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Abstract
Language virtual machines (VMs) for resource-constrained
environments enabled the use of managed languages, such
as JavaScript or Python, on microcontrollers units (MCUs).
WebAssembly (Wasm) has also broadened the range of pro-
gramming languages on these resource-constrained devices.
However, most MCU debugging support targets languages
that compile to native code, making them unsuitable for
source-level debugging of applications running on managed
runtimes. As a result, debugging on MCU VMs is often per-
formed using logging, manual resets, and GPIO toggling for
call tracing.

In this work, we propose a language-agnostic approach for
debugging MCUs. Our approach builds specialised control-
flow graphs (CFGs) to enable language-agnostic debugging
from compiler-generated Wasm bytecode and debugging in-
formation. During debugging, developers can use traditional
debugging operations for which the debugger utilises the
specialised CFGs to advance computation. We implemented
a CFG debugger prototype for the WARDuino Wasm VM,
building on a basic debug API. We show that our debugger
successfully targets four languages that compile to Wasm
without requiring any modification to the debugger. Our
benchmarks reveal that the prototype’s execution speed out-
performs WARDuino’s debugger by factors from 7 to 215.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Runtime environments; •Com-
puter systems organization→ Embedded and cyber-physical
systems.

Keywords: Debugging, Breakpoints, Stepping, WebAssem-
bly, microcontrollers, IoT
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1 Introduction
Traditionally, programming a microcontroller unit (MCU)
was done using languages that compile directly to native
code, like C and C++, to meet the performance and hardware
constraints of MCUs. Over the past decade, lightweight vir-
tual machines (VMs) have appeared for several mainstream
languages, including Espruino [32] and Duktape [62] for
JavaScript, MicroPython [28] for Python, and AtomVM [8]
for Erlang. Even though those VMs only support a sub-
set of the language’s features, they enable the use of man-
aged languages in MCUs, offering benefits such as improved
safety, portability, and productivity. WebAssembly (Wasm),
a widely adopted bytecode target for many programming
languages [6, 14, 41, 44, 81], has reshaped this landscape by
offering a portable, efficient, and secure executionmodel [37].
Wasm VMs like WARDuino [36], WAMR [2] andWasm3 [46]
targeting MCUs have broadened the range of programming
languages on these low-power devices from low-level to
high-level managed languages.
Debugging programs on MCUs, however, remains chal-

lenging. A 2021 study by Makhshari et al. [54] found that
programmers need to rely on basic debugging techniques like
print statements and manual resets, as debugging support
is either missing or not suited for their particular use cases.
Two later studies [49, 89] also showed that poorly tested and
debugged MCU applications cause bugs in production.

Most of the existing debuggers for MCUs target C/C++ lan-
guages [11, 79, 97] compiled to native code. Forks of GDB and
LLDB [23, 24] enable debugging beyond C/C++ by leveraging
both DWARF debugging information [20] to map native code
to source code and OpenOCD [66] to apply machine-level
debugging commands (e.g., read registers, write to memory)
to the MCU. However, these debuggers require specialised
debugging hardware [21] (e.g., JTAG [35]) present or plugged
into the MCU, which is not always supported by MCUs (e.g.,
M5StickC Plus [75]). Moreover, GDB/LLDB debuggers can
be used to debug applications running on managed run-
times, but they will debug the VM source code. To debug
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application-level source code, each VM maintainer needs to
implement a debug server and logic to query the CPU state
using OpenOCD and convert it into bytecode state. However,
this logic is unique per VM, sensitive to changes in the VM
software, and requires a tedious, low-level implementation
as it needs access to CPU state [66].

In the context of Wasm VMs targeting MCUs, Wasm3 [46]
and WAMR [2] cannot debug directly on the MCU nor offer
remote debugging of the VM on the MCU. WARDuino [36]
does provide remote and out-of-place debugging support [47,
67], but it is limited to AssemblyScript and has experimen-
tal support for Rust. To offer online debugging commands,
WARDuino’s front-end debugger [82] implements step com-
mands by advancing execution one Wasm instruction at a
time. This is repeated until a Wasm instruction is found that
corresponds to the desired source location (i.e., a line and
column number in a source file). This results in significantly
slower debugging operations, mostly due to the required
round-trips between the debugger front-end and the VM
running on the MCU.
In this work, we propose a novel language-agnostic de-

bugging approach for Wasm VMs targeted to MCUs, en-
abled through the use of control-flow graphs (CFGs). Con-
cretely, our approach takes as input unoptimised compiler-
generated Wasm bytecode and debugging information, and
creates CFGs specialised for debugging. These CFGs are built
before debugging and encode the control flow between all
the source locations that can be reached by a debugger. At
runtime, a CFG debugger enables debugging operations by
searching nodes in these graphs and advancing computation
to the Wasm instructions associated with those nodes. The
CFGs minimise round-trip messages between the debugger
front-end and the VM on the MCU while stepping, as target
source locations are derived from the CFGs at the front-end,
and sent to the VM, possibly advancing several or many
Wasm instructions in one go.

This paper makes the following contributions:
• An algorithm to build CFGs for debugging fromWasm
bytecode-level CFGs and standard debugging infor-
mation (e.g. DWARF). These graphs enable language-
agnostic debugging as debugging operations can be
implemented by following edges on the graphs, rather
than on the syntax and semantics of the source code.
• CFG debugging enables language-agnostic debugging
operations for all languages compiling to Wasm. The
communication between the debugger front-end and
the MCU can be significantly reduced by encoding the
source locations within the CFGs.
• A CFG debugger prototype integrated into the WAR-
Duino VM [36]. This integration leverages four exist-
ing WARDuino debug API operations. We employed
our prototype to debug four different Wasm languages
without modifying the prototype itself. Our perfor-
mance experiments also show that the prototype’s

debugging operations are 7 to 225 times faster than
WARDuino’s current debugger.

2 Language-Agnostic Debugging for Wasm
Through CFGs

We explore language-agnostic debugging for Wasm using
control-flow graphs (CFGs). A CFG [1] is a directed graph
that represents a program’s control flow: the nodes are basic
blocks, which contain the longest possible sequence of in-
structions (e.g., arithmetic operations) without a jump. The
last instruction of a block may alter the control by jumping
to other blocks. In a graph, edges represent control changes.

CFGs are commonly used in static analysis [1, 57] or as an
intermediary output during compilation [34, 41, 92]. In our
work, we construct CFGs to implement debugging operations
such as step over by following edges on a graph from one
node to another. Before introducing our language-agnostic
debugging approach, we introduce a running example used
throughout this work.

2.1 Running Example: A Blinking LED Application
Consider a blinking LED application, implemented in C, in-
spired by the work of Yan et al. [98]. In their paper, they
examine whether GDB’s step command correctly advances
execution to the next reachable source location. They re-
ported that GDB’s step command may skip locations when
nested loops lack initialisers. Building on this observation,
we present an application that blinks an LED and features
such a nested loop construct. We later show that our de-
bugger does not skip those locations thanks to the use of
control-flow graphs during debugging. Figure 2 shows the
main function of the application with the two loops. The
full code is in Appendix A.1. The application configures a
pin LED for output (line 23) and, over two iterations (line 29),
continuously increments a variable delta (line 30), turns the
LED on (line 31), sleeps (line 32), turns the LED off (line 33),
and sleeps (line 34). The incremented delta ensures that the
total sleep time reduces at each iteration.

2.2 Overall Architecture
Figure 1 shows the overview of language-agnostic debugging
of MCUs. Before debugging (left Figure 1), we assume the
developer compiled a source program with debugging flags
on, resulting in an unoptimised Wasm module along with its
debugging information. The program may have been writ-
ten in traditionally native-compiled languages (e.g., Rust,
C, Go) or managed languages (e.g., AssemblyScript). The
debugging information is expected to adhere to standards
like DWARF [20] or Source Map Specification [73]. Both are
widely used to debug desktop applications through tools like
GDB/LLDB [29, 50] and TypeScript/JavaScript applications
running on browsers [30, 58, 61].
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Figure 1. Overview of a CFG-Based debugging session.

18 int main() {

19 unsigned int LED = 10;

20 unsigned int OUTPUT = 2;

21 unsigned int ON = 1;

22 unsigned int OFF = 0;

23 pin_mode(LED, OUTPUT);

24
25 unsigned int SLEEP = 2000;

26 unsigned int TOTAL_RUNS = 2;

27 int run_idx=0;

28 unsigned int delta = 0;

29 for (; run_idx < TOTAL_RUNS; run_idx++){

30 for(; delta < SLEEP; delta +=100 ){

31 digital_write(LED, ON);

32 delay(SLEEP - delta);

33 digital_write(LED, OFF);

34 delay(SLEEP - delta);

35 }

36 delta = 0;

37 }

38 }

Figure 2. The main function of a C application that for two
runs blink an LED at a gradually increasing frequency (full
code in Appendix A.1).

To debug the program on an MCU, such as on the popular
ESP321 (right in Figure 1), the developer interacts with a
front-end debugger integrated into an editor (e.g., VSCode).
When launched, the debugger front-end uploads a copy of
the Wasm module without debugging information to the
Wasm VM running on the MCU. In parallel, the debugger
builds two types of CFGs on the developer’s machine:
• AWasm Bytecode-Level Control-Flow Graph (WCFG)
for each Wasm function defined in the module (1).
A WCFG depicts the control flow of Wasm bytecode
instructions. To illustrate such a graph, consider Fig-
ure 3a, which shows the WCFG of the main function
from the blinking LED application (shown in Figure 2)
and highlights nodes corresponding to lines 29, 30,
and 38. Each WCFG node is a basic block containing

1According to a 2023 report, Espressif, the manufacturer of the ESP32,
reported over 1 billion sales worldwide https://www.espressif.com/en/news/
1_Billion_Chip_Sales.

entry

...

