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Abstract

Modern web applications integrate JavaScript code with
more efficient languages compiling to WebAssembly, such as
C, C++ or Rust. However, such multi-language applications
challenge program understanding and increase the risk
of security attacks. Dynamic taint analysis is a powerful
technique used to uncover confidentiality and integrity vul-
nerabilities. The state of the art has mainly considered taint
analysis targeting a single programming language, extended
with a limited set of native extensions. To deal with data flows
between the language and native extensions, typically taint
signatures or models of those extensions have been derived
from the extensions’ high-level source code. However, this
does not scale for multi-language web applications as the
WebAssembly modules evolve continuously and generally
do not include their high-level source code.

This paper proposes JASMaint, the first taint analysis ap-
proach for multi-language web applications. A novel analysis
orchestrator component manages the exchange of taint
information during interoperation between our language-
specific taint analyses. JASMaint is based on source code
instrumentation for both the JavaScript and WebAssembly
codebases. This choice enables deployment to all runtimes
that support JavaScript and WebAssembly. We evaluate our
approach on a benchmark suite of multi-language programs.
Our evaluation shows that JASMaint reduces overtainting
by 0.003%-56.20% compared to an over-approximating taint
analysis based on function models. However, this comes at
the cost of an increase in performance overhead by a factor
of 1.14x-1.61x relative to the state of the art.

CCS Concepts: - Software and its engineering — Object
oriented frameworks; Dynamic analysis; « Information
systems — Web applications; « Security and privacy —
Information flow control.
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1 Introduction

Many modern web applications leverage both JavaScript and
WebAssembly to improve performance. WebAssembly
(Wasm) is a binary instruction format designed for
near-native performance within a stack-based virtual
machine [10]. It has also become the compilation target of
numerous languages, including Rust, C++, and Go. This
has also enabled the portability of applications that were
previously limited to native platforms to other environments,
such as server runtimes, embedded devices, and the web.
As web applications grow in size and complexity, under-
standing their runtime behaviour becomes crucial for iden-
tifying potential security vulnerabilities and performance
issues. This is particularly important, given a recent study
of the entire Node Package Manager (NPM) repository [20]
which found that installing a single npm package introduces
implicit trust in 79 other packages, maintained by 39 dif-
ferent developers. This substantially increases the attack
surface, rendering applications susceptible to supply chain
attacks [20]. Modern web applications can further incorpo-
rate third-party Wasm dependencies, increasing the risk of
supply chain attacks in the Wasm realm. This unavoidable
implicit trust and interlanguage interactions highlight the
importance of comprehensive analysis techniques capable of
understanding the behaviour of multi-language web applica-
tions to detect and mitigate potential security vulnerabilities.
Dynamic taint analysis is a powerful technique for iden-
tifying and mitigating integrity [2, 14] and confidentiality
vulnerabilities [1, 7, 14]. It tracks the flow of data between
sources of sensitive information through the application to
raise an alarm when they reach sinks of public information.
Achieving precise taint tracking is challenging when the
code of a given operation involving taint information is
unavailable as it involves a native extension, e.g., as a built-
in functions in the interpreter of the target language. In
such cases, the burden falls on the analysis developer to


https://orcid.org/0009-0004-3368-6640
https://orcid.org/0000-0001-5593-1273
https://orcid.org/0000-0003-2083-1285
https://orcid.org/0009-0001-5294-0585
https://orcid.org/0000-0002-9966-6421

define appropriate semantic rules to ensure precise taint
propagation.

While many modern web applications integrate JavaScript
and WebAssembly (Wasm) code, a portable dynamic taint
analysis that considers the interoperability between
JavaScript and Wasm programs does not currently exist.
Dynamic taint analysis approaches have been proposed for
JavaScript [1, 14] and Wasm [8, 17, 23], but they target only
one language in isolation. Whenever the analysis needs
to deal with data flows beyond a language boundary (e.g.
supporting native extensions or language builtins), dynamic
taint analysis approaches often treat the component as a
black box [12, 22]. Some works address this by allowing
developers to provide taint signatures or a taint model to
specify the incoming and outgoing flows [1, 6, 11, 12, 14, 22].
However, those models are not guaranteed to be aligned
with the semantics of the code and can easily result in
incorrect implementations that under- or over-taint values.
Moreover, maintaining function models requires significant
engineering effort [12, 22]. The maintenance of function
models may suffice for a relatively small and static set of
external abstractions, such as the JavaScript builtins and
host extensions. However, it does not scale for modern
multi-language web applications with Wasm modules as
extensions that evolve continuously.

This paper presents JASMaint, the first taint analysis for
multi-language web applications that can precisely track
taint flows across language boundaries. Our approach re-
lies on source code instrumentation to ensure portability
across various execution environments that utilise JavaScript
and WebAssembly, such as web browsers and server-side
JavaScript runtimes (e.g., Node.js). The core of our approach
resides in the analysis orchestrator, which carefully handles
taint propagation across the interoperability boundaries
between JavaScript and Wasm. We evaluate the analysis pre-
cision and performance overhead of JASMaint using a bench-
mark suite of multi-language programs. Our experiments
show that JASMaint does increase the analysis precision w.r.t
the state-of-the-art approaches, based on function models,
for our set of benchmark programs. Concretely, the precision
improvements range from 0.003% to 56.20% depending on the
program. However, this introduces an execution overhead
compared to single-language taint analyses, with slowdown
factors between 1.14x and 1.61x.

The contributions of this paper are:

e We design and implement a novel taint analysis for
WebAssembly. Benefiting from source code instrumen-
tation, this analysis can be deployed to all environ-
ments that support executing WebAssembly.

e We design a portable multi-language taint analysis
for web applications. This analysis relies on our novel
analysis orchestrator, which supports precise taint
communication across language boundaries.
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o We present JASMaint, an implementation of a dy-
namic taint analysis framework for multi-language
web applications. JASMaint integrates the devel-
oped taint analysis for WebAssembly, a portable
taint analysis for JavaScript and the orchestration
infrastructure to track taint communication between
JavaScript and Wasm.

2 Background and Motivation

Dynamic taint analysis (DTA) is a runtime analysis technique
that tracks the flow of sensitive or potentially malicious data
(i.e. tainted data) throughout the execution of a program [3,
21]. The tainting policy specifies how taint gets introduced,
checked and removed in a target program [21].

