this work, we present delta store semantics (DSS), offering a novel
yet simple approach to integrate abstract GC into big-step abstract
definitional interpreters. DSS makes a simple change to the standard
big-step language semantics, returning a delta store (representing changes
to the original store) instead of an updated store, enabling the integration
of a single evaluation rule to interleave GC into its semantics. Importantly,
we show that DSS not only preserves the advantages of big-step abstract
interpreters and abstract GC, but in fact can exploit greater precision
benefits (due to more aggressive GC). We formulate this claim as a
theorem, for which we provide both a mechanised proof in Rocq, as well
as empirical evidence. Finally, we propose a new form of store widening
for DSS, which tackles the scalability issues of abstract interpreters
employing abstract GC without store widening. The result is similar to
the traditional notion of flow sensitivity in data-flow analyses.
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1 Introduction

Abstract garbage collection is the application of garbage collection (GC) to
an abstract interpreter. Similar to concrete GC, it reclaims memory locations
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that are no longer reachable. Its purpose, however, is entirely different: for a
concrete interpreter, GC simply frees up memory resources, whereas in an abstract
interpreter, its main purpose is to improve precision and scalability [21,22].

Abstract GC has frequently been integrated into abstract interpreters that
employ small-step operational semantics, such as those obtained by following the
Abstracting Abstract Machines (AAM) approach to abstract interpretation [30,21].
In contrast, for abstract interpreters that employ big-step definitional inter-
preters [28], this integration is inherently more challenging. The reason for this
challenge is that for such abstract definitional interpreters [2], there is no explicit
(abstraction of the) continuation. A direct application of GC requires access to
the continuation to ensure that all addresses that are reachable therefrom are not
accidentally reclaimed, as they might still be needed later on. That is, addresses
reachable from the continuation are traditionally part of the GC root set.

Yet, at the same time, the lack of an explicit continuation on its own brings
about key benefits to the precision and scalability of the abstract interpreter.
These benefits are widely recognized under the umbrella of pushdown control flow
models [3,11]. It should come as no surprise that various attempts [4,2,8] have
been made to combine the benefits of such models with the benefits of abstract
GC, aiming to realize “the best of both worlds”. Unfortunately, these attempts
often fall short of that promise, sacrificing some benefits of both abstract GC and
pushdown control flow to enable their co-existence. Another issue is that these
existing approaches overcomplicate the underlying machinery of the abstract
interpreter, requiring significant engineering efforts and rendering formal reasoning
about the interpreter’s abstract semantics more challenging.

1.1 Motivation: The Best of Both Worlds

Both abstract GC and the pushdown control flow of abstract definitional inter-
preters offer significant precision and performance improvements.

Specifically, for abstract GC, we identify the following advantages:

Avoiding Garbage-Induced Imprecision. In order to ensure termination, an ab-
stract interpreter needs to use a finite number of addresses. As such, multiple
allocations may need to reuse the same address. All values allocated at the
same address are joined together, causing a loss in precision. Abstract GC can
prevent some of those precision-detrimental joins: by freeing up addresses that
are unreachable, it prevents future allocations at those addresses from having to
join the newly allocated value with the old “garbage values”. When using abstract
counting [16,21], which counts the number of concrete bindings for each abstract
address, abstract GC can also prevent counting dead bindings.

Without abstract GC, these sources of imprecision in the heap are propagated,
bringing garbage “back to life” and disturbing not only the data but also the
control flow of the interpreter due to spurious paths [21]. Existing work has
therefore shown that abstract GC can lead to order-of-magnitude improvements
in precision (and performance, as the exploration of spurious paths is avoided).
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Garbage Irrelevance. Another advantage of abstract GC relates not directly
to the interpreter’s precision, but to the scalability of the underlying fixpoint
algorithm. Specifically, by removing garbage from the heap, the states explored
by the abstract interpreter become smaller (i.e., the abstract interpreter only
needs to explore the subset of the state space where all garbage is removed). This
causes the interpreter to more frequently end up in the same states, allowing
the reuse of previously computed analysis results for such states. In contrast,
without abstract GC, the interpreter often has to analyze multiple states that
are equivalent, but not equal, as they differ only in unreachable (garbage) bindings.

We refer to the examples given in [21,4,29] to illustrate the impact of these
benefits. Only an interpreter that is entirely garbage-free [21,29] (i.e., eliminates
all garbage immediately) enjoys the full benefit of both these advantages.

Similarly, we enumerate the advantages that are inherent to the pushdown
control flow of abstract definitional interpreters.

Perfect Stack Precision. The big-step semantics of abstract definitional inter-
preters no longer model the continuation (i.e., “the stack”), and instead rely on
the underlying continuation of the host language (or formalism) for recursive
evaluation rules. Since the continuation is no longer modelled in the semantics,
an abstraction of these semantics no longer requires an abstraction (i.e., approxi-
mation) of the continuation either. Such an abstraction of the continuation would
otherwise cause imprecision in control flow, incorrectly matching callers and re-
turns. In contrast, the pushdown control flow of abstract definitional interpreters
entirely avoids this precision loss, resulting in “perfect stack precision” [2].

Context Irrelevance. Germane et al. [8] point out that big-step semantics, such
as those of abstract definitional interpreters, also enjoy the benefit of context
irrelevance. Analogous to garbage irrelevance, context irrelevance ensures that
states are not differentiated based on their continuation component (i.e., their
“context”). Therefore, when the same evaluation state is encountered in multiple
contexts, the analysis results for that state can be reused in every context, im-
proving scalability. The rationale is that just as garbage is not relevant to the
evaluation of a current state, in many languages the continuation component
also does not contribute to the result of an evaluation. Of course, the latter
assumption does not hold when, for instance, first-class continuations are used.1

We refer to the examples in [3,4] to illustrate the impact of these benefits.
In this work, we show that the combination of abstract GC and the pushdown

control flow of abstract definitional interpreters can not only keep the advantages
of both techniques, but can in fact do even better than “the best of both worlds”.
That is, we identify an additional benefit that can be exploited by abstract GC
when applied to abstract definitional interpreters:

1 However, it can be argued that a CPS transformation of the program under analysis
can be used to support such language features.
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Stackless Abstract GC. As exemplified by the work of Germane et al. [8], ab-
stract GC for big-step abstract interpreters can (temporarily) reclaim addresses
that are still reachable from the (implicit) continuation. That is, such “stackless
abstract GC” does not take references from the continuation into account, re-
sulting in a smaller GC root set, and therefore also a more aggressive form of
abstract GC (and therefore in turn amplifying its aforementioned advantages).
We can illustrate this using the following Scheme program as an example:

(define (f n) (if (even? n)
(/ n 2)
(let ((r (f (+ n 1)))) (+ r n))))

(f 5)

For a context-insensitive abstract interpreter without abstract GC, the recursive
call to f would allocate the argument (+ n 1) at the same address for the
parameter n as the original argument 5, therefore joining both values at this
address and losing precision. However, when abstract GC is applied to a small-step
abstract interpreter with explicit continuations (e.g., à la AAM), this precision
loss would also not be avoided. The reason is that n is still reachable by the
continuation when the recursive call to f happens, and therefore its corresponding
address can not be reclaimed. In contrast, when stackless abstract GC is applied
to a big-step abstract interpreter, references from the stack do not contribute
to the GC root set (i.e., only addresses reachable from the current environment
are preserved). As such, n is not kept in scope, and its address can be reclaimed
before it is reallocated for the recursive call to f, avoiding this precision loss.

1.2 Approach: Delta Store Semantics

In this work, we present delta store semantics (DSS), a new formalism to in-
tegrate abstract GC into abstract definitional interpreters, exploiting all the
aforementioned advantages. DSS closely resembles the original big-step abstract
semantics, making only a simple change by returning a delta store (containing
all changes to the original store) instead of directly returning an updated store.
This modification opens up two interesting opportunities:

– It enables a simple and efficient integration of abstract GC into the big-step
abstract semantics (similar in spirit to the effect logs of Germane et al. [8,9]).
That is, when abstract GC is enabled, the delta store that is computed
represents changes w.r.t. a minimal, garbage-collected store. Subsequently,
we can replay those changes on a non-garbage-collected store, where the
bindings that are necessary for the continuation are still present.

– A delta store is a more efficient, minimal representation for the result of an
evaluation compared to the full updated store. Just like regular stores, delta
stores are joinable. We propose a novel form of store widening for DSS, which
still allows for strong updates and (limited) abstract GC. Such store widening
involves joining the results of evaluations at the same program point, which is
more efficient using delta stores (as we only have to join the changed bindings
instead of the entire stores).



DSS: Abstract GC for Abstract Definitional Interpreters 5

These two opportunities form the outline for the core of this paper. Section 3
presents the big-step abstract semantics with delta stores; Section 4 and Section 5
show how abstract GC and flow-sensitive store widening can be integrated into
this semantics, respectively. We evaluate the impact of both in Section 6.

Contributions. The contributions of this work are as follows:

– We present delta store semantics (DSS), a novel formulation of big-step
abstract semantics where evaluation steps return minimal and composable
delta stores (representing changes to a store) instead of full updated stores.
Our formalism resembles the heap fragment semantics of Germane et al. [8,9],
but is arguably simpler and closer to the original big-step semantics.

– We show how abstract GC can be integrated into DSS, exploiting the full
potential of combining abstract GC with pushdown control flow (i.e., realizing
all benefits listed in Section 1.1). As such, this integration achieves better
precision than classical abstract GC for small-step abstract interpreters. We
formulate this claim as a theorem, and provide a mechanised proof in Rocq.

– We show how a new form of store widening can be integrated into DSS, further
exploiting the minimal and compositional nature of delta stores. This form
of store widening closely resembles the traditional notion of flow sensitivity,
and still allows for strong updates and (a limited form of) abstract GC.

– We provide an implementation of DSS (including the integrations of abstract
GC and flow-sensitive store widening) in the MAF framework to abstract
interpretation. Using this implementation, we conduct an empirical evaluation
to measure the impact of abstract GC (specifically, the impact of the theorem
formally shown in Rocq) and flow-sensitive store widening for DSS.

2 Background

We present the formal specification of a minimal higher-order language λANF with
support for mutable variables (to model strong updates). Below, we define the
syntax of λANF, based on the λ-calculus in A-Normal Form [5] (ANF).

e ∈ Exp ::= ae | f(ae)
| let x = e1 in e2

| set x := ae then e

f, ae ∈ Atom ::= x | lam
lam ∈ Lam ::= λx.e

x ∈ Var (a set of identifiers)

ANF is a syntactic form restricting operators and operands to atomic expressions
ae which can be evaluated immediately without impacting program state. This
simplification can be automated, is purely cosmetic, and without loss of generality.