...
0x375: local.get 14 
0x377: local.get 15 
0x379: i32.lt_u 
0x37a: local.set
0x37c: i32.const

...
0x389: i32.eqz 

w1

...

...

0x38a: br_if 1

w2

0x38d: block

w3
0x465: local.get 2 

...
0x47f: local.get 41 

w5

0x38f: loop

w4

0x481: return

w6

0x482: end

w7

(a) WCFG extract of the main.

entry

...

(line 29, col 20) 
<

0x375: local.get 14
0x377: local.get 15
0x379: i32.lt_u
0x37a: local.set

s1

(line 29, col 5) 
for

0x37c: i32.const
...

0x389: i32.eqz
0x38a: br_if 1 

s2

(line 38, col 1) 
}

0x465: local.get 2
...

0x47f: local.get 41
0x481: return
0x482: end 

s3

(line 30, col 13) 
delta

0x38d: block 
0x38f: loop 

s4

... ...

(b) SCFG extract of the main

Figure 3. The WCFG and its corresponding SCFG, con-
structed for the main function in Figure 2. entry marks the
start of the CFG, dots indicate omitted nodes and instruc-
tions. For clarity, source code is included in the SCFG nodes.

Wasm instructions that run in increasing order (e.g.,
from 0x465 to 0x47f in w5). WCFG edges indicate how
control flows between nodes (e.g., instruction 0x481
in w6 is executed after 0x47f in w5). To build WCFGs,
we employ the same approach as Stiévenart et al. [77],
where a WCFG for a Wasm function is built by travers-
ing the function’s body, collecting Wasm instructions
that belong to a block [94] into a node, and adding
edges between those nodes when encountering Wasm
branching instructions (e.g., br, br_if).
• Using metadata (2) extracted from the module (e.g.,
function identifiers2, type signatures), and a source-
map3 (3) extracted from the debugging information, a
Source-Level Control-Flow Graph (SCFG) is constructed
for each WCFG (4). An SCFG depicts the control flow
of a Wasm function at the source code level. Figure 3b

2In Wasm, each function has a corresponding identifier.
3In DWARF [20], the sourcemap is called debug lines.

https://www.espressif.com/en/news/1_Billion_Chip_Sales
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depicts the SCFG for the WCFG shown in Figure 3a,
corresponding to our running example. Each SCFG
node contains a source location, i.e., line and column
number in a source file, the Wasm instructions asso-
ciated with the source location, and possible function
identifiers that this node may call. For instance, node
s1 (Figure 3b) points to (line 29, col 30) and contains in-
structions of𝑤1. Edges represent control flow between
source locations.

The construction of the WCFGs, sourcemap, and meta-
data can be done in parallel. Using the Wasm module and
debugging information, multiple SCFGs get created. Once
the SCFGs are created, the debugger is ready for use.
While debugging (right Figure 1), the developer issues

debugging operations (5). Per operation, the debugger front-
end uses the SCFGs to identify nodes (6) that, when reached,
would correspond to the completion of the requested debug-
ging operation. For instance, consider the scenario where the
application is paused at (line 29, col 5), which corresponds
to the Wasm instruction with address 0𝑥37𝑐 in node𝑤1 (Fig-
ure 3a). If a step is applied, the debugger identifies SCFG
node 𝑠2 in Figure 3b as the one corresponding to address
0𝑥37𝑐 , and nodes 𝑠3 and 𝑠4 as the locations where computa-
tion could advance. Using the Wasm instructions associated
with the identified nodes, the debugger (7) controls the ap-
plication running on the MCU by setting breakpoints at the
addresses of the identified nodes (e.g., 0𝑥465 for 𝑠3 and 0𝑥38𝑑
for 𝑠4). The operation completes once execution reaches one
of these breakpoints. Stepping from 𝑠2 to 𝑠3 or 𝑠4 highlights
how CFG debugging does not suffer from the issue Yan et
al. [98] reported with GDB step command for nested loops
lacking initialisers, as it does not bypass line 30.

3 Building Source-Level Control-Flow
Graphs (SCFGs)

We now introduce our algorithm for building SCFGs from
WCFGs, debugging information, and metadata. Assuming
WCFGs have been built from the Wasm bytecode, to build
SCFGs, we first need to extract metadata from the Wasm
bytecode. This metadata contains all the Wasm functions
and their type signature identifiers4, which we write as set
F = {(𝑓 , 𝑡) | 𝑓 is a function ID and 𝑡 a type signature ID}.
Second, we extract the 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 from the debugging infor-
mation, which is a function that maps the address of a Wasm
instruction to a source location:

𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 (𝑎𝑑𝑑𝑟 ) =
{
(𝑠, 𝑙, 𝑐) source location
∅ no mapping found

(𝑠𝑚)

where 𝑙 is line number, 𝑐 is column number, in source file 𝑠
Using the WCFGs, the 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 , and F , the debugger

builds an SCFG for each WCFG, illustrated in Algorithm 1.
4In Wasm, each type signature has an associated identifier.

Algorithm 1: Build SCFGs from WCFGs.
Input: Set of WCFGs, set of function IDs with their type

signatures F , a 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 as defined in (𝑠𝑚)
1 . Output: Set of constructed SCFGs

2 SCFGS ← ∅ ⊲ Set of constructed SCFGs
3 foreachW ∈WCFGS do
4 N , E ← ∅ ⊲ SCFG nodes and edges
5 buildNodes(W,N , E, F , 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝) ⊲ Pass 1
6 buildEdges(W,N , E) ⊲ Pass 2
7 mergeNeighbours(N , E) ⊲ Pass 3
8 N𝑒 ← identifyEntryNodes(W,N , E)
9 SCFGS ← SCFGS ∪ {(N𝑒 ,N , E)}

10 return SCFGS

For each WCFGW, the algorithm creates N and E, two
empty sets which will eventually contain the constructed
SCFG nodes and edges (line 4). The algorithm then constructs
the SCFG in three different passes. To illustrate these passes,
consider Figure 4, which shows the intermediary SCFGs
produced by the first two passes, applied on a subpart of the
WCFG (Figure 3a). The final SCFG, resulting from the third
and final pass, was previously shown in Figure 3b. Below, we
first provide a conceptual overview of each pass, followed
by detailed explanations in the subsequent subsections.

The first pass (line 5) creates the SCFG nodesN and possi-
bly SCFG edges E using a WCFG, the sourcemap, and F . For
instance, when applied to𝑤1,𝑤2, and𝑤3 of the WCFG (Fig-
ure 3a), three subgraphs are produced as shown in Figure 4a.
Pass 1 also identifies the Wasm functions that an SCFG node
may call. We call such nodes call nodes. Identifying call nodes
is important for enabling debugging operations. As each
wasm function has its own CFG, calls to another function
need to properly be identified to point to the right CFG.

The second pass (line 6) adds edges to the SCFG. For each
WCFG edge (𝑤 𝑓 𝑟𝑜𝑚,𝑤𝑡𝑜 ), it identifies corresponding SCFG
nodes 𝑠𝑓 𝑟𝑜𝑚 and 𝑠𝑡𝑜 , and connects them. For instance, in
Figure 4b, edges (𝑐, 𝑑) and (𝑑, 𝑒) were added after pass 1. If
𝑤𝑡𝑜 has no corresponding SCFG node (due to missing source
locations in the 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝), the pass connects 𝑠𝑓 𝑟𝑜𝑚 to all
the closest SCFG nodes reachable from𝑤𝑡𝑜

5. This ensures
that the control following 𝑠𝑓 𝑟𝑜𝑚 is included in the SCFG. By
the end of this pass, all subgraphs from pass 1 are connected.
The third pass serves two purposes. First, it fixes a gran-

ularity issue (line 7) caused by the first two passes: each
SCFG node contains only one Wasm instruction, causing
the debugger to step instruction by instruction. For instance,
advancing from 𝑎 to 𝑏 (Figure 4b) runs oneWasm instruction,
rather than the full sequence leading to 𝑐 . Second, the pass
identifies the SCFG entry nodes (line 8). The obtained nodes,
edges, and entry nodes form the SCFG (line 9).
5𝑤𝑓 𝑟𝑜𝑚 may also have no corresponding SCFG node, but this gets auto-
matically resolved by pass 2.
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...

(line 29, col 5)

0x38a: i32.eqz

c

...

(line 29, col 20)

0x375: local.get 14

a

(line 29, col 20)

0x377: local.get 15

b

(line 29, col 5)

0x389: i32.br_if 1

d

(line 30, col 13)

0x38d: block

e

(a) Pass 1

...

(line 29, col 5)

0x38a: i32.eqz

c

(line 29, col 20)

0x375: local.get 14

a

(line 29, col 20)

0x377: local.get 15

b

(line 29, col 5)

0x389: i32.br_if 1

d

(line 30, col 13)

0x38d: block

e

(b) Pass 2

Figure 4. Left: The SCFG after pass 1 applied to𝑤1,𝑤2, and
𝑤3 (Figure 3a). Right: The SCFG after pass 2 applied on edges
(𝑤1,𝑤2) and (𝑤2,𝑤3). Dots indicate omitted nodes.

