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ABSTRACT
Céu is a Esterel-based reactive language that targets con-
strained embedded platforms. Relying on a deterministic se-
mantics, it provides safe shared-memory concurrency among
lines of execution. Céu introduces a stack-based execution
policy for internal events which enables advanced control
mechanisms considering the context of embedded systems,
such as exception handling and a limited form of coroutines.
The conjunction of shared-memory concurrency with inter-
nal events allows programs to express dependency among
variables reliably, reconciling the control and dataflow reac-
tive styles in a single language.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Design, Languages

Keywords
Concurrency, Dataflow, Determinism, Embedded Systems,
Esterel, Synchronous, Reactivity

1. INTRODUCTION
An established alternative to C in the field of embedded
systems is the family of reactive synchronous languages [3].
Two major styles of synchronous languages have evolved: in
the control–imperative style, programs are structured with
control flow primitives, such as parallelism, repetition, and
preemption; in the dataflow–declarative style, programs can
be seen as graphs of values, in which a change to a value is
propagated through its dependencies without explicit pro-
gramming. Among the control-based languages, Esterel [6]
is probably the most famous and has influenced a number of
other embedded languages [9, 10, 1], offering a reliable and
high-level set of control primitives.

We believe that embedded-system programming can bene-
fit from a new language that reconciles both reactive syn-
chronous styles, while preserving typical C features that pro-
grammers are familiarized with, such as shared memory con-
currency. Céu [15] is a language targeting embedded sys-
tems based on Esterel with some differences that enable new
control functionalities, which are the focus of this work:

• A deterministic execution semantics for memory oper-
ations allows programs to safely share memory.
• A hierarchical abortion for lines of execution enables

dataflow programming.
• A stack-based execution policy for internal events pro-

vides advanced control mechanisms, such as exception
handling and a limited form of coroutines.

We discuss how Céu achieves a precise control over reactions
to the environment and present a formal semantics of the
language to highlight its fundamental differences to Esterel.

Céu shares limitations with Esterel and synchronous lan-
guages in general: computations that run in unbounded
time (e.g., cryptography, image processing) do not fit the
zero-delay hypothesis [14], and cannot be elegantly imple-
mented. Nonetheless, previous work focusing on Wireless
Sensor Networks [15] shows that the expressiveness of Céu
is sufficient for embedded applications, with a reduction in
source code size around 30% in comparison to event-driven
code in C. Céu has a small memory footprint, using less
than 5 Kbytes of ROM and 100 bytes of RAM for a pro-
gram with sixteen (simple) flows of execution.

The rest of the paper is organized as follows: Section 2 gives
an overview of Céu, exposing its fundamental differences to
Esterel. Section 3 shows how to build some advanced control
mechanisms using internal events. Section 4 presents a for-
mal semantics for the control primitives of Céu. Section 5
discusses other synchronous languages targeting embedded
systems and concludes the paper.

2. OVERVIEW OF CÉU
Céu is a synchronous reactive language based on Esterel [6]
with support for multiple concurrent lines of execution known
as trails. By reactive, we mean that programs are stimulated
by the environment through input events that are broadcast
to all awaiting trails. By synchronous, we mean that all
trails at any given time are either reacting to the current
event or are awaiting another event; in other words, trails



// ESTEREL
loop

abort
[

await A
‖

await B
];
emit O

when R
end

1 // CEU
2 loop do
3 par/or do
4 par/and do
5 await A;
6 with
7 await B;
8 end
9 emit O;

10 with
11 await R;
12 end
13 end

Figure 1: The same specification in Esterel and Céu.

are never reacting to different events.

Figure 1 shows the implementations in Esterel and Céu side-
by-side for the following control specification [5]: “Emit an
output O as soon as two inputs A and B have occurred. Re-
set this behavior each time the input R occurs”. The first
phrase of the specification is translated almost identically
in the two languages (lines 4-9): await and terminate only
when both events occur (the ‘‖’ and par/and constructs are
equivalent). For the second phrase, the reset behavior, the
Esterel version uses a abort-when, which serves the same pur-
pose of Céu’s par/or: the occurrence of event R aborts the
awaiting statements in parallel and restarts the loop.

