
An Empirical Study of Policy as Code
Adoption, Purpose, and Maintenance

Ruben Opdebeeck
Vrije Universiteit Brussel

Brussels, Belgium
Ruben.Denzel.Opdebeeck@vub.be

Mahmoud Alfadel
University of Calgary

Calgary, Canada
mahmoud.alfadel@ucalgary.ca

Akond Rahman
Auburn University

Auburn, Alabama, USA
akond@auburn.edu

Yutaro Kashiwa
Nara Institute of Science and

Technology
Nara, Japan

yutaro.kashiwa@is.naist.jp

João F. Ferreira
INESC-ID and Faculty of Engineering,

University of Porto
Porto, Portugal
joao@joaoff.com

Raula Gaikovina Kula
The University of Osaka

Osaka, Japan
raula-k@ist.osaka-u.ac.jp

Coen De Roover
Vrije Universiteit Brussel

Brussels, Belgium
Coen.De.Roover@vub.be

Abstract
Policy as Code (PaC) is an emerging DevOps practice that enables
teams to specify organisational and technical policies, such as reg-
ulatory compliance, security requirements, and resource limits,
through machine-enforceable declarative code. As PaC gains promi-
nence, practitioners face difficulties in adopting PaC while there
remains a limited empirical understanding of how these policies
are introduced, what types can be expressed, and how they are
maintained in practice.

This paper aims to address this gap through an empirical study
of PaC based on 10,560 PaC files from 499 open-source repositories
spanning nine PaC tools. We find that PaC is introduced throughout
all phases of repository lifecycles, often co-occurring with IaC tools
such as Kubernetes or Terraform, with most repositories adopt-
ing one of five policy enforcement strategies. Our taxonomy of 12
policy categories reveals that while most policies govern infras-
tructures and security requirements, they can also express broader
constraints related to software development, intellectual property,
and expenses. We observe that PaC files are maintained through
infrequent yet often substantial changes. Most changes concern
refactoring, yet when policy behaviour does change, policies tend
to become stricter rather than more lenient.

These findings motivate and support wider and earlier adoption
of PaC tools. To this end, the taxonomy of policy categories can
serve as a reference to practitioners to identify use cases for PaC in
their projects. Meanwhile, our catalogue of enforcement strategies,
co-occurring IaC tools, and PaC tool coverage of the taxonomy can
inform practitioners when deciding which PaC tool to adopt and

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2474-9/2026/04
https://doi.org/10.1145/3793302.3793355

how to integrate it in their projects. Finally, our findings motivate
future research to automate PaC file generation and maintenance.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.

Keywords
configuration management, devops, policy, policy as code

ACM Reference Format:
Ruben Opdebeeck, Mahmoud Alfadel, Akond Rahman, Yutaro Kashiwa,
João F. Ferreira, Raula Gaikovina Kula, and Coen De Roover. 2026. An
Empirical Study of Policy as Code: Adoption, Purpose, and Maintenance.
In 23rd International Conference on Mining Software Repositories (MSR ’26),
April 13–14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3793302.3793355

1 Introduction
Today’s software systems need to comply with numerous rules and
regulations imposed by government organisations, such as the Gen-
eral Data Protection Regulation (GDPR), the Cyber Resilience Act
(CRA), and the NIS2 directive of the European Union, or executive
orders 14028 and 14144 of the United States. Non-compliance can
lead to substantial penalties. For instance, NIS2 promises to fine
organisations up to 2% of global annual revenue1.

To meet these demands, organisations implement policies, which
are sets of rules ensuring systems operate within certain bound-
aries [63]. Policies may require that data is stored within the EU to
comply with GDPR, mandate the use of multifactor authentication
to comply with NIS2, or disallow the use of untrusted third-party
software to protect software supply chain integrity. Organisations
may also adopt policies that achieve goals beyond regulatory com-
pliance, such as limiting the financial costs of cloud instances2.

1https://nis2directive.eu/nis2-fines/
2https://www.finops.org/framework/capabilities/policy-governance/

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793355
https://doi.org/10.1145/3793302.3793355
https://nis2directive.eu/nis2-fines/
https://www.finops.org/framework/capabilities/policy-governance/

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

Naturally, adherence to policies must be enforced for them to
be effective. However, accelerated software release cycles realised
through DevOps and Continuous Delivery practices necessitate
a shift towards automating operational tasks through dedicated
tooling. Infrastructure as Code (IaC) tools, for instance, have trans-
formed deploying a cloud infrastructure from a laborious manual
process into an automated routine [40]. Following in the footsteps
of IaC, Policy as Code (PaC) [63] has emerged as a practice to auto-
matically enforce policies through executable code artefacts called
PaC files. PaC rose to prominence in the early 2020s through “Open
Policy Agent” (OPA), a general-purpose PaC tool introduced in
2016 and accepted as a graduated Cloud Native Computing Founda-
tion (CNCF) project3 in 2021. Domain-specific tools have emerged
since then, such as Kyverno and Sentinel, which enforce policies in
Kubernetes and Terraform deployments, respectively.

PaC supports shift-left security by implementing Security as Code
and Compliance as Code through codified security and compliance
checks, respectively [63]. A recent survey reports that out of 285
respondents, 94% agree that PaC is “vital for preventative security
and compliance at scale”, and 91% found PaC to increase produc-
tivity [77]. Nonetheless, practitioners face challenges in adopting
PaC, caused by a lack of awareness and by the complexity of trans-
forming existing policy enforcement mechanisms into PaC [77].
Furthermore, there are few academic insights into how PaC is im-
plemented and maintained in software projects. Although a recent
study investigated the policies that security scanners within Ter-
raform repositories are configured with [81], the broader landscape
of user-defined policies remains unexplored.

Addressing this knowledge gapmay aid practitioners in adopting
PaC, as they often prefer to learn new technologies through the
experiences of others [60]. Moreover, as pointed out by Mazinanian
et al. [38], such knowledge gaps negatively impact researchers, who
remain unaware of the research gaps and opportunities, and tool
builders, who may benefit from empirical insights to improve their
tools. Combined, our limited understanding of how PaC is applied
in practice inhibits future adoption of PaC, as its success depends
on its ability to assist developers while reducing human effort [13].
This motivates us to conduct an empirical study into how PaC is
applied in practice, in which we aim to uncover insights into when
and how PaC is adopted in repositories, the types of policies that
are implemented, and how PaC files are maintained.

We begin our study with a preliminary question (PQ) to explore
the PaC landscape.
• PQ: Which tools are used to implement PaC? We identify
nine popular tools by analysing Internet artefacts, including OPA,
Kyverno, and Sentinel, covering a wide range of domains.
Having identified popular tools, we mine open-source software

(OSS) repositories to construct a dataset of over 10,000 PaC files
across 499 repositories. Using this dataset, we conduct a deeper
investigation into how PaC is adopted in these repositories (RQ1),
the purpose served by the policies (RQ2), and how PaC files are
maintained over time (RQ3).
• RQ1 (Adoption): When is PaC introduced and enforced?
We find that PaC is adopted throughout all stages of develop-
ment, often co-occurring with IaC tools such as Kubernetes or

3https://www.cncf.io/projects/open-policy-agent-opa/

Terraform. We also identify five policy enforcement strategies,
such as admission-time validation of Kubernetes resources and
run-time enforcement of access control policies.

• RQ2 (Purpose): What types of policies are implemented
using PaC? We apply a qualitative analysis technique called
open coding [68] on a sample of 1,944 PaC files to construct a
taxonomy of 12 policy categories. Most policies relate to cloud
utilities, virtualisation, and security, whereas policies related to
intellectual property and expenses are rare. We find that tool cov-
erage is scattered, with most PaC tools only supporting subsets
of the policy categories.

• RQ3 (Maintenance): How are PaC files maintained? We
observe that PaC file maintenance is infrequent but may require
substantial changes. We also investigate the reasons why PaC
files are changed, and find that most changes are refactorings,
yet when behavioural changes occur, the policies tend to become
stricter more often than more lenient.

Contributions. This paper makes the following contributions:
• Taxonomy of PaC policies. Our taxonomy can help raise prac-
titioner awareness by providing a set PaC use cases, and can
serve as motivation for tool builders to improve PaC tools by
addressing gaps in their supported coverage.

• Reusable dataset of PaC files. Our curated dataset of over 10,000
PaC files [42] provides a foundation for future studies of PaC.

• Empirical insights into PaC adoption. Our characterisation of PaC
adoption can help alleviate the complexity of adopting PaC by
informing practitioners onwhen to adopt PaC and how to enforce
policies.

• Empirical insights into PaC maintenance. Our insights motivate
future research on PaC maintenance and inform organisations
of the maintenance efforts required when adopting PaC.

The dataset and analysis code for the study are available online [42].

2 Policy as Code: An Example
PaC tools use policy engines to evaluate input data, typically speci-
fied as structured data (e.g., YAML or JSON), against one or more
policies contained in a PaC file [63]. Each policy comprises two core
aspects: its rules, often specified in a domain-specific logic program-
ming language, and the action to take when a rule is violated. To
illustrate, Listing 1 depicts a PaC file adapted from Open Policy
Agent’s playground4, containing one policy that uses the Rego pol-
icy language to secure a software supply chain by validating the
origins of containers deployed in a Kubernetes cluster. The policy’s
rule checks whether the input data is a “Pod” and whether some
container in this pod originates from an untrusted repository. If
the rule matches, the policy’s action is to deny the request with an
explanatory message.

Policy enforcement can occur at various points in time depending
on the policy and target domain. The policy exemplified in Listing 1
is checked during deployment, i.e., when a pod is submitted to a Ku-
bernetes cluster, and aborts the deployment upon a policy violation.
Policies can also be checked prior to deployment, e.g., policies that
reason about Terraform infrastructure definitions, or after deploy-
ment, such as policies that audit an already-deployed infrastructure.

4https://play.openpolicyagent.org/

https://www.cncf.io/projects/open-policy-agent-opa/
https://play.openpolicyagent.org/

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

package kubernetes.validating.images

deny[msg] if {

input.request.kind.kind == "Pod"

some container in input.request.object.spec.containers

not startswith(container.image , "org.internal/")

msg := sprintf("Image '%v' comes from untrusted

registry", [container.image])

}

Listing 1: PaC file containing an OPA policy to validate
Kubernetes container origins.