3.1 Pass 1: Creating SCFG Nodes
Algorithm 2 outlines the steps to create the SCFG nodes
and possibly edges, as well as to identify the call nodes.
The algorithm breadth-first traverses the WCFG. For each
node 𝑤 , it visits the 𝑤 ’s instructions in ascending address
order (line 3). For each instruction 𝑖 , it checks if 𝑖 has a valid
source location, i.e., the address of 𝑖 maps to a source location
(line 4) and source file 𝑠 is present on the local machine. The
latter is tested using isFileAvailable (line 6). Occasionally,
no source location is found for 𝑖 because it may have been
omitted by the compiler. In a such case, our algorithm does
not create an SCFG node. This implies that our debugger,
similarly to other debuggers [29, 50], cannot show source-
level information for 𝑖 .

When 𝑖 has a valid source location, the algorithm checks
whether 𝑖 is a call instruction. If so, it computes the set of
function identifiers 𝑓 𝑖𝑑𝑠 that could be called by 𝑖 . For this,
we use helper function calls, that given 𝑖 and F , extracts
function identifiers depending on 𝑖 (line 7):
• If 𝑖 is a direct call instruction, the identity of the called
function is encoded in the bytecode. By reading the
bytecode, we identify which function is called. This
identifier is returned as a result.
• If 𝑖 is an indirect call instruction, the identity of the
called function might only be known at runtime. Re-
gardless of which function 𝑖 calls, only functions with
the same type signature as 𝑖 can be called. Since this
type signature is known statically, we read it and re-
turn all the function identifiers in F that have a match-
ing type signature. The returned set includes all the
functions that could be called by 𝑖 .
• Else, return an empty set since 𝑖 is not a call instruction.

Algorithm 2: Pass 1 - Creating SCFG nodes.
Input :A WCFGW, SCFG nodes N , SCFG edges E, set

of function IDs with their type signatures F and
𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 as defined in (𝑠𝑚).

Output :N and E respectively extended with nodes and
edges.

1 foreach𝑤 ∈ breadthFirstTraverse(W) do
2 𝑠𝑛𝑝𝑟𝑒𝑣 ← ⊥ ⊲ previously created SCFG node
3 foreach 𝑖 ∈ instructions(𝑤) do
4 if sourcemap(𝑖) ≠ ∅ then
5 (𝑠, 𝑙, 𝑐) ←sourcemap(𝑖)
6 if isFileAvailable(𝑠) then
7 𝑓 𝑖𝑑𝑠 ← 𝑐𝑎𝑙𝑙𝑠 (𝑖, F )
8 𝑠𝑛 ← ((𝑠, 𝑙, 𝑐), {𝑖}, 𝑓 𝑖𝑑𝑠)
9 S ← S ∪ {𝑠𝑛}

10 if 𝑠𝑛prev ≠ ⊥ then
11 E ← E ∪ {(𝑠𝑛prev, 𝑠𝑛, 𝑖)}
12 𝑠𝑛prev ← 𝑠𝑛

The algorithm then creates the SCFG node 𝑠𝑛 containing
the source location, 𝑖 , and 𝑓 𝑖𝑑𝑠 (line 8). For instance, node
𝑎 (Figure 4a) is created for 𝑖 with address 0𝑥375 of node𝑤1
(Figure 3a). Debugging operations can determine if 𝑠𝑛 is a
call node by checking whether the node’s 𝑓 𝑖𝑑𝑠 are not empty.
After each iteration, we keep track of the last generated

SCFG node 𝑠𝑛𝑝𝑟𝑒𝑣 (line 12) and add an edge from 𝑠𝑛𝑝𝑟𝑒𝑣 to 𝑠𝑛
(line 11). In Figure 4a, this caused edges to be added between
nodes 𝑎 to 𝑐 . Each edge stores instruction 𝑖 to indicate that
after executing the instructions of 𝑠𝑛𝑝𝑟𝑒𝑣 , control flows to
𝑖 of 𝑠𝑛. Including 𝑖 in the edge is important since multiple
SCFG nodes may branch to different instructions belonging
to the same SCFG node. The instruction 𝑖 enables the debug-
ger to accurately set breakpoints among these instructions.
Moreover, adding the (𝑠𝑛𝑝𝑟𝑒𝑣, 𝑠𝑛) edge is necessary to build
correct execution paths. Since the instructions of𝑤 run in
sequence and the instructions of 𝑠𝑛𝑝𝑟𝑒𝑣 run before 𝑠𝑛. The
added edge preserves the control flow of𝑤 in the SCFG.

3.2 Pass 2: Adding SCFG Edges
Algorithm 3 outlines the steps to add the SCFG edges. The
algorithm traverses a given WCFG (line 1 Algorithm 3) and
adds an SCFG edge for each WCFG edge (𝑤 𝑓 𝑟𝑜𝑚,𝑤𝑡𝑜 ). Con-
ceptually, this involves three steps, which we now describe.
Step 1: Identify 𝑠𝑛𝑓 𝑟𝑜𝑚 associated with𝑤 𝑓 𝑟𝑜𝑚 (line 2

Algorithm 3). An edge from𝑤 𝑓 𝑟𝑜𝑚 to𝑤𝑡𝑜 means that after
running the highest address instruction of 𝑤 𝑓 𝑟𝑜𝑚 , control
flows to the lowest address instruction of 𝑤𝑡𝑜 . Therefore,
adding the SCFG edge for (𝑤 𝑓 𝑟𝑜𝑚,𝑤𝑡𝑜 ) requires identify-
ing the 𝑠𝑛𝑓 𝑟𝑜𝑚 containing the highest address instruction of
𝑤 𝑓 𝑟𝑜𝑚 . This is enabled by helper function ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑟𝑁𝑜𝑑𝑒

(line 2 Algorithm 3) that iterates over𝑤 𝑓 𝑟𝑜𝑚’s instructions in
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Algorithm 3: Pass 2 - Adding SCFG edges.
Input :A WCFGW, SCFG nodes N , and SCFG edges E
Output :E extended with the edges

1 foreach𝑤 𝑓 𝑟𝑜𝑚 ∈ breadthFirstTraverse(W) do
2 𝑠𝑛𝑓 𝑟𝑜𝑚 ← highestAddrNode(𝑤 𝑓 𝑟𝑜𝑚,N) ⊲ SCFG node

with the highest address
3 if 𝑠𝑛𝑓 𝑟𝑜𝑚 ≠ ⊥ then
4 foreach𝑤𝑡𝑜 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑤 𝑓 𝑟𝑜𝑚) do
5 foreach (𝑠𝑛𝑡𝑜 , 𝑖𝑡𝑜 ) ∈

closestNodes(𝑤𝑡𝑜 ,N ,SE) do
6 E ← E ∪ {(𝑠𝑛from, 𝑠𝑛𝑡𝑜 , 𝑖𝑡𝑜 )}

decreasing order and returns the first found SCFG node. For
instance, for 𝑤1 (Figure 3a), ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑟𝑁𝑜𝑑𝑒 identifies 𝑐
(Figure 4a) as it corresponds to the instruction with the high-
est address in𝑤1 that has an associated SCFG node. If none
of 𝑤1’s instructions have a SCFG node, ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑟𝑁𝑜𝑑𝑒

returns nothing and Algorithm 3 proceeds to the next node.
Step 2: Identify the SCFG node 𝑠𝑛𝑡𝑜 or the closest

SCFG nodes to 𝑤𝑡𝑜 (lines 4-5 Algorithm 3). After iden-
tifying 𝑠𝑛𝑓 𝑟𝑜𝑚 , Algorithm 3 searches per edge (𝑤 𝑓 𝑟𝑜𝑚,𝑤𝑡𝑜 ),
the SCFG node 𝑠𝑛𝑡𝑜 that corresponds to 𝑤𝑡𝑜 (lines 4-5). It
could be that none of the 𝑤𝑡𝑜 ’s instructions have a corre-
sponding SCFG node. In that case, the closest SCFG nodes to
𝑤𝑡𝑜 are then searched. Algorithm 4 closestNodes handles
both cases: whether𝑤𝑡𝑜 has a SCFG node or not.

In case𝑤𝑡𝑜 has a corresponding SCFG node, closestsNodes
finds 𝑠𝑛𝑡𝑜 using helper function 𝑙𝑜𝑤𝑒𝑠𝑡𝐴𝑑𝑑𝑟𝑁𝑜𝑑𝑒 (line 1 Al-
gorithm 4). The function iterates over𝑤𝑡𝑜 ’s instructions in as-
cending order until it finds an instruction 𝑖 associated with an
SCFG node. That node is then returned from closestNodes
(line 8). For instance, if𝑤𝑡𝑜 is𝑤2 (Figure 3a), closestNodes
identifies 𝑑 (Figure 4a) since it is the associated SCFG node to
the first instruction of𝑤2. Searching in increasing order fol-
lows the Wasm control: after executing𝑤 𝑓 𝑟𝑜𝑚’s instructions,
the instructions of𝑤𝑡𝑜 are executed in ascending order.