2.1 Dynamic Taint Analysis for JavaScript

Much work has focused on dynamic taint analysis targeted at
JavaScript (cf. for a survey [3]). In what follows, we describe
a dynamic taint analysis for JavaScript programs based on
source code instrumentation using shadow execution, a tech-
nique that augments the normal execution of a program with
an additional “shadow” state alongside the program’s actual
state [3]. Shadow execution can be implemented through
shadow values (which augment the program’s data with
the shadow state) or shadow runtime mechanisms (which
build parallel, mirrored representations of the program’s
runtime structures). We use shadow execution through
shadow values, since a shadow runtime is more complex
due to the intricacies of the JavaScript specification.

2.1.1 Taint Analysis APIL Our taint analysis provides
an API that enables the specification of taint sinks, sources,
assertions, and checks within the target program. The Taint
class exposes the following API to target programs:

e Source Marking: Taint.source(x) taints the value
of x. This value x is returned.

e Sink Marking: Taint.sink(x) aborts the program
when the value of x is tainted or else, it is returned.

e Taint Sanitization Marking: Taint.sanitize(x)
removes taint from x. The value is returned.

e Taint Assertions: Taint.assertIsTainted(x) and
Taint.assertIsNotTainted(x) check whether x is
tainted or not, respectively. An error is thrown if the
assertion fails.

e Taint Check: Taint.checkIsTainted(x) returns a
boolean indicating whether x is tainted or not.

2.1.2 Taint Propagation. Our taint analysis implemen-
tation relies on source code instrumentation to weave the
analysis within the target program. All values in the instru-
mented program are wrapped by a membrane that allows
the maintenance of taint for all objects and primitive val-
ues [5]. A membrane allows to wrap entire object graphs by
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export const string_apply_behavior_mapping = {
"global.String.prototype.at": (callee, that, args, result) {
result.__taint = taintFromArgumentsAndThis(args, that);
return result;
3
3

Listing 1. Example of a custom propagator for the intrinsic
operation String.prototype.at.

transtitivelly wrapping values observed by the any object
on such a graph [24].

To account for the taint analysis semantics, we provided
the taint with propagation rules of JavaScript operations.
Propagation rules operate on wrapped values that carry the
taint label of the shadowed program value. Our approach
distinguishes between intrinsic and non-intrinsic operations.
Intrinsic operations are language operations for which the
interpreter implements their semantics, or their source code
is not available during instrumentation. For example, the
JavaScript operators such as - or ++ or built-in functions
such asMath. pow are intrinsic operations, as the source code
implementing their semantics is implemented within the
JavaScript engine, and thus unreachable to instrumentation.
For intrinsic operations, the analysis must provide operation-
specific taint propagation rules to precisely attach the taint
label to the result of the operation. Non-intrinsic operations
are functions defined in the target program, for which their
source code is available. For non-intrinsic operations, the
analysis instruments each expression within the function
body to precisely track the propagation of taint.

An example of a propagation rule for the intrinsic function
String.prototype.at is shown by Listing 1. At runtime,
the propagator function will be called with the callee, the
this object, the list of arguments and the result of the
function call. Any primitives in this object or in the list
of arguments are wrapped and labelled by the taint analysis,
allowing the propagator body to implement the adequate
propagation rule given these intrinsic semantics. In this
example, the taintFromArgumentsAndThis taints the result
if either one of the arguments or the this value is tainted,
which is the most commonly used propagation rule.

2.1.3 Control Flow Taint Tracking. Our analysis also
tracks implicit control flows. When the result of a conditional
is tainted and results in a branching operation, all data
handled in the subsequent control flow path must also be
tainted. We use a conditional taint stack to track (potentially
nested) control flow conditional taints. When a segment
block is entered conditionally, the taint of the conditional is
pushed onto the stack, since the subsequent program exe-
cution is now influenced by the corresponding conditional
value. Consequently, when the program leaves a segment

1
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// Replace where “pattern™ occurs with “replacement™ in ~text~
async function replaceAsync(text, pattern, replacement) {
// Instantiate, then extract the functions & linear memory
const {instance:{exports:{replace_in_wasm,alloc_u8,memory}}}
= await WebAssembly.instantiate(readFileSync("replace.wasm"));
// Functions to en/decode strings to & from linear memory
const encode = (str) => {
const bytes = new TextEncoder().encode(str);
const ptr = alloc_u8(bytes.length);
new Uint8Array(memory.buffer,ptr,bytes.length).set(bytes);
return ptr; };
const decode = (ptr, len) => {
const view = new Uint8Array(memory.buffer, ptr, len);
return new TextDecoder().decode(view); };
// Encode all strings, retrieving a pointer & length
const [[nPtr, nLen], [vPtr, vLen], [hPtr, hLen]]
= [pattern, replacement,
text].map(s =>[encode(s), s.lengthl);
// Perform replace in wasm & decode rewritten string
replace_in_wasm(nPtr, nLen, vPtr, vLen, hPtr, hLen);
return decode(hPtr, hLen);}

(async () => {await replaceAsync("The user input is safe.",
"safe", "probably a ticking time bomb")})();

Listing 2. A JavaScript function that replaces occurrences of

pattern with replacement in a given text. The function

calls into WebAssembly to perform the replacement.

block, the conditional taint is popped from the stack. Any
operation covered by the analysis must check whether the
taint stack has a tainted entry. If this is the case, the result
of the operation must be tainted due to a tainted conditional
influence.

2.2 Motivation

Like current state-of-the-art analyses for JavaScript [1, 3, 14],
the precision of the dynamic taint analysis presented in
the previous section is constrained to the JavaScript bound-
aries. The analysis applies conservative tainting when taint
propagates outside the JavaScript boundaries, e.g. to Wasm,
and thus loses precision. To demonstrate the challenges in
developing a precise taint analysis in multi-language web ap-
plications, consider the multi-language program in Listing 2,
where JavaScript delegates string replacement operations
to a Wasm module. The replaceAsync function replaces
the occurrences of the pattern parameter by replacement
in the given text. To speed up the operation, the function
uses a Wasm module to perform the actual replacement.
First, the Wasm module is instantiated (lines 4-5), and
the replace_in_wasm and alloc_u8 functions, and the
module’s linear memory are imported into the JavaScript
function. Then, the function declares the decode and encode
functions. The function encode is used in line 18 to encode
and write three parameters into the linear memory, and
return the pointer and the length of each written parameter.
At line 20, the function calls the replace_in_wasm function



using the pointer and length of each parameter. Finally,
the function calls decode at line 21 to read from the linear
memory and decode the modified text string.