Finally, applications can apply policy checks in production, e.g., to
implement access control.

3 Dataset Construction
We aim to study PaC files that are representative of the wider PaC
landscape. Therefore, we first identify the most popular PaC tools
(Section 3.1) and subsequently collect and curate a dataset of their
PaC files found in OSS repositories (Section 3.2).

3.1 PaC Tool Identification
3.1.1 Motivation. As literature on PaC is scarce, a comprehensive
overview of PaC tools is currently missing. Therefore, we first
review Internet artefacts to identify which PaC tools are used in
practice to answer the following preliminary question:

PQ: Which tools are used to implement PaC?

3.1.2 Approach. To identify PaC tools that are popular in practice,
we first review a popular industry-oriented book on PaC [63] and
identify which PaC tools are described within. However, the book
may not describe all tools, nor does it provide an indication of their
popularity. Therefore, we also analyse Internet artefacts (e.g., blog
posts, tutorials) to identify tools that are often discussed online.

To collect Internet artefacts, we use Google’s search engine in a
private browsing window to avoid bias caused by browsing histo-
ries [21]. We build search queries using a search term (e.g., “policy
as code”) combined with keywords to focus the search to concrete
tools (i.e., “tool OR technology OR language OR framework OR
engine”). We start with a generic search using “policy as code” as
the search term, and note the common domains in the search results
(e.g., cloud vendors or infrastructure tools). Afterwards, we conduct
scoped searches in which we construct search terms by combining
each identified domain with “policy” or “policy as code”.

For each query, we open all results from the first page and man-
ually review their content, excluding results that are deemed of
dubious quality, irrelevant, or duplicated. We also ignore Google’s
AI summaries to avoid misinformation caused by large language
model hallucinations. From each relevant result, we extract tools
whose primary purpose is PaC. To this end, we dismiss IaC tools
(e.g., Terraform, Ansible) or infrastructure testing tools (e.g., TestIn-
fra)5. Moreover, we omit tools that are merely utilities for another
PaC tool, tools that do not support user-defined policies, or tools
that focus solely on access control policies and thus fall outside
the scope of our study, which focuses on PaC tools with broader

5Although some of these tools claim to support PaC, it is not their primary purpose.

application domains. We iterate through the search result pages
until saturation is reached [21], i.e., when an entire page of search
results does not yield new tools. We review at least two pages of
search results for each query.

Finally, we count the number of unique sources that mention
each tool. We identify unique sources using the domain name of
the URLs, and include author names if the domain is not unique
to one source (e.g., Medium, GitHub). Afterwards, we manually
combine sources that represent the same organisation6. We also
consider the industry-oriented book as an additional source.

3.1.3 Results. We conducted the searches on April 28–29, 2025.
The generic search uncovered 22 tools mentioned by 53 sources.
From these, we constructed eight additional search terms, including
two domains (Cloud and Infrastructure as Code), three technologies
(Kubernetes, Terraform, andDocker)7, and three cloud vendors (AWS,
Azure, and Google Cloud Platform). These additional search terms
led to the inclusion of 38 new sources and four new tools. In total,
we reviewed 325 (254 unique) search results, identifying 26 PaC
tools mentioned in 151 pages across 91 unique sources.

We decide to focus on PaC tools that are mentioned by at least
five unique sources, corresponding to nine tools. We selected this
threshold as it marks a point beyond which most tools are either
rarely-mentioned or nascent, therefore likely limiting their practical
adoption. Table 1 provides an overview of the selected tools and
the domain they target. The “Int.” column contains the number
of unique sources by which each tool is mentioned. We do not
discuss the remaining tools due to space constraints, and refer to
our replication package [42] for an overview.

Open Policy Agent (OPA) is by far themost mentioned tool, likely
due to its versatility and multi-domain support. We also observe
that technology-specific PaC tools are mentioned often, such as
HashiCorp’s Sentinel, which enforces policies for Terraform IaC,
and PaC tools for Kubernetes, namely Kyverno, Gatekeeper, and
jsPolicy. Numerous sources also mention Checkov, a multi-domain
security scanner for cloud configuration files that supports custom
policies written in either Python or YAML. Vendor-specific tools
that check policies for cloud infrastructures, such as Azure’s PaC or
AWS’ CloudFormation Guard, also received substantial attention
online, while Cloud Custodian, a multi-cloud alternative to these
vendor-specific PaC offerings, has received slightly less attention.

We also encountered several utilities for OPA, such as conftest,
a tool that enables practitioners to enforce policies against vari-
ous types of configuration files. We do not consider these utility
tools separately as their policies are written in OPA’s Rego domain-
specific language and are eventually evaluated by OPA itself. How-
ever, we make an exception for Gatekeeper, an OPA extension
targeting Kubernetes, as Gatekeeper’s Rego policies are embedded
within Kubernetes manifests rather than specified in standalone
files and may thus differ substantially from plain OPA policies.

6For instance, openpolicyagent.org, styra.com, and github.com/open-policy-agent all
belong to Styra, the creators of Open Policy Agent.
7We also experimented with other, less-mentioned technologies, such as Ansible and
Pulumi, but this did not yield new results.

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

Table 1: PaC dataset overview. (Int. = Internet sources)

Tool Domain Int. Repos Files Sample
Open Policy Agent Generic 53 225 3,614 347
HashiCorp Sentinel Terraform 20 15 39 35
Kyverno Kubernetes 19 125 608 236
Checkov Generic 18 8 988 388
CloudFormation Guard AWS 14 8 244 149
Azure Policy as Code Azure Cloud 14 57 3,906 350
Gatekeeper Kubernetes 13 72 852 265
jsPolicy Kubernetes 7 1 4 4
Cloud Custodian Multi-cloud 5 18 305 170
Total (Unique) 78 499 10,560 1,944

PQ.Which tools are used to implement PaC?

We identify 26 PaC tools across 91 unique Internet sources. We
focus on the nine most popular tools, covering a wide range of
cloud vendors and IaC technologies.

3.2 Repository Collection and Filtering
Having identified the most popular PaC tools, we now collect a
dataset of open-source repositories that use these tools. Table 1
depicts the final size of this dataset for each considered PaC tool. A
detailed overview of the evolving size of our dataset after each data
collection step is available in our online replication package [42].

3.2.1 Finding PaC Files. We use GitHub’s Code Search API8 to find
PaC files in OSS repositories. For each PaC tool, we construct a
query that looks for files based on file extensions (e.g., .rego for
OPA). For tools that use generic file formats, such as YAML or JSON,
we extend the query with tool-specific keywords. To illustrate, the
query for Azure PaC searches for JSON files whose contents contain
“policyRule”. Note that for Checkov, we aim to find files containing
policy implementations and thus exclude repositories that only use
Checkov’s built-in scanning rules without defining their own, and
therefore do not implement PaC. To this end, we use two separate
queries as Checkov policies can be written in either Python or
YAML. An overview of the queries is available in our replication
package [42].

As GitHub’s Code Search is limited to 1000 results and may
produce unreliable results, such as inconsistent result counts across
pages [75], we replicate an approach applied by prior work [75].
This approach partitions the search queries based on file size until
fewer than 1000 results are returned, and retries search queries
to reconcile inconsistent results. We conducted these searches on
April 29, 2025, taking nearly 27h, and identified a total of 105,436
potential PaC files across 26,398 repositories.

3.2.2 Removing Forks. Our use of the GitHub Code Search API
already omits forks based on GitHub metadata. Nonetheless, our
dataset still contains duplicate repositories caused by forks that
are not accurately reflected in the GitHub metadata, which may
introduce bias into our results. Therefore, we remove these addi-
tional forks by grouping repositories based on their first commit
and retaining the repositories with the most stars. This removes
994 repositories and 14,483 files from the dataset.

3.2.3 Validating Files. We automatically validate each remaining
file to remove incorrectly identified files, which can occur when
8https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code

file extensions are used by unrelated tools or keywords are incor-
rectly matched by the query. We also aim to remove files that,
although related to PaC tools, do not contain policies themselves
(e.g., a Kubernetes deployment for a policy engine). To this end, we
implement validators for each PaC tool.

For Open Policy Agent, Sentinel, and CloudFormation Guard,
we parse files using the tools’ official parsers and consider the file
invalid if parsing fails. We also account for special cases where
valid PaC files fail to parse, which occurs in several security scan-
ning tool repositories that use OPA policies that are parametrised
using a template language. For Azure PaC, Cloud Custodian, and
Checkov YAML policies, we check whether the JSON or YAML
data contains the elements that are required according to the tools’
documentation. For Checkov policies written in Python, we check
whether the file imports Checkov’s abstractions for custom rules.
Finally, for tools that use Kubernetes manifests, i.e., Kyverno, Gate-
keeper, and jsPolicy, we validate whether the Kubernetes manifest
contains a policy definition for the respective tool by checking the
apiVersion and kind fields.

This validation removed 21,255 repositories and 48,775 files from
our dataset. The vast majority of these were removed due to the
Cloud Custodian validation, as the GitHub Code Search query was
overly general for this tool and returned many invalid results.

Sanity Check. As the automated validation above can suffer from
false positives and false negatives, we manually review a random
sample of the retained and rejected files for each tool. We deter-
mine statistically significant sample sizes for each sample using
Cochran’s formula adjusted for small populations [7], using a 95%
confidence, 5% margin of error, and 50% estimated proportion. Then,
we perform a lightweight manual review of each file in each sample
to ensure the absence of systematic errors in the automated filters.
For retained files, we check whether the file contains a policy for
the tool in question, whereas for rejected files, we check whether
the files are either not related to the PaC tool, contain syntax errors,
or lack policy definitions. Due to the large number of files and the
relatively low impact of potential rater mistakes in this narrow
sanity check, we opt to use a single labeller to perform this review.