Algorithm 4: Find the closest SCFG neighbours of
WCFG node𝑤 .
Input :WCFG node𝑤 , SCFG nodes N , and SCFG edges E
Output :Set of (𝑠𝑛, 𝑖) where 𝑠𝑛 ∈ 𝑁 and 𝑖 is a Wasm

instruction
1 (𝑠𝑛, 𝑖) ←lowestAddrNode(𝑤,N)
2 if 𝑠𝑛 = ⊥ then
3 A ← ∅
4 foreach𝑤𝑛𝑏 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑤) do
5 A ← A∪ closestNodes(𝑤𝑛𝑏 ,N , E)
6 return A
7 else
8 return {(𝑠𝑛, 𝑖)}

In case𝑤𝑡𝑜 has no SCFG node, closestNodes searches for
its closest (direct) SCFG nodes. To this end, closestNodes
recursively calls itself on each outgoing neighbour𝑤𝑛𝑏 of𝑤𝑡𝑜

(lines 4-5). If𝑤𝑛𝑏 has an associated SCFG node, it is returned.
Otherwise, the search proceeds to the outgoing neighbours
of𝑤𝑛𝑏 . The algorithm returns a set of (𝑠𝑛, 𝑖) representing the
SCFG nodes and instructions associated with the neighbours.

Step 3: Add an edge between 𝑠𝑛𝑓 𝑟𝑜𝑚 and 𝑠𝑛𝑡𝑜 (line 6
Algorithm 3). The final step is to add an edge from 𝑠𝑛𝑓 𝑟𝑜𝑚

to either 𝑠𝑛𝑡𝑜 or the closest neighbours of𝑤𝑡𝑜 while storing
instruction 𝑖 that leads to them (Algorithm 3 line 6). For
instance, for edges (𝑤1,𝑤2) and (𝑤2,𝑤3), an SCFG edge is
added respectively between (𝑐, 𝑑) and (𝑑, 𝑒) as illustrated
in Figure 4b. Adding the edges gradually builds the SCFG
execution paths: either an edge (𝑠𝑛𝑓 𝑟𝑜𝑚, 𝑠𝑛𝑡𝑜 ) is added to
mirror an existing (𝑤 𝑓 𝑟𝑜𝑚,𝑤𝑡𝑜 ) edge, or edges are added to
neighbours of𝑤𝑡𝑜 that do have a SCFG node, thus preserving
the control flow that follows after executing 𝑤𝑡𝑜 . In both
cases, the algorithm ensures that all execution paths are part
of the SCFG.

3.3 Pass 3: Readying the SCFG for Debugging
The goal of the final pass is (1) to fix the node granularity
of the SCFGs, and (2) to identify the SCFG entry nodes. Due
to the page limit, we present only a conceptual overview of
this pass rather than a detailed algorithm.

Merging Neighbouring Nodes. To fix the node granular-
ity, the third pass merges neighbouring nodes that point to
the same source location. This is achieved by traversing the
SCFG using breadth-first traverse. For each 𝑠𝑛 node, we deter-
mine whether 𝑠𝑛 can be merged with its neighbouring nodes
by checking whether all the incoming edges to 𝑠𝑛 originate
from nodes with the same source location as 𝑠𝑛. If so, 𝑠𝑛 and
its neighbours are merged into a single SCFG node 𝑠𝑛𝑚𝑒𝑟𝑔𝑒𝑑 .
Node 𝑠𝑛𝑚𝑒𝑟𝑔𝑒𝑑 retains all incoming and outgoing edges from
the original nodes. If one incoming SCFG node points to a
different source location than 𝑠𝑛, nothing gets merged. This
pass yields a more compact SCFG by shortening execution
paths. Applying this pass on the SCFG of Figure 4b, results
in the SCFG illustrated in Figure 3b.
Identifying SCFGs Entry nodes. After merging the

nodes, the final step is to find the SCFGnodes that correspond
to the entry nodes. This is done by applying 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠

(Algorithm 4) on the entry node𝑤𝑒𝑛𝑡𝑟𝑦 of the WCFG used to
create the SCFG. If𝑤𝑒𝑛𝑡𝑟𝑦 has a corresponding SCFG node,
that node becomes the entry node for the SCFG. If 𝑤𝑒𝑛𝑡𝑟𝑦

has no corresponding SCFG node, the closest (direct) SCFG
nodes to𝑤𝑒𝑛𝑡𝑟𝑦 become the entry nodes.

4 Implementing a CFG Debugger
We implemented a CFG debugger prototype for the WAR-
Duino [36] Wasm MCU VM. The debugger front-end was
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1 function stepInto(scfgs,sn){

2 if (isCall(sn)) {

3 const fs = funcs(sn)

4 return entries(scfgs,fs)

5 }

6 return stepOver(scfgs,sn)

7 }

8 function startNode(scfgs,rt){

9 const addr=rt.inspectPC()

10 for(const n of scfgs.nodes)

11 for(const i in n.insts)

12if (i.addr === addr)

13return n

14}

15function advance(ds,rt){

16const as=ds.map(n=>n.addr)

17for (const a of as)

18rt.addBreakpoint(a)

19rt.run()

20rt.onBPReached(()=>{

21for (const a of as)

22rt.removeBreakpoint(a)})}

Figure 5. JavaScript-like pseudo-code of a CFG step into. The
arguments scfgs and rt represent, respectively, all SCFGs
and the runtime that runs the target Wasm.

built by extending WARDuino’s VSCode debugger client ex-
tension [82]. The obtained extension builds and uses SCFGs,
as discussed in Sections 2 and 3, replacing WARDuino’s orig-
inal stepping approach to debugging operations. For the
implementation, we also used libraries WebAssembly-js [68],
wasm-tools [3], and source-map [59] to respectively parse
a Wasm module and extract a sourcemap from DWARF or
SourceMap Spec. The following describes the runtime debug-
ging API, the implementation of CFG debugging operations,
and how a CFG debugger handles MCU interrupts.

4.1 The Wasm Runtime Debugging API
A CFG debugger advances computation from one Wasm ad-
dress to another, each associated with specific SCFG nodes.
It achieves this by setting and removing breakpoints at these
Wasm addresses. To support this functionality, a CFG de-
bugger expects the runtime to expose the following basic
debugging API for controlling the deployed Wasm module:
addBreakpoint address pause Wasm execution at the pro-

vided Wasm address.
removeBreakpoint address remove the breakpoint at the

Wasm address.
run resume execution of the Wasm module.
inspectPC return the program counter, i.e., the current

Wasm address being executed.
This API consists of commonly supported operations and

is already implemented in the WARDuino VM, allowing us
to integrate our prototype without changing the VM.

4.2 Implementing CFG Stepping Operations
Implementing stepping debugging operations, such as step
into, step over, and step out in a CFG debugger, involves com-
bining calls to the runtime debugging API with operations
upon the SCFGs. In the following, we explain how to imple-
ment step into, step over, and step out. Due to the page limit,
we only provide a detailed explanation for step into. Step
over and step out are described conceptually.

Step Into. This operation steps into a function call and
pauses at its entry. To this end, the debugger calls the three
functions illustrated in Figure 5. First, the debugger iden-
tifies the SCFG node corresponding to the current paused
source location, which we call the start node. For this, it calls
the startNode function (line 8), passing all SCFGs and run-
time as arguments. startNode reads the runtime PC (line
9), which points to a paused Wasm instruction, and iterates
through all SCFG nodes and instructions to find the node
matching the inspected PC (lines 10-13).

Second, the debugger identifies the SCFG node(s) to where
execution should advance; we call these nodes destination
nodes. To find the destination nodes, the debugger calls
stepInto with the set of SCFGs and the start node sn (line
1). The function checks if sn is a call node (line 2). If so, step
into gets the function identifiers that could be called using
funcs (line 3). Then, it retrieves the SCFGs and their entry
nodes for each function using entries (line 4). These entry
nodes are the destination nodes (line 5). If sn is not a call
node, step into executes a step over (line 6).

Third, the debugger advances the computation of the run-
time to the destination nodes by calling the helper function
advance (line 15) with the destination nodes and runtime
as arguments. This function retrieves the start address of
each destination node (line 16), sets breakpoints at those
addresses (lines 17-18), and resumes execution of the Wasm
module (line 19). When a breakpoint is hit, it removes all
previously set breakpoints (lines 20-22), ending the step into.

Step Over. This operation is applied upon a function call
to advance computation until the call completes. To per-
form a step over, the debugger retrieves the start node us-
ing startNode. Then the debugger accesses the destination
nodes, which are the neighbours of the start node (code in
Appendix B). Regardless of whether the start node is a call
node, a neighbour represents the location where control
flows after completing the call. If no neighbour exists, the
current call has completed, and step over executes a step
out. Finally, the debugger advances to the destination nodes
using advance.

Step Out. Step out resumes the execution of the current
function until it completes, pausing at the first source lo-
cation reached after the call returns. To enable step out,
the debugger first identifies the start node using startNode.
Then the debugger finds the destination nodes (code in Ap-
pendix B). For this, it iterates over all the SCFGs to find all
the call nodes that could call the current function. Then it
applies a step over on each call node. Ideally, the debugger
only steps over the call node 𝑛 that called the current func-
tion, but since it is not possible to statically identify 𝑛, the
debugger conservatively targets all call nodes, ensuring the
correct call node is included as destination node. Lastly, the
debugger advances to the destination nodes.
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4.3 Pausing Interrupt Handlers
MCU developers can implement interrupt service routines
(ISR) [39] functions and register them to be executed on
interrupts, such as a pin toggled from a button press. When
an interrupt occurs, the MCU OS temporarily pauses the
main’s execution and runs the ISR until completion. To debug
user-defined ISRs, the MCU runtime needs logic to catch and
handle interrupts. With CFG debugging, this task can be
simplified by statically identifying the SCFGs of the ISRs and
setting breakpoints at their entry nodes.

