
Reactive Lenses

Ingo Maier
EPFL

ingo.maier@epfl.ch

Abstract
Functional Reactive Programming (FRP) is a powerful
paradigm for writing reactive applications declaratively. Ex-
isting FRP implementations are restricted to one-way data
flow, forcing programmers to use workarounds in order to
implement multi-way data flow, which is common in some
domains, such as user interface programming. We show how
lenses, originally an abstraction to address the view-update
problem in databases, are a natural fit for FRP and can be in-
tegrated with time-varying values (aka behaviors or signals).
We present a very simple and efficient two-way propagation
algorithm for asymmetric lenses, which does not affect the
propagation mechanism for one-way data dependencies.

1. Introduction
Functional Reactive Programming (FRP) [2, 3, 5, 11] is a
powerful paradigm for writing reactive applications declara-
tively. A central abstraction in FRP is that of a time-varying
value, or signal1. In our FRP implementation for the Scala
programming language, Scala.React, there are two differ-
ent kinds of signals: variable signals and expression signals.
A signal holding values of type A has base trait Signal[A].
Given two integer signals a and b of type Signal[Int], we
can create an expression signal of the sum of a’s and b’s
values that automatically changes whenever a or b change
values as follows:

val sum = Signal { a() + b() }

Expression signals are restricted to one-way data flow: the
signal’s value is a function of the value of its dependencies.
Consider a simple unit converter as shown in Figure 1. The

Figure 1: The user interface of a unit converter.

user can edit either of the two text fields and the other will
change accordingly. This two-way data dependency cannot
be expressed in a functional reactive way.

1 Signals are sometimes called behaviors [5, 11].

Variable signals are signals that do not have depen-
dencies, but can be edited explicitly. They have base type
Var[A] which is a subtype of Signal[A] and adds an update

method to mutate the variable explicitly. One use case for
variable signals is at the boundary of an FRP wrapper
around a callback-driven framework. Another use case is
as a workaround for problems that cannot be addressed in a
functional reactive way as, for example, in the unit converter.
Instead of using expression signals, a programmer can im-
plement custom event logic in callbacks that take care of
updating variable signals explicitly, for example, to imple-
ment two-way data flow common in user interface program-
ming. There are two problems with implementing two-way
data flow in callbacks, however: it is less declarative and
implementing change propagation is cumbersome because
of cyclic dependencies (it is even more difficult if glitches
are to be avoided). A more declarative approach would be to
connect two variable signals so one is the function of another
and vice versa. There are two challenges in that. First, we
have to make sure that the two functions match, and there
is an existing abstraction for that: lenses [1, 7–9]. Second,
we have to integrate them into our FRP system. The second
problem is two-fold: the programming interface should in-
tegrate with that of FRP and we have to extend the efficient
one-way propagation mechanism of our FRP implementa-
tion with a two-way mechanism. This work addresses these
two challenges.

1.1 Contributions
We introduce the concept of asymmetric reactive lenses
to integrate two-way data-flow into Scala.React. Reactive
lenses extend the functional reactive programming style of
creating dependency nodes together with their dependencies
to multi-way data flow. Our contributions are as follows:

• We show how to integrate lenses into a one-directional
data flow evaluation model such as Scala.React. We
present a mechanism to separate multi-way from one-
way dependencies based on the types of signals. This
type-based separation allows us to avoid runtime detec-
tion of data-flow cycles and its associated performance
penalty in previous work [13].



• Asymmetric reactive lenses are not only asymmetric be-
cause they distinguish between a model and a view [8],
but also because they let one of the two variables they
connect depend on other time-varying values. In other
words, they seamlessly integrate with the one-way data-
flow model of the host FRP system Scala.React.

• We show how our approach leads to a simple and efficient
propagation mechanism.