We define both the abstract small-step and big-step semantics for λANF, and
discuss the integration of abstract counting and abstract GC.
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2.1 Small-Step Abstract Semantics of λANF

We present the small-step abstract semantics of λANF (the “operational semantics”)
using the AAM technique [30] to abstract interpretation.

State Space. The state space Σ of the abstract interpreter is given below.23

ς ∈ Σ ::= ⟨c, σ, σk, ak⟩
c ∈ Control ::= ev(e, ρ) | ap(v)

ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr → Val
v ∈ Val = P(Clo)

clo ∈ Clo = Lam × Env

σk ∈ KStore = KAddr → Kont
κ ∈ Kont = P(Frame)

frm ∈ Frame ::= letk(x, e, ρ, ak)
l ∈ Loc = Addr ∪ KAddr

a ∈ Addr (a finite set)
ak ∈ KAddr (a finite set)

A state ς consists of a control component (either an expression e under evaluation
paired with an environment ρ, or a resulting value v), a store σ (to model “the
heap”), a continuation store σk (to model “the stack”), and the current continu-
ation address ak (pointing to “the top of the stack”). While the sets Addr and
KAddr are infinite in a concrete interpreter (e.g., by picking Addr = KAddr = N),
for an abstract interpreter both sets should be finite. One can easily show that
this restriction ensures that the state space Σ also remains finite.
As the abstract interpreter can only use a finite number of addresses, it may need
to reuse the same address for multiple allocations. Closures and continuation
frames that end up at the same address need to be joined together to obtain a
sound, but finite approximation. Therefore, values and continuations are repre-
sented as sets of closures and continuation frames, respectively. We define the join
operator (⊔), the subsumption relation (⊑) and the global lower bound (⊥) for Val
(and analogously for Kont): v1 ⊔ v2 = v1 ∪ v2, v1 ⊑ v2 ⇐⇒ v1 ⊆ v2 and ⊥ = ∅.
We trivially extend the definitions of (⊥), (⊔) and (⊑) to functions and pairs. For
example, (a1, b1)⊔(a2, b2) = (a1⊔a2, b1⊔b2) and (f1⊔f2)(a) = f1(a)⊔f2(a), while
(⊥) is defined so that ⊥ ⊔ v = v ⊔ ⊥ = v and (⊑) so that a ⊑ b ⇐⇒ a ⊔ b = b.

Evaluation Rules. Atomic expressions can be evaluated in a single step, without
making any modifications to the store. To evaluate such atomic expressions, we
introduce an auxiliary function A : Atom × Env × Store → Val.

A(x, ρ, σ) = lookup(σ, ρ(x)) A(lam, ρ, σ) = {⟨lam, ρ⟩}
2 Note that it is often customary to put ĥats on abstracted components, in order to

distinguish them from their concrete counterparts. We only present the abstract
semantics, and therefore omit these hats to improve readability.

3 For a state ς, we implicitly use subscripted notations so that ς = ⟨cς , σς , σkς , akς⟩.
For (partial) maps, [] denotes the empty map, [a 7→ b] denotes a map m with a single
binding (i.e., dom(m) = {a} and m(a) = b), and the notation m[a 7→ b] extends the
map m so that m[a 7→ b](a) = b and m[a 7→ b](x) = m(x) for x ̸= a.
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where currently, lookup is simply defined as lookup(σ, a) = σ(a).
Below, we define the small-step transition relation (→) ⊆ Σ × Σ for λANF.

Note that (→) is not deterministic due to its over-approximating behaviour.

v = A(ae, ρ, σ)
⟨ev(ae, ρ), σ, σk, ak⟩ → ⟨ap(v), σ, σk, ak⟩

(St-Atom)

⟨λx.e, ρ′⟩ ∈ A(f, ρ, σ) v = A(ae, ρ, σ) a = alloc(x)
⟨ev(f(ae), ρ), σ, σk, ak⟩ → ⟨ev(e, ρ′[x 7→ a]), extend(σ, a, v), σk, ak⟩

(St-App)

a′k = allock(e1) κ = {letk(x, e2, ρ, ak)}
⟨ev(let x = e1 in e2, ρ), σ, σk, ak⟩ → ⟨ev(e1, ρ), σ, extendk(σk, a′k, κ), a

′
k⟩

(St-Let1)

letk(x, e, ρ, a′k) ∈ σk(ak) a = alloc(x)
⟨ap(v), σ, σk, ak⟩ → ⟨ev(e, ρ[x 7→ a]), extend(σ, a, v), σk, a′k⟩

(St-Let2)

v = A(ae, ρ, σ) a = ρ(x) σ′ = update(σ, a, v)
⟨ev(set x := ae then e, ρ), σ, σk, ak⟩ → ⟨ev(e, ρ), σ′, σk, ak⟩

(St-Set)

We leave the choice of sets Addr and KAddr, as well as the allocation functions
alloc and allock open as configuration parameters of the abstract interpreter
(resulting in a particular allocation policy). Any allocation policy yields a sound
and decidable analysis [30] (as long as the sets chosen for Addr and KAddr are
finite). However, the choice is not arbitrary, as the allocation policy decides how
often (determined by the size of Addr and KAddr) and when (determined by alloc
and allock) addresses need to be reused. This choice therefore affects the precision
and polyvariance [10] of the abstract interpreter.4

Currently, we define functions extend (analogously, extendk) and update as:

extend(σ, a, v) = update(σ, a, v) = σ[a 7→ σ(a) ⊔ v]

Abstract Counting. We can further improve the precision of the abstract
interpreter using abstract counting [19,1]. With abstract counting, one keeps
track for every allocated address a in σ whether it has been allocated (concretely)
only once or possibly multiple times. Doing so can avoid joining the old and new
value in the St-Set rule in certain cases. Formally, we define

n ∈ Count := 0 | 1 | ∞

n1 ⊔ n2 =

{
n2 if n1 ⊑ n2

n1 otherwise
inc(n) =

{
1 if n = 0

∞ otherwise

4 For the sake of simplicity, our abstract interpreter does not include a timestamp
component (as in [30]), which could be used to express more complex allocation
policies such as k-CFA with k > 1.
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and the (reflexive and transitive) subsumption relation (⊑) as 0 ⊑ 1 ⊑ ∞.
We then modify the definition of Store to keep track of abstract counts5:

σ ∈ Store = Addr → (Val × Count )

Extending the store with a newly-allocated address (using extend) increases the
abstract count at that location. Updating the address at an existing address (using
update) does not increase the abstract count. If the existing abstract count for
that address is ∞, we are not able to replace the value at that location (because
that address may represent multiple allocations, and we are only updating one of
them); in this case, the new value is still joined together with an old value (called
a weak update). However, if the abstract count at this location is 1, then we know
that we can safely replace the old value with the new one (called a strong update),
thereby increasing the precision of the St-Set rule. If ⟨va, ca⟩ = σ(a), then:

lookup(σ, a) = va extend(σ, a, v) = σ[a 7→ ⟨va ⊔ v, inc(ca) ⟩]

update(σ, a, v) =

{
σ[a 7→ ⟨v, 1⟩] if ca = 1

σ[a 7→ ⟨va ⊔ v, ca⟩] otherwise

Abstract Garbage Collection. We now add garbage collection to further
improve precision. We use notation and definitions similar to those used by Might
and Shivers [21]. First, we define a family of auxiliary functions TX : X → P(Loc)
that return all addresses that are referenced directly by some element of type X.

TΣ(⟨c, σ, σk, ak⟩) = TControl(c) ∪ {ak}
TControl(ev(e, ρ)) = TEnv(ρ)

TControl(ap(v)) = TVal(v)

TVal(v) =
⋃

clo∈v

TClo(clo)

TClo(⟨λx.e, ρ⟩) = TEnv(ρ)

TEnv(ρ) = range(ρ)

TFrame(letk(x, e, ρ, ak)) = TEnv(ρ) ∪ {ak}

TKont(κ) =
⋃

frm∈κ

TFrame(frm)

Next, we introduce the adjacency relation between addresses (⇝ς) ⊆ Loc × Loc,
where intuitively l⇝ς l

′ means that there is a reference from l to l′. We define
(⇝ς) = (⇝σς ) ∪ (⇝σkς

), using the following auxiliary adjacency relations:

a⇝σ l ⇐⇒ l ∈ TVal(lookup(σ, a)) ak ⇝σk
l ⇐⇒ l ∈ TKont(σk(ak))

The auxiliary function R(⇝) : P(Loc) → P(Loc) computes all addresses transi-
tively reachable from a given root set using a transition relation (⇝):

R(⇝)(roots) = lfp(f) where f(S) = roots ∪ {l′ ∈ Loc | ∃l ∈ S : l⇝ l′}

The function R : Σ → P(Loc) computes all reachable addresses of a state:

R(ς) = R(⇝ς)(TΣ(ς)).
5 Important changes with respect to previous definitions are highlighted in gray .
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Using these definitions, we can define garbage collection for a state ς as a function
Γ : Σ → Σ that restricts the stores of ς to its reachable addresses R(ς).

Γ (ς) = ⟨cς , σς |R(ς), σkς |R(ς), ak⟩

where σ|R(a) = σ(a) if a ∈ R and ⟨⊥, 0⟩ otherwise (analogously for σk|R).
To incorporate garbage collection into our evaluation rules, we define a new

transition relation (→Γ ) as a composition of the garbage collection function Γ
and the existing transition relation (→), i.e. (→Γ ) = Γ ◦ (→). As such, (→Γ )
applies GC after every step. This ensures that no garbage can be created by
(→Γ ), rendering the abstract interpreter garbage-free [30,29].

Note that abstract GC synergises with abstract counting: abstract counts
for collected addresses are reset to 0, increasing opportunities for future strong
updates. Conversely, by applying strong updates, more garbage can be collected,
as addresses reachable from the overwritten value no longer contribute to R(ς).

Program Semantics. The collecting semantics of a program can now be defined
using the function S : Exp → P(Σ), which computes all the states reachable by
the abstract interpreter, starting from the initial state of the program:6

S(e) = {ς ∈ Σ | ⟨ev(e, []),⊥σ,⊥σk
, ahalt⟩

∗→Γ ς}

where ⊥σ(a) = ⟨⊥, 0⟩, ⊥σk
(a) = ⊥ and ahalt is a special address in KAddr. As

Σ is finite, for any program e it is guaranteed that S(e) is finite and therefore
computable. We can reason over the behaviour of e by reasoning over S(e),
yielding a sound and decidable program analysis. Note that the definition of S
reveals the benefit of garbage irrelevance: as (→Γ ) is garbage-free, S only needs
to explore the subset of Σ where ς = Γ (ς).