To identify these SCFGs, we assume user-defined ISRs are
not (directly or indirectly) called from main. This is a fair
assumption since popular MCU OSs [26, 101] and program-
ming frameworks [4, 22] follow this pattern. Thus, identify-
ing ISRs involves finding functions not reachable from main.
For this, the debugger tracks which functions are called by
the call nodes starting from the main’s SCFG. For each func-
tion 𝑓 called by the main’s call nodes, we access 𝑓 ’s SCFG
and its call nodes to identify the functions called by 𝑓 . We
recursively repeat this process for each function called by 𝑓 .
Functions that are not encountered while following the call
nodes are the interrupt handlers.

While this approach detects ISRs not called from main, it
may incorrectly flag unrelated functions (e.g., an unreachable
function never registered as an ISR). To fix this issue, the
debugger could let the developer manually remove these
false positives via the GUI, for instance.

5 Evaluation
We evaluated the practicality and effectiveness of our ap-
proach by conducting several experiments to answer the
following research questions:
RQ1. Can we build SCFGs for realistic Wasm applications

in a language-agnostic manner?
RQ2. Are the SCFGs complete with respect to execution

paths and call nodes?
RQ3. Does CFG debugging have comparable performance

to state-of-the-art Wasm MCU VM debugging?
RQ4. Can a CFG debugger be extended to target new pro-

gramming languages that compile to WebAssembly?

Experimental Setup. To address those questions, we con-
ducted several benchmarks. Each benchmark was executed
using unoptimised Wasm modules and a machine6 equipped
with 32 GB RAM, 10 CPU cores, 1 TB SSD storage, OS Sequoia
15.5, and Darwin Kernel Version 24.5.0. For MCU-related
benchmarks, we used the WARDuino VM commit 3e97e4f
deployed on an M5StickC ESP32 board [75] that has 520 KB
of RAM and 4 MB of flash memory.

6https://support.apple.com/en-us/111902 (Accessed on 24/08/2025)

5.1 RQ1: Building SCFGs for Realistic Wasm
Applications

We now evaluate whether our proposed algorithm (Section 3)
can construct SCFGs for realistic Wasm applications. To this
end, we first show that we can build WCFGs for arbitrary
Wasm modules. Since any language generating Wasm must
adhere to the official Wasm specification [94], our initial
goal is to show that WCFGs can be generated for the entirety
of the WebAssembly specification. Following this, we show
that SCFGs can be built in a language-agnostic manner for
WebAssembly projects written in different languages.

5.1.1 Experiment 1: Covering theWasm Specification.
We examine whether our approach can build WCFGs for
modules that satisfy the WebAssembly version 1 specifica-
tion, as this is currently the standard WebAssembly version.
While there are extensions to the core specification7, such as
garbage collection and SIMD, these are still in development.
Therefore, we do not consider them in our evaluation.

We used the official WebAssembly test suite [93], which
provides 147 Wast (Textual WebAssembly)8 modules de-
signed to test compliance with the Wasm specification and
ongoing proposals. From these tests, we selected the 76 mod-
ules that test compliance with Wasm version 1.

Out of the 76 Wast modules, we successfully constructed
WCFGs for 75 modules and encountered an exception on one
module caused byWebAssembly-js [68], a library that we use
for parsing Wasm modules. Specifically, the library failed to
properly decode an int32 value from the module, considered
too large to fit into an int32 buffer. Despite this exception, we
found that the complete set of Wasm version 1 instructions
is used by the other Wast modules for which WCFGs were
successfully constructed. As a result, our approachwas tested
on all the Wasm version 1 instructions. We conclude that our
approach can construct WCFGs for a broad range of Wasm
modules that adhere to the Wasm version 1 specification.

5.1.2 Experiment 2: Building SCFGs. In this experiment,
we determine whether our approach can construct SCFGs
for all the projects listed in Table 1. We collected those
projects from publicly available Rust and AssemblyScript
(AS) projects. The selected projects encompass benchmarks
(△), libraries (★) and real-world applications (□). The bench-
marks (△) consist of the Rust and AS’s official compiler
test suites [7, 80] and specialised benchmarks on render-
ing and computational performance measurement [5, 15, 88].
The libraries (★) domains include image processing [70],
blockchain [12], data conversion [18], crypotography [17],
and database [85]. Finally, the real-world applications (□)

7https://webassembly.org/features/ (Accessed on 24/08/2025)
8Wast is a human-readable textual representation of a Wasm module that
has a one-to-one mapping with its compiled Wasm bytecode module.

https://support.apple.com/en-us/111902
https://webassembly.org/features/
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are in the domain of blockchain, terminal prompts, and em-
ulators [12, 78, 83]. Projects also vary in the total number of
lines of code (LoC).

Table 1. Rust and AS projects that compile to Wasm. The
projects are libraries (★), benchmark suites (△), real-world
applications (□), or a combination of these. The AS and Rust
compiler correspond to the official AS and Rust test suites
used by the language maintainers.

Lang Project LoC Built Comp.

AS

as-bind [84]★ 129 100% 23
as-benchmark [88]△ 603 100% 28
wasm-mandelbrot [15]△ 42 100% 4
as2d [5]△ 374 100% 5
AS compiler [7]△ 12006 99.24% 608
wasm-crypto [17]★□ 1463 100% 4
wasmboy [83]★△□ 6347 100% 138

Total compares: 810

Rust

limbo [85]★ 1589 100% 3957
photon [70]★ 2959 100% 61612
excel2json [18]★ 824 100% 3815
Rust compiler [80]△ 66689 100% 23818
cep18 [12]★□ 827 100% 12947
genact [78]□ 960 100% 17225

Total compares: 123374

We compiled each project to Wasm without optimisation
enabled, while including the associated debugging infor-
mation: DWARF [20] for Rust and Source Map Spec [73]
for AS. Using the obtained modules and the 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 ex-
tracted from the debugging information, we constructed
SCFGs using our prototype. In the results of this experiment,
we only include the modules for which a valid 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝

was produced. Modules with either no 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 or incor-
rect mappings (e.g., mappings containing nonexistent Wasm
addresses) are excluded. This is because for these modules,
either the SCFG cannot be produced due to the lack of a
𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 , or the produced SCFG is incorrect due to incor-
rect mappings produced by compilers [98].
The built column in Table 1 indicates the percentage of

successfully used Wasm modules to construct SCFGs. The
results show that SCFGs could be constructed for all but one
Wasm module part of the AS compiler suite. The module
raised a parsing error in a dependent library WebAssembly-
js [68], which failed to decode a portion of the module. Since
the module is reported as valid [7], the error suggests a bug
present in the library. Consequently, the success rate for the
AS compiler suite is slightly lower at 99.24%.

We conclude that our approach can build SCFGs solely
from unoptimisedWasmmodules and a 𝑠𝑜𝑢𝑟𝑐𝑒𝑚𝑎𝑝 extracted
from debugging information. As the modules originate from
different languages, producing different debugging standards,

the SCFG construction can be applied to other programming
languages compiling to Wasm.

5.2 RQ2: Are the SCFGs Complete
To evaluate if the constructed SCFGs are complete, two con-
ditions must be met. First, each SCFG built for a function
contains all the execution paths of the function. Second, the
call nodes of SCFGs contain all the functions that could be
called at runtime. We conducted two experiments to validate
those two conditions.

5.2.1 Experiment 1: Examining the Execution Paths.
To verify that SCFGs contain all execution paths, we compare
the SCFGs to the CFGs produced by the compiler. These
compiler-generated CFGs (CCFGs) are derived from source
code and reflect control flow at the source level [14, 41].
Since a CCFG contains all execution paths, comparing it to
its corresponding SCFG allows us to determine whether the
SCFG contains all the execution paths. This assumption is
valid since the SCFGs are produced from unoptimised Wasm,
which preserves the original control flow of the program. As
SCFGs differ from CCFGs (e.g., while a SCFG node contains
both bytecode and source-level information, a CCFG node
only contains source-level information), we compare both
graphs on structural similarity [40]. This comparison tells us
whether both graphs have the same execution paths.

In literature, structural similarity has largely been stud-
ied and used for malware [25, 27, 40, 52] and plagarism de-
tection [69]. To measure structural similarity, we use CFG
comparison algorithms [13, 40] that compute a similarity
value 𝑠 ∈ [0, 1] for two CFGs based on their structural
similarity: the higher 𝑠 , the more structurally similar the
graphs. While there exist different algorithms to compute 𝑠
(e.g., k-subgraphs, edit distance) [40], no consensus exists on
which to pick [13, 69]. We employ a Python tool [13] that
implements the simulation-based algorithm introduced by
Sokolsky et al. [71], as it is well-suited for the characteris-
tics of SCFGs. First, the algorithm is robust to path length
differences, thus suited for comparing longer SCFG paths to
shorter CCFGs caused by their granularity differences. The
difference in granularity stems from our method, which con-
structs each SCFG node to represent a single source location.
In contrast, CCFG nodes generally represent a statement that
may cover multiple source locations. The recursive nature of
the algorithm guarantees that SCFG nodes situated deeper
are compared to CCFG nodes positioned higher. Second, the
algorithm does not require the node’s internal information
and edge labels to compute 𝑠 . This is good since SCFGs lack
edge labels and have different node content than CCFGs.