2. Background
2.1 Scala.React
The expression in the curly braces of the sum signal above is
a common Scala closure without parameters. Function call
syntax x() for any x is rewritten by the Scala compiler to
method call x.apply(). The apply method defined in trait
Signal does all dependency management. Since Scala.React
is a library, it does not depend on domain specific compile-
time magic. Dependencies are instead tracked during the
evaluation of signals. When the sum signal from above is
evaluated, it puts a reference to itself onto a hidden depen-
dency stack, which is read by method Signal.apply in order
to register sum as a dependent of a and b. As in FrTime, for-
ward references from dependencies to dependents are stored
in weak references. Backward references in expression sig-
nals are captured implicitly in the closure argument of a sig-
nal constructor and are therefore strong. Consequently, de-
pendencies cannot vanish spuriously and do not prevent de-
pendents from being garbage collected.

Propagation in Scala.React is generally push-based [4]
using topologically sorted dependencies, similar to FrTime,
Flapjax or Amulet [2, 11, 13]. Signals2 can be evaluated
strictly, i.e., whenever a dependency has changed, or lazily,
i.e., not before their value is needed. For this, we use a
tick-tock propagation model. A tick notifies a node in the
dependency graph to be invalidated, a tock to be evaluated.
Strict signals will request to receive a tock when ticked, lazy
signals will never receive a tock but will be evaluated when
queried, for example, via method Signal.apply. A node in
the dependency graph is represented by an instance of a
trait Node, which exposes the tick method, and an instance
of trait Master, which exposes the tock method. Expression
signals as the sum signal above, are both a node and a master
(using Scala mixin composition). A master, however, may
contain multiple nodes and maintain dependencies between
them, independently from the dependency graph maintained
by the main framework. This master-node separation is used
in our work on incremental collections [10]. See Section 5
for how we can also use it to embed two-way propagation
for subgraphs into Scala.React.

2 Or more generally nodes in the dependency graph. Scala.React supports
further abstractions besides signals.

2.2 Lenses
Lenses are an abstraction for well-behaved bidirectional
transformations and have been studied as a solution to the
view-update problem of databases and related problems.
They were first introduced by [6] and have been studied
in many variations since [1, 7? –9].

A lens l is a pair of functions, each mapping into one of
two directions in order to bidirectionally relate two values:

l.view : M → V

l.model : M × V →M

We refer to M as the set of models and V as the set of
views and write l ∈ M ↔ V . The view function simply
obtains a view from a model. The model function integrates
changes from the view back into the model. Since a view
may abstract from the model and not persist all necessary
information to obtain a model from the view alone, the
model function also takes the model as an argument. One
example is an address book manager that displays the name
of a person from a larger record that also includes address,
birthday, etc. The view would be just the name. Once the
name changes, we also need the original model, i.e., person
record in order to obtain a correctly updated person record.

The functions of a lens must fulfill certain properties,
called lens laws, such that a lens is sensical and such that
the composition of lenses can preserve these properties:

l.model(l.view(m),m) = m (VIEWMODEL)

l.view(l.model(v,m)) = v (MODELVIEW)

They state that roundtrips trough the lens do not lead
to surprising results. Property VIEWMODEL states that get-
ting the model from an unchanged view should give an un-
changed model. Property MODELVIEW states that integrat-
ing changes from the view into the model should not lose
any information and we should therefore be able to obtain
the same view from the model.

Any two lenses l1 ∈ A ↔ B and l2 ∈ B ↔ C can be
concatenated to a lens l = l1 ◦ l2 ∈ A ↔ C that applies its
argument lenses one after each other in both directions:

l.view(m) = l2.view(l1.view(m))

l.model(v,m) = l1.model(l2.model(v, l1.view(m)),m)

It can be shown that l obeys the lens laws from above.
This makes lenses compositional and correct by construc-
tion. It enables us to reason about the effects of a lens ap-
plication locally. They also nicely fit into the mostly func-
tional reactive programming model of Scala.React, as we
will demonstrate now.