We also define a function eval : Exp → P(Val × Store), returning a set of all
possible return values (along with their corresponding store) for a program:

eval(e) = {(v, σ) | ⟨ap(v), σ, σk, ahalt⟩ ∈ S(e)}

2.2 Big-Step Abstract Semantics of λANF

We present the big-step abstract semantics of λANF (the “definitional semantics”)
following the approach of Darais et al. [2] to abstract interpretation.

Evaluation Rules. For an abstract definitional interpreter, the semantics are
formulated as recursive evaluation rules using a big-step relation (⇓) ⊆ Config×
Result. We define input configurations to evaluate (Config) and the result of the
evaluation for that configuration (Result) as follows:

conf ∈ Config = Exp × Env × Store res ∈ Result = Val × Store

6 We write (
∗→Γ ) for the reflexive, transitive closure of (→Γ ).
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That is, a configuration ⟨e, ρ, σ⟩ contains an expression e to evaluate using
the environment ρ and store σ. In contrast to states in Σ, configurations crucially
do not carry a continuation component, which is key to achieve context irrelevance
(as configurations with the same expression, environment and store, but used in
different evaluation contexts are still considered equal) and avoids a loss in stack
precision (since there is no need to approximate this component). The result of
an evaluation ⟨v, σ′⟩ holds the resulting value v along with the updated store σ′.

The big-step transition relation (⇓) is defined below. Note again that — just
as with the small-step transition relation (→) — there is nondeterminism due to
the over-approximating behaviour of the abstract interpreter.

v = A(ae, ρ, σ)
⟨ae, ρ, σ⟩ ⇓ ⟨v, σ⟩

(E-Atom)

⟨λx.e, ρ′⟩ ∈ A(f, ρ, σ) ax = alloc(x) vx = A(ae, ρ, σ)
⟨e, ρ′[x 7→ ax], extend(σ, ax, vx)⟩ ⇓ ⟨v, σ′⟩

⟨f(ae), ρ, σ⟩ ⇓ ⟨v, σ′⟩
(E-App)

⟨e1, ρ, σ⟩ ⇓ ⟨vx, σ′⟩ ax = alloc(x)
⟨e2, ρ[x 7→ ax], extend(σ′, ax, vx)⟩ ⇓ ⟨v, σ′′⟩

⟨let x = e1 in e2, ρ, σ⟩ ⇓ ⟨v, σ′′⟩
(E-Let)

ax = ρ(x) vx = A(ae, ρ, σ)
⟨e, ρ, update(σ, ax, vx)⟩ ⇓ ⟨v, σ′⟩

⟨set x := ae then e, ρ, σ⟩ ⇓ ⟨v, σ′⟩
(E-Set)

Note that strong updates are already supported in these semantics, since we are
reusing the abstract-counting definitions of extend and update.

Abstract Garbage Collection. For the small-step abstract interpreter of
Section 2.1, we computed the GC root set for the current state ς using the
addresses directly reachable from the control component (TControl(cς)) and the
current root of the continuation component (akς). For the abstract definitional
interpreter presented here, we do not have access to the latter, as the continuation
component is not explicitly reified. Nevertheless, addresses reachable from the
continuation can not just be ignored: if they are not included in the GC root
set, addresses that are used later on may accidentally be collected. The updated
store σ′ of an evaluation step ⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩ is then no longer safe to continue
evaluation with. For instance, in the E-Let rule, it is crucial that the updated
store σ′ (returned after evaluating e1) still contains all addresses reachable from ρ,
so that it can safely be used to evaluate e2.

In order to address this, Darais et al. [2] show how abstract GC can still be
integrated into an abstract definitional interpreter by explicitly passing along
all addresses reachable from the (implicit) continuation (i.e., all addresses that
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need to be preserved, as they may be used after the current evaluation step).
Concretely, this requires passing along a set of addresses ψ in each configuration:

conf ∈ Config = Exp × Env × Store × P(Addr)

Incorporating GC into the evaluation rules then requires two modifications:

– Each recursive evaluation step passes along the set of stack addresses ψ that
need to be preserved, along with additional addresses that are still needed
to continue with the remaining evaluation steps in that rule. The latter
corresponds to the addresses that would previously be directly reachable
from the Frame (i.e., using TFrame) allocated in the corresponding rule of the
small-step semantics. Due to our simplification to ANF, the only rule with
multiple recursive evaluation steps is the E-Let rule; addresses still required
for the second evaluation step (in this case, TEnv(ρ)) are therefore added to
ψ for the first evaluation step. As the second evaluation step is also the final
one (i.e., e2 is evaluated in tail position, so it does not grow the (implicit)
continuation), no additional addresses need to be preserved.

– We add a new rule to collect garbage: for a configuration ⟨e, ρ, σ, ψ⟩, it uses
ψ∪TEnv(ρ) as the GC root set, using the garbage-collected store to evaluate e,
and subsequently also cleans up the updated store σ′ of the result ⟨v, σ′⟩
using the GC root set ψ ∪ TVal(v).7 To interleave this rule with the existing
evaluation rules, we introduce a new relation (⇓Γ ) with such a GC rule:

σgc = σ|R(⇝σ)(ψ ∪ TEnv(ρ))

⟨e, ρ, σgc, ψ⟩ ⇓ ⟨v, σ′⟩
σ′

gc = σ′|R(⇝
σ′ )(ψ ∪ TVal(v))

⟨e, ρ, σ, ψ⟩ ⇓Γ ⟨v, σ′
gc⟩

(E-GC)

Subsequently, we modify the other evaluation rules to use (⇓Γ ) instead of (⇓)
for recursive evaluation steps. This effectively results in the big-step equivalent
of the “GC at every step” policy used in (→Γ ).

The updated evaluation rules are shown below:

v = A(ae, ρ, σ)

⟨ae, ρ, σ, ψ ⟩ ⇓ ⟨v, σ⟩
(E-Atom)

⟨λx.e, ρ′⟩ ∈ A(f, ρ, σ) ax = alloc(x) vx = A(ae, ρ, σ)
⟨e, ρ′[x 7→ ax], extend(σ, ax, vx), ψ ⟩ ⇓Γ ⟨v, σ′⟩

⟨f(ae), ρ, σ, ψ ⟩ ⇓ ⟨v, σ′⟩
(E-App)

7 Note that we are able to collect more garbage here compared to the original work of
Darais et al. [2], as we GC not only the result store, but also the configuration store.
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⟨e1, ρ, σ, ψ ∪ TEnv(ρ) ⟩ ⇓Γ ⟨vx, σ′⟩ ax = alloc(x)

⟨e2, ρ[x 7→ ax], extend(σ′, ax, vx), ψ ⟩ ⇓Γ ⟨v, σ′′⟩

⟨let x = e1 in e2, ρ, σ, ψ ⟩ ⇓ ⟨v, σ′′⟩
(E-Let)

ax = ρ(x) vx = A(ae, ρ, σ)
⟨e, ρ, update(σ, ax, vx), ψ ⟩ ⇓Γ ⟨v, σ′⟩

⟨set x := ae then e, ρ, σ, ψ ⟩ ⇓ ⟨v, σ′⟩
(E-Set)

While this approach can safely collect garbage to improve precision, it still loses
out on the full advantages of both abstract GC and pushdown control flow.

First, the abstract interpreter no longer enjoys context irrelevance. While the
continuation itself is not directly part of a configuration, the addresses reachable
from the continuation are. Configurations that only differ in the context in which
they are used (i.e., they have different continuations), and that would otherwise
be equal, may therefore be analysed multiple times by the analysis (i.e., when the
set of reachable addresses ψ is also different, leading to multiple configurations).

Second, the abstract interpreter can not take advantage of the pushdown
control flow to collect more garbage. That is, it can not reclaim any bindings
reachable from the continuation (as these are kept alive by ψ), even though
these are not actually used for the current evaluation step. An optimal approach
would be able to more aggressively collect garbage using a smaller root set (i.e.,
without ψ), only adding back the bindings reachable by ψ after the evaluation
step to construct the updated store to continue evaluation with.

Program Semantics. As with the small-step semantics, we can define a function
eval : Exp → P(Val × Store) that returns all possible return values (and stores):

eval(e) = {(v, σ) | ⟨e, [],⊥σ⟩ ⇓Γ ⟨v, σ⟩}

We refer to the work of Darais et al. [2] for a cache-based fixpoint algorithm to
compute the (finite) big-step relation (⇓Γ ). The same paper also shows how the
evaluation rules can be instrumented to compute the collecting semantics.

3 Delta Store Semantics

We now present the core foundation of delta store semantics (DSS). DSS closely
resembles the standard big-step semantics presented in Section 2.2. The main
difference is that evaluation now returns a delta store (representing changes to
the original store) instead of the entire updated store.

We first introduce delta stores in Section 3.1, along with a set of operations
on delta stores defining how they are joined and composed. We also show how
a delta store can be applied to the original store, in order to reconstruct the
updated store. In Section 3.2, we then modify the abstract big-step semantics
for λANF, resulting in an equivalent semantics formulated using delta stores.
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3.1 Delta Stores

A delta store captures bindings that were changed with respect to a given store σ.
Put differently, it is the subset of the updated store containing all bindings that σ
has potentially8 been extended or updated with.

Formally, we define delta stores similarly to regular stores:

δ ∈ Delta = Addr ⇀ (Val × Count)

The difference is that a delta store is represented as a partial function, since it
only maps addresses that have been modified w.r.t. the original store.

In what follows, we show how delta stores can be applied, composed, and joined.

Application. A delta store δ, representing changes over an original store σ, can
be applied to σ in order to construct the updated store in which these changes
are directly integrated. Since both stores and delta stores are represented as
functions, we can use the mathematical override operator (▷) for this purpose:

(f1 ▷ f2)(a) =

{
f1(a) if a ∈ dom(f1)

f2(a) if a ̸∈ dom(f1) ∧ a ∈ dom(f2)

That is, we can write δ ▷ σ to apply the changes of delta store δ to the original
store σ. Note that the result of this operation is a Store, as dom(σ) = Addr, so
that δ ▷ σ is always a total function Addr → (Val × Count) = Store. A lookup in
this store will first look for the address in the delta store δ, and for unchanged
bindings (i.e., that are not in δ) fall back to the original store σ.

Composition. We also require an operator to combine multiple delta stores that
represent a sequence of changes (e.g., resulting from the evaluation of multiple
expressions in a sequence). That is, given a delta store δ1 (representing changes
over a store σ) followed by a delta store δ2 (representing changes over δ1 ▷ σ),
we want to be able to combine these changes into a single delta store.

To this end, we can use the same override operator (▷) as an operator for
composition. A series of changes represented in order by delta stores δ1, δ2, ..., δn
can then be composed into a single delta store δn▷...▷δ2▷δ1, which (when applied
to a store σ) will integrate all changes of these delta stores in that same order. Note
that, when applied to two delta stores δ1 and δ2, the result of the composition is
again a delta store (i.e., a partial function) with dom(δ2▷δ1) = dom(δ1)∪dom(δ2).