We conduct this experiment on all projects listed in Table 1
by running two steps:

1. Create CCFGs. For Rust, we configured the compiler
to produce MIR (MID Level IR). For AS, we used a
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Figure 6.Histograms relating similarity ranges (x-axis) with
a width of 0.025 and their frequency of occurrence (y-axis)
plotted on a logarithmic scale. Each bar label indicates the
percentage of comparisons that fall within the range. The
∗0.0% on the Rust diagram is not zero; rather, the true per-
centage is so small that it rounds down to zero.

JavaScript-CFG [99] (as the AS compiler does not pro-
duce source-level CCFGs) that we slightly transform
to ease the next step.

2. Compute similarities. Access each SCFG and its cor-
responding CCFG. Then, compute a similarity value
using the CFG comparison Python tool [13].

We obtained similarity values for each (𝑆𝐶𝐹𝐺,𝐶𝐶𝐹𝐺) pair.
Column Comp. of Table 1 indicates the number of compar-
isons executed per project. The table also shows the compar-
ison per language: we performed 810 comparisons for AS
and 123374 for Rust. Since some projects have a low num-
ber of LoC, we grouped the similarity results by language
and then computed statistical metrics, as this ensures that
results are representative. Figure 6 displays histograms re-
lating similarity ranges to their frequency expressed on a
logarithmic scale. The histograms show that 91.9% of the

Table 2. Causes for similarities ≤ 90% in (CCFG,SCFG)
comparisons: In Rust, 4% (4958 of 123374) of the total
(CCFG,SCFG) comparisons are ≤ 90%. In AS, 0.61% (5 of
810) of the total (CCFG, SCFG) comparisons are ≤ 90%

Lang MF GD ME ISL PI Compares
AS 20% 80% - - - 0.61%
Rust 2.16% - 8.21% 89.59% 0.04% 4%

comparisons for Rust and 98.5% for AS fall within the range
of (97.5%, 100%). Moreover, 81.42% of the Rust and 87.65%
of the AS comparisons are exactly 100%.
The results show that most SCFGs have a high degree

of structural similarity to their corresponding CCFGs, with
the vast majority being either identical or nearly identical.
Although only a small percentage of the comparisons fall
below 100%, we investigate the causes for the lower similari-
ties. This task, however, requires a manual analysis of each
individual comparison. So, to limit our sample, we manually
analysed all the cases with similarity ≤ 90%, as this subset
represents the lowest-performing comparisons and is suffi-
ciently large to provide meaningful insights into the causes
of lower similarity. We manually analysed 5 out of the total
810 comparisons for AS, and 4958 out of the total 123374
comparisons for Rust. Our analysis revealed that a lower
similarity is due to one of the following causes, summarised
in Table 2:
MF The high-level function compiles to multiple functions

(MF). EachWasm function represents a part of the high-
level function. So, each WCFG and its corresponding
SCFG represent only a portion of the high-level func-
tion. Instead, the CCFG represents the entire high-level
function, thus resulting in lower similarity values, as
the SCFG can only correspond to a part of the CCFG.

ISL The compiler generates invalid source locations (ISL) in
the source map. This means that the Wasm address
maps to an incorrect source location, as it may point
to Rust comments, a pre-processor directive, an nonex-
istent line or column number, and so on. This is an
issue that affects DWARF-based debuggers, including
ours, causing what is known as inconsistent debugging
behaviour [19]. In our case, this affects the structure
of the SCFGs.

GD Granularity difference (GD) between an SCFG and CCFG
negatively impacts the similarity value. For instance,
a boolean expression may become a single node in a
CCFG and an if-structure in an SCFG, as the evaluation
of the second argument depends on the first.

PI The Rust compiler inserts panic instructions (PI) in the
Wasm function. When executed, these instructions
halt the runtime to prevent further execution with an
incorrect state [41]. Panic instructions become nodes
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in the SCFGs, but the compiler does not include them
in the CCFGs, thus affecting the similarity value.

ME In Rust, functions contain a macro that expands (ME)
before the creation of the CCFGs, but the compiler
does not generate sourcemappings for the expanded
macro. As a result, the CCFG contains additional nodes
and edges for the macro expansion, whereas the SCFG
only has nodes and edges for the macro statement.

All comparisons ≤ 90 that we manually analysed include
all the execution paths, except for the ISL cases, which may
miss nodes or edges due to faulty debugging information.
While SCFGs may include approximations (e.g., extra edges),
this is not a concern as long as the SCFG is complete. The
extra edges can cause the debugger to set both valid and
unnecessary breakpoints, as the latter are not hit at runtime.
Based on the results of this benchmark, we can confidently
assert that the SCFGs capture all the execution paths when
debugging information is present and correct. For most com-
parisons, the SCFGs are structurally similar to the CCFGs.

5.2.2 Experiment 2: Examining the Call Nodes. Algo-
rithm 2 constructs call nodes that hold references to all the
functions they could call. This approach is by design conser-
vative to ensure call node completeness. To validate this, we
ran two benchmarks from Lehmann et al. [48] that assess
call node completeness using a set of 24 microbenchmarks
and 10 real-world binaries. Due to the page limitation, we
only present the benchmark results. The benchmark details
are provided in Appendix C.
The benchmark results confirm that our approach yields

complete call nodes, succeeding on all 24 microbenchmarks
and 9 out of 10 real-world binaries. We could not evaluate on
one real-world binary due to the benchmark crashing during
setup.

5.3 RQ3: Measuring Debugging Operations
Performance

To assess the performance of our approach, we conduct an
experiment that compares CFG-based debugging operations
to those provided by a state-of-the-art MCU VM debugger.
In particular, we compare the execution speed of our pro-
totype’s debugging operations to ones of WARDuino [82].
WARDuino’s debugger implements operations in a bytecode
stepwise manner, i.e., continuously stepping the VM to the
next bytecode until the desired Wasm address is reached. We
call this type of debugger Stepwise in the remainder. In con-
trast, our CFG-based debugger uses breakpoints to advance
the computation to desired source code locations.

For this experiment, we deploy a factorial Rust implemen-
tation (code in Appendix D) on an M5StickC board [75] and
execute it using WARDuino. The implementation contains a
main that continuously calls the factorial with argument 5.
Then we apply debugging operations upon different source
locations and measure per operation, the execution time
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Figure 7. The mean execution times for Stepwise and CFG
step-into (si), step-over (so), and step-out (out), measured
across 80 runs (30 warm-up). We apply the operations to
different source locations. The time is on a logarithmic scale.
Each bar displays the mean execution time expressed in ms.

across 80 runs while excluding the first 30 due to warm-up.
The applied operations are: step-into (si) and step-over (so)
on the factorial called by the main, a si on the branching
condition of the if statement defined in the factorial, and a
step-out (out) after entering the body of the factorial.

Using the obtained time measurements, we computed the
mean execution times per operation (Figure 7). Detailed met-
rics can be found in Appendix D. The bar chart uses a loga-
rithmic scale and reveals that CFG debugging outperforms
Stepwise. While CFG si if is 7 times faster and CFG out is
91 times faster, these differences do not drastically impact
the debugging experience. In contrast, the CFG so fac is 215
times faster, reducing the developer’s average wait from 10
secs to just 48 ms, significantly improving the debugging
experience. The si fac is the only case where CFG is slightly
slower (1.74x), which highlights the overhead of CFG opera-
tions (i.e., find the start node and destination nodes, setting
and removing breakpoints), only noticeable when executing
a small number of instructions, as in this case.
In conclusion, CFG-based debugging operations outper-

form WARDuino’s Stepwise ones, particularly when apply-
ing debugging operations that involve numerous instruc-
tions, such as step-over and step-out. When a relatively low
number of instructions is executed, then CFG is slower than
Stepwise, but the difference is acceptable.

Construction Time of SCFGs. In this experiment, we did
not factor in the construction time of SCFGs. The construc-
tion of SCFGs occurs during the debugger startup and takes
approximately 114 ms to complete for the factorial: 105 ms
parsing the Wasm module and 9 ms for building the WCFGs
and SCFGs. This time is negligible compared to the time
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Figure 8. The VSCode debugger targeting the C blink appli-
cation. The figures highlight a step operation that advances
computation from line 29 (left) to line 30 (right).

Figure 9. The VSCode debugger targets the Zig blink appli-
cation. The figures highlight reaching a breakpoint at line
22 (left), followed by a step into pin_mode (right).

required for flashing the Wasm module and VM into the
MCU, or just the module if the VM is already present. So, the
SCFGs’ construction time does not affect the findings of this
benchmark since an initial slower startup in the prototype
is compensated for once debugging operations begin.