3. Simple lenses in Scala
In Scala, we can naturally represent a lens by an instance of
a trait Lens[M,V] with two abstract methods:



trait Lens[M, V] {
def toView(m: M): V
def toModel(v: V, m: M): M

def compose[W](lens: Lens[V,W]): Lens[M,W]
}

Method compose concatenates the enclosing lens and argu-
ment lens in the way defined above. The toModel function of
some lenses does not depend on the original model. In that
case, the lens is called bijective because it degenerates to a
bijective function due to the lens laws above. A bijective lens
is an instance of the following trait:

trait BijectiveLens[M, V] extends Lens[M, V] {
def toView(m: M): V
def toModel(v: V): M
def toModel(v: V, m: M): M = toModel(v)

def inverse: BijectiveLens[V, M]
def compose[W]

(that: BijectiveLens[V, W]): BijectiveLens[M, W]
}

Bijective lenses can be trivially inverted by means of inverse,
swapping the toView and toModel functions. The concatena-
tion of two bijective lenses is bijective again. Therefore, trait
BijectiveLens overloads method compose. An example of a
bijective lens is the addition lens defined as follows:

class AddLens[A](k: A)(implicit num: Numeric[A])
extends BijectiveLens[A, A] {
def toView(m: A): A = num.plus(m, k)
def toModel(v: A): A = num.minus(v, k)

}

It adds a constant k towards the view and subtracts it to-
wards the model. It expects an implicit argument num of type
Numeric[A], which models a type class [12] and provides
arithmetic operators for operands of type A. Type Numeric[A]
does not explicitly require that x.plus(k).minus(k) == x for
all x and k. Even though this is a reasonable assumption,
whether an AddLens instance obeys the lens laws really de-
pends on the implementation of the given Numeric argument.
In this specific case, we are therefore trading provably cor-
rect lenses for a practical integration with existing abstrac-
tions from the Scala standard library. Also note that class
AddLens defines a set of lenses, one for each argument pair k
and num.

Many mathematical properties of arithmetic operations
do not hold for floating point representations. Sometimes,
it makes sense to try and "fix" some of these properties. A
multiplication lens, for example, can be defined as follows:

class MulLens[A](k: A)(implicit frac: Fractional[A])
extends Lens[A, A] {
if(k == 0) throw new IllegalArgumentException(

"Illegal lens: mul/div by zero")

def toView(m: A): A = frac.times(m, k)

def toModel(v: A, m: A): A = {
val res = frac.div(v, k)
if (frac.equiv(res, m)) m
else res

}
}

It expects an implicit parameter of type Fractional[A],
which defines multiplication and division in methods times
and div. The constructor throws an exception if the coeffi-
cient is zero, since in that case there is no way to fulfill the
lens laws. The toModel method is a little peculiar. The equiv
method from trait Fractional checks for equality. If it is im-
plemented to check for equality plus/minus an epsilon, the
lens will remove rounding errors during division by taking
the model if the new view and model are close enough.

We can similarly define many other lenses for arithmetic
operations. Other examples are lenses for projecting out in-
dividual components from tuples or case classes or more
structured data. In practice, we can also define composition
operations other than concatenation. Foster et. al [1], for ex-
ample, define lens operators that lead to a bidirectional lan-
guage for un-/pickling string data that looks not unlike regu-
lar expressions. Concatenation, however, is the fundamental
composition operation that allows us to create composable
multi-way dependencies as we will show now.

4. Reactive Lenses
We can create a variable which serves as the model for a lens
with the following function:

def LVar[A](init: A): LVar[A]

Class LVar is a subclass of Var and therefore also Signal and
defines method applyLens to create a new lens variable that
is connected to the original one through the given lens:

def applyLens[B](lens: Lens[A, B]): LVar[B]

The resulting lens variable will be a view of the enclosing
model variable. We define appropriate implicit conversions
to make lens application syntactically convenient. For exam-
ple, for the multiplication lens above, we define the follow-
ing implicit conversion and wrapper class:

implicit def toFracLVar[A : Fractional]
(lvar: LVar[A]) =

new FractionalLVar(lvar)

class FractionalLVar[A: Fractional](lvar: LVar[A]) {
def *(k: A) = lvar.applyLens(new MulLens(k))

}

With this in scope, a lens variable of type LVar[A] can be
implicitly converted to an instance of FractionalLVar[A], if
there is a Fractional instance for type A in scope as well.
We can define a similar conversion for a Numeric instance
and operators +, - and unary - (negation). The Scala stan-
dard library provides appropriate instances for all numeric
primitive types such as Int, Double, etc.