Join. Delta stores are joinable, but only when they represent changes over the
same store σ, so that the resulting delta store also represents changes over σ.
Therefore, we define a join operator (⊔σ) parameterized over some store σ:

(δ1 ⊔σ δ2)(a) =


δ1(a) ⊔ δ2(a) if a ∈ dom(δ1) ∧ a ∈ dom(δ2)

δ1(a) ⊔ σ(a) if a ∈ dom(δ1) ∧ a ̸∈ dom(δ2)

σ(a) ⊔ δ2(a) if a ̸∈ dom(δ1) ∧ a ∈ dom(δ2)

8 A delta store may also contain updated bindings that happen to have the same value
as in the original store σ, although this makes its usage slightly less efficient.
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Note that dom(δ1 ⊔σ δ2) = dom(δ1) ∪ dom(δ2). When joining delta stores, it is
important to consider what happens when an address is in one delta store, but
not the other. In this case, we join the binding of the delta store with the binding
of the original store σ, since the lack of a binding in the other delta store implies
no change w.r.t. the original store (hence, the original binding is preserved).

The join operator (⊔σ) is useful to handle non-determinism in the abstract
semantics, as the results of multiple program paths (which each include a delta
store) following a non-deterministic choice can be joined together into a single
result. We will make use of this operator later in Section 5 when we integrate
flow-sensitive store widening into the abstract semantics using delta stores.

3.2 Big-Step Abstract Semantics with Delta Stores for λANF

We now formulate the big-step abstract semantics for λANF using delta stores.
The main difference to the big-step semantics presented in Section 2.2 is that all
modifications to the store are now expressed as delta stores. We first adapt the
auxiliary functions that modify the store, extend and update, to return a delta
store (with a single change) instead of an updated store. If ⟨va, ca⟩ = σ(a), then:

extend(σ, a, v) = [a 7→ ⟨va ⊔ v, inc(ca)⟩]

update(σ, a, v) =

{
[a 7→ ⟨v, 1⟩] if ca = 1

[a 7→ ⟨va ⊔ v, ca⟩] otherwise

Note that these definitions have remained mostly unchanged. The only differ-
ence is that the change is now expressed as a “portable” delta store, as opposed
to being directly integrated into the store that is extended or updated.

Next, we introduce a new big-step evaluation relation (⇓∆), which returns a
delta store instead of an updated store as part of the result. That is, we define:

res ∈ Result = Val × Delta

The updated evaluation rules for (⇓∆) are given below:

v = A(ae, ρ, σ)

⟨ae, ρ, σ⟩ ⇓∆ ⟨v, [] ⟩
(E-Atom)

⟨λx.e, ρ′⟩ ∈ A(f, ρ, σ) ax = alloc(x) vx = A(ae, ρ, σ)
δx = extend(σ, ax, vx) ⟨e, ρ′[x 7→ ax], δx ▷ σ ⟩ ⇓∆ ⟨v, δ ⟩

⟨f(ae), ρ, σ⟩ ⇓∆ ⟨v, δ ▷ δx ⟩
(E-App)
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⟨e1, ρ, σ⟩ ⇓∆ ⟨vx, δ1 ⟩ σ′ = δ1 ▷ σ ax = alloc(x)

δx = extend(σ′, ax, vx) ⟨e2, ρ[x 7→ ax], δx ▷ σ
′ ⟩ ⇓∆ ⟨v, δ2 ⟩

⟨let x = e1 in e2, ρ, σ⟩ ⇓∆ ⟨v, δ2 ▷ δx ▷ δ1 ⟩
(E-Let)

ax = ρ(x) vx = A(ae, ρ, σ)
δx = update(σ, ax, vx) ⟨e, ρ, δx ▷ σ ⟩ ⇓∆ ⟨v, δ ⟩

⟨set x := ae then e, ρ, σ⟩ ⇓∆ ⟨v, δ ▷ δx ⟩
(E-Set)

When evaluating an atomic expression (E-Atom), the store is not modified,
and hence the empty delta store [] is returned. When evaluating an application
(E-App), the store is first extended with a binding for the argument (represented
by δx), and afterwards also potentially modified during the evaluation of the
function body (represented by δ). The resulting delta store is therefore δ ▷ δx.
Similarly, when evaluating a let expression (E-Let), the resulting delta store
composes the changes made by the evaluation of the right-hand side expression e1,
the binding of the variable x, and the evaluation of the body e2. When evaluating
a variable assignment (E-Set), we compose the change of the update operation
with the changes returned by the subsequent evaluation.

One can show that the abstract big-step semantics defined with (⇓∆) is
equivalent to the semantics defined with (⇓), as stated by Theorem 1.

Theorem 1. ∀e, ρ, σ, σ′, v : ⟨e, ρ, σ⟩⇓⟨v, σ′⟩ ⇐⇒ ∃δ : ⟨e, ρ, σ⟩⇓∆⟨v, δ⟩∧σ′ = δ▷σ

4 Integrating Abstract GC

We now make use of these new big-step semantics using delta stores to integrate
abstract GC. By using delta stores (instead of returning the updated store), it is
now safe to evaluate an expression using an input store that has been garbage
collected without taking references from the continuation into account (i.e., they
may be removed by the GC). The key insight is that the computed delta store
can later be replayed on the original store that has not yet been garbage collected,
and in which the bindings necessary for the continuation are still present.

To enable this process, we first introduce such a replay operation for delta
stores in Section 4.1. Using this new operation, we then integrate abstract GC
into the delta store semantics in Section 4.2 In Section 4.3, we show that the
resulting form of abstract GC is not just equivalent, but in fact superior to the
traditional form of abstract GC found in small-step abstract interpreters.

4.1 Replaying Delta Stores

A key ingredient to allow the integration of abstract GC into the big-step semantics
is the replay operation. It transforms a delta store δ (which was computed using
a store where bindings for the continuation may have been collected) into a delta
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store δ′ that “restores” the bindings necessary for the continuation (found in the
original store σ). That is, it simulates (“replays”) the changes captured by δ on σ,
computing the changes that would have occured with respect to σ.

To illustrate the purpose of the replay operation, consider an abstract inter-
pretation (with abstract GC) for the following Scheme program:

(define (make-adder n)
(lambda (x) (+ x n)))

(let ((f1 (make-adder 1)))
(let ((f2 (make-adder 2)))

(f2 (f1 0))))

Assuming a context-insensitive allocation policy, the abstract interpreter will
allocate the same address for the variable n (henceforth denoted as @n) in both
calls to make-adder. The first call will return a delta store containing the binding
@n -> 1. This binding can (temporarily) be garbage collected when evaluating
the second call: while it is still necessary for the continuation of that call, its
evaluation itself does not require this binding. The second call will therefore
return a delta store containing the binding @n -> 2. However, after returning
from the second call, we can not just continue evaluation using a store that binds
@n to 2. That is, we first need to use the replay operation to restore the old
binding as well, resulting in a store where @n is bound to the join of 1 and 2.

Formally, we define replay : Delta → Store → P(Addr) → Delta as follows:

replay(δ, σ,A)(a) =


δ(a) if a ∈ dom(δ) ∧ a ̸∈ A

⟨vσ ⊔ vδ, inc(cσ)⟩ if a ∈ dom(δ) ∧ a ∈ A ∧ cδ = 1

⟨vσ ⊔ vδ, ∞⟩ if a ∈ dom(δ) ∧ a ∈ A ∧ cδ = ∞

where ⟨vσ, cσ⟩ = σ(a) and ⟨vδ, cδ⟩ = δ(a). Note that replaying a delta store
preserves the domain it is defined over (i.e., dom(replay(δ, σ,A)) = dom(δ)).

Function replay takes three arguments: the delta store δ to be replayed, the
original store σ (on which δ is replayed), and a set A of all addresses in δ that
were allocated (i.e., representing (abstractions of) new addresses) during the
computation of δ. The case where an address a is not in A, but is present in δ
implies that the change represents an update to an existing binding (since no new
binding for a was allocated). That is, address a was not collected, and therefore
replay does not need to restore the original binding of a in σ (as we know that
this binding was still present when the update happened). In fact, preserving δ(a)
as is is important to maintain strong updates. In the case where address a in δ
may come from a new allocation (i.e., a ∈ A), we join the old value in σ(a) with
the updated one in δ(a) (as extend would have done for a new allocation on σ).
When cδ = 1, we know that a was only allocated once, and hence we increase the
abstract count in σ by 1 (using inc). When cδ = ∞, we know that a may have
been allocated multiple times, so the abstract count becomes ∞.
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4.2 Delta Store Semantics with Abstract GC

We now modify the big-step evaluation relation (⇓∆) to integrate abstract GC.
In order to do so, we need to keep track of which addresses in δ may have been
allocated and which may have been updated. Keeping track of a set of allocated
addresses A is necessary to support the replay operation (cf. sup.). Keeping track
of a set of updated addresses U is necessary to correctly collect garbage in the
resulting delta store, which needs to maintain all bindings reachable from the
resulting value and all existing bindings that were updated during the evaluation
(in order to ensure that side effects that happened during evaluation are not lost).
We add these two sets of addresses directly to the result of the evaluation:

res ∈ Result = Val × Delta × P(Addr) × P(Addr)

Next, we adapt the evaluation rules to integrate abstract GC as follows:

– For each evaluation rule, we trivially construct both A and U as the set of
addresses allocated (resp. updated) directly in that rule, combined with those
allocated (resp. updated) in recursive evaluation steps.

– In the E-Let rule (the only evaluation rule for λANF with a non-tail recursive
evaluation step), we need to ensure that the delta store computed by the
first recursive evaluation step is replayed, so that the bindings needed for the
second recursive evaluation step are restored. All other recursive evaluation
steps in the evaluation rules do not have an additional (implicit) continuation
for which bindings need to be preserved, and therefore do not require their
delta store to be replayed (doing so would unnecessarily add imprecision).

– Analogous to the integration of abstract GC into (⇓) (cf. Section 2.2), we
add an evaluation relation (⇓∆Γ ) with the following E-GC rule.