Céu (like Esterel) has a strong imperative flavor, with ex-
plicit control flow through sequences, loops, and also assign-
ments. Being designed for control-intensive applications, it
provides support for concurrent lines of execution and broad-
cast communication through events. Programs advance in
sequence of discrete reactions to external events. Internal
computations within a reaction (e.g. expressions, assign-
ments, and native calls) are considered to take no time in
accordance with the synchronous hypothesis [14]. The await
statements are the only ones that halt a running reaction
and allow a program to advance in this notion of time. To
ensure that reactions run in bounded time and programs
always progress, loops are statically required to contain at
least one await statement in all possible paths [15, 5].

In the sections that follow, we show the three basic differ-
ences between Céu and Esterel: deterministic execution for
operations with side-effects (Section 2.1), hierarchical abor-
tion for lines of execution (Section 2.2), and stack-based ex-
ecution for internal events (Section 2.3). By providing a
precise control for concurrent lines of execution, these dif-
ferences are fundamental to enable advanced mechanisms in
Céu (presented in Section 3).

2.1 External reactions and determinism
In Esterel, a reaction to the environment is composed of si-
multaneous signals, while in Céu, a single event starts a re-
action. The notion of time in Esterel is similar to that of dig-
ital circuits, in which multiple wires (signals) can be queried
for their status (present or absent) on each clock tick. Céu
more closely reflects event-driven programming, in which oc-
curring events are handled sequentially and uninterruptedly
by the program. Note that even with the single-event rule
of Céu, there is still concurrency given that multiple lines
of execution may await and react to the same event.

Another difference between Esterel and Céu regards their
definitions for determinism: Esterel is deterministic with
respect to reactive control: “the same sequence of inputs
always produces the same sequence of outputs” [5]. How-
ever, the execution order for operations with side-effects
within a reaction is non-deterministic: “if there is no con-
trol dependency, as in “call f1() || call f2()”, the order
is unspecified and it would be an error to rely on it” [5].
In Céu, when multiple trails are active at a time, as in
“par/and do _f1() with _f2() end”, they are scheduled in the
order they appear in the program source code (i.e., _f1 exe-
cutes first). This way, Céu is deterministic also with respect
to the order of execution of side effects within a reaction.

On the one hand, enforcing an execution order for concur-
rent operations may seen arbitrary and also precludes true
parallelism. On the other hand, it provides a priority scheme
for trails, and makes shared-memory concurrency possible.
In contrast, Esterel does not support shared memory: “if
a variable is written by some thread, then it can neither be
read nor be written by concurrent threads” [5]. For embedded
development, we believe that deterministic shared-memory
concurrency is beneficial, given the extensive use of memory
mapped ports for I/O and lack of support for real paral-
lelism. Other embedded languages made a similar design
choice [9, 1].

2.2 Thread abortion
The introductory example of Figure 1 illustrates how syn-
chronous languages can abort awaiting lines of execution
(i.e., awaiting A and B) without tweaking them with synchro-
nization primitives. In contrast, traditional (asynchronous)
multi-threaded languages cannot express thread termination
safely [4, 13].

The code fragments of Figure 2 show corner cases for thread
abortion: when the event A occurs, the program behavior
seems ambiguous. For instance, it is not clear in code a in
Esterel if the call to f should execute or not after A, given
that the body and abortion events are the same. For this
reason, Esterel provides weak and strong variations for the
abort statement. With strong abortion (the default), the
body is aborted immediately and the call does not execute.
In Céu, given the deterministic scheduling rules, strong and
weak abortions can be chosen by reordering trails inside a
par/or, e.g., in code b, the second trail is strongly aborted
by the first trail and the call to _f never executes.

Céu also supports par/hor (hierarchical-or) compositions
which schedules both sides before terminating. Therefore,
in code c, both _g and _f (in this order) execute in reaction
to A. Hierarchical traversal is fundamental for dataflow pro-
gramming, ensuring that all running dependencies execute
before they abort each other (to be discussed in Section 3.2).