With the above implicit conversion in scope, the bidirec-
tional event logic of a unit converter can now be written as
follows:

val yards = LVar(1.0)
val metres = yards * 0.9144

Since class LVar does not define a method with name *,
the compiler looks for an implicit conversion from an LVar

instance to one that defines an appropriate * method. It finds
toFractionalVar and inserts an application in the last line as
follows:

val metres = toFractionalLVar(yards) * 0.9144

Using a subtraction lens SubtractLens – defined similarly
to AddLens above – with the following additional implicit
conversion

implicit def toNumLVar[A : Numeric](lvar: LVar[A]) =
new NumericLVar(lvar)

class NumericLVar[A: Numeric](lvar: LVar[A]) {
def -(k: A) = lvar.applyLens(new SubtractLens(k))
...

}

a two-way conversion between Celsius and Fahrenheit is
straightforward as well:

val celsius = LVar(20.0)
val fahrenheit = celsius * 1.8 - 32

The compiler inserts implicit conversions in the last line as
follows:

val fahrenheit =
toNumLVar(toFractionalLVar(celsius) * 1.8) - 32

4.1 Asymmetric signal dependencies
In a more refined unit converter as the one shown in Figure 2,
the user can not only change the magnitudes but also the
associated units. In this case, the data flow becomes more
complex. When the user changes the value in the left text
field, the value in the right text field is changed according to
the selected units in the combo boxes at the bottom. When
the user changes the value in the right text box, the value in
the left text box is changed according to the selected units.
This is what we have modeled so far. Additionally, there is
the following data flow.

Figure 2: The user interface of an extended unit converter.

When the user changes the unit in either of the combo
boxes at the bottom, the value of the right text box changes

according to the selected units. Moreover, when the user
chooses a different set of units to select from in the top
combo box, the bottom unit boxes change, again causing the
right text box to synchronize with the left field, using the new
units. Therefore, whenever a change occurs that may affect
the values in both text boxes, the current value of the left text
box remains unchanged and only the value in the right text
box is changed. We have examined several unit converters
and all expose precisely this fixed, asymmetric behavior,
even though there are viable alternatives. For example, the
converter could always convert from the last edited text
box and change the other box. We believe the behavior we
found is popular for two reasons. It is relatively simple to
implement since it does not involve state management for
which box has last recently changed. It also seems to be the
least surprising and therefore most intuitive solution for the
user.

We can extend the built-in asymmetry in our lenses stem-
ming from the model-view distinction, and integrate them
with the one-way propagation model of the host framework.
For each arithmetic lens we have defined above and which
takes a constant parameter, we define a corresponding signal
lens, that takes a signal instead of a constant parameter. The
addition lens, for example, becomes:

class AddSigLens[A](k: Signal[A])
(implicit num: Numeric[A])
extends Lens[A, A] {

def toView(m: A): A = num.plus(m, k())
def toModel(v: A, m: A): A = num.minus(v, k.now)

}

Note that we apply the signal towards the view, and take the
current value without applying the signal towards the model.
This means the signal is applied only when the lens’s view
variable is evaluated and not for its model. Therefore, only
the view variable establishes a dependency with parameter
signal k. On a change in k, only the view is changed and
subsequently all variables that are views of that view and so
on. In order to keep this unidirectional signal dependency, it
is very important that all signal lenses apply signals only in
the view direction, since it allows for an efficient implemen-
tation as we will show below.

Conceptually, a signal lens defines a set of lenses, one
lens for each value combination in its parameter signals.
Each lens in this set must obey the lens laws. A value change
in any parameter signal conceptually replaces the lens for the
previous current values of the lens’s parameter signals. This
gives rise to a flattening operation, which flattens a signal of
a lens to a lens:

implicit def flattenSignalOfLens[M, V]
(sig: Signal[Lens[M, V]]) =

new Lens[M, V] {
def toView(m: M): V = sig().toView(m)
def toModel(v: V, m: M) = sig.now.toModel(v, m)

}



This implicit conversion creates a lens that always has the
behavior of the current lens in the given signal. If all lenses
in the given signal of lenses obey the lens laws, the resulting
lens therefore also obeys the lens laws. We also overload
the corresponding convenience methods in wrapper classes
such as FractionalLVar with versions that take a signal as a
parameter.