5.4 RQ4: Extending Debugging Support to C and Zig
Finally, we assess whether it is possible to extend CFG debug-
ging to various languages that compile to WebAssembly. In
the previous sections, we showed that our CFG-based debug-
ger prototype supports Rust and AssemblyScript. We now
show that our debugger also supports applications written in
Zig and C [14, 44]. In doing so, we show that our prototype
works out-of-the-box for languages that compile to Wasm
as long as their compilers: (1) generate Wasm bytecode ver-
sion 1 and (2) produce DWARF or Source Map Spec. This is
because a Wasm module and debugging information are the
only inputs our algorithm needs to build SCFGs, which in
turn enable CFG-based debugging operations.
In this experiment, we use the C blink application intro-

duced in Section 2.1, along with its equivalent Zig imple-
mentation, shown in Appendix A.2. Using their respective
compilers, clang for C [14] and the Zig compiler for Zig [44],
we compile these applications to Wasm version 1, along with
their associated DWARF debugging information. With these

outputs, our prototype builds SCFGs for each blink applica-
tion. Using a simple debug scenario, we show how our CFG
VSCode debugger prototype successfully targets each blink
implementation by using the generated SCFGs. For the C ver-
sion, after starting the debugger, we set a breakpoint at line
29 and resume the execution. The application pauses at the
set breakpoint (left Figure 8). Then, we apply a step, which
causes the debugger to access the SCFG node corresponding
to the paused source location, i.e., node 𝑠2 in Figure 3b. Us-
ing 𝑠2, the debugger identifies the nodes to where execution
should advance (i.e., 𝑠3, 𝑠4), sets breakpoints on those nodes,
and resumes execution. The application pauses upon reach-
ing 𝑠4, i.e., line 30 (right Figure 8). In the Zig version, we set
a breakpoint at line 22 and resume execution. Upon reaching
the breakpoint (left Figure 9), we step into the pin_mode
function (right Figure 9).

Both debug scenarios show that the prototype can target
both languages. Extending to other languages [16, 81] should,
in theory, not require any modification to the debugger, as
these languages also compile to Wasm version 1 and gen-
erate DWARF or Source Map Spec. Moreover, the C debug
scenario shows how CFG debugging can reduce inconsis-
tencies with the step command. Concretely, the debugger
correctly steps from line 29 to 30 when encountering a dou-
ble for loop without initialisers, unlike GDB/LLDB’s step
command, which, as reported by Yan et al. [98], bypasses
line 30.

6 Related Work
In the literature, several language-agnostic debuggers have
been proposed. Debuggers, such as GDB [29] and LLDB [50],
rely on DWARF [20] to offer language-agnostic debugging.
However, the language-agnostic debugging support is only
for languages that compile to native desktop code and pro-
duce DWARF, such as Rust, Go, and Zig. Similarly, GDB
forks [23, 24] for MCUs support only native code and offer
no source-level debugging of bytecode applications running
on MCU VMs. Enabling this requires implementing a debug
server and tedious low-level logic to map CPU to bytecode
state using OpenOCD [66]. Our approach avoids the need
for such low-level logic as it does not depend on OpenOCD
for debugging. Moreover, these debuggers suffer from in-
consistent debugging behaviour when targeting unoptimised
native code, such as skipping reachable source locations, as
shown by Yang et al. [98]. In contrast, CFG debugging helps
mitigate such issues, as outlined in Section 2.2 and demon-
strated in Section 5.4. However, our approach can also suffer
from inconsistent debugging behaviour when the compiler
produces incorrect debugging information.

In the context of managed runtimes, Truffle/GraalVM of-
fers language-agnostic debugging for the languages built on
the Truffle framework [86]. Unfortunately, this approach is
too memory and computational-intensive to apply to MCUs.
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WebAssembly VMs for desktops or browsers offer some
support for language-agnostic debugging. Wasmtime [10]
incorporates a debugger able to debug Wasm programs, but
only if they include DWARF debugging information. Thus,
working for languages like C/C++, Rust, which can emit
DWARF. However, unlike our approach, it cannot debug As-
semblyScript programs. Moreover, Wasmtime relies on just-
in-time (JIT) compilation of Wasm to native code to enable
debugging. However, the JIT infrastructure is too memory-
intensive to run onMCUs and is architecture-dependent [96].
The latter is particularly problematic inMCUs due to the com-
binatorial explosion problem [54], which states that newMCU
hardware vendors are continuously emerging. Chrome also
provides a debugger [30] for Wasm-compatible languages
that generate DWARF, but similarly, due to the hardware
constraints, cannot be ported to MCUs. There exists debug-
ging support for JavaScript combined with Wasm, but such
debuggers do not extend to new languages [42].
Some Wasm VMs targeted for MCUs, such as WAMR [2]

and Wasm3 [46], only offer debugging on desktops, not on
MCUs. To our knowledge, WARDuino [36] is the only VM
offering a Wasm debugger on MCUs, supporting Assem-
blyScript and partially supporting Rust [82]. However, its
debugging operations can be slow due to round-trips be-
tween the debugger front-end and the VM running on the
MCU, as shown in our evaluation Section 5.3.
There are several managed languages running on MCU

VMs [8, 28, 32, 62], offering debugging for a specific language.
While MicroPython [28] offers only debugging support on
super-sensors like the Raspberry Pi [64], both Espruino and
Duktape [32, 62] offer remote debugging support on MCUs.
Finally, CFGs are typically built from source code [1, 6,

14, 41, 51] or assembly code [45, 63, 87] and can be gener-
ated at three levels: source level (SL), intermediate level (IR),
or binary level (BL). Specific to Wasm, existing approaches
construct BL [55, 76, 92] or IR [91] CFGs starting from a
Wasm module or source code. However, these solutions are
either compiler-dependent or produce CFGs lacking a clear
link between source code and bytecode. While CFGs are
widely used in static analysis tasks such as malware detec-
tion [38, 43, 53, 57, 103], compiler optimisations (e.g., liveness
analysis, dead code elimination) [1], software rewriting and
generation [9, 56, 90], test coverage evaluation [65], static
bug detection [102], and aiding in bug reproducibility [100].
Notably, CFGs have been used to address inconsistencies that
arise with the source-level state when debugging optimised
native code [95] by using the graphs to delay the execution
of machine instructions. In contrast, our work uses CFGs to
enable stepping commands. To the best of our knowledge,
our work is the first to employ CFGs for debugging Wasm
programs.

7 Discussion and Future Work
In this section, we discuss in more detail several limitations
of our approach, as well as future work pointers.
Debugging Optimised Code. Compiler optimisations

impact the availability of debugging information, which in
turn affects CFG completeness and debugging correctness.
However, even with the optimisations, SCFGs can still be
constructed from the available source mappings. In practice,
as with GDB/LLDB, when stepping through optimised code
with our CFG debugger, locations that miss a mapping will
not be reached. A more thorough evaluation is needed to
draw robust conclusions about which optimisations CFG
debugging can support.

Debugging on General Platforms. Debugging of Wasm
is supported outside MCUs (e.g., in browsers [31] or desk-
tops [10]). Although it was not the focus of this paper, we
believe that our approach could be useful to such Wasm de-
buggers. First, it reduces inconsistent stepping as discussed
in Section 5.4. Second, it enables the debugging of languages
that do not produce DWARF (e.g., AssemblyScript), as only a
sourcemap is needed in the debugging information. Third, it
enables debugging operations that DWARF-based debuggers
cannot support. For instance, step to the next loop iteration
requires knowledge of control flow, absent in DWARF.
Debugging Hardware Errors.With our approach, we

cannot debug MCU properties such as hardware errors or
erratic behaviour due to low battery life [60]. To address this,
CFG debugging is best complemented with runtime debug-
ging information, possibly enabled through a more advanced
debugging API. For instance, exposing battery status allows
the debugger to adjust features based on available power.

8 Conclusion
We introduced a debugging technique based on CFGs spe-
cialised for debugging. Our approach is language-agnostic
for three reasons. First, the debugger can be implemented in
any language to integrate with various IDEs (e.g., VSCode,
IntelliJ). Second, the debugger targets any Wasm language,
provided the compiler emits debugging information contain-
ing a sourcemap. This is already the case for many Wasm
compilers, including Rust [41], emscripten (C/C++) [14], As-
semblyScript [6], and TinyGo [81]. Third, debugging opera-
tions are implemented based on the graph structure, rather
than the semantics or syntax of the source code language.
We implemented a CFG debugger and integrated it into

the WARDuino Wasm VM using four basic operations of the
VM’s debug API. Our prototype enables (1) classic stepping
operations (e.g., step into, step over) and (2) debugging of four
Wasm languages. Our evaluation showed that the prototype
outperforms WARDuino’s debugger and has the potential to
debug any language that compiles to Wasm and generates
debugging information, without requiring modifications to
the prototype’s software.
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A Blinking LED Applications
A.1 C Implementation
The complete blinking LED application as introduced in
Section 2.1. The application compiles to Wasm for deploy-
ment on WARDuino. To compile to Wasm, we ran the fol-
lowing command using clang version 20.1.8: clang blink.c
–target=wasm32 -nostdlib -Wl,–no-entry,–export-all,–allow-
undefined -g -o blink.wasm

1 extern void chip_pin_mode(unsigned int, unsigned int);

2 extern void chip_digital_write(unsigned int, unsigned

int);

3 extern void chip_delay(unsigned int);

4

5

6 void pin_mode(unsigned int pin, unsigned int mode) {

7 chip_pin_mode(pin, mode);

8 }

9

10 void digital_write(unsigned int pin, unsigned int state)

{

11 chip_digital_write(pin, state);

12 }

13

14 void delay(unsigned int ms) {

15 chip_delay(ms);

16 }

17

18 int main() {

19 unsigned int LED = 10;

20 unsigned int OUTPUT = 2;

21 unsigned int ON = 1;

22 unsigned int OFF = 0;

23 pin_mode(LED, OUTPUT);

24

25 unsigned int SLEEP = 2000;

26 unsigned int TOTAL_RUNS = 2;

27 int run_idx=0;

28 unsigned int delta = 0;

29 for (; run_idx < TOTAL_RUNS; run_idx++){

30 for(; delta < SLEEP; delta +=100 ){

31 digital_write(LED, ON);

32 delay(SLEEP - delta);

33 digital_write(LED, OFF);