2.3 Internal events
Esterel makes no semantic distinctions between internal and
external signals, both having only the notion of either pres-
ence or absence during the entire reaction [4]. In Céu,
however, internal events follow a stack-based execution pol-
icy, similar to subroutine calls in typical programming lan-
guages. Figure 3 illustrates the use of internal signals (events)
in Esterel and Céu. For the version in Esterel, given that
there is no control dependency between the calls to f, they



// ESTEREL
abort

await A;
call f();

when A;

// code a

// CEU (or)
par/or do

await A;
with

await A;
_f();

end

// code b

// CEU (hor)
par/hor do

await A;
_g();

with
await A;
_f();

end
// code c

Figure 2: Thread abortion in Esterel and Céu.

// ESTEREL
input A; // external
signal B; // internal
[[

await A;
emit B;
call f("2");

‖
await B;
call f("1");

]]

1 // CEU
2 input void A; // external
3 event void b; // internal
4 par/and do
5 await A;
6 emit b;
7 _f("2");
8 with
9 await b;

10 _f("1");
11 end

Figure 3: Internal signals (events) in Esterel and
Céu.

may execute in any order after A and B (internally emitted).
For the version in Céu, the occurrence of A makes the pro-
gram behave as follows (with the stack contents in italics):

1. 1st trail awakes (line 5), emits b, and pauses.
stack: [1st]

2. 2nd trail awakes (line 9), calls _f(1), and terminates.
stack: [1st]

3. 1st trail (on top of the stack) resumes, calls _f(2), and
terminates.
stack: []

4. Both trails have terminated, so the par/and rejoins, and
the program also terminates;

Internal events bring support for a limited form of subrou-
tines, as depicted in Figure 4. The subroutine inc is defined
as a loop (lines 3-6) that continuously awaits its identifying
event (line 4), incrementing the value passed as reference
(line 5). A trail in parallel (lines 8-11) invokes the subrou-
tine in reaction to event A through an emit (line 10). Given
the stacked execution for internal events, the calling trail
pauses, the subroutine awakes (line 4), runs its body (yield-
ing v=2), loops, and awaits the next “call” (line 4, again).
Only after this sequence that the calling trail resumes and
passes the assertion test.

1 event int∗ inc; // subroutine ‘inc’
2 par/or do
3 loop do // definitions are loops
4 var int∗ p = await inc;
5 ∗p = ∗p + 1;
6 end
7 with
8 var int v = 1;
9 await A;

10 emit inc => &v; // call ‘inc’
11 _assert(v==2); // after return
12 end

Figure 4: Subroutine inc is defined in a loop (lines
3-6), in parallel with the caller (lines 8-11).

On the one hand, this form of subroutines has a signifi-
cant limitation that it cannot express recursive calls: an
emit to itself will always be ignored, given that a running
body cannot be awaiting itself. On the other hand, this
very same limitation brings some important safety proper-
ties to subroutines: first, they are guaranteed to react in
bounded time; second, memory for locals is also bounded,
not requiring runtime stacks. Also, this form of subroutines
can use the other primitives of Céu, such as parallel com-
positions and the await statement. In particular, they await
keeping context information such as locals and the program
counter, just like coroutines [12]. In Section 3.2, we take ad-
vantage of the lack of recursion to properly describe mutual
dependency among trails in parallel.

3. ADVANCED CONTROL MECHANISMS
In this section, we explore the specific control primitives
of Céu (shared memory concurrency, hierarchical aborting
for lines of execution, and stacked execution for internal
events), showing how they enable support for exceptions and
dataflow programming without requiring specific primitives.

3.1 Exception handling
Céu can naturally express different forms of exception mech-
anisms on top of internal events. In the example of Figure 5,
an external entity periodically writes to a file and notifies the
program the number of available characters through event
ENTRY (defined in line 2). The application reacts to every
ENTRY (lines 9-13), invoking the read subroutine (line 11),
and then using the filled buffer (line 12). Because this code
does not handle failures, it is straight to the point and easy
to follow.

Figure 6 defines the read subroutine which performs the ac-
tual low-level _read system call and may fail. The code is
placed in parallel so that it can be invoked by the normal
application flow. The subroutine awaits requests in a loop
(lines 5-10) and may emit exceptions through event excpt
(lines 7-9).