This example exposes key limitations of using a taint
analysis designed for JavaScript in the context of multi-
language applications. Without access to a detailed spec-
ification or source code of the Wasm functions being used in
the program, the taint analysis cannot precisely track taint in-
formation. Even when source code is available, maintaining
hand-crafted models is error-prone and hard to maintain as
the codebase evolves. Furthermore, implementing a precise
model may entail re-implementing complex logic to compute
the taint information. In our example, a precise model for
replace_in_wasmmust perform the same logic to determine
whether the pattern is present in the given text string to
determine the taint after the function returns.

Sharing linear memory between JavaScript and Wasm
complicates further taint analysis as a Wasm memory is
a byte-addressable array that both languages can access
and mutate. To track taint precisely, each byte in the linear
memory must carry its corresponding taint label. Read and
write operations to the linear memory, in both JavaScript and
Wasm environments, must handle this taint information.

Even assuming the existence of a precise tracking mecha-
nism within the JavaScript and Wasm environments, taint
exchange across language boundaries remains an issue. For
example, encode must get the taint information of each byte
from the JavaScript environment and pass it along to the
Wasm environment. The decode function must retrieve taint
labels alongside the bytes being read and pass them to the
JavaScript environment. Finally, this problem becomes more
complex when JavaScript functions and objects are exported
to the Wasm module.

The aforementioned challenges demonstrate the need
for precise, multi-language taint analysis for modern web
applications. In this work, we introduce the first multi-
language taint analysis approach departing from two dy-
namic analyses, one for JavaScript and one for WebAssembly,
and devising a taint communication mechanism for opera-
tions that cross language boundaries. Devising such a multi-
language taint communication mechanism requires careful
consideration of the runtime differences between JavaScript
and WebAssembly. We employ the dynamic taint analysis
from 2.1 and develop a novel Wasm taint analysis, as current
state-of-the-art approaches [8, 17, 23] fail to be portable.

3 Taint Analysis for WebAssembly

We now discuss the design of our portable dynamic taint
analysis for Wasm programs. The implementation is based
on source code instrumentation, allowing the taint analysis
to be deployed alongside the target module in various
WebAssembly (Wasm) execution environments. As the taint
analysis is implemented at the level of the Wasm semantics,
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the target module can be the compilation output from any
higher-level language that compiles to Wasm.

The analysis is implemented using shadow execution
using a shadow runtime that mirrors the Wasm execution
environment state through a shadow execution stack and an
abstract store. The shadow execution stack contains record
values and control constructs. This stack is manipulated
by instructions such as “i32.add” which pops two operands
of type 132 from the stack and pushes the sum back onto
the stack. The abstract store maintains global state during
execution, such as the module’s linear memory or values
pointed to by the global variables. The shadow runtime
mirrors a structurally equivalent representation of these
data structures, substituting all effective Wasm values with a
label corresponding to the taint of each value. In addition to
the explicit execution state, the dynamic analysis maintains
an implicit control flow stack that is dictated by control
instructions that conditionally execute based on tainted or
untainted conditions (described in Section 3.2).

Generally, our taint analysis is designed for byte-level
taint precision. However, some parts of the analysis currently
lack propagation rules that can account for this byte-level
precision in the ShadowValueWithTaintStatus values. In
such cases, the byte-level taint precision is weakened to
value-level taint precision, marking either all or none of the
ShadowValueWithTaintStatus taint bytes. The implemen-
tation propagates taint at the byte level for all considered
programs that are used within the evaluation (cf. Section 6).

3.1 Taint Propagation Rules

WebAssembly instructions can be categorised into four types,
each serving a specific purpose in the execution of Wasm
code. The following describes the semantics of taint analysis
for each of these instruction categories.

3.1.1 Numeric Instructions. When a numeric instruc-
tion is encountered during the execution of an instrumented
Wasm module, the shadow execution simulates the instruc-
tion’s semantics on the shadow stack while propagating the
taint of the arguments.

Numeric constant instructions, such as i32.const or
f64.const, introduce a new value onto the execution stack.
In the shadow execution, a corresponding ShadowValue-
WithTaintStatus is pushed onto the shadow stack. Con-
stants are considered untainted, unless they are being intro-
duced under the indirect influence of a tainted control flow
condition (cf. Section 3.2).

Unary numeric instructions, such as i32.clz or f64.neg
consume one operand from the execution stack and produce
one result. For such unary operations the existing taint label
is preserved.

Similarly, binary numeric instructions, such as 132.add or
f64.mul consume two operands from the execution stack
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and produce one result. The taint analysis pops two Shadow-
ValueWithTaintStatuss from the shadow stack, performs
the binary operation on the Wasm values, and pushes a new
ShadowValueWithTaintStatus onto the shadow stack. The
result is tainted if either of the operands is tainted.

3.1.2 Function Calls. The analysis tracks taint labels over
both calls to host functions (i.e., imported functions) and
internal Wasm function invocations. It precisely follows the
Wasm call and return semantics, allowing for a seamless inte-
gration of the taint analysis. Similar to our taint analysis for
JavaScript, our Wasm taint analysis distinguishes between
two types of function calls, which are discussed below.

Calls to Internal Functions For internal function ap-
plications, the analysis tracks taint labels both before
and after the function call. Prior to the function in-
vocation, the advice retrieves the ShadowValueWith-
TaintStatus values corresponding to the function
arguments from the shadow stack. A new activa-
tion frame, which represents the local context of the
callee, is then pushed onto the shadow stack. This
frame includes the transferred ShadowValueWith-
TaintStatus values, effectively propagating them to
the shadow execution context of the called function.
The actual execution of the Wasm function proceeds
under the control of the Wasm runtime. The in-
strumented code within the function body operates
on the ShadowValueWithTaintStatus values on the
shadow stack, passing through other parts of the taint
analysis logic. The execution of a function can end in
two ways: either by reaching the end of the function
body or by means of an early return statement. In both
cases, the ShadowValueWithTaintStatus values be-
ing returned from the function are left on the shadow
stack, containing the propagated taint information of
the corresponding return values. These Shadowval-
ueWithTaintStatus values must be briefly removed
from the shadow stack in order to restore the caller’s
context by removing the callee’s activation frame,
before pushing the values onto the shadow stack
again as return values to the caller. This ensures
that the taint label of the return values is correctly
transferred back to the calling context, allowing the
taint to propagate further through the remainder of
the program execution. Note that this interaction
across activation frames corresponds to the Wasm’s
specification.