The labeller assessed a total of 1,923 rejected and 2,890 retained
files. Among these, they identified 27 incorrectly retained files
which were related to PaC tools but did not contain policies, and
only three incorrectly rejected files that are valid and contain poli-
cies. We also observe that the validation was effective at removing
files that relate to PaC tools but do not contain policies. In summary,
we find that the validation achieves a remarkably low error rate
and effectively safeguards the quality of the dataset.

3.2.4 Filtering Repositories. The previous steps aimed to identify
all repositories on GitHub that use one of the PaC tools, but some
repositories may be of low quality. To remove such repositories,
we apply quality criteria suggested by prior work [1, 28]. Specif-
ically, we aim to retain (i) maintained, non-toy repositories based
on the commit count and age of the repository; (ii) collaborative,
non-personal repositories based on contributor, issue, and pull re-
quest counts; and (iii) practical repositories by omitting demo or
example repositories. However, as this is the first study on PaC,
we cannot rely on prior work to establish thresholds as they may
not be applicable to the PaC domain. After experimenting with

https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 2: Thresholds used in repository filtering criteria.

Tool Commits Age (days) Issues PRs Contrib.
Azure PaC > 32.0 > 152.5 > 0.0 > 0.0 > 2.0
Checkov (Python) > 25.0 > 301.0 > 0.0 > 0.0 > 2.0
Checkov (YAML) > 20.0 > 76.0 > 0.0 > 0.5 > 2.0
Cloud Custodian > 19.0 > 105.0 > 0.0 > 0.0 > 2.0
CF Guard > 91.0 > 163.5 > 0.0 > 9.5 > 2.0
Gatekeeper > 37.5 > 140.0 > 0.0 > 0.0 > 2.0
Sentinel > 12.0 > 31.0 > 0.0 > 0.0 > 1.0
jsPolicy > 42.0 > 320.0 > 0.0 > 1.0 > 2.0
Kyverno > 60.0 > 171.0 > 0.0 > 0.5 > 2.0
OPA > 25.0 > 97.5 > 0.0 > 1.0 > 2.0

different thresholds, we determined that using the medians of each
metric as a minimum threshold is a simple yet effective approach.
Therefore, we remove repositories of which any metric falls under
the median value. We calculate the thresholds separately for each
tool to account for differences (e.g., age, popularity) between tools.
The resulting thresholds are depicted in Table 2.

Applying these criteria removes 3,523 repositories containing
29,125 files from our dataset. Specifically, 2,099 repositories were
removed because they contain too few commits, 454 repositories do
not pass the age threshold, and, 415, 465, and 30 repositories were
removed because of too few contributors, issues, and pull requests,
respectively. Moreover, we omit 57 repositories because their names
contain “example”, “playground”, “template”, “sample”, or “demo”,
and three repositories that became unavailable after they were first
identified. Finally, from the remaining repositories, we eliminate
any file whose path contains “test” (2,073 files) or “example” (420
files) to remove PaC files that are not used in practice. This removes
a further 127 repositories that no longer contain PaC files.

Our final dataset therefore comprises 10,560 PaC files across 499
repositories, as described in the “Repos” and “Files” columns of
Table 1. Note that a repository may use multiple PaC tools, causing
the totals to be less than the sum of the values of individual tools.

3.2.5 Cloning Repositories. We clone all 499 repositories and check
out each repository to the latest commit at the time the repository
was added to the dataset. This ensures that for subsequent analyses
the PaC files are in the state they were in when originally identi-
fied. We successfully cloned all repositories, comprising 44 GB of
compressed data.

3.2.6 Sampling PaC Files. We create a stratified random sample
of PaC files that will be manually analysed in RQ2. We determine
sample sizes for each PaC tool separately using Cochran’s formula
adjusted for small populations [7] with a 95% confidence, 5% mar-
gin of error and 50% population proportion. Column “Sample” of
Table 1 depicts the resulting sample sizes.

3.2.7 Dataset Exploration. Finally, we compute the proportion of
PaC files in each repository and find that they represent a median
of 0.65% of the files in repositories, ranging from 0.1% (jsPolicy) to
4.8% (Cloud Custodian) per tool. Nonetheless, several repositories
contain reusable PaC files and thus form outliers, with 30% to 77%
of the repositories’ files being PaC files. In terms of size, we find
that PaC files contain a median of 45 non-empty lines of code, with
78.4% of files containing less than 100 non-empty lines of code.

4 Empirical Study
Having collected our dataset, we now empirically explore the use
of PaC in OSS repositories. The diversity of tools highlighted in
Section 3.1 prompts us to investigate the characteristics of PaC
adoption (RQ1) and the types of policies that PaC files implement
(RQ2). Moreover, Section 3.2.7 shows that most repositories contain
a low proportion of PaC files, leading to further questions on how
PaC files are maintained over time (RQ3). This section describes
the motivation for, the approach to answer, and the findings of each
RQ.

4.1 RQ1 (Adoption): When is PaC introduced
and enforced?

4.1.1 Motivation. Characterising when PaC is introduced and how
policies are enforced in repositories can provide insights to prac-
titioners about adopting PaC. We focus on three PaC adoption
aspects:

• Identifying the development stages at which PaC is first
introduced can inform practitioners about when to adopt PaC
in their own repositories.

• Understanding which strategies are used to enforce policies,
e.g., CI pipeline jobs or run-time checks, provides insights into
how PaC can be integrated into development workflows.

• Uncovering frequently co-occurring IaC tools can aid prac-
titioners in decision-making when choosing PaC tools that fit
within their existing infrastructure deployment processes.

4.1.2 Approach. To analyse when PaC is first adopted in a reposi-
tory, we traverse the commit history of each of the 499 repositories
in search for the oldest commit that created any of the PaC files
identified in Section 3.2. We compute the proportion of commits
that occurred before the introduction of the first PaC file to enable
comparison across repositories with different lifespans.

To investigate which strategies are used to enforce policies, we
systematically examine the code and documentation of a sample of
repositories for evidence of policy enforcement. As this is a labour-
intensive process, we adopt a saturation sampling approach [20] in
which we first explore 50 random repositories. In each subsequent
iteration, we explore 20 more repositories until no new strategies
emerge and saturation is reached. We focus on artefacts that are
typically associated with policy enforcement, such as CI pipeline
files, Kubernetes admission controllers, deployment scripts, and
production application logic. Initially, one co-author of the paper
with nine years of programming experience applied multi-label
classification using open card sorting [5], allowing enforcement
strategies to emerge during labelling. In total, the rater labelled 70
repositories, achieving saturation after the second iteration. The
obtained strategies were discussed with a second co-author with
13 years of programming experience, who then independently la-
belled the sample of repositories anew. The raters agreed totally
on 72.9% of the repositories and partially (i.e., sharing at least one
label) on 10%. To assess the reliability of our labelling, we com-
pute inter-rater agreement using Cohen’s Kappa [8] by treating
each unique label combination as a category, and obtain a value of
0.66, indicating “substantial” agreement [32]. Finally, the two raters
resolve all disagreements through discussion.

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

0-1
0%

10
-20

%

20
-30

%

30
-40

%

40
-50

%

50
-60

%

60
-70

%

70
-80

%

80
-90

%

90
-10

0%

Percentage of development elapsed at introduction

0

10

20

30

40

50

60

N
um

be
r o

f r
ep

os
ito

rie
s

15.0%

13.3%

8.2%

11.9%

8.2%
7.2%

10.5% 10.0%

8.2%
7.5%

Figure 1: Distribution of PaC introduction time.

To investigate which IaC tools co-occur with PaC usage in repos-
itories, we scan the latest version of all 499 repositories for the pres-
ence of files associated with IaC tools.We focus onwidely used tools
across four categories [22, 75]: provisioning (Terraform, Pulumi,
AWS CloudFormation, AWS CDK, CDKTF, Azure Resource Man-
ager, Bicep, Vagrant), configuration (Ansible, Chef, Puppet, Salt), or-
chestration (Kubernetes), and templating (Packer). We identify these
files through naming conventions (e.g., .tf files for Terraform) and
keyword or patterns within file contents (e.g., apiVersion for Ku-
bernetes manifests). To ensure accuracy, we manually inspect a
sample of matched files for each IaC tool to validate correct identifi-
cation. We also review a sample of repositories in which no IaC tool
was detected to ensure that tools were not missed due to limitations
in the patterns. We found no evidence of either case.

4.1.3 Results. Observation 1. PaC is introduced throughout
all stages of repository lifecycles. The distribution depicted in
Figure 1 shows that only 28% of repositories adopt PaC early (i.e.,
within the first 20% of development). Across all repositories, PaC
files are introduced after a median of 43.4% of development has
elapsed. Introduction times vary across PaC tools, with Sentinel
tending to be adopted the earliest at a median of 14.5% of develop-
ment, whereas CloudFormation Guard is adopted later at a median
of 67.4% of development. However, as PaC has only recently gained
in popularity, it may have been impossible for older repositories to
have adopted PaC earlier. Nonetheless, these findings suggest that
PaC can be adopted at any stage of development, both by emerging
and mature repositories.
Observation 2. Most repositories use one of five enforcement
strategies. Table 3 summarises the identified strategies. Note that
the total frequency exceeds 100% as a repository may use multiple
enforcement strategies. We also encountered four repositories in
which we found no evidence of policy enforcement, e.g., because the
PaC files formed test data and did not follow naming conventions
that led to their removal from the dataset (cf. Section 3.2.4). We
describe each enforcement strategy below. Note that the reported
frequency is limited to the sample of examined repositories.
ES1. Admission Time (34.29% of sampled repositories). The
first enforcement strategy validates policies at Kubernetes admis-
sion time, typically using tools such as Kyverno, Gatekeeper, or
custom admission webhooks, to evaluate resource manifests as they

Table 3: Identified policy enforcement strategies.

ID Enforcement strategy & Description (%)
ES1 Admission Time. Policies are enforced during Kubernetes admis-

sion through admission controllers.
34.29%

ES2 User-Invoked. Policy enforcement is invoked manually by devel-
opers or operators.

22.86%

ES3 Continuous Integration. PaC checks are automatically executed
as part of CI pipelines (e.g., GitHub Actions).

21.43%

ES4 Event-Triggered. Enforcement occurs in response to runtime
events.