To handle read exceptions, we use an additional trail in Fig-
ure 7 that strongly aborts the normal flow on exceptions
(line 3). For instance, if the application tries to read an
entry and fails, it will behave as follows:

1. Normal flow invokes the read operation (line 11 of Figure 5)
and pauses.
stack: [norm]

2. Read operation awakes (line 6 of Figure 6), throws an ex-
ception (line 8), and pauses.
stack: [norm, read]

3. Exception handler awakes (line 3 of Figure 7) and termi-
nates the par/or, aborting the read call, the normal behav-
ior, and terminating the program.
stack: []

The exception handler (line 3 of Figure 7) can effectively
abort the stacked continuation, avoiding the invalid access
to buf (line 12 of Figure 5).

This mechanism can also support resumption if the excep-
tion handler does not terminate its surrounding par/or (line
3 of Figure 7). For instance, the new handler of Figure 8
catches exceptions in a loop (lines 3-6) and fallbacks to a



1 // DECLARATIONS
2 input int ENTRY;
3 var _FILE∗ f = <...>; // file handler
4 var char[10] buf; // current entry
5 event int read;
6 event void excpt;
7

8 // NORMAL FLOW
9 loop do

10 var int n = await ENTRY;
11 emit read => n; // calls ‘read n chars’
12 _printf("line: %s\n", buf);
13 end

Figure 5: Normal flow to read file entries.

1 <...> // DECLARATIONS (previous code)
2 par/or do
3 <...> // NORMAL FLOW (previous code)
4 with
5 loop do // READ subroutine
6 var int n = await read;
7 if _read(f,buf,n) != n then
8 emit excpt; // throws exception
9 end

10 end
11 end

Figure 6: Low-level read operation is placed in par-
allel with the normal flow.

default string (line 5). The program now behaves as follows
(steps 1-2 are the same):

3. Exception handler awakes (line 4 of Figure 8), assigns a
default string to buf (line 5), and awaits the next exception
(line 4).
stack: [norm, read]

4. Read subroutine resumes (line 8 of Figure 6), and awaits
the next call (line 6).
stack: [norm]

5. Read call resumes (line 11 of Figure 5), and uses buf nor-
mally (line 12), as if no exceptions had occurred.
stack: []

Note that throughout the example, the normal flow of Fig-
ure 5 (lines 9-13) remains unchanged, with all machinery to
handle exceptions around it. Note also that although the
buffer is manipulated by three concurrent trails, the stacked
behavior ensures that it is handled in the right order. With
some syntactic sugar these exception mechanisms could be
exposed in a higher level to developers.

3.2 Dataflow programming
Reactive dataflow programming provides a declarative style
to express dependency relationships among data. Figure 9
shows the dependency graph for the reactive expression E<E+1,
which should always yield true. Céu can express data de-
pendency relying on par/hor compositions and internal events
to address two common subtleties in this context: glitches
and cyclic dependencies [2].

A glitch is a situation in which a dependency graph is up-
dated in an inconsistent order. It is usually avoided by
traversing the graph in topological order [7, 2]. In a glitch-
free implementation, when E changes, e1 should be updated
before b (because b also depends on e1) to avoid yielding
false. The code in the right of the graph implements it in

1 <...> // DECLARATIONS
2 par/or do
3 await excpt; // catches exceptions
4 with
5 <...> // NORMAL FLOW
6 with
7 <...> // READ subroutine (throw exceptions)
8 end

Figure 7: Exceptions are caught with a par/or that
strongly aborts the normal flow.

1 <...> // DECLARATIONS
2 par/or do
3 loop do
4 await excpt; // catch exceptions
5 buf = <...>; // assigns a default
6 end
7 with
8 <...> // NORMAL FLOW
9 with

10 <...> // READ subroutine (throw exceptions)
11 end

Figure 8: Exception handling with resumption.

Céu. The first trail (lines 4-13) updates and signals b when-
ever either E or e1 changes. The second trail (lines 15-19)
updates and signals e1 whenever E changes. The par/hor
(lines 7-11) ensures that b is only updated (in line 12) after
e1 and E (in lines 8 and 10). The program behavior for a
reaction to E=>1 (which should awake lines 8 and 17) is the
following:

1. Line 8 awakes and assigns v1=1. (The par/hor cannot rejoin
yet, allowing other trails to react.)

2. Line 17 awakes, emits e1=>2, and pauses.
3. Line 10 awakes and assigns v2=2. (The par/hor still hangs

until the program blocks.)
4. Line 18 resumes, loops, and awaits the next occurrence of
E.