34 delay(SLEEP - delta);

35 }

36 delta = 0;

37 }

38 }

A.2 Zig Implementation
The following listing is equivalent to Appendix A.1, written
in Zig and compiled to Wasm for deployment on WARDuino.
To compile to Wasm, we ran the following command using
zig version 0.14.1: zig cc -z stack-size=32768 -target wasm32-
freestanding blink.zig -o blink.wasm

1 extern fn chip_pin_mode(u32, u8) void;

2 extern fn chip_digital_write(u8, u8) void;

3 extern fn chip_delay(u32) void;

4

5 fn digital_write(pin: u8, value: u8) void {

6 chip_digital_write(pin, value);

7 }

8

9 fn delay(ms: u32) void {

10 chip_delay(ms);

11 }

12

13 fn pin_mode(pin: u8, mode: u8) void {

14 chip_pin_mode(pin, mode);

15 }

16

17 pub fn main() void {

18 const LED: u8 = 10;

19 const OUTPUT: u8 = 2;

20 const ON: u8 = 1;

21 const OFF: u8 = 0;

22 pin_mode(LED, OUTPUT);

23

24 const SLEEP: u32 = 2000;

25 const TOTAL_RUNS: u8 = 2;

26 var delta: u32 = 0;

27

28 for (0..TOTAL_RUNS) |_| {

29 for (0..SLEEP) |_| {

30 delta += 100;

31 if (delta > SLEEP) break;

32 digital_write(LED, ON);

33 chip_delay(SLEEP - delta);

34 digital_write(LED, OFF);

35 chip_delay(SLEEP - delta);

36 }

37 delta = 0;

38 }

39 }

B Debugging Operations
This section illustrates the listings of step over and step out
as introduced in Section 4.2.

Step Over. The following shows a JavaScript-like pseudo-
code of a CFG step over.
1 function stepOver(scfgs,sn){

2 const ns = neighbours(sn)

3 if (ns.length !== 0)

4 return ns
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5 return stepOut(scfgs, sn)

6 }

Using the start node sn, step over accesses all the outgoing
neighbours of sn (line 2). If at least one neighbour is found,
those are returned as destination nodes (lines 3-4). Otherwise,
step over performs a step out.

Step Out. The following shows a JavaScript-like pseudo-
code of a CFG step out.

1 function stepOut(scfgs,sn){

2 const scfg = getSCFG(sn)

3 const f = funID(scfg)

4 const cn = callNodes(scfgs,f)

5 const dns = []

6 for (const c of cn){

7 const ns = stepOver(scfgs,c)

8 dns.push(...ns)

9 }

10 return dns;

11 }

Using the start node, step out first accesses the SCFG
associated with the start node (line 2). This is then used
to access the function identifier 𝑓 for which the SCFG was
created (line 3). Then the operation accesses all the call nodes
that call 𝑓 using the helper function callNodes (line 4). Per
call node, the operation applies a step over and collects all
the obtained nodes as destination nodes (lines 6-8). Finally,
step out returns the collected destination nodes (line 10).

C Experiment Call Nodes Completeness
In this section, we detail the experiment that we conducted
to evaluate call node completeness. Specifically, to assess
whether the call nodes refer to all the functions they could
call. We build on the idea that the call nodes of a function
𝑓 represent a call and callee relationship between 𝑓 and all
the functions called by 𝑓 . If we express this relationship as
a graph and do the same for the functions called by 𝑓 , we
obtain the call graph of 𝑓 . As defined by Lehmann et al. [48],
if the obtained call graph misses no node or edge, we say
that the call graph is sound. Therefore, to determine if all call
nodes refer to all the functions they could call, we construct
a call graph from all the call nodes starting from the main
of the program. If we show that the obtained call graph is
sound, we can conclude that the call nodes refer to all the
functions they could call since they have been used to build
the call graph.
For this experiment, we use the wasm-call-graphs bench-

marks proposed by Lehman et al. [48, 72]. These benchmarks
consist of 24microbenchmarks and 10 real-world binaries that
measure call graph soundness.

Microbenchmarks. The microbenchmarks are designed
to evaluate soundness across scenarios such as the use of
implicit entry functions, functions exported through tables,

1 #![no_std]

2 #![no_main]

3 use core::panic::PanicInfo;

4

5 #[panic_handler]

6 fn panic(_info: &PanicInfo) -> ! {

7 loop {}

8 }

9

10 fn fac(n: u64) -> u64 {

11 if n == 0 || n == 1 {

12 1

13 } else {

14 n * fac(n - 1)

15 }

16 }

17

18 #[no_mangle]

19 pub fn main() {

20 loop {

21 fac(5);

22 }

23 }

Figure 10. The Rust factorial used in Section 5.3.

indirect calls, and so on. For each microbenchmark, we con-
struct a call graph from the call nodes. To determine call
graph soundness, the benchmark compares our call graph
to a ground truth, i.e., a sound call graph pre-constructed by
the authors [48]. The results of the benchmark are illustrated
in Table 3. From the results, we observe that our call graphs
are sound across all 24 examples.

Real-world Binaries.The real-world binaries benchmark
comprises Wasm modules compiled from 10 libraries such
as SQL.js [74] (a Wasm port of SQLite), Graphviz [33] (a C++
graph visualisation library), and more. To measure sound-
ness, the authors define three values per Wasm module:

1. |F𝑎𝑙𝑙 | the number of Wasm functions.
2. |F𝑟 | the number of reachable Wasm functions.
3. |F𝑑𝑦𝑛 | is the number ofWasm functions that are dynam-

ically called by test cases included with each library.
The authors [48] also define 𝐹𝑢𝑛𝑠𝑜𝑢𝑛𝑑 = 𝐹𝑑𝑦𝑛 − 𝐹𝑟 , i.e., the set
of functions that cannot be removed. A value greater than
zero for |𝐹𝑢𝑛𝑠𝑜𝑢𝑛𝑑 | indicates that the call graph is unsound.
Using these real-world binaries, the benchmark builds

call graphs using our approach and computes |𝐹𝑢𝑛𝑠𝑜𝑢𝑛𝑑 | and
|𝐹𝑟 |. The results, shown in Table 4, demonstrate that our call
graphs are not unsound for any of the libraries. No results
are available for OpenCV as the benchmark crashed during
the installation of the library.
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Table 3. The results of applying the microbenchmarks to our approach: ✓stands for success.
.

Description Sound
Simple direct call ✓
Transitive direct call ✓
Direct call to imported function ✓
Implicit entry point: Wasm
start section ✓

Implicit entry point: Wasi
start section ✓

Imported host code calls
exported function ✓

Functions in exported table
are reachable ✓

Functions in imported table
are reachable ✓

Table is mutable by host ✓
Table init. offset is imported
from host ✓

Memory init. offset is imported
from host ✓

Functions must be in table for
indirect call ✓

Types can constrain indirect
call targets ✓

Description Sound
Constant table index value ✓
Index value data-flow through
local variable ✓

Masked index value ✓
Inter-procedural index value,
parameter ✓

Inter-procedural index value,
function result ✓

Index from memory, constant
address ✓

Index from memory, address
inter-procedural, parameter ✓

Index from memory, address
inter-procedural, result ✓

Index from memory,
double indirect load ✓

Index from memory,
memory is mutable ✓

C++ virtual calls
from unrelated classes ✓

Table 4. The |F𝑢𝑛𝑠𝑜𝑢𝑛𝑑 | measurement for our approach across the real-world binaries. Constructed call graphs are unsound
when |F𝑢𝑛𝑠𝑜𝑢𝑛𝑑 | is greater than zero. OpenCV could not be benchmarked due to an installation error (indicated by -).

Library |F𝑎𝑙𝑙 | |F𝑑𝑦𝑛 | |F𝑟 | |F𝑢𝑛𝑠𝑜𝑢𝑛𝑑 |
opencv 10909 871 - -
sql.js 1261 390 1261 0
rsa 785 274 779 0
blake 81 21 76 0
libmagic 736 213 736 0
graphviz 2018 790 2018 0
source-map 46 19 38 0
shiki 213 105 213 0
fonteditor 1118 381 1118 0
opusscript 356 169 356 0

Table 5. The execution times of step-into, step-over, and step-out, using the Stepwise (S) WARDuino debugger [82] and our
CFG (C) prototype. The metrics are computed from 80 runs (30 warm-up). The operations are applied at different source
locations (line l, column c) on the factorial example.

operation DBG min (ms) mean (ms) max (ms) std. dev.
step-into fac
(line 21, col 9)

S 11.76 13.8 17.5 1.95
C 23.45 24.02 29.73 0.84

step-over fac
(line 21, col 9)

S 10171.94 10330.28 10667.94 119.29
C 47.8 48.14 50.99 0.43

step-into if condition
(line 11, col 8)

S 239.79 249.71 279.84 8.53
C 35.52 36.22 48.52 1.95

step-out fac
(line 14, col 13)

S 3875.85 4024.0 4284.05 81.51
C 40.24 44.09 64.61 3.24
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D Debugging Operations Detailed Metrics
In this section, we provide the accompanying results of the
benchmark executed in Section 5.3. In particular, Figure 10
shows the complete code used for the benchmark, and Table 5
presents the statistical metrics computed for each debugging
operation. The factorial example was compiled using Rust
version 1.81.0 with the following compile command: rustc -C
link-args=–no-entry -C link-args=-zstack-size=32768 –target
wasm32-unknown-unknown -g fac.rs
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