We can now implement the data flow in the extended unit
converter as follows.

class UnitOfMeasure(name: String, factor: Double)
val unit1, unit2: Signal[UnitOfMeasure]

val factor = Signal {
unit1().factor / unit2().factor

}
val magnitude1: LVar[Double] = LVar(1.0)
val magnitude2: LVar[Double] = magnitude1 * factor

We first define a class that represents units of measures
in terms of their name and factors which define the unit
conversion rate to the corresponding SI base unit. We obtain
the selected units from the unit combo boxes via two signals
unit1 and unit2. The conversion rate between the two units
is a quotient from each unit’s factor. Since the units are
signals, the resulting factor is a signal as well, which we use
as the conversion coefficient to create the view variable in
the last line.

In practice, some conversions such as the Fahrenheit/Cel-
sius conversion above are more complex than simple prod-
ucts and quotients. To reflect this, we can replace the factor
parameter for the unit of measure class by two functions
mapping to and from the corresponding SI base unit – which
is simply another lens. The example becomes:

class UnitOfMeasure(name: String,
toSIBase: BijectiveLens[Double, Double])

val unit1, unit2: Signal[UnitOfMeasure]

val lensSig: Signal[Lens[Double, Double]] = Signal {
unit1().toSIBase compose unit2().toSIBase.inverse

}
val magnitude1 = LVar(1.0)
val magnitude2 = mag1 applyLens lensSig

Class UnitOfMeasure now stores a bijective lens to map to
and from the SI base unit. The interesting bit is the signal
expression, which composes the conversion lenses, with the
second one reversed, since the left lens maps towards the SI
base unit and the right away from the SI base unit. All other
lines remain unchanged. The compiler, however, inserts the
above flattening conversion in the last line to convert the
lens signal of a lens to a lens.

We can take this example even further. The toSIBase lens
can in fact be a signal lens, i.e., the conversion rate can
change. This can be useful if the unit converter supplies edit-
ing facilities to the user to add and modify conversion rates.
Another example would be a currency converter continu-

ously pulling time-varying conversion rates from a server.
However, we have to pay attention to the inversed lens in the
above example. The inverse operation of a bijective signal
lens needs to swap the Signal.apply and Signal.now calls in
methods toModel and toView. However, this cannot be done
automatically in general, so the definition of a bijective sig-
nal lens needs to supply four methods. The AddSigLens from
above is actually defined as follows:

class AddSigLens[A](k: Signal[A])
(implicit num: Numeric[A])

extends BijectiveSigLens[A, A] {
def toView(m: A): A = num.plus(m, k())
def toViewNow(m: A): A = num.plus(m, k.now)
def toModel(v: A): A = num.minus(v, k.now)
def toModelSig(v: A): A = num.minus(v, k())

}

where BijectiveSigLens is defined as

abstract class BijectiveSigLens[M, V]
extends BijectiveLens[M, V] {

def toViewNow(m: M): V
def toModelSig(v: V): M

override def inverse: BijectiveLens[V, M] =
new InvertedSigLens(this)

}

class InvertedSigLens[M, V]
(inv: BijectiveSigLens[V, M])
extends BijectiveSigLens[M, V] {

def toView(m: M): V = inv.toModelSig(m)
def toViewNow(m: M): V = inv.toModel(m)
def toModel(v: V): M = inv.toViewNow(v)
def toModelSig(v: V): M = inv.toViewNow(v)

}

Note how class InvertedSigLens makes sure that the signal
is applied only towards the view. Non-bijective signal lenses
are not reversible and are therefore not affected by the above
consideration.