5. Now that the program cannot advance, the par/hor rejoins
and correctly emits b=>1 (i.e., v1=1 < v2=2).

Note that the described behavior does not depend on the
order the trails are defined in the source code. The par/hor
is fundamental to avoid the abortion of the composition (in
line 8) before the other side has the chance to awake (in line
10).

Figure 10 shows a mutual conversion for temperatures in
Celsius and Fahrenheit, so that whenever the value in one
unit is set, the other is automatically recalculated (a prob-
lem proposed in [2]). Mutual dependency is another known
issue in dataflow languages, usually requiring the placement
of a specific delay operator to avoid runtime cycles [7, 16].
However, an explicit delay is somewhat ad hoc because it
splits an internal dependency problem across two reactions
to the environment. Céu relies on the stack-based execution
for internal events to avoid runtime cycles. The code in the
right of the Figure 10 implements the conversion formula in
Céu. We first define the tc and tf events to signal tempera-
ture changes (line 1). Then, we create the 1st and 2nd trails
to await for changes and mutually update the temperatures
(lines 3-6 and 8-11). The third trail (lines 13-14) signals a
temperature change and the program behaves as follows:

1. 3rd trail signals tc=>0 (line 14) and pauses.
stack: [3rd]

2. 1st trail awakes (line 4), signals tf=>32 (line 5), and pauses.



1 input int E;
2 event int b, e1;
3 par/or do
4 // b = E < E + 1
5 loop do
6 var int v1=0,v2=1;
7 par/hor do
8 v1 = await E;
9 with

10 v2 = await e1;
11 end
12 emit b => v1 < v2;
13 end
14 with
15 // e1 = E + 1
16 loop do
17 var int v = await E;
18 emit e1 => v + 1;
19 end
20 end

Figure 9: Glitch avoidance in Céu with a par/hor.

1 event int tc, tf;
2 par/or do
3 loop do // 1st trail
4 var int v = await tc;
5 emit tf => (9 ∗ v / 5 + 32);
6 end
7 with
8 loop do // 2nd trail
9 var int v = await tf;

10 emit tc => (5 ∗ (v−32) / 9);
11 end
12 with
13 <...> // 3rd trail
14 emit tc => 0;
15 end

Figure 10: A dataflow program with mutual depen-
dency.

stack: [3rd,1st]
3. 2nd trail awakes (line 9), signals tc=>0 (line 10), and pauses.

stack: [3rd,1st,2nd]
4. no trails are awaiting tc (1st trail is paused at line 5, break-

ing the cycle), so 2nd trail (on top of the stack) resumes,
loops, and awaits tf again.
stack: [3rd,1st]

5. 1st trail resumes, loops, and awaits tc again (line 4).
stack: [3rd]

6. 3rd trail resumes with all dependencies resolved and termi-
nates the program.
stack: []

As seen in step 4, the second emit tc=>0 (line 10) is ignored
by the 1st trail which is stacked in the reaction to the first
emit tc=>0 (line 14). This way, the stack-based execution for
internal events can unambiguously express mutual depen-
dencies. An actual application would run the dependency
code in 1st and 2nd trails in parallel and use await and emit
on the events tc and tf (as exemplified in lines 13-14).

The exposed dataflow techniques are rather verbose and low
level. Again, some syntactic sugar could reduce considerably
the complexity of the two examples in Figures 9 and 10.

4. THE SEMANTICS OF CÉU
In this section, we present a formal semantics of Céu fo-
cusing on the particular control aspects of the language.
The semantics specifies a deterministic order for memory

// primary expressions
p ::= mem(id) (any memory access to ‘id’)

| await(id) (await event ‘id’)
| emit(id) (emit event ‘id’)
| break (loop escape)

// compound expressions
| mem(id) ? p : p (conditional)
| p ; p (sequence)
| loop p (repetition)
| p and p (par/and)
| p or p (par/or)
| p hor p (par/hor)

// derived by semantic rules
| awaiting(id,n) (awaiting ‘id’ since seqno ‘n’)
| emitting(n) (emitting on stack level ‘n’)
| p @ loop p (unwinded loop)

Figure 11: Reduced syntax of Céu.

operations and relies on a explicit stack to dispatch inter-
nal events. It also ensures that a reaction becomes blocked
before aborting a par/hor composition.