Calls to Imported Functions Calls from Wasm to im-
ported functions (i.e., JavaScript host functions) may
be present in the Wasm code. Since the function body
of the invoked function is not present, and therefore,
not instrumented, the taint analysis can not handle the
taint propagation of the function call. We will present

in Section 4 our solution to handling such a preci-
sion issue. Alternatively, the implementer of a taint
analysis that does not support communication with
a taint analysis implementation of the host should
conservatively taint all the values returned from the
function call (e.g., using function models [12]).

3.1.3 Memory Operations. The taint analysis implemen-
tation uses a shadow linear memory that mirrors the ad-
dressable memory of the Wasm instance, with a taint label
associated with the corresponding byte value at the same
index in the Wasm memory. This shadow memory allows for
tracing all Wasm load or store instructions. Upon execution
of such an instruction, the analysis is informed about the
base memory address, the offset, and the specific memory
operation. When loading a value from memory, the specific
load operation (e.g., I32Load8U, I64Load32U) determines
the number of bytes being loaded. The function then iterates
over these bytes in the shadow memory and returns whether
any of the addressed bytes is tainted. Only when all of the
loaded shadow bytes are untainted, the result of the memory
load is untainted. When storing a value into memory, the spe-
cific store operation (e.g., I164Store, 164Store8) determines
the number of bytes being stored. Conversely, the analysis
propagates the taint of the stored value to all corresponding
bytes in the shadow memory.

3.1.4 Global Variables. Tracking taint labels for global
variables makes use of a shadow global store. Each element
in this store represents a shadow representation of a global
variable of the Wasm module. The GlobalHandle struct
holds the taint label of this global variable as a boolean.

When a global.get instruction is executed, the corre-
sponding GlobalHandle is retrieved from the shadow global
store based on the global index represented as GlobalAd-
dress. The global value and its retrieved taint label are then
pushed onto the stack as a ShadowValueWithTaintStatus.
When executing a global. set instruction, the analysis simi-
larly retrieves the GlobalHandle from the global store using
the GlobalAddress. After obtaining the GlobalHandle, its
current taint label is replaced with the taint label of the value
being set (i.e., the taint label of the value that was consumed
from the stack).

3.2 Control Flow Taint

Our taint analysis further supports implicit taint flows
through control flow instructions, including block, if, br,
br_if, br_table, loop, and return.

Besides a shadow stack that mirrors the Wasm execution
stack, a conditional taint stack is maintained to track the
taint of control flow conditions. Each entry represents the
taint of the condition at a specific control flow depth. Upon
execution of the instruction if-then-else, the taint of
the condition variable is pushed onto the conditional taint
stack. Once either conditional branch is completely executed,



the conditional taint is popped from the stack again. In
addition to this conditional taint stack, a conditional block
branching taint flag is maintained. This is required as some
instructions conditionally branch out of one or more blocks.
If this branch is the consequence of a tainted condition,
the conditional block branching taint flag should be set,
regardless of whether the branching was performed or not, as
subsequent control flow is affected by the tainted condition.

Nevertheless, when a function call returns control flow
to the caller, it is crucial to clean up the conditional taint
labels that have accumulated on the taint stack during the
function execution. This prevents conditional taints from
incorrectly affecting the program execution beyond the
function’s scope. Therefore, within the instrumentation of a
function application, all conditional taint labels associated
with the current function invocation are popped from the
stack.

At any point in the program, the current operation is
considered tainted by control flow when either the con-
ditional taint stack contains a tainted label or when the
conditional block branching taint flag is set. If this is the case,
the result of the operation should be tainted. For example,
the analysis intercepting a i32.const instruction pushes
a corresponding ShadowValueWithTaintStatus onto the
shadow stack with taint being false unless tainted by
control flow.

3.3 Taint Analysis API Design

Our analysis API is designed such that marking sources and
sinks happens at the higher abstraction level (e.g., Rust, C or
C++) from the application code. This design benefits users
of the analysis as they can use the API in their language of
choice, rather than being forced to modify the Wasm module
post-compilation by hand. This choice requires the host to
expose functions that accept a value from the application
code, call the analysis function to taint this value and return
the value back to the application. Subsequently, the taint
propagation will compute where taint flows throughout the
application code. Section 4.2.2 further describes an example
interaction of communicating taint from WebAssembly to
the host.

4 JASMaint: a Multi-language Taint
Analysis

This section describes our approach for enhancing the preci-
sion of taint analyses for programs that involve JavaScript
and WebAssembly interoperability. We call interlanguage
taint communication to describe the concept of taint propa-
gation across the interoperability boundaries between these
languages. This communication includes interlanguage func-
tion calls, shared linear memory, shared global variables and
shared tables. Our approach considers an interlanguage taint
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communication orchestrator which is responsible for com-
municating the taint information of values flowing across
the language boundaries. We extended the functionality of
the JavaScript and Wasm taint analyses to enable a multi-
language taint analysis, which we refer to as JASMaint.
The orchestrator is hosted by the JavaScript taint analysis
and implements a protocol to communicate the taint for
the identified interlanguage operations whenever a Wasm
module is interacted with by the JavaScript application.

4.1 Orchestrator Setup

When the JavaScript program instantiates a Wasm module,
our orchestrator takes the import object and the resulting
instantiated module object, and attaches metadata and func-
tionality necessary for the interlanguage taint tracking. Con-
cretely, this involves adding flags and taint communication
hooks to the functions, memories and globals imported into
the Wasm binary, for later use by the orchestrator through-
out the analysis. Additionally, the instantiation object gets
metadata attached, allowing the orchestrator to later attach
the flags and taint communication hooks to the exported
functions, memories and globals retrieved from the instanti-
ation. Besides the target program exports, the instantiated
Wasm module exports a set of analysis-specific functions
that enable the orchestrator to manage the taint information
of the module. The rest of the section explains those Wasm
exports used by the orchestrator to communicate and retrieve
taint from interactions with the Wasm module.

4.2 Interlanguage Function Calls

For function calls, JavaScript can invoke a call to Web-
Assembly functions and WebAssembly can invoke a call to
JavaScript functions. We describe each function call direction
individually.

4.2.1 JavaScript to Wasm Function Calls. Taint propa-
gation through function calls between JavaScript and Wasm
requires the propagation of taints through both the argu-
ments and return values of the call. The first two columns
of Figure 1 show a high-level architecture of taint flow
through interlanguage function calls. The interlanguage taint
propagation for calls from JavaScript to Wasm is shown in
the first column, and from Wasm to JavaScript in the second
column.