20%

ES5 Scheduled. Policies are enforced periodically via cron jobs or
scheduled scripts.

5.71%

are applied to the cluster. For example, toboshii/home-ops9 inte-
grates Kyverno policies to reject Kubernetes resources that violate
security or resource allocation constraints.
ES2. User-Invoked (22.86%). In this strategy, policy checks need
to be manually integrated or triggered by developers or operators.
Most of the repositories using this strategy offer reusable catalogues
of policies, such as policies that are checked as part of code analy-
sis tools. For example, conforma/policy10 provides a set of OPA
policies for a command-line tool to verify software integrity.
ES3. Continuous Integration (21.43%). Repositories using this
strategy contain dedicated CI pipelines to enforce policies on infras-
tructure or configuration files (e.g., Terraform manifests) at every
commit or pull request. For example, the GitHub Actions workflows
contained in govuk-one-login/authentication-api11 validate
Terraform files using custom Checkov policies at every commit.
ES4. Event-Triggered (20%). This strategy enforces policies in
response to specific runtime events, such as API calls or resource
modifications, and is typically observed in the context of access
control. For instance, shiblon/entroq12 integrates OPA policies
to perform request-level authorisation at runtime.
ES5. Scheduled (5.71%). The final strategy enforces policies on a re-
curring schedule through cron jobs or scheduled CI pipelines, inde-
pendent of external events. This may be useful in compliance-heavy
repositories to detect misconfigurations over time. For instance,
mitodl/ol-infrastructure13 runs Cloud Custodian checks on
an AWS infrastructure every 24 hours.
Observation 3. PaC tools often co-occur with orchestration
and provisioning IaC tools, but less with configuration or
templating IaC tools. We identify 402 repositories that use an
IaC tool alongside a PaC tool. The most frequent co-occurrences
are Kubernetes (315 repositories) and Terraform (141). Many of
the pairings are ecosystem-specific, such as AWS’ CloudFormation
and CloudFormation Guard, HashiCorp’s Terraform and Sentinel,
and Azure’s Resource Manager or Bicep with Azure PaC. Moreover,
Kubernetes-specific PaC tools (Kyverno, Gatekeeper, and jsPolicy)
appear exclusively in Kubernetes-based repositories. These patterns
suggest that PaC tools are adopted to complement their correspond-
ing IaC tools.

Overall, while we find that PaC frequently co-occurs with orches-
tration and provisioning tools, such as Kubernetes and Terraform,
we observe substantially fewer uses of PaC with configuration or
9https://github.com/toboshii/home-ops
10https://github.com/conforma/policy
11https://github.com/govuk-one-login/authentication-api
12https://github.com/shiblon/entroq
13https://github.com/mitodl/ol-infrastructure

https://github.com/toboshii/home-ops
https://github.com/conforma/policy
https://github.com/govuk-one-login/authentication-api
https://github.com/shiblon/entroq
https://github.com/mitodl/ol-infrastructure

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

templating tools such as Ansible or Packer. Although we find 50
repositories that use Ansible alongside a PaC tool, we note that
co-occurrence does not always indicate that PaC policies relate to
the IaC definitions. Indeed, 29 repositories combine Ansible with
Kyverno, which targets Kubernetes resources rather than Ansible
scripts, and 14 repositories pair Ansible with OPA, but a manual
inspection shows that the policies rarely target the Ansible config-
uration. Moreover, Packer appears in only 11 repositories, Salt in
two, Puppet in one, and Chef in none. Although tools like conftest
and ansible-policy support PaC-based validation for such types
of IaC tools, we find little evidence of their use in practice.

RQ1.When is PaC introduced and enforced?

PaC has been introduced throughout all stages of development,
often co-occurring with orchestration or provisioning IaC tools.
Repositories use varying policy enforcement strategies, including
at Kubernetes admission time, in CI pipelines, invoked manually
by users, triggered by events, and on recurring schedules.

4.2 RQ2 (Purpose): What types of policies are
implemented using PaC?

4.2.1 Motivation. While RQ1 explored the strategies used to inte-
grate policy enforcement in repositories, this RQ investigates which
types of policies are enforced by PaC files. An overview of the types
of policies present in real-world repositories provides insights into
the nature of policies specified by developers and the reasons why
PaC is used. We investigate two aspects:
• A taxonomy of policy categories based on the types of re-
sources they govern can inform practitioners and researchers
about the types of policies that are adopted in practice.

• The tool coverage of the taxonomy’s categories quantifies
the capabilities of PaC tools, enabling informed tool choices for
practitioners and highlighting potential gaps in tool capabilities
for researchers and tool builders.

4.2.2 Approach. We construct a taxonomy of policies using a qual-
itative coding process. To ensure reliability and reproducibility, we
apply multiphase open coding [78], which consists of two rounds
of open coding [26, 52, 78] conducted by two co-authors, each with
over ten years of experience in software engineering qualitative
analysis. We extract the textual descriptions of all policies con-
tained in the 1,944 sampled PaC files (cf. Section 3.2.6), yielding
3,957 policy descriptions that we analyse in two phases.

Synchronised Open Coding. In the first round, we apply synchro-
nised open coding to the first 1,979 policy descriptions. The two
raters independently review each entry to assess (i) whether it de-
fines a constraint on a specific object (e.g., cloud service); (ii) the
type of object being targeted; and (iii) thematic similarities across
object types to form broader categories. Table 4 illustrates this pro-
cess. From the descriptions in the first column, we identify three
objects, namely “crypto”, “crypto-key”, and “password”, which we
grouped under the “Security” category. The two raters held weekly
discussions over two months to reconcile their findings and refine
the emerging categories. This phase achieved a Cohen’s Kappa [8]
of 0.95, indicating “almost perfect” agreement [32]. Disagreements

Table 4: Example of the open coding process.

Policy Description Object Category
“Ensure that Cloud KMS cryptokeys are not anony-
mously or publicly accessible”

crypto Security

“Produce, control and distribute symmetric crypto-
graphic keys”

crypto-key Security

“Ensure IAM password policy requires minimum
length of 14 or greater”

password Security

on 97 entries were resolved through discussion, resulting in a pre-
liminary taxonomy of 11 policy categories.

Independent Open Coding. In the second round, we analyse the
remaining 1,978 policy descriptions using independent open coding.
In this phase, each rater labels the entries individually, without dis-
cussion or coordination, using the criteria from the previous phase.
This round yields a Cohen’s Kappa of 0.65, which corresponds to
“substantial agreement” [32]. Disagreements on 344 entries were
resolved through post-coding discussion. This phase also identified
one additional minor category not captured in the synchronised
round, resulting in a final taxonomy of 12 categories. As our tax-
onomy remained mostly stable after this second round, we are
confident that the taxonomy captures all important policy types
and that our sampling strategy achieved thematic saturation.

In all, after the two rounds of open coding the raters mapped
2,251 of the 3,957 descriptions to a category. The remaining 1,706
entries were too generic (e.g., “check”) to be mapped to a category.
While it may be possible to inspect the concrete policy implemen-
tation to categorise these entries, such in-depth inspection is infea-
sible to carry out at the scale of our study without sacrificing the
reliability of the rating due to needing automated labellers which
are prone to errors (e.g., LLM hallucinations).

Tool Coverage. To complement the taxonomy, we calculate the
extent to which each PaC tool covers the categories. For each tool-
category pair, we use the formula below to compute the proportion
of the category’s policies that are implemented using the tool.

Coverage(𝑡, 𝑐) = 100% × # policies in 𝑐 implemented using 𝑡
Total policies in 𝑐

4.2.3 Results. Observation 4. PaC policies are primarily con-
cerned with infrastructures and security. Table 5 depicts our
taxonomy, showing that three categories, i.e., Cloud Util (40.38%),
Virtualisation (24.97%), and Security (11.37%), account for 76.7% of all
policies. Cloud Util includes policies for resource tagging, instance
provisioning, and serverless functions, Virtualisation concerns con-
tainers, virtual machines, and their orchestration, and policies in the
Security category enforce requirements on cryptography and access
control. Other policies target operational and development needs,
such as policies related to Monitoring, SQL database configurations,
Networking, and Software Development. We also encounter several
rare categories, such as policies that limit cloud expenses, govern
intellectual property rights, or validate policy metadata itself.
Observation 5. Tool support for policy categories varieswidely.
Figure 2 presents a heatmap of tool coverage per category. Tools
such as Sentinel and Azure PaC offer broad support, covering eight
or more categories. In contrast, tools such as Gatekeeper or Cloud

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

Table 5: Taxonomy of identified policy categories.

Category (%) Definition and Sub-categories Example(s)
— Infrastructure and Security Policies

Cloud Util (40.38%) Policies for cloud resources and utilities.
Sub-categories: Instance, Serverless, Tagging

“Require compute instances use allowed machine types.”
“Check if X-Ray is enabled for Lambda.”
“Ignore specific tag values during evaluation.”

Virtualisation (24.96%) Policies for virtualisation and containerisation.
Sub-categories: Container, Orchestration, VMs

“Remediate privileged container violations.”
“Restrict Kubernetes deployments without namespaces.”
“Enforce VM disk usage limits.”

Security (11.37%) Policies for confidentiality, integrity, and availability. “Ensure admin users are not tied to API keys.”
— Operational and Development Policies
Monitoring (5.73%) Policies for logging and alerts on resource health. “Log an alert if OSTBytesAvailable is below 15%.”

Software Dev (5.64%) Policies for software development processes.
Sub-categories: Dependencies, PRs

“Use HTTP import to list registry modules.”
“Require two approvals for PRs.”

SQL (5.61%) Policies for SQL database configurations. “Enable geo-redundant backups for PostgreSQL.”
Networking (5.51%) Policies on network settings and traffic control. “Disable IP forwarding on network interfaces.”
— Rare Policy Categories (<1%)
Jobs (0.31%) Policies for scheduled or batch jobs. “Schedule must use valid Cron syntax.”
Config Scripts (0.31%) Policies for validating IaC scripts. “Use tfplan import to enforce Terraform version.”
Metadata (0.09%) Policies about the metadata of the policy itself. “The display name must be under 128 characters.”
Intellectual Property (0.04%) Policies enforcing IP ownership and usage rights. “Require compliance with intellectual property rights.”
Expense (0.04%) Policies limiting cloud expenses. “Monthly cost must be below $100 for dev team.”