σgc = σ|R(⇝σ)(TEnv(ρ))

⟨e, ρ, σgc⟩ ⇓∆ ⟨v, δ, A, U⟩
δgc = δ|R(⇝δ▷σgc )

(TVal(v) ∪ Ugc)

Agc = A ∩ dom(δgc) Ugc = {a ∈ U | σgc(a) ̸= ⊥}
⟨e, ρ, σ⟩ ⇓∆Γ ⟨v, δgc, Agc, Ugc⟩

(E-GC)

That is, rule E-GC collects garbage in both the input store σ as well as the
output delta store δ (computing reachable addresses over δ ▷ σgc, as bindings
in the delta store δ may reference those in σgc and vice versa). It also restricts
the sets of addresses A and U : A can be restricted by only keeping addresses
that are actually in δ (removing garbage-collected allocations), and U can
be restricted by only keeping addresses that have an existing binding in the
store σgc. The crucial difference with the E-GC rule of (⇓Γ ) is that the stores
are garbage collected using only the references from the environment (for σ)
and the returned/updated values as the GC root set (for δ). References from
the continuation, previously kept alive using ψ, now no longer need to be
taken into account, leading to more garbage being collected and therefore
amplifying the benefits of abstract GC. We subsequently replace (⇓∆) with
(⇓∆Γ ) for all recursive evaluation steps, so that GC is applied at every step.
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The resulting evaluation rules for (⇓∆) are given below:

v = A(ae, ρ, σ)

⟨ae, ρ, σ⟩ ⇓∆ ⟨v, [], ∅ , ∅ ⟩
(E-Atom)

⟨λx.e, ρ′⟩ ∈ A(f, ρ, σ) ax = alloc(x) vx = A(ae, ρ, σ)

δx = extend(σ, ax, vx) ⟨e, ρ′[x 7→ ax], δx ▷ σ⟩ ⇓∆Γ ⟨v, δ, A , U ⟩

⟨f(ae), ρ, σ⟩ ⇓∆ ⟨v, δ ▷ δx, {ax} ∪A , U ⟩
(E-App)

⟨e1, ρ, σ⟩ ⇓∆Γ ⟨vx, δ1, A1 , U1 ⟩ δ′1 = replay(δ1, σ, A1)

σ′ = δ′1 ▷ σ ax = alloc(x) δx = extend(σ′, ax, vx)

⟨e2, ρ[x 7→ ax], δx ▷ σ
′⟩ ⇓∆Γ ⟨v, δ2, A2 , U2 ⟩

⟨let x = e1 in e2, ρ, σ⟩ ⇓∆ ⟨v, δ2 ▷ δx ▷ δ′1 , A1 ∪ {ax} ∪A2 , U1 ∪ U2 ⟩
(E-Let)

ax = ρ(x) vx = A(ae, ρ, σ)

δx = update(σ, ax, vx) ⟨e, ρ, δx ▷ σ⟩ ⇓∆Γ ⟨v, δ, A , U ⟩

⟨set x := ae then e, ρ, σ⟩ ⇓∆ ⟨v, δ ▷ δx, A , {ax} ∪ U ⟩
(E-Set)

4.3 Comparison to Traditional Abstract GC

It is interesting to compare the impact of our formulation of abstract GC for
DSS with the impact of existing “traditional” abstract GC, as pioneered by
Might et al. for small-step abstract interpreters [21]. Intuitively, we have already
established that abstract GC in (⇓∆Γ ) (cf. Section 4.2) can be more efficient
than the abstract GC integrated into (⇓Γ ) (cf. Section 2.2): being able to omit
the continuation references ψ results in a smaller GC root set, leading to more
garbage being collected, therefore amplifying the beneficial effects of abstract GC.
We now show that the same reasoning also holds for a comparison with abstract
GC in the small-step semantics (as presented in Section 2.1). That is, because
of the improved efficiency of stackless abstract GC, the result obtained through
a big-step evaluation using (⇓∆Γ ) is guaranteed to be at least as precise as the
corresponding result obtained by a small-step abstract interpreter using (→Γ ).

Theorem 2 states this claim more formally:

Theorem 2. ∀e, ρ, σ, v, δ, A, U, σk, ak : ⟨e, ρ, σ⟩ ⇓∆Γ ⟨v, δ, A, U⟩
→ ∃v′, σ′, σk

′ : ⟨ev(e, ρ), σ, σk, ak⟩
∗→Γ ⟨ap(v′), σ′, σ′

k, ak⟩ ∧ v ⊑ v′

That is, when an expression e evaluates to v (using an environment ρ and store σ),
there exists at least one sequence of evaluation steps for the small-step abstract
interpreter that evaluates the same expression e to a less precise (or equally
precise) value v′. We can match the small-step state ς evaluating e with the
state ς ′ holding its result v′ by ensuring that akς = akς′ (i.e., when the abstract



DSS: Abstract GC for Abstract Definitional Interpreters 19

interpreter reaches the same continuation ak again with a return value). A high-
level sketch for the proof of Theorem 2 is given in the appendix, while the full
proof (using the Rocq theorem prover) is part of the replication package.

5 Integrating Flow-Sensitive Store Widening

We now formulate a new form of store widening for the big-step semantics using
delta stores. Without any form of store widening, a fixpoint computation over
the evaluation relation of Section 4 might be expensive, or even in some cases not
computable. The store widening we propose is similar to the traditional notion of
flow sensitivity: it solves the scalability issues, while still allowing strong updates
and a limited form of abstract GC. Moreover, it can be efficiently formulated for
DSS, as we have previously shown that delta stores are also joinable (which is
efficient because of their minimal representation).

Section 5.1 explains why store widening is necessary to ensure that program
semantics remain computable. Next, Section 5.2 shows how the DSS evaluation
relation can be modified to integrate such (flow-sensitive) store widening.

5.1 The Need for Store Widening

The program semantics for λANF expressed in terms of the evaluation relation (⇓∆Γ )
(cf. Section 4) are always computable. The reason for this is that one can easily
show the relation (⇓∆Γ ) to be finite, since both Config and Result are also finite.
However, the relation can still grow very large, as the size of Store alone is in the
order of O(|Val||Addr|), potentially leading to many different input configurations
that need to be evaluated. Even worse, in an extension of λANF (for instance
with numerical abstract domains), we may want to choose a set Val that is not
necessarily finite. Clearly, in this case, the relation (⇓∆Γ ) would also no longer be
finite, and therefore potentially not computable (preventing decidability).

For instance, a common abstraction for numerical domains is a constant propa-
gation lattice, for which the Hasse diagram is shown in Figure 1.

⊤

. . . −1 0 1 . . .

⊥

Fig. 1. Hasse diagram of a numerical con-
stant propagation lattice.

Such an abstract domain is no longer
finite, but adheres to the ascending
chain condition (ACC). The ACC
states that every weakly ascending
sequence of values (i.e., a sequence
(vn)n∈N where vi ⊑ vi+1) eventually
converges to a stable value (i.e., ∃n :
∀k ∈ N : vn = vn+k). Intuitively, such
a lattice has a finite “height”, so that
we can only “go up” in the lattice a
finite number of steps. It is reasonable
to expect an analysis to be decidable

when the abstract domain Val adheres to the ACC, even if it is infinite.
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Problem: Abstract GC Inhibits Convergence. Without abstract GC (and
in the absence of strong updates), eval(e) would always be computable for any
program e when Val adheres to the ACC (even when Val is otherwise infinite). The
reason is that the store can only grow over a single execution trace (we say the
sequence of stores is monotonically increasing), therefore eventually converging
(as all values in the store converge, as guaranteed by the ACC). With abstract GC
(and strong updates), this no longer holds. Bindings in the store can be removed
(or strongly updated to a value that does not subsume the original one), and
as such there is no guarantee of convergence in every trace. This requires us to
make sure Val is finite in order to render eval(e) computable for any e.

We can easily illustrate this using the following Scheme program:

(letrec ((f (lambda (n) (f (+ n 1))))) (f 0))

We assume an abstract interpreter using a constant propagation lattice for the
numerical domain (as depicted in Figure 1) and a context-insensitive allocation
policy (again writing @n for the address of variable n). The first call to f binds @n
to 0. Without abstract GC, the next recursive call to f would extend that binding
by joining the existing value with 1, resulting in a configuration where @n is
bound to ⊤. Subsequent recursive steps would end up in the same configuration,
therefore allowing the fixpoint algorithm to terminate. With abstract GC, the
old binding of @n could be garbage collected before the store is extended for
the next recursive call. As such, the second call would end up in a configuration
where @n is bound to 2, the third one with @n bound to 3 and so on, resulting in
an infinite number of configurations to evaluate.

Solution: Store Widening Recovers Convergence. The classical solution
to ensure convergence for such domains is to introduce store widening [30]. Using
store widening, stores of different configurations are joined together. Since a store
is a finite mapping from addresses to values of the abstract domain Val, the ACC
for Val implies the ACC for Store. Therefore, under the ACC, an infinite sequence
of stores σ0, σ1, ... from different congurations can be turned into a monotonically
increasing sequence of stores (σ′

n)n∈N where σ′
0 = σ0 and σ′

i+1 = σ′
i ⊔σi+1, which

is guaranteed to converge (to the stable value
⊔
n∈N σi) as σ′

i ⊑ σ′
i+1 by design.

Traditionally, global store widening has been applied to both small-step (AAM-
based) [30] and big-step (definitional) [2] abstract interpreters. Under global store
widening, the stores of all configurations are joined in a single store. This results
in a flow-insensitive analysis, as the abstract interpreter does not discern different
stores at different program points. Unfortunately, global store widening renders
both abstract GC and abstract counting completely useless: abstract GC is unable
to collect any garbage (since it needs to keep everything that is reachable from
any configuration/state), whereas strong updates are never applicable (since all
abstract counts eventually become ∞ when the global store converges).

We can, however, choose a middle ground between purely local stores and
global store widening. The store widening we propose for DSS in this section joins
stores of configurations at the same program point. That is, the analysis keeps
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track of a single store per program point (being the join of all stores encountered
at that program point). This corresponds to a flow-sensitive analysis. While less
precise than local stores, it is known that flow sensitivity still allows for strong
updates, and as we discuss in Section 5.2, a limited form of abstract GC.

5.2 Delta Store Semantics with Flow-Sensitive Store Widening

We now show how this form of flow-sensitive store widening can be integrated into
the delta store semantics with abstract GC of Section 4. Doing so should ensure
that the evaluation relation (⇓∆Γ ) becomes finite (and therefore computable)
whenever Val adheres to the ACC. This requires the following two modifications:

– We no longer keep the store directly as part of each configuration. That
is, instead of having multiple configurations ⟨e, ρ, σi⟩ (i.e., with the same
expression e and environment ρ but different stores σi), we now only have a
single configuration ⟨e, ρ⟩, which gets associated with a single store

⊔
i σi. As

such, the definition of Config is updated as follows:

conf ∈ Config = Exp × Env

For a context-insensitive analysis, such a configuration effectively corresponds
to a single program point9. To associate a single store with each configuration,
we make use of a map Ξe0 : Config → Store. The store Ξe0(conf) over-
approximates the join of all stores σi that can occur at the configuration conf
(i.e., that previously were part of that configuration), where e0 is the initial
expression of the program10. We first define a relation (⇝)conf ⊆ Store×Config,
where intuitively σ ⇝conf conf’ implies that σ potentially “flows to” conf’
during the evaluation of the configuration conf. We can then define Ξ(conf)
as the join of all (garbage-collected11) stores that flow to conf :

Ξ(⟨e, ρ⟩) =
⊔

{σ|R(⇝σ)(TEnv(ρ)) | σ ⇝⟨e0,[]⟩ ⟨e, ρ⟩}

– We ensure that the evaluation relation (⇓∆) (and (⇓∆Γ )) become deterministic
(i.e., they can be seen as functions Config → Result). This is done by joining
the results whenever there are multiple non-deterministic program paths.