5. Lens clusters
The programming interface of lens variables leads to a sep-
aration of lens clusters each with tree-shaped lens depen-
dencies. We call a lens variable created with constructor
LVar(init) the root of a lens cluster. A variable created
like this implicitly creates a new cluster. Any other lens in
the same cluster is created from a single other lens variable
through a lens application with LVar.applyLens. Lens depen-
dencies therefore have a tree shape as depicted in Figure 3.
Every lens variable, except the root, has precisely one model
and can be the model for multiple views. A lens cluster is
represented by a master in the implementation. Lens vari-
ables can depend on other lenses from the same cluster as
well as signals from other masters if the lens variables were
created with a signal lens. Other signals can depend on lens
variables, since lens variables are also signals. The root of a



lens cluster cannot depend on other signals, since it is created
with the LVar constructor. Lens dependencies are maintained
by their master, dependencies to signals in other masters are
one-way and maintained by the reactive framework.

R

...

... ...

...

...

Figure 3: The tree shape of a lens cluster with root R. Lenses
are represented as parallel edges pointing into opposite di-
rections. At the bottom outside of the cluster are signals that
are applied by signal lenses. At the top are signals that de-
pend on lens variables, e.g., via common signal expressions.

5.1 Lens cycles
There is no way to connect two existing lens variables
through a lens – neither from the same nor from different
lens clusters. Therefore, we cannot create a lens cycle as in
Figure 4a. This results in a programming style very similar
to FRP, but with multi-way data flow. Lens variables in the
same cluster are all on the same topological level (main-
tained by the master) in the one-way dependency graph of
Scala.React. This constraint makes the system reject certain
dependency structures at runtime. Consider the following
example:

val a = LVar(1)
val b = Signal { 2 * a() }
val c = a + b

This creates a signal b from lens variable a and uses it as a
lens parameter in the last line. This leads to the dependency
graph in Figure 4b and will throw an exception at runtime
since it cannot be topologically sorted. Variable b is one level
above a in the one-way dependency graph. Since c is in the
same master as a and therefore restricted to be on the same
level as a, it will throw an exception.

(a) Impossible to create.

A

CB

-B
+B

A*2

(b) A cyclic lens C = A + B
where B = 2 ∗ A. Throws ex-
ception at runtime.

Figure 4: Example of the two different kinds of lens cycles.

This behavior allows for an efficient implementation of
propagation in a lens cluster and keeps the system free from
propagation cycles. Consider the hypothetical example in
Figure 5, which shows the evaluation steps that would be
necessary to update a cyclic lens graph. Initially, the graph
is in a consistent state. Once lens variable C gets updated to
4, the lens master needs to propagate this change through the
graph, which updates nodes and eventually the result of the
lens functions, since they not only depend on the lens model
at the bottom but also on the node on the upper left. In order
to keep everything consistent, the node that has been edited
to 4 eventually needs to change its value again, this time to
6, closing a propagation cycle.

-4
+4

1

32

-2
+2

1*2

1

42

-2
+2

1*2

2

42

-2
+2

2*2

2

44

2*2

2

64

-4
+4

2*2

Figure 5: Sample evaluation of a lens cycle, where the lens
view needs to be evaluated twice. Last recently updated
nodes are highlighted, invalidated nodes are dashed.

5.2 Lens order
The asymmetry of reactive lenses and the tree-shaped depen-
dency structure in a lens cluster impose an order on lenses
and lens variables. We use this order for three different pur-
poses: propagation order, disambiguating simultaneous ed-
its, and memory management.

5.2.1 Propagation order
We have seen above that a lens variable that is not the root
of its cluster can depend not only on another lens but also
on external signals from other masters. The lens propagation
mechanism has to distinguish between invalidations coming
from another lens variable and coming from an external
signal. If a lens variable is ticked by an external signal, it
propagates the change away from the root. This reflects the
asymmetry of data flow as in the unit converter from above.
If a lens variable is notified of a change in another lens
variable in the same cluster, we have to distinguish between
two cases. If the other lens variable is closer to the root,
the change is propagated away from the root. If the other
lens variable is further away from the root, the change is
propagated towards the root. Once such a change reaches
the root, it is propagated away from the root to reach all
other variables, ignoring the path from which the change
originally came. Note that for simplicity, lens propagation
is always strict.