When JavaScript invokes a Wasm function, the taint values
of the JavaScript arguments are communicated to the Wasm
analysis. To achieve this, the Wasm taint analysis exposes
four taint communication functions, as specified in Table 1.
These functions are exported in the Wasm binary for use by
the orchestrator.

Functions prepare_for_argument_taints and
set_argument_taint are invoked by the orchestrator
analysis before JavaScript makes the Wasm function call.
Specifically, they write the taint value of each call argument
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Table 1. The WebAssembly functions for interlanguage function call taint communication.

Exported Wasm Function Signature Description

Calls from JavaScript to Wasm

prepare_for_argument_taints i32 — () Initialises the argument taints buffer based on the number of arguments.

set_argument_taint i32,i32 — ()  Sets the taint of the argument at the specified index.

get_result_count () —i32 Returns the number of values returned by the function.

get_result_taint i32 — i32 Returns the taint of the return value at the specified index.

Calls from WebAssembly to JavaScript

get_argument_count () —i32 Returns the number of arguments passed to the function.

get_argument_taint i32 — i32 Returns the argument taint for the specified argument index.

prepare_for_result_taints i32 — () Initialises the result taints buffer based on the number of results.

set_result_taint i32,i32 — ()  Sets the taint of the return value at the specified index.

is_wasm_calling_host () > 32 Returns whether the Wasm is currently calling a JavaScript function.

all_argument_taints_received () —i32 Returns if the argument taints of the active function call have been retrieved via
get_argument_taint().

Shared Linear Memory

get_memory_taint i32 — i32 Retrieves the taint of the value at a given memory index.

set_memory_taint i32,i32 — ()  Mutates the taint of the value at a given memory index.

Shared Global Variables

get_global_taint i32 — i32 Retrieves the taint of the global variable with the specified index.

set_global_taint i32,i32 — ()  Mutates the taint of the global variable with the specified index.

| JavaScript calling WebAssembly | |

WebAssembly calling JavaScript

| |Set global or memory | | Get global or memory

analysis send arg taints get res taint get arg taints
Js ) )
program function call function result
m program function execution function call
analysis taint propagation = store res taint

taint propagation

function execution

send res taint send value taint get value taint

set value get value

function result

Figure 1. The architecture of the taint communication across the interlanguage structures.

into the argument taints buffer. This allows the Wasm
analysis to retrieve the argument taints from this buffer for
taint propagation during interlanguage calls.

After the function call, the taint of the return values must
be retrieved to JavaScript. The orchestrator analysis retrieves
the taint values of the results by invoking get_result_-
count and get_result_taint. These functions operate on
the result taint buffer, again implemented and managed
within the Wasm analysis.

4.2.2 Wasm to JavaScript Function Calls. When a
Wasm module invokes a JavaScript function, the taint value
of the arguments must be retrieved by the JavaScript taint
analysis and the taint of the result must be communicated
back to the Wasm analysis. This interaction is shown in
the second column in Figure 1 and handled through six
taint communication functions exposed by the Wasm bi-
nary, as defined in Table 1. The is_wasm_calling_host and
all_argument_taints_received allow the orchestrator to
detect a function invocation from Wasm to JavaScript. It
then uses get_argument_count and get_argument_taint

functions to retrieve the taints of the arguments from the ar-
gument taints buffer. Then, the orchestrator assigns the taint
to the argument wrappers in the JavaScript analysis, and the
function’s body is executed with precise taint information.
After the JavaScript function returns, the prepare_for_re-
sult_taints and set_result_taint functions are called
to communicate the taints of the return values back to Wasm,
where they are stored in the result taints buffer. The Wasm
analysis can then proceed with the rest of the execution.

4.3 Shared Linear Memory

A JavaScript program can either define a Wasm.Memory which
it then shares with Wasm on instantiation (i.e., imported
memory), or retrieves exported memory from Wasm after
instantiation (i.e., exported memory). From the analysis
perspective, the shared memory is managed by the Wasm
analysis; therefore, the orchestrator must communicate with
the Wasm analysis whenever any byte of this memory
is accessed or mutated. The third and fourth columns of



Figure 1 show the architecture for interlanguage linear mem-
ory interaction. The third column in this figure shows the
interaction between analyses when the JavaScript program
stores information in the shared linear memory. The fourth
column in this figure shows how the analysis retrieves taint
information when the JavaScript program reads from the
shared memory.

The functions set_memory_taint and get_memory_taint
in Table 1 are exposed by the Wasm analysis to handle
the taint information of shared memory accesses from
the JavaScript program. All shared memory instances are
extended with the wasm_memory flag and a reference to these
exposed functions. This enables the analysis to identify
shared memory instances throughout the program and
access their required taint communication functionality.

4.4 Shared Global Variables

A JavaScript program can either define a Wasm. Global object
which it then shares to Wasm on instantiation (i.e., imported
globals), or retrieves exported globals from Wasm after
instantiation (i.e., exported globals). The architecture for
managing taint involving operation on globals is shown in
the two rightmost columns of Figure 1, implementing an
approach similar to the shared memory described in Sec-
tion 4.3.

To account for precise interlanguage taint communi-
cation of operations on global variables, the analysis ex-
poses two taint communication functions to be invoked
by the orchestrator, as specified in Table 1. Specifically,
set_global_taint and get_global_taint are attached to
each global such that the orchestrator can set and get the
taint of the shared global when used within the context of an
interlanguage operation. All global instances are extended
with a reference to these exposed functions. Communicating
about the taint label of a global variable using these attached
functions requires knowledge of the global’s index in the
Wasm module. However, JavaScript does not provide a
mechanism to retrieve this index for a global variable. To
address this issue, we analyse the Wasm module and create
a map of names and their corresponding indices of imported
and exported entities (e.g., memories, functions, tables and
globals). The mapping of global variable names to their index
is whenever a Wasm instantiation occurs. In this phase, the
computed mapping is attached as global_index_mapping
to the result of the module instantiation. This allows every
taint communication function to look up the index of the
global variable it is associated with. The mutation of a global
variable is intercepted by the analysis orchestrator, which
uses the set_global_taint function of the respective global
with the taint of the value being set. This ensures the taint
is communicated to the Wasm analysis. The retrieval of
the value of a global variable is performed by accessing the
value property on the Wasm.Global object, and is therefore
intercepted in the analysis orchestrator. The orchestrator
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then requests the taint label for the given global by calling
the attached get_global_taint method.