Clou
dU

til

Con
fig

Scr
ipt

Ex
pe

nse

Int
el.

Pro
pe

rty Job

Meta
da

ta

Mon
ito

rin
g

Netw
ork SQ

L

Se
cur

ity

So
ftw

are
 Dev

Vir

t

Category

Azure

CFGuard

Checkov

CloudCustodian

Gatekeeper

Kyverno

OPA

Sentinel

To
ol

17.38 0 0 100 0 100 89.92 31.45 29.37 23.44 44.09 26.51

32.34 0 0 0 0 0 5.43 7.26 4.76 3.91 2.36 7.65

4.40 0 0 0 14.29 0 2.33 8.06 19.05 15.23 1.57 1.42

6.60 14.29 0 0 0 0 2.33 4.84 3.97 13.28 0 2.49

0.55 0 0 0 0 0 0 1.61 5.56 1.95 0 5.52

3.74 0 0 0 57.14 0 0 10.48 0 3.12 1.57 18.86

9.90 0 0 0 28.57 0 0 12.90 33.33 30.47 15.75 18.68

25.08 85.71 100 0 0 0 0 23.39 3.97 8.59 34.65 18.86

0

20

40

60

80

100
%

Figure 2: Tool coverage for policy categories. Each cell shows
the proportion of policies in that category implemented us-
ing the corresponding tool.

Custodian offer partial or no support for less common categories,
such as SQL or Intellectual Property. Note that jsPolicy is excluded,
as none of its policies could be categorised using our method.

RQ2.What types of policies are implemented using PaC?

We identify 12 categories of PaC policies. While most policies
target infrastructure (e.g., containers, compute instances) and
security, a small fraction addresses broader needs, such as cost
limits, and IP compliance. Tool support is uneven across categories,
with stronger coverage for infrastructure-related policies.

4.3 RQ3 (Maintenance): How are PaC files
maintained?

4.3.1 Motivation. We aim to understand how PaC files are main-
tained after PaC is adopted in real-world repositories. Our analysis
focuses on three key aspects of maintenance:

• Studying the frequency and magnitude of PaC file changes en-
ables practitioners to estimate the maintenance efforts required.

• Identifyingwhomaintains PaC files helps understand whether
PaC maintenance requires a small group of experts or involves
most developers in a repository.

• Analysing the reasons why PaC files are modified offers in-
sights into the goals of PaC maintenance, e.g., whether policies
are made stricter or more lenient.

4.3.2 Approach. We traverse the Git history of all 499 repositories
in the dataset to collect commits containing changes to PaC files
present in the latest revision of the repository, which we refer to as
PaC commits. As we are interested in PaC maintenance, we focus
on commits that modify existing PaC files, not those that create
or delete PaC files. We also exclude merge commits, as they may
aggregate changes from other commits, including those unrelated
to PaC. This results in 6,103 PaC commits, which we subject to both
quantitative and qualitative analyses.

Quantitative analysis. As a proxy for maintenance effort, we
measure the frequency of PaC commits relative to all commits
created after PaC was introduced into repositories. We also mea-
sure the number of lines changed in PaC and non-PaC files within
PaC commits to better understand the magnitude of PaC-related
changes. Finally, we calculate the proportion of developers involved
in PaC maintenance, relative to the number of developers who
have contributed to the repository after PaC was introduced, to
understand how PaC maintenance tasks are distributed within de-
velopment teams.

Qualitative analysis. To investigate the motivation for PaC main-
tenance activities, we conduct a qualitative analysis of the changes
and messages contained in PaC commits. We construct a sample
of 363 PaC commits using Cochran’s formula with 95% confidence
and 5% margin of error [7]. Then, following a similar approach to
RQ2, two authors conduct two rounds of open coding. In the first
round, they apply open coding to 50 commits using multi-label clas-
sification, after which they reconcile their findings and refine the
labels to establish a shared understanding [37]. In the second round,

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

0 10 20 30 40 50 60 70
PaC maintenance frequency (%)

Figure 3: Distribution of PaC maintenance frequency.

the same raters analyse the remaining 313 commits individually,
without discussion or coordination. They agreed totally on 78.3% of
the second round’s cases and partially on 1.9% of the cases (i.e., they
shared at least one label, but each also included a label the other
did not), demonstrating a substantial agreement. Cohen’s Kappa,
computed by sorting and concatenating labels into unique cate-
gories, was 0.66, indicating “substantial agreement” [32]. To resolve
the disagreements, a third author checked the conflicting cases
and the corresponding annotations, and then recommended a final
annotation. The recommendations were discussed with the first
two authors until full agreement was reached. The three annotators
have 17, 20, and 13 years of programming experience, respectively.

4.3.3 Results. Observation 6. Inmost repositories, PaC changes
constitute only a minimal fraction of overall development
activity. Figure 3 shows the distribution of PaC maintenance fre-
quency across the analysed repositories, reflecting the percentage
of commits that modify PaC files relative to the total number of
commits created after PaC was introduced in each repository. It
demonstrates a pronounced right-skewed pattern with a sharp peak
near zero. The majority of repositories exhibit very low PaC main-
tenance, with the median of approximately 2.5% of total commits.
Nonetheless, the long tail, reaching up to 70%, reveals the existence
of outliers where PaC maintenance constitutes a substantial portion
of development activity. We observe that many of these outliers
are repositories in which PaC files represent an above-average pro-
portion of all files (cf. Section 3.2.7). Specifically, in 14 of the 26
repositories in which PaC maintenance frequency exceeds 25%,
PaC files represent over 10% of all files. The high proportion of
PaC files and PaC maintenance suggests these repositories may be
compliance-heavy or provide catalogues of reusable policies.
Observation 7. PaC commits seem to involve substantial
changes to both PaC and non-PaC code. Figure 4 depicts the
number of lines changed by PaC commits, comparing between
lines changed in PaC files and non-PaC files (e.g., production or
infrastructure code). It shows that PaC commits involve substantial
modifications to both PaC and non-PaC files. PaC commits seem
to modify non-PaC files significantly more than PaC files, as the
median number of lines changed in non-PaC files is 148, an order
of magnitude higher than in PaC files with a median of around
8 lines. This suggests that PaC files are often changed as part of
larger maintenance activities, possibly with surrounding code being
modified in response to changing policies, or vice versa.
Observation 8. PaC maintenance is typically concentrated
among a subset of developers within each repository. Figure 5
shows the distribution of the proportion of a repository’s developers
that havemodified PaC files. The distribution is highly right-skewed

10
0

10
1

10
2

10
3

10
4

10
5

Lines changed

Non-PaC Files

PaC Files

Figure 4: Distribution of lines modified by PaC commits in
PaC and non-PaC files.

0 20 40 60 80 100
PaC maintainer share (%)

Figure 5: Distribution of the proportion of a repository’s
developers that modified PaC files.

with a median of 25%, demonstrating that in most repositories,
relatively few developers engage in PaC maintenance. While the
distribution extends from near 0% to 100%, the bulk of repositories
cluster at the lower end, with the majority having less than half of
their developers involved in PaC-related work.
Observation 9. Most PaC changes involve refactorings aimed
at improving structure without altering behaviour. When
behaviour does change, policies tend to become stricter more
often than more lenient.We identified seven main reasons be-
hind PaC file modifications: Refactoring (30.9% of commits, to im-
prove structure without altering behaviour); Stricter policy (21.2%, to
tighten constraints or add checks); Bugfix (17.4%, to correct faulty or
unintended behaviour); Documentation or metadata changes (16.3%,
to update auxiliary information without affecting enforcement);
More relaxed policy (16.3%, to loosen constraints or remove checks);
Dependencies/builds (8.3%, to update tooling/versions or integration
setup); and Performance (0.6%, to improve policy efficiency). Bug
fixes were identified when the change clearly fixed an issue (e.g., a
syntax error) or the commit message explicitly indicated a bug fix.
Only 2.2% of bug fixes also made the policy stricter, and 0.6% made
it more relaxed. An example of a Stricter policy change is shown
in Listing 2, in which the highlighted condition was added to also
raise a violation if a virtual machine’s Linux-specific configuration
does not explicitly disable password authentication. This change
reflects a stricter security requirement, preventing scenarios where
password authentication remains possible even if SSH password
settings appear compliant at a higher level.

14https://github.com/Checkmarx/kics/commit/49018cb

https://github.com/Checkmarx/kics/commit/49018cb

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

CxPolicy[result] {

vm := input.document[i]. playbooks[k]. azure_rm_virtualmachine

is_linux_vm(vm)

not vm.ssh_password_enabled == false

+ not vm.linux_config.disable_password_authentication == false

result := {

"documentId": input.document[i].id,

...,

"keyExpectedValue": sprintf("'azure_rm_virtualmachine [%s]'

should be using SSH keys for authentication", [vm.name]),

"keyActualValue": sprintf("'azure_rm_virtualmachine [%s]' is

using username and password for authentication", [vm.name]),

}

}

Listing 2: Example of a Stricter policy change14.

RQ3. How are PaC files maintained?

PaC files are maintained through relatively infrequent yet often
substantial code changes, primarily carried out by a subset of
developers. Maintenance activities predominantly involve refac-
toring to improve readability and maintainability; however, when
behavioural changes occur, policies tend to become stricter rather
than more lenient.

5 Discussion
This section describes the implications and limitations of our study.

5.1 Implications
We first discuss the implications of our findings for practitioners,
researchers, and PaC tool builders.

5.1.1 Implications for Practitioners. Our findings motivate earlier
andwider adoption of PaC in practice. Observation 1 shows that
PaC can be integrated at any point in development, while Observa-
tions 6 and 8 suggest that PaC files require minimal maintenance
by few developers once introduced. Therefore, emerging projects
may benefit by adopting PaC to enforce compliance and security
best practices early on, while maturing projects could implement
PaC to tackle growing operational complexity.