Together, this suffices to show that (⇓∆Γ ) becomes a finite relation: it is clear that
by factoring out the store, Config becomes finite, and when (⇓∆Γ ) is deterministic,
only a single result res ∈ Result can be associated with each configuration. And
although (⇝)conf is technically not finite (since an infinite number of stores can
flow to a configuration conf when Val is infinite), Ξ(conf) is computed as the join
of all these stores, which is guaranteed to converge due to the ACC.
9 Note that for a context-sensitive analysis, the context would be part of Config, and

so the store would be shared per program point and context.
10 For brevity, from this point on we drop the subscript and instead write Ξ for Ξe0 .
11 Note that we apply garbage collection before joining the stores, which results in a

more precise store compared to doing it the other way around.
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We now present the updated evaluation rules for (⇓∆) and (⇓∆Γ ), together
with the derivation rules for the relation (⇝)conf (i.e., included in the same rules).

σ = Ξ(conf) v = A(ae, ρ, σ)

⟨ae, ρ⟩︸ ︷︷ ︸
conf

⇓∆ ⟨v, [], ∅, ∅⟩
(E-Atom)

σ = Ξ(conf) ⟨λxi.ei, ρ′i⟩ ∈ A(f, ρ, σ) vx = A(ae, ρ, σ)
ai = alloc(xi) δi = extend(σ, ai, vx) σi = δi ▷ σ

⟨ei, ρ′i[x 7→ ai]⟩︸ ︷︷ ︸
conf’

⇓∆Γ ⟨vi, δ′i, Ai, Ui⟩ σr ⇝conf′ confr

v =
⊔
i

vi δ =
⊔

σ
i

δ′i ▷ δi A =
⋃
i

{ai} ∪Ai U =
⋃
i

Ui

σ′ ⇝conf conf’ σr ⇝conf confr ⟨f(ae), ρ⟩︸ ︷︷ ︸
conf

⇓∆ ⟨ v , δ , A , U ⟩
(E-App)

σ = Ξ(conf)

conf1︷ ︸︸ ︷
⟨e1, ρ⟩ ⇓∆Γ ⟨vx, δ1, A1, U1⟩ σr1 ⇝conf1 confr1

δ′1 = replay(δ1, σ, A1) σ′ = δ′1 ▷ σ ax = alloc(x) δx = extend(σ′, ax, vx)

σ′′ = δx ▷ σ
′ ⟨e2, ρ[x 7→ ax]⟩︸ ︷︷ ︸

conf2

⇓∆Γ ⟨v, δ2, A2, U2⟩ σr2 ⇝conf2 confr2

σ ⇝conf conf1 σ′′ ⇝conf conf2 σr1 ⇝conf confr1 σr2 ⇝conf confr2
⟨let x = e1 in e2, ρ⟩︸ ︷︷ ︸

conf

⇓∆ ⟨v, δ2 ▷ δx ▷ δ′1, A1 ∪ {ax} ∪A2, U1 ∪ U2⟩

(E-Let)

σ = Ξ(conf) ax = ρ(x) vx = A(ae, ρ, σ) δx = update(σ, ax, vx)

σ′ = δx ▷ σ ⟨e, ρ⟩︸ ︷︷ ︸
conf’

⇓∆Γ ⟨v, δ, A, U⟩ σr ⇝conf′ confr

σ′ ⇝conf conf’ σr ⇝conf confr
⟨set x := ae then e, ρ⟩︸ ︷︷ ︸

conf

⇓∆ ⟨v, δ ▷ δx, A, {ax} ∪ U⟩

(E-Set)

σgc = Ξ(conf) ⟨e, ρ⟩ ⇓∆ ⟨v, δ, A⟩
δgc = δ|R(⇝δ▷σgc )

(TVal(v) ∪ Ugc)

Agc = A ∩ dom(δgc) Ugc = {a ∈ U | σgc(a) ̸= ⊥}
⟨e, ρ⟩︸ ︷︷ ︸
conf

⇓∆Γ ⟨v, δgc, Agc, Ugc⟩
(E-GC)
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The first modification is that since the store is no longer part of a configu-
ration conf, we instead retrieve it as Ξ(conf). Conversely, for every configura-
tion conf’ (reachable during the evaluation of conf) that normally would have
included σ, we now instead derive that σ ⇝conf conf’. These derivations come
both directly from the evaluation of the current configuration, as well as from
recursive evaluations of other configurations. The second modification is that
the E-App rule (the only evaluation rule for λANF that faces non-determinism)
now joins the results for each possible function that may be called. Doing so
makes use of the join operator (⊔σ) for delta stores to efficiently merge changes
computed w.r.t. σ over multiple non-deterministic paths.

Note that computing (⇓∆Γ ) requires a fixpoint computation over both the
relations (⇓∆Γ ) and (⇝)conf. We again refer to the cache-based fixpoint algorithm
presented by Darais et al. [2], which can be employed mutatis mutandis as one
possible implementation for such a fixpoint computation.

Impact on Abstract GC. We recall that abstract GC offers three key advantages:
(1) it avoids precision losses due to unnecessary joins (with garbage values), (2) it
improves abstract counting by resetting abstract counts for collected addresses,
and (3) it speeds up the fixpoint computation thanks to garbage irrelevance.

When using flow-sensitive (“per configuration”) store widening, the precision
improvements of (1) are largely negated. The reason is that addresses are usually
identified by the program point they are allocated at, so that all values bound to
an address end up joined in the same shared store associated with that program
point (regardless of if it was collected before being allocated again12). In theory,
some precision can still be gained from collecting garbage that arises from updates,
since updates (unlike allocations) may occur at different program points.

The main precision benefit of abstract GC with flow-sensitive store widening
comes from (2). With abstract GC, the abstract count of a collected address is
reset to 0, so that it is increased to 1 when the address is allocated again. Store
widening will only join (i.e., not necessarily increase) the abstract counts for all
allocations of an address at its corresponding program point. Reclaiming garbage
bindings before such allocations can therefore keep the count at 1 instead of ∞,
increasing the potential for strong updates (and therefore precision).

Abstract GC is also useful in conjunction with flow-sensitive store widening
because of (3). Specifically, garbage irrelevance makes the computation of Ξ more
efficient, since the fixpoint iteration joining stores at the same program point
together reaches a stable value more quickly when garbage bindings are removed.
That is, the iteration does not have to continue until these garbage bindings
converge to a stable value as well. In turn, this improves the convergence rate
(and reduces memory consumption) for the fixpoint computation.
12 Note that this assumes that allocations are differentiated using the same context

sensitivity as configurations. For less precise allocators (e.g., a monovariant allocator
in a context-sensitive analysis) – or when using trace partitioning [18] – the allocation
of an address does not always end up widened in the same store. Therefore, it may
be beneficial to reclaim previous occurences of that address first, and such analysis
designs can gain more precision when combining flow sensitivity with abstract GC.
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6 Evaluation

We have already formally shown that DSS with abstract GC always matches
or improves upon the precision of traditional GC for a small-step abstract
interpreter, using a mechanised proof implemented in the Rocq theorem prover
(cf. Section 4.3). Likewise, we have discussed the impact of flow sensitivity for
DSS, as well as its interaction with abstract GC (cf. Section 5.2). We now present
an accompanying empirical evaluation, using our implementation in the MAF
framework.13 Both our implementation, as well as the mechanised Rocq proof
for Theorem 2, are included as part of the replication package for this paper.

Specifically, we aim to answer the following research questions:

RQ1 How much precision is gained using a stackless form of abstract GC (as
integrated for DSS in Section 4) compared to traditional abstract GC?

RQ2 What is the impact of flow-sensitive store widening (as discussed in Sec-
tion 5) on the precision and scalability of DSS?

RQ3 What is the impact of abstract GC for flow-sensitive DSS?

Evaluation Setup. Our implementation in MAF extends the formalisations for
λANF to support a large subset of R5RS Scheme. As such, we are able to run our
experiments using a benchmark suite of 15 Scheme programs: 9 from the Gabriel
benchmarking suite [6]14 and 6 from the built-in benchmarking suite of MAF.
Table 1 lists each Scheme program along with its size in LOC.

Table 1. Overview of the Scheme programs used as benchmarks, along with lines of
code (LOC) for each benchmark. The Gabriel benchmarks are highlighted in bold.

Benchmark LOC Benchmark LOC Benchmark LOC

boyer 593 destruc 65 matrix 648
browse 211 diviter 24 mceval 282
cpstak 24 divrec 19 regex 80
dderiv 83 takl 20 rsa 85
deriv 39 grid 35 tak 11

We compare different abstract interpreters in terms of precision and per-
formance. For precision, we use the built-in precision measurement utilities of
the MAF framework. These compare precision by first running the program
using a concrete interpreter (multiple times to cover multiple program paths in

13 Although we have not presented a formal proof for the soundness of DSS, we have
validated this empirically using the automated soundness testing in MAF.

14 We omitted the ctak benchmark and triangl benchmarks from the original Gabriel
benchmarking suite. The ctak benchmark was removed due to its use of call/cc
(which is not supported by the MAF framework, and also would not be trivial to
integrate into DSS, since it breaks the context irrelevance of the semantics). The
triangl benchmark was removed because it timed out for the concrete interpreter.
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non-deterministic programs), and subsequently measuring how many values in
each abstract interpreter strictly over-approximate (i.e., are less precise than) the
corresponding results of the concrete interpreter. A more precise analysis should
therefore result in fewer over-approximations compared to a less precise one.

Unlike the minimal formalisations presented in this paper for λANF (which
only allow for limited allocation policies), our implementations do support various
configurations for context sensitivity. We run our experiments using m-CFA [23]
context sensitivity (which uses the top m stack frames as context) for varying
values of m (where higher values of m may increase precision). For the abstract
domain, we employ a constant propagation lattice (as depicted in Figure 1,
Section 5.1) as an abstraction for primitive domains in all experiments.

6.1 RQ1: The Precision Benefit of Stackless Abstract GC

Theorem 2 guarantees that the precision of DSS with abstract GC (i.e., using the
evaluation relation (⇓∆Γ )) is always the same or better than that of an equivalent
small-step abstract interpreter with abstract GC (i.e., using the transition relation
(→Γ )). However, it does not guarantee that the precision is strictly better, nor
does it tell us how much precision improvement can be expected.