Figure 11 shows a reduced syntax of Céu. The mem(id)
primitive represents all accesses, assignments, and C func-
tion calls that affect a memory location identified by id. As
the challenging parts of Céu reside on its control structures,
we are not concerned here with a precise semantics for side
effects, but only with their occurrences in programs. All
other expressions map to their counterparts in the concrete
language.

The core of our semantics is a relation that, given a sequence
number n identifying the current reaction chain, maps a
program p and a stack of events S in a single step to a
modified program and stack:

〈S, p〉 −−−→
n
〈S′, p′〉

where

S, S′ ∈ id∗ (sequence of event identifiers : [idtop, ..., id1])

p, p′ ∈ P (as described in the syntax above)

n ∈ N (univocally identifies a reaction chain)

At the beginning of a reaction chain, the stack is initialized
with the special η event and the occurring external event ext
(S = [η, ext]), but emit expressions may push new events
on top of it (we discuss how they are popped further). The
event η is used as a special marker to check for and resume
pending hor expressions before terminating the reaction.

We describe the relation with a set of small-step structural
semantics rules, which are built in such a way that at most
one transition is possible at any time, resulting in determin-
istic reaction chains (to be discussed further). Figure 12
shows the transitions rules for the complete semantics of
Céu.

An await is simply transformed into an awaiting that re-
members the current external sequence number n (rule await).
An awaiting can only transition to a nop1 (rule awaiting) if

1The special notation nop is used to represent innocuous
mem expressions (it can be thought as a synonym for
mem(ε), where ε is an unused identifier).



its referred event id matches the top of the stack and its se-
quence number is smaller than the current one (m < n). An
emit transits to an emitting holding the current stack level
(|S| stands for the stack size), and pushes the referred event
on the stack (rule emit). With the new stack level |s : S|
after an emit, the resulting emitting(|S|) cannot transit yet,
as rule emitting expects its parameter |S| to match the cur-
rent stack level. This trick provides the desired stack-based
semantics for internal events.

Proceeding to compound expressions, the rules for condi-
tionals and sequences are straightforward. Given that our
semantics focuses on control, rules if-true and if-false are the
only to query mem expressions. The “magical” function val
receives the memory identifier and current reaction sequence
number, returning the current memory value. Although the
value is arbitrary, it is unique, because a given expression can
execute only once within a reaction (remember that loops
must contain awaits which, from rules await and awaiting,
cannot awake in the same reaction they are reached).

The rules for loops are analogous to sequences, but use ‘@’ as
separators to properly bind breaks to their enclosing loops.
When a program first encounters a loop, it first expands its
body in sequence with itself (rule loop-expd). Rules loop-

adv and loop-nop are similar to rules seq-adv and seq-nop,
advancing the loop until they reach a mem(id). However,
what follows the loop is the loop itself (rule loop-nop). Rule
loop-brk escapes the enclosing loop, transforming everything
into a nop.

The rules with the par prefix are valid for all and/or/hor
compositions (substituting the par in the rules for each of
them). The difference between the three parallel composi-
tions consists only in how to deal with one of the sides ter-
minating. The rules par-adv1 and par-adv2 force the transi-
tions on the left branch p to occur before transitions on the
right branch q. These are the only rules that could lead to
simultaneous transition options in the semantics. Therefore,
the deterministic behavior relies on the isBlocked predicate,
defined in Figure 13 and used in rule par-adv2, requiring the
left branch p to be blocked in order to allow the right tran-
sition from q to q′. An expression becomes blocked when
all of its trails in parallel hang in awaiting and emitting
expressions. The rules par-brk1 and par-brk2 deal with a
break in each of the parallel sides. A break terminates the
whole composition to escape the innermost loop (strongly
aborting the other side).