Our results may also help practitioners who are adopting
PaC. The taxonomy of policy categories constructed in RQ2 pro-
vides a set of use cases to consider for a project, ranging from
common categories related to infrastructure and security to rare
categories, such as intellectual property and expenses (Observation
4). Observation 2 furthermore provides several enforcement strate-
gies that practitioners can replicate. Our insights can also serve as
a reference point for practitioners to assess their PaC usage against
the state of the practice, e.g., by comparing their maintenance fre-
quency or the types of policies implemented. Finally, our results can
support practitioners in deciding which PaC tools to adopt, with
Observation 3 highlighting PaC and IaC tools that are commonly
used together, and RQ2 mapping tool support for each policy cate-
gory. For instance, Observation 5 shows that Microsoft Azure’s PaC
solution may be an attractive option for organisations that wish to
cover a wide range of policy categories.

5.1.2 Implications for Researchers. The mapping of policy descrip-
tions to categories constructed for RQ2 provides the foundation for
future research on automated policy generation. For example, re-
searchers could use the mapping to construct generative AI models

to automatically create policies for a given tool and category. This
mapping can also be extended into a benchmark to evaluate models
on their policy generation capability. Moreover, Observations 7 and
9 revealed that changes to PaC files may impact a large amount of
code, with most changes involving refactorings. Researchers could
use our labelled dataset of PaC changes to further study and auto-
mate refactoring operations on PaC files. Finally, whereas our
study focuses on technical aspects of PaC adoption, future work
could investigate policies from an organisational viewpoint, e.g., to
characterise why certain types of policies are adopted and which
kinds of projects adopt PaC.

5.1.3 Implications for Tool Builders. Our results reveal several gaps
in the capabilities of current PaC tools. As shown in Observa-
tion 3, while infrastructure provisioning and orchestration appear
to be widely covered by PaC tools, we find little evidence of PaC files
that enforce best practices in configuration management or server
templating scripts. Observation 5 also reveals gaps in tool coverage
of the different policy categories. These findings may motivate PaC
tool builders to expand the capabilities of their tools. Finally, our
taxonomy may serve to motivate new PaC tools covering domains
not contained in the taxonomy, such as (generative) AI models.

5.2 Threats to Validity
We summarise the threats to validity of our findings as follows.

Conclusion Validity. The results of our manual analyses are lim-
ited to the sampled PaC files and repositories, andmay be influenced
by the omission of other PaC files. We mitigated this threat by us-
ing representative samples, determined using Cochran’s formula
or saturation sampling. Furthermore, as policy descriptions may
not always suffice to determine a policy’s category, we may have
missed categories that only become evident at run-time.

Construct Validity. Our data is mined from open-source reposito-
ries, which may raise quality concerns. We mitigated this threat by
applying established filtering criteria to retain high-quality repos-
itories. Furthermore, the use of automated tools to identify PaC
and IaC files may lead to misclassifications, which we mitigated by
conducting a comprehensive manual review of the classifications.
Moreover, manual labelling during the qualitative analyses may
introduce subjective bias, which we mitigated by using multiple
labellers and calculating inter-rater agreement scores. Finally, we
acknowledge that the presence of repositories offering reusable
catalogues of policies (cf. Section 3.2.7) may influence our find-
ings. However, we explicitly discuss such repositories in RQ1 and
RQ3, whereas in RQ2, we argue that they help to provide a broader
perspective of policy purposes.

Internal Validity. For RQ3, we assume that commits represent
distinct development activities. Nevertheless, it is possible that com-
mits mix PaC and non-PaC development, which we mitigated by
omitting known problematic commits (e.g., merge commits). More-
over, during our subsequent manual commit analysis, we found
no evidence of systematic problems that could invalidate our find-
ings. Similarly, in RQ1, the co-occurrence of an IaC and a PaC tool
may not imply causality, which we mitigated by reviewing dubious
cases.

External Validity. The results presented in this paper are obtained
from open-source repositories on GitHub and may not generalise

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

to proprietary PaC projects. Future work can investigate whether
our findings hold within organisational contexts, particularly the
observed policy types and their prevalence. For instance, we expect
certain policy types that are uncommon in OSS contexts (e.g., Ex-
pense and Intellectual Property) to be more relevant in proprietary
contexts. Furthermore, our findings are limited to PaC tools that are
often mentioned online and may not generalise to other PaC tools
not considered. Future work could survey industry experts to vali-
date this tool selection, and our methodology can straightforwardly
be replicated to other PaC tools.

6 Related Work
Infrastructure as Code. PaC is closely related to IaC, which has

been studied extensively in recent years [6, 54]. Researchers have
studied several aspects of IaC development, including maintainabil-
ity [9, 12, 30, 44, 47, 69, 71, 80], defect prediction [10, 11, 51, 59],
testing [58, 74], and dependencies [41, 46]. Prior work has also
empirically studied the occurrence of defects [16, 25, 53, 58, 85] and
proposed approaches to detect them [23, 27, 70, 76]. Numerous stud-
ies have also investigated security in IaC scripts, from taxonomies
of security weaknesses for various IaC tools [55–57] to the identifi-
cation of new types of weaknesses [31, 33, 64] and improvements
to weakness detection techniques [43, 45, 66, 67].

While IaC has been studied extensively, we observe a lack of
research studying PaC due to its nascency. IaC-related findings are
also not directly applicable to PaC, which governs various opera-
tional aspects, including, but not limited to, infrastructures. The
only existing research related to PaC is by Verdet et al. [81], who
derived a taxonomy of security policies offered by built-in checks of
two security scanning tools, including Checkov, and studied their
adoption in Terraform repositories. In contrast, our paper derives
a more general taxonomy of policies beyond security and stud-
ies their adoption and maintenance across the wider PaC domain,
covering nine popular PaC tools.

Policy Analysis in Software Engineering. As policies have numer-
ous applications in software engineering, researchers have pro-
posed several techniques to analyse them. Examples include tech-
niques to assess adherence to policies, particularly privacy policies,
in mobile apps [3, 4, 14, 36, 73, 83, 87], mini apps [34], and voice as-
sistants [35, 84], as well as policy generation [86], analysis [29, 72],
and visualisation [49]. Others have synthesised policy-related guide-
lines for practitioners [24, 48, 82]. Researchers have also proposed
detection and repair techniques for access control policy violations
in cloud-based services [15, 17, 18]. Our study differs from this prior
research, as we focus on PaC, a practice to implement and enforce
policies through codified checks, rather than policies in general.

DevOps. Researchers have conducted numerous studies on De-
vOps, concerning aspects such as leadership [50], adoption bar-
riers [79], implementation-related challenges [65], quality assur-
ance [2, 39], and security best practices [61, 62].While organisations
report positive experiences with DevOps, there is a notable lack
of quantitative data supporting these claims [19]. As PaC is an
under-explored yet important DevOps practice, our study of its use
in practice contributes to addressing this knowledge gap.

7 Conclusion
This paper presented an empirical study of Policy as Code (PaC),
an emerging DevOps practice to enforce policies using declarative
code. We collected a dataset of over 10,000 PaC files from 499 open-
source repositories spanning nine PaC tools. We found that PaC
is introduced at all stages of repository lifecycles, and observed
five enforcement strategies used in practice. From a qualitative
analysis of 1,944 PaC files, we constructed a taxonomy of 12 policy
categories, ranging from infrastructure and security constraints to
intellectual property and expense requirements. By analysing the
change histories of all repositories, we found that PaC file main-
tenance is infrequent, but that changes may be substantial, with
most changes involving refactoring. Our findings motivate wide-
spread and earlier adoption of PaC. Supporting this, our taxonomy
of policy categories, catalogue of enforcement strategies, and in-
sights into PaC tool capabilities can inform practitioners on how to
integrate PaC in their projects.

Acknowledgments
Ruben Opdebeeck is funded by the “Cybersecurity Research Pro-
gramme Flanders”. Akond Rahman was partially funded by the
U.S. National Science Foundation (NSF) Award # 2312321. Mah-
moud Alfadel was supported by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada. J. F. Ferreira was
supported by national funds through Fundação para a Ciência
e a Tecnologia, I.P. (FCT) under projects UID/50021/2025 (DOI:
10.54499/UID/50021/2025), UID/PRR/50021/2025 (DOI: UID/PRR/
50021/2025), and the ‘InfraGov’ project, with ref. n. 2024.07411.IACDC
(DOI: 10.54499/2024.07411.IACDC), funded by the ‘Plano de Recu-
peração e Resiliência (PRR)’ under the investment ‘RE-C05-i08 -
Ciência Mais Digital’, measure ‘RE-C05-i08.M04’ (in accordance
with the FCT Notice No. 04/C05 i08/2024), framed within the financ-
ing agreement signed between the ‘Estrutura de Missão Recuperar
Portugal (EMRP)’ and the FCT as an intermediary beneficiary. The
authors would like to acknowledge Shonan Meeting 207 “Anti-
patterns and Defects: Synergies, Challenges, and Opportunities” for
the inspiration and bringing researchers together to work on this
research (https://shonan.nii.ac.jp/docs/No.207.pdf).

References
[1] Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and

Tim Menzies. 2018. We don’t need another hero? the impact of "heroes" on
software development. In Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice. ACM, 245–253. doi:10.
1145/3183519.3183549

[2] Ahmad Alnafessah, Alim Ul Gias, Runan Wang, Lulai Zhu, Giuliano Casale, and
Antonio Filieri. 2021. Quality-Aware DevOps Research: Where Do We Stand?
IEEE Access 9 (2021), 44476–44489. doi:10.1109/ACCESS.2021.3064867

[3] Benjamin Andow, Samin YaseerMahmud,WenyuWang, JustinWhitaker,William
Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint: investigating
internal privacy policy contradictions on google play. In 28th USENIX security
symposium (USENIX security 19). 585–602.

[4] Benjamin Andow, Samin Yaseer Mahmud, JustinWhitaker, William Enck, Bradley
Reaves, Kapil Singh, and Serge Egelman. 2020. Actions speak louder than words:
Entity-Sensitive privacy policy and data flow analysis with PoliCheck. In 29th
USENIX Security Symposium (USENIX Security 20). 985–1002.