In order to evaluate this empirically, we therefore compare precision with an
equivalent implementation of AAM with abstract GC and abstract counting (also
known as ΓCFA [21]). However, recall that such a small-step abstract interpreter
may exhibit decreased precision compared to DSS for two reasons: the lack of
stackless abstract GC and the lack of full stack precision (which DSS inherits from
its foundation in abstract definitional interpreters). Since we are only interested
in measuring the former, we have modified ΓCFA to instead use a fully precise
continuation address allocator (specifically, the one from AAC [13]), so that it
exhibits the same stack precision as DSS.

Table 2 compares the results for ΓCFA and DSS with abstract GC. Note that
for benchmarks that timed out, we can use the partial results of the analysis in
order to compute a lower bound for the number of over-approximations (as the
result would only grow more imprecise as the analysis continues).

Comparison of Precision. The results confirm the claim stated by Theorem 2: in
all benchmarks where both ΓCFA and DSS terminate, we have an equal (cpstak,
regex) or lower (grid, rsa, tak) number of over-approximations for DSS. The
context-insensitive (i.e., m = 0) analyses of the regex benchmark also show
significant precision improvements for DSS: the analysis with ΓCFA times out
with at least 34 over-approximations, and requires increased context sensitivity
(i.e., m ≥ 1) in order to achieve the same precision as a context-insensitive analysis
with DSS. The improvements also hold when context sensitivity is increased
for both abstract interpreters: for the dderiv benchmark with m = 2, ΓCFA
has at least 11 over-approximations compared to exactly 7 in DSS. As we have
modified ΓCFA with a fully precise continuation allocator, we can attribute these
improvements to the stackless nature of abstract GC in DSS, which can reclaim
more garbage compared to the abstract GC of ΓCFA.
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Table 2. Comparison of the number of strict over-approximations (lower is better)
and time taken between small-step ΓCFA and big-step DSS with (stackless) abstract
GC. A time of ∞ indicates that the benchmark exceeded the time limit of 10 minutes;
in this case, we report a lower bound for the number of over-approximations.

m = 0 m = 1 m = 2
ΓCFA DSS ΓCFA DSS ΓCFA DSS

imprec time imprec time imprec time imprec time imprec time imprec time
boyer ≥0 ∞ ≥0 ∞ ≥0 ∞ ≥0 ∞ ≥0 ∞ ≥0 ∞

browse ≥5 ∞ ≥7 ∞ ≥0 ∞ ≥4 ∞ ≥7 ∞ ≥4 ∞
cpstak 3 50ms 3 26ms 3 11s 3 5s ≥3 ∞ ≥0 ∞
dderiv ≥28 ∞ 38 20s ≥7 ∞ 7 1s ≥11 ∞ 7 1s
deriv ≥3 ∞ 3 1s ≥3 ∞ 3 1s ≥4 ∞ 3 1s

destruc ≥8 ∞ ≥10 ∞ ≥8 ∞ ≥10 ∞ ≥3 ∞ ≥3 ∞
diviter ≥4 ∞ 4 3s ≥0 ∞ 4 3s ≥0 ∞ 2 4s
divrec ≥4 ∞ 4 3s ≥0 ∞ 3 3s ≥0 ∞ 3 3s

takl ≥6 ∞ 6 1s ≥3 ∞ 6 9s ≥3 ∞ 6 4m48s
grid 10 1m34s 7 200ms ≥2 ∞ 7 167ms ≥2 ∞ 7 390ms

matrix ≥10 ∞ ≥10 ∞ ≥9 ∞ ≥10 ∞ ≥9 ∞ ≥10 ∞
mceval ≥3 ∞ ≥3 ∞ ≥3 ∞ ≥3 ∞ ≥12 ∞ 13 36s
regex ≥34 ∞ 0 92ms 0 293ms 0 95ms 0 275ms 0 100ms

rsa 14 923ms 7 75ms 14 58s 7 92ms ≥14 ∞ 7 78ms
tak 2 20s 0 2s ≥0 ∞ 0 1s ≥0 ∞ 0 1s

We have also compared precision to the big-step abstract interpreter with
abstract GC of Section 2.2, which is more similar to DSS but keeps track of
a set of continuation addresses ψ. Our experiments show identical15 precision
results for this interpreter as for ΓCFA (therefore omitted here for brevity). This
confirms that the precision improvements for DSS in Table 2 indeed stem from
being able to omit ψ from the GC root set (i.e., rendering the GC “stackless”).

Comparison of Performance. Both ΓCFA and DSS time out for a significant
number of benchmarks, showing poor scalability for both abstract interpreters.
Timeouts are more frequent for ΓCFA. This can partially be explained by its
use of the stack-precise AAC continuation allocator [13], which for the context-
insensitive case (i.e., m = 0) is known to raise analysis complexity from O(n3)
to O(n8). Further performance improvements can also in part be explained by
the increased precision of DSS: as precision increases, the abstract interpreter
spends less time having to explore spurious program paths (i.e., execution paths
that only exist due to excessive over-approximation of the program’s control flow
behaviour). This effect can also be observed for the same abstract interpreter by
increasing context sensitivity (e.g., for the mceval benchmark with DSS).

6.2 RQ2: The Impact of Flow-Sensitive Store Widening

We now evaluate the impact of flow-sensitive store widening on both precision
and scalability. For this purpose, we run the same experiments again, this time
15 expect for the rsa benchmark due to a known, unrelated implementation difference.
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comparing a version of DSS without store widening (i.e., the (⇓∆Γ ) evaluation
relation of Section 4) and a version of DSS with flow-sensitive store widening
(i.e., using (⇓∆Γ ) as presented in Section 5). The results are shown in Table 3.

Table 3. Comparison of the number of strict over-approximations (lower is better) and
time taken between DSS with and without flow-sensitive store widening (DSS-FS and
DSS, resp.). A time of ∞ indicates that the benchmark exceeded the time limit of 10
minutes; in this case, we report a lower bound for the number of over-approximations.

m = 0 m = 1 m = 2
DSS DSS-FS DSS DSS-FS DSS DSS-FS

imprec time imprec time imprec time imprec time imprec time imprec time
boyer ≥0 ∞ 1251 9m46s ≥0 ∞ ≥1236 ∞ ≥0 ∞ ≥48 ∞

browse ≥7 ∞ 91 8s ≥4 ∞ 88 22s ≥4 ∞ ≥80 ∞
cpstak 3 26ms 3 9ms 3 5s 3 72ms ≥0 ∞ 3 222ms
dderiv 38 20s 48 905ms 7 1s 46 2s 7 1s 38 5s
deriv 3 1s 29 517ms 3 1s 9 451ms 3 1s 8 787ms

destruc ≥10 ∞ 15 610ms ≥10 ∞ 15 738ms ≥3 ∞ 13 1s
diviter 4 3s 6 1s 4 3s 6 2s 2 4s 4 2s
divrec 4 3s 4 2s 3 3s 4 2s 3 3s 4 2s

takl 6 1s 6 60ms 6 9s 6 143ms 6 4m48s 6 710ms
grid 7 200ms 12 106ms 7 167ms 12 212ms 7 390ms 10 237ms

matrix ≥10 ∞ 180 8s ≥10 ∞ 129 18s ≥10 ∞ 128 1m27s
mceval ≥3 ∞ 159 19s ≥3 ∞ 157 2m02s 13 36s ≥157 ∞
regex 0 92ms 48 547ms 0 95ms 48 3s 0 100ms 48 7s

rsa 7 75ms 18 54ms 7 92ms 17 74ms 7 78ms 17 96ms
tak 0 2s 2 5ms 0 1s 2 19ms 0 1s 2 120ms

Comparison of Precision. It is clear that store widening, even when applied per
configuration, still greatly decreases precision compared to an equivalent abstract
interpreter without any store widening. Across all benchmarks, DSS-FS has
significantly more over-approximations compared to DSS. A key factor explaining
these differences is that abstract GC no longer offers the same precision for DSS-
FS as it did for DSS (we explore this further in RQ3). Instead, the analysis is now
more reliant on increased context sensitivity in order to improve its precision.

Comparison of Performance. The key benefit of applying store widening is that
it greatly improves the performance of the abstract interpreter (and therefore its
scalability towards larger programs such as boyer, browse and mceval). Indeed,
without widening, many programs fail to terminate for DSS, either because of
an exponential explosion in the number of configurations to evaluate or because
values in its (infinite) domain can never converge. In contrast, for DSS-FS, we only
observe 4 timeouts in total, and in fact none for the context-insensitive variant
(i.e, where m = 0). In other benchmarks (e.g, takl with m = 2), performance is
improved by orders of magnitude. While the precision benefits of DSS without
store widening are appealing, we therefore argue that some store widening (such
as flow-sensitive store widening) is a must to analyze larger, real-world programs.
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6.3 RQ3: The Impact of Abstract GC on Flow-Sensitive DSS

As discussed in Section 5.2, store widening limits the precision benefits of ab-
stract GC. We can, however, expect it to have a positive impact on the perfor-
mance of the analysis by reducing the number of iterations that are required for
each flow-sensitive store to converge. We evaluate the impact of abstract GC in
the setting of flow-sensitive store widening by comparing two versions of DSS-FS:
one with and one without abstract GC. Table 4 shows the results.

Table 4. Comparison of the number of strict over-approximations (lower is better)
and time taken between DSS-FS with and without abstract GC. A time of ∞ indicates
that the benchmark exceeded the time limit of 10 minutes; in this case, we report a
lower bound for the number of over-approximations.

m = 0 m = 1 m = 2
with GC without GC with GC without GC with GC without GC

imprec time imprec time imprec time imprec time imprec time imprec time
boyer 1251 9m46s 1251 3m12s ≥1236 ∞ 1249 6m13s ≥48 ∞ 48 1m36s

browse 91 8s 98 2s 88 22s 88 8s ≥80 ∞ 80 7m33s
cpstak 3 9ms 3 14ms 3 72ms 3 50ms 3 222ms 3 129ms
dderiv 48 905ms 48 379ms 46 2s 46 1s 38 5s 38 4s
deriv 29 517ms 29 223ms 9 451ms 9 288ms 8 787ms 8 453ms

destruc 15 610ms 15 449ms 15 738ms 15 743ms 13 1s 13 1s
diviter 6 1s 6 2s 6 2s 6 1s 4 2s 4 1s
divrec 4 2s 4 2s 4 2s 4 1s 4 2s 4 1s

takl 6 60ms 6 45ms 6 143ms 6 100ms 6 710ms 6 908ms
grid 12 106ms 12 185ms 12 212ms 12 301ms 10 237ms 10 374ms

matrix 180 8s 181 7s 129 18s 129 32s 128 1m27s 128 3m50s
mceval 159 19s 159 7s 157 2m02s 157 1m27s ≥157 ∞ ≥151 ∞
regex 48 547ms 48 387ms 48 3s 48 3s 48 7s 48 12s

rsa 18 54ms 18 112ms 17 74ms 17 90ms 17 96ms 17 158ms
tak 2 5ms 2 6ms 2 19ms 2 28ms 2 120ms 2 323ms

Comparison of Precision. As expected, abstract GC has very little impact on
precision when employing flow-sensitive store widening. The only benchmarks
that show some minor precision improvement are browse and matrix. The
reasons for these limited precision improvements are discussed in Section 5.2.
In summary, abstract GC’s main precision benefit comes from updates (i.e.,
updates to mutable variables and mutable data structures). However, these may
not occur frequently in our benchmarking suite: although Scheme is technically
an imperative language, in practice it often encourages a more functional style,
avoiding such side-effecting mutations. The benefits on DSS-FS with abstract GC
may therefore be more pronounced for languages with programming styles that
make frequent use of (field) assignments (such as Python or JavaScript).