5 Implementation

We now present the relevant details of the JASMaint multi-
language taint analysis implementation, which combines two
single-language source code instrumentation-based analyses.
The JavaScript taint analysis is implemented using the Aran
v5.1.1 source code instrumentation framework, together
with Linvail v7.6.6 access control membrane framework for
tracking primitives and objects across the execution. The
analysis consists of 1487 lines of code and implements custom
propagators for Aran intrinsic [4] operations and some
of the ECMAScript built-ins, including Array, DataView,
Math, Number, Object, Reflect, and String. Propagators cover
only commonly used intrinsics (e.g., String. toLowerCase),
including all used by the benchmark suite (cf. Section 6).
Missing propagators can be easily added using the existing
definition structure (cf. Section 2.1.2). The Aran taint analysis
currently only supports taint tracking with a single Wasm
instance and allows only one interlanguage operation at a
time, per direction.

The Wasm analysis is implemented in Wastrumenta-
tion [19] and comprises 1227 lines of Rust code. It is built
on top of an existing shadow execution framework present
within Wastrumentation. Our current analysis lacks support
for Wasm tables because Wastrumentation does not yet
support the instrumentation of tables. This prevents taint
propagation through tables, but this was not a problem in
practice in the benchmarks used for evaluation, as they do
not appear to extensively use tables.

6 Evaluation

This section describes the evaluation of the proposed dy-
namic taint analysis implementations. We assess their ef-
fectiveness across various benchmarks with a focus on the
performance overhead and precision improvement.

The evaluation addresses the following research questions.

e RQ1: What is the runtime performance overhead for
source-code-based taint analysis for JavaScript?

e RQ2: What is the runtime performance overhead for
source-code-based taint analysis for Wasm?

e RQ3: What is the runtime performance overhead for
source-code-based taint analysis for multi-language
applications?

e RQ4: How does the taint tracking precision improve
for the JASMaint analysis?

6.1 Evaluation Methodology

We evaluated all three developed taint analyses, including the
JavaScript and Wasm taint analysis implementations, and the
JASMaint extension. To this end, we employed a benchmark-
ing suite with three variants per benchmarking program:
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a JavaScript version, a Rust version and a multi-language
version. This benchmark suite features programs derived
from the Computer Language Benchmarks Game (CLGB),
a collection of algorithms used for comparing language
implementations [9]. We partially leveraged an existing
CLBG implementation, specifically adapting those found in
Kreind!’s ’taint-benchmarks’ suite [16]. This benchmarking
suite was designed to evaluate TruffleTaint [15], a platform
for multi-language dynamic taint analysis for the GraalVM.
It implemented CLBG benchmarks for JavaScript, C, and a
combined multi-language approach. While these provided
a strong foundation for our benchmark suite, their specific
interoperation characteristics and taint methodology differed
from ours. For instance, these benchmarking programs use
a TruffleTaint API for defining taint sinks and sources in
the programs, which are specific to the Truffle framework
within the GraalVM ecosystem. Additionally, these programs
did not include the capabilities to establish interoperability
with Wasm. Finally, the suggested input parameters made
some experiments infeasible due to the high slowdown rates
incurred by the taint analysis. For these reasons, the ob-
tained results may not be compared with other experiments
employing this benchmark suite. We provide an overview
of the adapted and developed benchmark programs for the
JavaScript, Wasm, and combined multi-language JASMaint
taint analysis'.

For the evaluation of the JavaScript-only taint analysis,
all the benchmarks were adapted from the aforementioned
‘taint-benchmarks’ repository. The modifications involved
replacing the TruffleTaint API integration with an integra-
tion of our taint API for JavaScript (cf. Section 2.1.1) to
specify taint sources, sinks, assertions, and checks in the
target program. Furthermore, the taint assertions in the
existing benchmarking programs did not account for implicit
taint flows. Therefore, some assertions had to be inverted,
replaced, or removed.

The Wasm-only taint analysis (cf. Section 3) was evaluated
using a set of benchmark programs compiled from Rust. The
existing Kreindl’s ’taint-benchmarks’ suite contained the
equivalent C benchmark programs, but they were not used
due to issues with the Emscripten compiler for the integra-
tion with our Wasm taint analysis. Therefore, a selection
of benchmarks was adapted from the official Rust suite of
The Computer Language Benchmarks Game (CLBG)?. Other
benchmarks were reimplemented in Rust to ensure struc-
tural resemblance to their equivalent JavaScript counterpart.
Structural resemblance was preferred since this allows for
a more straightforward construction of the multi-language
program. Furthermore, all Rust benchmark programs include
a foreign function interface that provides the capability to

We provide an open-source the implementation of our benchmarks here:
https://gitlab.soft.vub.ac.be/disco/jasmaint-js-wasm-taint-benchmarks.
Zhttps://benchmarksgame-team.pages.debian.net/benchmarksgame/
index.html

mark sinks, sources, assertions, and checks in the Rust source
code. These functions must be included in the import object
during instantiation in JavaScript.

The multi-language JASMaint taint analysis (cf. Sec-
tion 4) evaluation involved implementing custom multi-
language benchmark programs that combine the imple-
mented JavaScript and Rust programs. The chosen interlan-
guage flow structure on each multi-language program was
inspired by, but does not strictly follow, the aforementioned
’taint-benchmarks’ from TruffleTaint [15]. The custom bench-
mark suite consists of the binary-trees, fannkuch-redux,
fasta, mandelbrot, n-body, pi-digits, spectral-norm, regex-
redux, k-nucleotide and reverse-complement programs.

6.1.1 Experimental Setup. The experiments were con-
ducted on a 2023 MacBook Pro with these specifications:

e Processor: Apple M2 Max System on Chip (SoC),
featuring a 12-core CPU (8 performance cores and 4
efficiency cores). Externally performed benchmarks
report clock speeds up to 3.7 GHz for the performance
cores and up to 3.4 GHz for the efficiency cores [13].
Memory: 32 GB of unified RAM.

Storage: 1 TB Solid State Drive (SSD).

Graphics: Integrated 38-core GPU.

Operating System: macOS version 15.4.1.