[5] Kathy Charmaz. 2014. Constructing grounded theory (2nd ed.). Sage.
[6] Michele Chiari, Michele De Pascalis, and Matteo Pradella. 2022. Static Analysis

of Infrastructure as Code: a Survey. In 2022 IEEE 19th International Conference on
Software Architecture Companion (ICSA-C). 218–225. doi:10.1109/ICSA-C54293.
2022.00049

https://doi.org/10.54499/UID/50021/2025
https://doi.org/10.54499/UID/PRR/50021/2025
https://doi.org/10.54499/UID/PRR/50021/2025
https://doi.org/10.54499/2024.07411.IACDC
https://shonan.nii.ac.jp/docs/No.207.pdf
https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1109/ACCESS.2021.3064867
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/ICSA-C54293.2022.00049

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Opdebeeck et al.

[7] William Gemmell Cochran. 1977. Sampling Techniques (3rd ed.). John Wiley &
Sons.

[8] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Ed-
ucational and Psychological Measurement 20, 1 (1960), 37–46. doi:10.1177/
001316446002000104

[9] Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. 2020. Automatically
Detecting Risky Scripts in Infrastructure Code. In Proceedings of the 11th ACM
Symposium on Cloud Computing. ACM, 358–371. doi:10.1145/3419111.3421303

[10] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tam-
burri. 2020. Toward a catalog of software quality metrics for infrastructure code.
Journal of Systems and Software 170 (2020), 110726.

[11] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri.
2022. Within-Project Defect Prediction of Infrastructure-as-Code Using Product
and Process Metrics. IEEE Transactions on Software Engineering 48, 6 (2022),
2086–2104. doi:10.1109/TSE.2021.3051492

[12] Stefano Dalla Palma, Chiel van Asseldonk, Gemma Catolino, Dario Di Nucci,
Fabio Palomba, and Damian A Tamburri. 2023. “Through the looking-glass..." An
Empirical Study on Blob Infrastructure Blueprints in TOSCA. Journal of Software:
Evolution and Process (2023).

[13] Fred D Davis, RP Bagozzi, and PR Warshaw. 1989. Technology acceptance model.
J Manag Sci 35, 8 (1989), 982–1003.

[14] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Shaodong Zhang. 2018.
How do mobile apps violate the behavioral policy of advertisement libraries?. In
Proceedings of the 19th International Workshop on Mobile Computing Systems &
Applications. 75–80.

[15] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Specifying
and Reasoning About Dynamic Access-Control Policies. In Automated Reasoning.
Springer, 632–646.

[16] Georgios-Petros Drosos, Thodoris Sotiropoulos, Georgios Alexopoulos, Dimitris
Mitropoulos, and Zhendong Su. 2024. When Your Infrastructure Is a Buggy
Program: Understanding Faults in Infrastructure as Code Ecosystems. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 359 (Oct. 2024), 31 pages. doi:10.1145/3689799

[17] William Eiers, Ganesh Sankaran, and Tevfik Bultan. 2023. Quantitative Policy
Repair for Access Control on the Cloud. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 564–575. doi:10.
1145/3597926.3598078

[18] William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,
and Tevfik Bultan. 2022. Quantifying permissiveness of access control policies.
In Proceedings of the 44th International Conference on Software Engineering. ACM,
1805–1817. doi:10.1145/3510003.3510233

[19] F. M. A. Erich, C. Amrit, and M. Daneva. 2017. A qualitative study of DevOps
usage in practice. Journal of Software: Evolution and Process 29, 6 (2017), e1885.
doi:10.1002/smr.1885

[20] Jill J Francis, Marie Johnston, Clare Robertson, Liz Glidewell, Vikki Entwistle,
Martin P Eccles, and JeremyMGrimshaw. 2010. What is an adequate sample size?
Operationalising data saturation for theory-based interview studies. Psychology
and Health 25, 10 (2010), 1229–1245.

[21] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for
including grey literature and conducting multivocal literature reviews in software
engineering. Information and Software Technology 106 (2019), 101–121. doi:10.
1016/j.infsof.2018.09.006

[22] Michele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba.
2019. Adoption, Support, and Challenges of Infrastructure-as-Code: Insights
from Industry. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 580–589. doi:10.1109/ICSME.2019.00092

[23] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. SIGPLAN Not. 51,
10 (oct 2016), 328–343. doi:10.1145/3022671.2984000

[24] Mujtaba Hassan, Muzammil Hussain, Maham Irfan, et al. 2019. A policy recom-
mendations framework to resolve global software development issues. In 2019
International Conference on Innovative Computing (ICIC). IEEE, 1–10.

[25] Md Mahadi Hassan, John Salvador, Shubhra Kanti Karmaker Santu, and Akond
Rahman. 2024. State Reconciliation Defects in Infrastructure as Code. Proc. ACM
Softw. Eng. 1, FSE, Article 83 (jul 2024), 24 pages. doi:10.1145/3660790

[26] Gary Hickey and Cheryl Kipping. 1996. A multi-stage approach to the coding of
data from open-ended questions. Nurse researcher 4, 1 (1996), 81–91.

[27] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013.
Testing Idempotence for Infrastructure as Code. In Middleware 2013. Springer,
368–388.

[28] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories.
ACM, 92–101. doi:10.1145/2597073.2597074

[29] Stephen Kaplan, Dylan Bulmer, Avery Gosselin, and Sepideh Ghanavati. 2021.
Lattice-based Contextual Integrity Analysis of Social Network Privacy Policies .
In 2021 IEEE 29th International Requirements Engineering Conference Workshops
(REW). IEEE, 394–399. doi:10.1109/REW53955.2021.00070

[30] Shoma Kokuryo, Masanari Kondo, and Osamu Mizuno. 2020. An Empirical Study
of Utilization of Imperative Modules in Ansible. In 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security (QRS). 442–449. doi:10.
1109/QRS51102.2020.00063

[31] Indika Kumara, Zoe Vasileiou, Georgios Meditskos, Damian A. Tamburri, Willem-
Jan Van Den Heuvel, Anastasios Karakostas, Stefanos Vrochidis, and Ioannis
Kompatsiaris. 2020. Towards Semantic Detection of Smells in Cloud Infrastructure
Code. In Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics. ACM, 63–67. doi:10.1145/3405962.3405979

[32] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (1977), 159–174.

[33] Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark Santolucito. 2021. Ana-
lyzing infrastructure as code to prevent intra-update sniping vulnerabilities. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 105–123.

[34] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and
Chenghu Zhou. 2024. MiniTracker: Large-Scale Sensitive Information Tracking
in Mini Apps. IEEE Transactions on Dependable and Secure Computing 21, 4 (2024),
2099–2114. doi:10.1109/TDSC.2023.3299945

[35] Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. 2020.
Measuring the effectiveness of privacy policies for voice assistant applications.
In Proceedings of the 36th Annual Computer Security Applications Conference.
856–869.

[36] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. 2019.
Privacy risk analysis andmitigation of analytics libraries in the android ecosystem.
IEEE Transactions on Mobile Computing 19, 5 (2019), 1184–1199.

[37] Kirsti Malterud. 1993. Shared Understanding of the Qualitative Research Process.
Guidelines for the Medical Researcher. Family Practice 10, 2 (07 1993), 201–206.
doi:10.1093/fampra/10.2.201

[38] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.
Understanding the use of lambda expressions in Java. Proc. ACM Program. Lang.
1, OOPSLA (2017), 85:1–85:31. doi:10.1145/3133909

[39] Alok Mishra and Ziadoon Otaiwi. 2020. DevOps and software quality: A system-
atic mapping. Computer Science Review 38 (2020), 100308.

[40] Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud (1st ed.).
O’Reilly.

[41] Ruben Opdebeeck, Bram Adams, and Coen De Roover. 2025. Analysing Software
Supply Chains of Infrastructure as Code: Extraction of Ansible Plugin Depen-
dencies. In IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2025. IEEE, 181–192. doi:10.1109/SANER64311.2025.00025

[42] Ruben Opdebeeck, Mahmoud Alfadel, Akond Rahman, Yutaro Kashiwa, Joao
Ferreira, Raula Gaikovina Kula, and Coen De Roover. 2026. Replication package
for "An Empirical Study of Policy-as-Code Technologies: Adoption, Purpose,
and Maintenance". https://doi.org/10.6084/m9.figshare.29586128. doi:10.6084/m9.
figshare.29586128 [Online; accessed 20-Jan-2026].

[43] Ruben Opdebeeck, Valeria Pontillo, Camilo Velázquez-Rodríguez, Wolfgang
De Meuter, and Coen De Roover. 2025. Smelling Secrets: Leveraging Machine
Learning and Language Models for Sensitive Parameter Detection in Ansible
Security Analysis. In 2025 IEEE International Conference on Source Code Analysis
& Manipulation (SCAM). 66–77. doi:10.1109/SCAM67354.2025.00014

[44] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2022. Smelly Variables
in Ansible Infrastructure Code: Detection, Prevalence, and Lifetime. In Proceedings
of the 19th International Conference on Mining Software Repositories. ACM, 61–72.
doi:10.1145/3524842.3527964

[45] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and
Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth
the Effort?. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 534–545. doi:10.1109/MSR59073.2023.00079

[46] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and Coen
De Roover. 2021. On the Practice of Semantic Versioning for Ansible Galaxy
Roles: An Empirical Study and a Change Classification Model. J. Syst. Softw. 182,
C (dec 2021), 21 pages. doi:10.1016/j.jss.2021.111059

[47] Stefano Dalla Palma, Majid Mohammadi, Dario Di Nucci, and Damian A. Tam-
burri. 2020. Singling the Odd Ones out: A Novelty Detection Approach to Find
Defects in Infrastructure-as-Code. In Proceedings of the 4th ACM SIGSOFT Interna-
tional Workshop on Machine-Learning Techniques for Software-Quality Evaluation.
ACM, 31–36. doi:10.1145/3416505.3423563

[48] Lisa Parker, Tanya Karliychuk, Donna Gillies, Barbara Mintzes, Melissa Raven,
and Quinn Grundy. 2017. A health app developer’s guide to law and policy: a
multi-sector policy analysis. BMC medical informatics and decision making 17
(2017), 1–13.