Comparison of Performance. Both configurations achieve comparable perfor-
mance results, with some benchmarks (such as boyer) showing a clear edge for
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DSS-FS without GC, and others (such as matrix) exhibiting better performance
using DSS-FS with GC. The reason is that the integration of abstract GC impacts
performance both positively and negatively.

The negative impact comes from the overhead that is associated with GC. In
our implementation specifically, we use a tracing stop-and-copy GC applied at
every evaluation step (in order to maximize the precision benefits); it is known
that such a policy can potentially slow down an abstract interpreter by one or
two orders of magnitude [29], and is therefore not recommended in practice.

Despite this significant overhead, the performance still holds up well compared
to DSS-FS without abstract GC. This can be attributed to the positive impact
of abstract GC on performance, as the stores at each program point converge
faster without garbage. To measure this benefit without the technical overhead
of abstract GC, we conducted a separate experiment measuring the number
of iteration steps required for the fixpoint computation of the analysis. For
instance, the matrix benchmark only requires 2448 iterations with GC compared
to 3098 without, explaining its performance improvement. On average, for our
experiments abstract GC decreases the number of iterations required by 27,8%.

7 Related Work

The benefits of abstract GC for the analysis of higher-order languages have long
been recognised: early work by Jagannathan et al. [16] proposes a primitive
(albeit inefficient) form of abstract GC in conjunction with abstract counting in
order to improve the precision of must-alias analyses. Might et al. later pioneered
the use of abstract GC (and abstract counting), as presented in this work, for
small-step abstract interpreters constructed using the AAM approach [30] to
abstract interpretation, referring to the resulting analysis as ΓCFA [21]. Their
work shows that abstract GC offered order-of-magnitude improvements to both
the precision and performance of abstract interpreters in this setting.

Later work made several efforts to integrate abstract GC into abstract inter-
preters that enjoy the benefits of pushdown control flow, such as the big-step
abstract definitional interpreters of Darais et al. [2]. Abstract definitional inter-
preters are also the foundation of DSS. We have discussed the original integration
of abstract GC into abstract definitional interpreters, and the shortcomings of
this integration, in Section 2.2. Likewise, Earl et al. [4] show how abstract GC
can be integrated into a pushdown flow analysis (aiming to reap the benefits of
both). They formulate their approach as stack introspection: for every control
point they approximate the set of continuation frames that could be on the stack,
using their references as part of the root set to collect garbage. Similar to the
suboptimal integration of abstract GC into abstract definitional interpreters, the
resulting analysis no longer enjoys the context irrelevance of the original push-
down analysis, and does not achieve the same potential in precision improvements
of abstract GC as the stackless form of abstract GC for DSS.

CFA2 [31] combines full stack precision with some form of abstract GC. It
separates bindings on the stack from those on the heap. Stack bindings are



30 N. Van Es et al.

automatically “garbage collected“ as stack frames are popped; this is similar to
how DSS can garbage collect (unreferenced) local variables (regardless of whether
they are already allocated for the continuation) in a delta store upon returning.
However, in CFA2, bindings may also escape to the heap, which is not GC’d.

The closest to our own work is the heap fragment semantics (HFAC) of
Germane et al. [8,9]. Similar to how delta stores in DSS represent changes w.r.t.
an original store, a heap fragment in HFAC only captures bindings relevant for the
current evaluation. To our knowledge, HFAC is the only other existing formalism
exhibiting all advantages of pushdown control flow and abstract GC, as listed
in Section 1.1. We improve upon the work of [8] by adding support for abstract
counting and collecting garbage in delta stores (whereas the technique presented
in [8] only collected garbage for the input heap fragment). The authors of [9] point
out the “formal weight” of HFAC, which significantly complicates the language
semantics. Compared to their work, we present a novel and simpler formalism,
capturing the essence of the mechanism that allows the integration of abstract
GC. We also show how delta stores can be joined, and extend the formalism to
incorporate a novel form of store widening that preserves flow sensitivity.

Monat et al. [24] also integrate abstract GC into a flow-sensitive analysis for
Python (in the MOPSA framework). In contrast to our own work, their abstract
garbage collector still includes continuation references as part of the GC root
set, and therefore does not benefit from the precision improvements of “stackless”
abstract GC. Similar to our own findings on RQ3 (cf. Section 6.3), they also
report limited precision benefits when flow-sensitive widening is used, and argue
that abstract GC is mainly useful to improve analysis performance and memory
consumption. They also point out that abstract GC may improve precision due to
its interaction with recency abstraction [1], similar to how we argued in Section 5
that it may improve precision due to its interaction with abstract counting.

We implemented abstract GC using a tracing stop-and-copy collector that
is interleaved at every evaluation step. As observed by the results for RQ3
(cf. Section 6.3), this adds severe GC overhead (which for DSS-FS negates the
performance benefits of abstract GC). Other frameworks [17,21,20] apply abstract
GC less frequently to tame this overhead. Van Es et al. [29] propose replacing
tracing abstract GC with abstract reference counting, which is automatically
applied at every step without significant overhead. We leave the integration of
such abstract reference counting into DSS open as future work.

The flow-sensitive store widening of Section 5 joins stores per control location
(and context). Trace partitioning [18,25] can generalize this technique by using
abstract traces to keep multiple stores at the same control location (but with
different execution traces reaching that control location) separate. Keeping more
stores separate improves precision, and may also increase the precision benefits of
abstract GC (compared to what we observed in RQ3) as different values allocated
at the same address may be joined in different stores (therefore making it useful
to reclaim previous bindings at that address using abstract GC).

Germane et al. [7] distinguish between three different kinds of “control-flow
sensitivity”, so that an analysis is either path-sensitive, flow-sensitive or flow-
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insensitive. The second indeed corresponds to our own interpretation of flow
sensitivity, as formulated for DSS with store widening in Section 5 (whereas
the semantics of Sections 2, 3 and 4 would be labelled as path-sensitive). Most
existing abstract interpreters, based on AAM or abstract definitional interpreters,
only consider using either entirely local stores (resulting in a path-sensitive
analysis) or globally widened stores [30,12,2] (resulting in a flow-insensitive
analysis) instead. Flow sensitivity has so far been more common in traditional
data-flow analyses [14,26,15]. Interestingly, Oh et al. [27] suggest an adaptive
approach to control-flow sensitivity, where different addresses are treated with
different sensitivities (in their work, only handling them either flow-sensitively
or flow-insensitively). For our own experiments, it is clear that the precision
benefits of path sensitivity in combination with abstract GC are substantial, but
impede analysis scalability when applied to all addresses. Applying their learning
strategy for choosing between both control-flow sensitivities adaptively for each
address could potentially bring together the benefits of both DSS and DSS-FS.

8 Conclusion

In this work, we have presented delta store semantics (DSS), a novel formulation
for big-step abstract definitional interpreters where evaluation steps return a
delta store to capture all changes made to the input store. Unlike regular stores,
delta stores are more minimal (representing only changes), reusable (being able to
be applied to or replayed for a (larger) store), composable and efficiently joinable.
We have shown how these delta stores enable the integration of both abstract GC
and a flow-sensitive variant of store widening into DSS.

When using DSS with abstract GC – without store widening – we not only
achieve the full advantages of pushdown control flow and abstract GC, but also
unlock an additional synergy between both that further increases the benefits of
abstract GC. Specifically, we have shown both formally (using the Rocq theorem
prover) and empirically (using our implementation in MAF) that this combination
outperforms a small-step interpreter with abstract GC.

When using DSS with flow-sensitive store widening, our experiments confirm
that DSS no longer faces the scalability issues that are inherent to the usage of
local (path-sensitive) stores. Unlike global (flow-insensitive) store widening, we
have shown that the resulting abstract interpreter still supports abstract counting
(i.e., strong updates) and a limited form of abstract GC.
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Appendix

We can prove Theorem 2 using mutual induction on (⇓∆) and (⇓∆Γ ). Doing
so, however, first requires generalising this theorem in order to strengthen the
induction hypothesis, resulting in Theorem 3.

Theorem 3. ∀e, ρ, σ, v, δ, A, U, ς = ⟨ev(e, ρ), σς , σkς , ak⟩,
Rρ = R(⇝σ)(TEnv(ρ)), σgc = σ|Rρ ,Rv = R(⇝δ▷σgc )

(TVal(v)) :

⟨e, ρ, σ⟩ ⇓∆Γ ⟨v, δ, A, U⟩ ∧ (σgc ⊑ σς) ∧ (Γ (ς) = ς) → ∃ς ′ = ⟨ap(v′), σς′ , σkς′ , ak⟩ :
ς

∗→Γ ς
′ ∧ (v ⊑ v′) ∧ (σkς ⊑ σkς′) ∧ (∀a ∈ dom(δ) : δ(a) ⊑ σς′(a))

∧ (∀a ∈ Rv \ dom(δ) : σgc(a) ⊑ σς′(a)) ∧ (Rv ⊆ R(⇝σ
ς′
)(TVal(v

′)))

The generalisation relaxes the precondition of the implication. That is, the big-
step evaluation may use another store than the small-step one, as long as it is
equal to or subsumed by the latter. This is necessary to ensure that the induction
hypothesis can be applied in the E-Let case, since the second evaluation step
may use a more precise store after continuing with a more precise result from the
first evaluation step. Likewise, the generalisation strengthens the postconditions,
which now for instance also ensure that the bindings in the resulting delta store
are more precise than the corresponding bindings in the resulting store of the
small-step evaluation. This is again necessary for the E-Let case, because the
second recursive evaluation continues using the delta store produced by the first.

Theorem 2 can now be seen as a corollary of Theorem 3. We elide the proof
of Theorem 3 here for brevity; instead, we have verified this property using a
mechanised proof16, implemented using the Rocq theorem prover.
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