Figure 6 shows a propagation example for a lens cluster.
The root is initialized with a value of 0. Every other lens vari-
able is created from another lens variable using the AddLens

from above with a constant parameter of 1. Once the up-
per right variable receives an explicit update, it changes the
variable’s value and invalidates all lens variables it is con-
nected to. In this case it has a single model variable. Once
this model variable updates itself, it also invalidates all vari-
ables it is connected to except the one it just has been notified
by. This process proceeds along the path towards the root. In
the example, this leaves two nodes invalidated once the root
has been updated. The propagation process continues from
these invalidated nodes and away from the root.

We somehow have to keep track of which node has been
invalidated and which has been updated already. Since we
don’t have propagation cycles as in Figure 5, a lens variable
is updated only once per propagation turn and can simply
maintain a flag of whether it has been validated in the cur-
rent turn or not. Since lens dependencies have a tree shape,
we can keep track of invalid nodes and the direction of prop-
agation through lens levels and a priority queue similar to
the approach in the one-way propagation of expression sig-
nals. Note that the lens levels are different from the master
levels and are equal to the distance of a variable to the root
in its lens cluster.

0

11

22

...

...

0

11

52

...

...

0

41

52

...

...

3

41

52

...

...

3

44

55

...

...

...

+1

+1

-1+1

-1

-1

+1 -1

Figure 6: Sample evaluation of a lens cluster from an update
arriving at a node different from the root. Each lens adds 1
for each variable one step further away from the root. Most
recently updated nodes are highlighted, invalidated nodes
are dashed.

5.2.2 Simultaneous updates
Since LVars are also Vars and can be edited explicitly, we
have to prepare for the fact that there might be conflicting
updates to different lenses in the same cluster and propa-
gation turn. We disambiguate between such edits by taking
the one that affects the node closest to the root and drop-
ping all other edits. If two edits affect two different nodes
that have the same distance to the root, we call a method
conflictingLensEdit that can be overridden by clients to

resolve the conflict gracefully. By default it throws an ex-
ception.

5.2.3 Memory management
Due to the asynchronous nature and the way we create lens
variables, the issue of memory management for lenses is not
much different than for the one-way dependency graph of
expression signals as described in the introduction. Node
dependencies away from the root are all weak references,
dependencies towards the root are strong. This is similar
to an expression signal which refers to all its dependencies
strongly, which in turn refer to the expression signal weakly.
Nothing in the lens framework persists lens variables perma-
nently. Once an application releases all strong references to
a lens variable v and all of v′s dependencies away from the
lens root, the lens subtree with variable v at the root can be
garbage collected.

References
[1] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,

Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: re-
sourceful lenses for string data. In POPL, 2008.

[2] Gregory H. Cooper. Integrating Dataflow Evaluation into a
Practical Higher-Order Call-by-Value Language. PhD thesis,
Brown University, 2008.

[3] Antony Courtney, Henrik Nilsson, and John Peterson. The
Yampa arcade. In Haskell, 2003.

[4] Conal Elliott. Push-pull functional reactive programming. In
Haskell, 2009.

[5] Conal Elliott and Paul Hudak. Functional reactive animation.
In ICFP, 1997.

[6] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for
bidirectional tree transformations: A linguistic approach to
the view-update problem. ACM Trans. Program. Lang. Syst.,
29(3):17, 2007.

[7] J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C.
Pierce. Quotient lenses. In ICFP, 2008.

[8] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Sym-
metric lenses. In POPL, 2011.

[9] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Edit
lenses. In POPL, 2012.

[10] Ingo Maier and Martin Odersky. Higher-order reactive pro-
gramming with incremental lists. In ECOOP. 2013.

[11] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. Flapjax: A programming language for ajax
applications. OOPSLA, 2009.

[12] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky.
Type classes as objects and implicits. In OOPSLA, 2010.

[13] Brad Vander Zanden, Brad A. Myers, Dario A. Giuse, and Pe-
dro Szekely. Integrating pointer variables into one-way con-
straint models. ACM Trans. Comput.-Hum. Interact., 1994.