[49] Ioannis Paspatis, Aggeliki Tsohou, and Spyros Kokolakis. 2020. AppAware: a
policy visualization model for mobile applications. Information & Computer
Security 28, 1 (2020), 116–132.

[50] Juanjo Pérez-Sánchez, Saima Rafi, Juan Manuel Carrillo de Gea, Joaquín Nicolás
Ros, and José Luis Fernández Alemán. 2025. A theory on human factors in
DevOps adoption. Computer Standards and Interfaces 92 (2025), 103907. doi:10.
1016/j.csi.2024.103907

https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1145/3689799
https://doi.org/10.1145/3597926.3598078
https://doi.org/10.1145/3597926.3598078
https://doi.org/10.1145/3510003.3510233
https://doi.org/10.1002/smr.1885
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1145/3022671.2984000
https://doi.org/10.1145/3660790
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/REW53955.2021.00070
https://doi.org/10.1109/QRS51102.2020.00063
https://doi.org/10.1109/QRS51102.2020.00063
https://doi.org/10.1145/3405962.3405979
https://doi.org/10.1109/TDSC.2023.3299945
https://doi.org/10.1093/fampra/10.2.201
https://doi.org/10.1145/3133909
https://doi.org/10.1109/SANER64311.2025.00025
https://doi.org/10.6084/m9.figshare.29586128
https://doi.org/10.6084/m9.figshare.29586128
https://doi.org/10.6084/m9.figshare.29586128
https://doi.org/10.1109/SCAM67354.2025.00014
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1016/j.jss.2021.111059
https://doi.org/10.1145/3416505.3423563
https://doi.org/10.1016/j.csi.2024.103907
https://doi.org/10.1016/j.csi.2024.103907

An Empirical Study of Policy as Code MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

[51] Giovanni Quattrocchi and Damian Andrew Tamburri. 2022. Predictive main-
tenance of infrastructure code using “fluid” datasets: An exploratory study on
Ansible defect proneness. Journal of Software: Evolution and Process 34, 11 (2022),
e2480. doi:10.1002/smr.2480

[52] Akond Rahman, Dibyendu Brinto Bose, Raunak Shakya, and Rahul Pandita. 2023.
Come for Syntax, Stay for Speed, Understand Defects: An Empirical Study of
Defects in Julia Programs. Empirical Software Engineering 28, 93 (2023), 33.

[53] Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. 2020. Gang
of Eight: A Defect Taxonomy for Infrastructure as Code Scripts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering. ACM,
752–764. doi:10.1145/3377811.3380409

[54] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2018. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology (2018). doi:10.1016/j.infsof.2018.12.004

[55] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security
smells in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 164–175.

[56] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie Williams. 2021.
Security Smells in Ansible and Chef Scripts: A Replication Study. ACM Trans.
Softw. Eng. Methodol. 30, 1, Article 3 (Jan. 2021), 31 pages. doi:10.1145/3408897

[57] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-
dita. 2023. Security Misconfigurations in Open Source Kubernetes Manifests: An
Empirical Study. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 99 (May 2023),
36 pages. doi:10.1145/3579639

[58] Akond Rahman and Laurie Williams. 2018. Characterizing Defective Config-
uration Scripts Used for Continuous Deployment. In 2018 IEEE 11th Interna-
tional Conference on Software Testing, Verification and Validation (ICST). 34–45.
doi:10.1109/ICST.2018.00014

[59] Akond Rahman and Laurie Williams. 2019. Source code properties of defective
infrastructure as code scripts. Information and Software Technology 112 (2019),
148 – 163. doi:10.1016/j.infsof.2019.04.013

[60] Akond Ashfaque Ur Rahman, Eric Helms, LaurieWilliams, and Chris Parnin. 2015.
Synthesizing Continuous Deployment Practices Used in Software Development.
In 2015 Agile Conference. 1–10. doi:10.1109/Agile.2015.12

[61] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Security practices in
DevOps. In Proceedings of the Symposium and Bootcamp on the Science of Security.
ACM, 109–111. doi:10.1145/2898375.2898383

[62] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Software security in
DevOps: synthesizing practitioners’ perceptions and practices. In Proceedings of
the International Workshop on Continuous Software Evolution and Delivery. ACM,
70–76. doi:10.1145/2896941.2896946

[63] Jimmy Ray. 2024. Policy as Code (1st ed.). O’Reilly Media.
[64] Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2023. Leveraging

Practitioners’ Feedback to Improve a Security Linter. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering. ACM,
Article 66, 12 pages. doi:10.1145/3551349.3560419

[65] Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha Tiihonen,
and Tomi Männistö. 2016. DevOps adoption benefits and challenges in practice:
A case study. In Product-Focused Software Process Improvement: 17th International
Conference, PROFES 2016. Springer, 590–597.

[66] Nuno Saavedra and João F. Ferreira. 2023. GLITCH: Automated Polyglot Security
Smell Detection in Infrastructure as Code. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. ACM, Article 47,
12 pages. doi:10.1145/3551349.3556945

[67] Nuno Saavedra, João Gonçalves, Miguel Henriques, João F. Ferreira, and Alexan-
dra Mendes. 2023. Polyglot code smell detection for infrastructure as code with
GLITCH. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2042–2045.

[68] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[69] J. Schwarz, A. Steffens, and H. Lichter. 2018. Code Smells in Infrastructure as

Code. In 2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). 220–228. doi:10.1109/QUATIC.2018.00040

[70] Rian Shambaugh, AaronWeiss, and Arjun Guha. 2016. Rehearsal: A Configuration
Verification Tool for Puppet. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 416–430. doi:10.
1145/2908080.2908083

[71] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference on
Mining Software Repositories. ACM, 189–200. doi:10.1145/2901739.2901761

[72] Parvaneh Shayegh, Vijayanta Jain, Amin Rabinia, and Sepideh Ghanavati.
2019. Automated approach to improve iot privacy policies. arXiv preprint
arXiv:1910.04133 (2019).

[73] Rocky Slavin, XiaoyinWang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. 2016. Toward a framework
for detecting privacy policy violations in android application code. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 25–36. doi:10.
1145/2884781.2884855

[74] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. Automated
Infrastructure as Code Program Testing. IEEE Trans. Softw. Eng. 50, 6 (June 2024),
1585–1599. doi:10.1109/TSE.2024.3393070

[75] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. The PIPr
Dataset of Public Infrastructure as Code Programs. In Proceedings of the 21st
International Conference on Mining Software Repositories. ACM, 498–503. doi:10.
1145/3643991.3644888

[76] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Prac-
tical Fault Detection in Puppet Programs. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ACM, 26–37. doi:10.1145/
3377811.3380384

[77] Styra, Inc. 2023. The State of Policy as Code Report: Insights as Organizations Scale
Authorization Policies. https://www.styra.com/resources/reports/policy-as-code/

[78] Angela Sweeney, Kathryn E Greenwood, Sally Williams, Til Wykes, and Diana S
Rose. 2013. Hearing the voices of service user researchers in collaborative
qualitative data analysis: the case for multiple coding. Health Expectations 16, 4
(2013), e89–e99.

[79] António Trigo, João Varajão, and Leandro Sousa. 2022. DevOps adoption: Insights
from a large European Telco. Cogent Engineering 9, 1 (2022), 2083474.

[80] Eduard van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. 2018.
How good is your puppet? An empirically defined and validated quality model for
puppet. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 164–174. doi:10.1109/SANER.2018.8330206

[81] Alexandre Verdet, Mohammad Hamdaqa, Leuson Da Silva, and Foutse Khomh.
2025. Assessing the adoption of security policies by developers in terraform
across different cloud providers. Empirical Software Engineering 30, 3 (2025), 74.

[82] Denis Verdon. 2006. Security policies and the software developer. IEEE Security
& Privacy 4, 4 (2006), 42–49.

[83] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,
and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input data
for android applications. In Proceedings of the 40th International Conference on
Software Engineering. 37–47.

[84] Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang, and
Guangdong Bai. 2022. Scrutinizing privacy policy compliance of virtual personal
assistant apps. In Proceedings of the 37th IEEE/ACM international conference on
automated software engineering. 1–13.

[85] Yue Zhang, Muktadir Rahman, Fan Wu, and Akond Rahman. 2023. Quality
Assurance for Infrastructure Orchestrators: Emerging Results from Ansible. In
2023 IEEE 20th International Conference on Software Architecture Companion
(ICSA-C). 1–3. doi:10.1109/ICSA-C57050.2023.00073

[86] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash Pro:
Automating Privacy Policy Generation for Mobile Apps.. In 28th Annual Network
and Distributed System Security Symposium, NDSS. 18.

[87] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi
Wang, Joel Reidenberg, N Cameron Russell, and Norman Sadeh. 2019. Maps:
Scaling privacy compliance analysis to a million apps. Proceedings on Privacy
Enhancing Technologies (2019).

https://doi.org/10.1002/smr.2480
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3579639
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1016/j.infsof.2019.04.013
https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1145/2898375.2898383
https://doi.org/10.1145/2896941.2896946
https://doi.org/10.1145/3551349.3560419
https://doi.org/10.1145/3551349.3556945
https://doi.org/10.1109/QUATIC.2018.00040
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2884781.2884855
https://doi.org/10.1145/2884781.2884855
https://doi.org/10.1109/TSE.2024.3393070
https://doi.org/10.1145/3643991.3644888
https://doi.org/10.1145/3643991.3644888
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1145/3377811.3380384
https://www.styra.com/resources/reports/policy-as-code/
https://doi.org/10.1109/SANER.2018.8330206
https://doi.org/10.1109/ICSA-C57050.2023.00073

	Abstract
	1 Introduction
	2 Policy as Code: An Example
	3 Dataset Construction
	3.1 PaC Tool Identification
	3.2 Repository Collection and Filtering

	4 Empirical Study
	4.1 RQ1 (Adoption): When is PaC introduced and enforced?
	4.2 RQ2 (Purpose): What types of policies are implemented using PaC?
	4.3 RQ3 (Maintenance): How are PaC files maintained?

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