Node.js Version: v22.12.0

6.2 Performance Evaluation

The performance of the three dynamic taint analysis im-
plementations was evaluated by measuring the runtime
overhead introduced across their respective benchmark suite.
For every benchmark program variant, four configurations
were measured individually. Every experiment consisted of
18 measurement iterations and 2 warmup iterations. The
first experiment of every benchmark program consists of
the execution of the program without any analysis, which
we consider as the baseline performance measurement. The
second configuration consists of the Forward analysis which
has an empty advice logic. The performance measurement
of this configuration serves as the baseline overhead of the
instrumentation framework. The third configuration consists
of the Shadow (for Wasm) or Membrane (for JavaScript)
execution analysis performance. This configuration was
measured for the JavaScript and the Rust variants only,
without interoperability.

For the interoperating variants, the third configuration
measured the performance of a state-of-the-art (SOTA)
source-code instrumentation-based taint analysis. Con-
cretely, the SOTA analyses used for precision evaluation
are the Aran and Wastrumentation single-language analyses
variants described in Sections 2.1 and 3, respectively. For the
multi-language benchmarks in Figure 3, we implemented
an over-approximating taint analysis, labelled “Taint SOTA”.
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This implementation does not include the integrated multi-
language taint communication capabilities and conserva-
tively overtaint values crossing the language boundaries.

The last configuration measured the performance of the
implemented taint analysis, being the JASMaint analysis for
the interoperating variants and the respective constituent
analyses for the JavaScript- and Rust- only variants.

Each of these configurations contributes incrementally to
the overhead of the implemented taint analyses. This allows
a better understanding of the overhead measurement and
may allow future research to steer efforts in reducing this
overhead.

6.2.1 Discussion. Figure 2 displays the box plots showing
the performance overhead for the separate taint analysis
implementations per benchmark program. Figure 3 shows
the performance overhead boxplots for the interoperating
programs. Within each graph, each box plot represents the
slowdown of a specific analysis relative to its respective
baseline.

Visually comparing the box plots across graphs would
yield a biased, skewed, and incorrect conclusion for two
reasons. First, the x- and y-axis labels differ between graphs.
Second, the baseline used to compute slowdowns varies:
for example, the JavaScript implementation (top row of
Figure 2) and the WebAssembly implementation (bottom
row of Figure 2) each use different baselines, which also
differ from the multi-language implementation (Figure 3).

Across all benchmarks and analysis types, we observe
a trend of increased slowdown as the complexity of the
analysis increases, which is expected. The measured slow-
downs, however, vary significantly between the different
benchmark programs.

RQ1 For the JavaScript-only benchmarks, the Forward
analysis shows the lowest slowdown. The Membrane
configuration, which represents the overhead of the
wrapping and unwrapping behaviour established by
this analysis, considerably increases the overhead
with respect to the Forward. Finally, the taint analysis
consistently exhibits the highest slowdown. Although
this trend is noticeable across all benchmark programs,
the actual slowdown factors are heavily dependent on
the particular program being benchmarked, ranging
from an average taint analysis slowdown of 1.27x for
the pi-digits to 12670x for the mandelbrot program.

RQ2 Similarly, the Wasm-only benchmarks demon-
strate an increasing slowdown for the more computa-
tionally complex analyses. The Forward analysis also
shows a relatively low overhead. The Shadow analysis,
which maintains a shadow runtime, introduces a more
noticeable slowdown, consistently falling between the
slowdowns of the Forward configuration and Taint
analysis. The taint analysis consistently yields the
highest performance overhead. Again, the slowdown
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ratios substantially differ between the various bench-
mark programs, now ranging from 249.21x for the
mandelbrot to 1203.38x for the k-nucleotide program
when performing the taint analysis.

RQ3 The multi-language experiments, representing
multi-language interoperation, again show a signifi-
cant overhead introduced by the developed JASMaint
analysis (cf. Figure 3). Consistent with the JavaScript-
and Wasm-only experiments, the actual slowdown
factors considerably vary across benchmark programs.
For the JASMaint taint analysis experiments, this fac-
tor ranges from 11.93x for the pi-digits to 2573.89x for
the mandelbrot program. Additionally, every program
exhibits a slowdown in JASMaint when compared
with the SOTA analysis, representing the overhead of
the added interlanguage taint communication capabil-
ities. This slowdown is less impactful, ranging from
1.14x (regex-redux) to 1.61x (spectral-norm).

Despite the significant variation in slowdown factors
across benchmark programs, the results indicate a trade-off
between the complexity of the analysis and its performance.
The taint analysis for multi-language applications incurs
substantial performance overheads for JavaScript, Wasm,
and multi-language programs. These results align with our
expectations due to the increased complexity of the taint
analysis. This highlights the considerable performance cost
of running a taint analysis on a program. However, from our
limited set of benchmark programs, we could not establish a
correlation between the performance overhead of JASMaint
and the number of crossings from one language to the other.

6.3 Precision Evaluation

Besides performance evaluation, the multi-language JAS-
Maint taint analysis requires a precision evaluation to show
its precision improvements compared to the state-of-the-
art (SOTA) taint analyses. As explained before, these SOTA
analyses do not cover taint propagation mechanisms for the
interlanguage structures between JavaScript and Wasm.

To measure the precision change, the tainting behaviour
of the JASMaint analysis was compared against this SOTA
taint analysis implementation. The "precision change" can
be called the "precision improvement" under the (safe) as-
sumption that the JASMaint taint analysis is more precise
than the SOTA taint analysis. To implement this evaluation,
all multi-language benchmark programs were run with both
versions (i.e., SOTA and JASMaint) of the taint analysis.
During execution, a log file containing runtime taint labels
was constructed for both taint analysis versions. The logging
responsibility was implemented in the Aran and Wastrumen-
tation analyses, which record taint labels at specific points
of taint propagation. This approach establishes an unbiased
and consistent selection of logging points, which cannot
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Figure 3. The runtime overhead evaluation of the benchmark suite for the interoperating programs.

be ensured when statically selecting and inserting logging
points for every target program.

After completion of the benchmarks, every benchmark
program has two associated logs: one with the recorded
taints of the SOTA taint analysis and one with the recorded
taints of the JASMaint taint analysis. Since both logs are
constructed using the same benchmark program and the
same logging points, a line-by-line comparison of both log
files allows for the comparison of taint values between the
two approaches at any point during the analysis. Under the
assumption that the JASMaint taint analysis is precise (i.e.,
it does not undertaint or overtaint), the number of correctly
and incorrectly labelled values by the SOTA analysis can be
identified. Every entry for which the JASMaint log contains a
tainted label and the SOTA log contains an untainted label is
considered to be incorrectly undertainted by the SOTA, and
is therefore called a false negative (Fy). This scenario does
not appear since the SOTA analysis has been configured to
conservatively overtaint values when taint propagation rules
are missing. However, this overtainting results in log entries
where JASMaint contains an untainted label while the SOTA
contains a tainted label, called a false positive (F;). When the
taint labels of both analyses in an entry are identical, the
taint label is assumed to be correct. In this case, we speak
of a true positive (T;) when both labels are tainted, or a true
negative (Ty) when both labels are untainted.

The similarity score S = %
precise the SOTA analysis is compared to the multi-language
JASMaint analysis. Therefore, 1 — S is considered to be the
precision improvement of the JASMaint analysis relative to

determines how
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Figure 4. The distribution of taint labels for the SOTA and
the proposed analysis, for every benchmark program.

the SOTA analysis, when the JASMaint analysis is assumed
to be precise.

6.3.1 Discussion. The upper chart in Figure 4 shows
the comparison between the distribution of the recorded
labels for the SOTA and the JASMaint analysis, for every
benchmark program. The number of false positives F; and
the absence of false negatives Fy confirm the overtainting
strategy of the SOTA analysis. This explains the consistent



reduction of the proportion of tainted log labels when com-
paring the JASMaint analysis with the SOTA analysis. These
similarity scores for each program are visualised in the lower
chart of Figure 4.

RQ4 For every similarity score S, the precision change
can be computed as 1—S. The precision improvements
in the used benchmarking suite range from 0.003% (for
the reverse-complement benchmark) to 56.20% (for the
fannkuch-redux benchmark), effectively answering
RQ4.

From our limited set of benchmark programs, we could
not establish a correlation between the similarity score and
the total recorded operations, the proportion of operations
spent in either language or number of crossings from one
language to the other.

7 Related Work

Dynamic taint analysis is a vast area of research. We focus
our comparison of related work on multi-language taint
analysis and dynamic taint analysis for Wasm.

7.1 Multi-Language Taint Analysis

Supporting precise taint propagation on multi-language
applications has been approached in three different ways.

1. Multi-language taint analysis based on taint sig-
natures. To support taint propagation when applications
interact with native extensions or host abstractions (e.g.
for I/0), some approaches propose the use of approximate
models or signatures of the external abstractions [6, 7, 25].
Theoretical frameworks [12, 22] have studied this problem,
typically distinguishing between shallow models, intended
for side-effect-free function calls, and deep models, which can
track information flows even in the presence of side-effectful
libraries. Such models enable the analysis to approximate
taint propagation when the program code calls into an
external language. In the context of JavaScript, approaches
based on deep models [6, 11] can offer better precision
for taint tracking in the presence of side-effectful external
abstractions. Karim et al. [14] propose Ichnaea, a platform-
independent taint analysis framework for JavaScript featur-
ing hand-crafted function models to track taint information
for native functions and built-ins. Such models approximate
the taint propagation of the native implementation by im-
plementing propagation rules following the ECMAScript
language specification. Augur [1] builds on Ichnaea, but
extends the analysis to handle asynchronous code. Overall,
maintaining these models requires considerable engineering
effort, as each native or built-in extension necessitates a
corresponding model to be implemented. Although it may
be feasible to implement models for the built-in and host
abstractions, this approach does not scale well to applications

A. Stuker, A. Munsters, A. L. Scull Pupo, L. Christophe and E. Gonzalez Boix

where JavaScript interacts with Wasm, as the model imple-
mentor usually does not have access to the specification of
the code implemented on Wasm modules.

2. Multi-language taint analysis on a polyglot vir-
tual machine. TruffleTaint [16] implements a language-
agnostic taint analysis framework that leverages the Truffle
language implementation framework, enabling tracking of
taint across language implementations supported by the
GraalVM. The analysis can achieve full precision because it
operates on a common representation, i.e. Truffle ASTs, for
all languages used in the program. This approach does not
require an analysis orchestrator like our approach. However,
the analysis is limited to language implementations on the
GraalVM. In contrast, our approach is portable and can be
deployed on any platform that supports both JavaScript
and Wasm, such as web browsers and server-side JavaScript
runtimes (e.g., Node.js). TruffleTaint also requires runtime
integration for encoding language-specific propagation se-
mantics, e.g. for defining taint propagation for intrinsic or
built-in functions.

3. Multi-language taint analysis using language-
independent representations. PolyCruise [18] propose a
hybrid multi-language taint analysis approach where a
language-specific static analysis computes symbolic depen-
dencies, which are then used to drive a dynamic language-
agnostic data flow analysis.

7.2 Taint analysis for Wasm

Several dynamic taint analyses have been implemented for
Wasm [8, 17, 23]. They can be categorised depending on the
technique used to deploy the analysis: either using source
code or interpreter instrumentation.

Source code instrumentation-based analysis.
Wasabi [17] is a source code instrumentation-based dynamic
analysis platform for Wasm. As part of its evaluation, the
paper presents a first taint analysis for Wasm programs on
top of it. In contrast to our analysis, this implementation
fails to detect implicit flows, resulting in a loss of precision.
Furthermore, Wasabi requires the Wasm program under
analysis to run in the browser, limiting its portability.

Interpreter instrumentation-based analysis. Szanto
et al. [23] propose a Wasm interpreter implemented on
JavaScript, which they extend with support for taint analysis.
Their analysis operates at the byte level and it is able to track
implicit taint flows between variables. Fu et al. [8] implement
a taint analysis engine by modifying the V8 JavaScript engine.
Our approach inlines the taint analysis within the Wasm
module directly to ensure the portability of the analysis
across all contexts where Wasm modules can be executed.
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8 Conclusion

This paper presented a novel approach to dynamic taint
analysis for modern web applications, addressing the lack
of support for taint propagation between interoperating
JavaScript and WebAssembly programs. To this end, we
first developed a Wasm-only taint analysis that is portable
across WebAssembly execution environments. Second, we
integrate this taint analysis with a JavaScript taint analysis
and orchestrator that enables precise taint communication
across language boundaries, making multi-language taint
analyses based on source-code instrumentation possible. Our
precision experiments show a reduction in overtainting by
0.003%-56.20% of JASMaint with respect to single-language
taint analyses in the context of multi-language applica-
tions. The results indicate a trade-off between increasing
taint precision and the added performance overhead, with
JASMaint incurring an additional overhead of 1.14x-1.61x
relative to the state of the art. The developed multi-language
JASMaint analysis represents a significant step forward in
understanding data flows and mitigating security risks in
complex, multi-language web applications.
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