For an and composition, if one of the sides terminates, the
composition is simply substituted by the other side, as both
sides are required to terminate (rules and-nop1 and and-

nop2). For a parallel or, reaching a nop in either of the
sides should immediately terminate the composition (rules
or-nop1 and or-nop2). However, for a parallel hor it is not
enough that one of the sides terminates, as the other should
still be allowed to react. The rules hor-nop1 and hor-nop2

ensure, first, that a composition rejoins only after no tran-
sitions are possible in either sides, and second, that rejoins
happen from inside out, i.e., that nested compositions rejoin
before outer compositions. The first condition is achieved
by only allowing transitions with η at the top of the stack,
when the program is guaranteed to be blocked. For the sec-

〈S, await(id)〉 −−→
n
〈S, awaiting(id, n)〉 (await)

〈id : S, awaiting(id,m)〉 −−→
n
〈id : S, nop〉, m < n (awaiting)

〈S, emit(id)〉 −−→
n
〈id : S, emitting(|S|)〉 (emit)

〈S, emitting(|S|)〉 −−→
n
〈S, nop〉 (emitting)

val(id, n) 6= 0

〈S, (mem(id) ? p : q)〉 −−→
n
〈S, p〉 (if-true)

val(id, n) = 0

〈S, (mem(id) ? p : q)〉 −−→
n
〈S, q〉 (if-false)

〈S, p〉 −−→
n
〈S′, p′〉

〈S, (p ; q)〉 −−→
n
〈S′, (p′ ; q)〉

(seq-adv)

〈S, (mem(id) ; q)〉 −−→
n
〈S, q〉 (seq-nop)

〈S, (break ; q)〉 −−→
n
〈S, break〉 (seq-brk)

〈S, (loop p)〉 −−→
n
〈S, (p @ loop p)〉 (loop-expd)

〈S, p〉 −−→
n
〈S′, p′〉

〈S, (p @ loop q)〉 −−→
n
〈S′, (p′ @ loop q)〉

(loop-adv)

〈S, (mem(id) @ loop p)〉 −−→
n
〈S, loop p〉 (loop-nop)

〈S, (break @ loop p)〉 −−→
n
〈S, nop〉 (loop-brk)

〈S, p〉 −−→
n
〈S′, p′〉

〈S, (p par q)〉 −−→
n
〈S′, (p′ par q)〉

(par-adv1)

isBlocked(n, S, p) , 〈S, q〉 −−→
n
〈S′, q′〉

〈S, (p par q)〉 −−→
n
〈S′, (p par q′)〉

(par-adv2)

〈S, (break par q)〉 −−→
n
〈S, break〉 (par-brk1)

isBlocked(n, S, p)

〈S, (p par break)〉 −−→
n
〈S, break〉 (par-brk2)

〈S, (mem(id) and q)〉 −−→
n
〈S, q〉 (and-nop1)

〈S, (p and mem(id))〉 −−→
n
〈S, p〉 (and-nop2)

〈S, (mem(id) or q)〉 −−→
n
〈S, nop〉 (or-nop1)

isBlocked(n, S, p)

〈S, (p or mem(id))〉 −−→
n
〈S, nop〉 (or-nop2)

q 6= (a hor b) ∨ (a 6= mem(v) ∧ b 6= mem(v))

〈[η], (mem(v) hor q)〉 −−→
n
〈[η], nop〉 (hor-nop1)

p 6= (a hor b) ∨ (a 6= mem(v) ∧ b 6= mem(v))

〈[η], (p hor mem(v))〉 −−→
n
〈[η],mem(v)〉 (hor-nop2)

Figure 12: The semantics of Céu.



isBlocked(n, a : S, awaiting(b,m)) = (a 6= b ∨ m = n)

isBlocked(n, S, emitting(s)) = (|S| 6= s)

isBlocked(n, S, (p ; q)) = isBlocked(n, S, p)

isBlocked(n, S, (p @ loop q)) = isBlocked(n, S, p)

isBlocked(n, S, (p and q)) = isBlocked(n, S, p) ∧
isBlocked(n, S, q)

isBlocked(n, S, (p or q)) = isBlocked(n, S, p) ∧
isBlocked(n, S, q)

isBlocked(n, S, ) = false (mem, await, if

emit, break, loop)

Figure 13: The recursive predicate isBlocked.

ond condition, we check if there is a pending nested hor,
forcing it to transit before (via rules par-adv1 or par-adv2).

A reaction chain eventually blocks in awaiting and emitting
expressions in parallel trails. If all trails hangs only in
awaiting expressions, it means that the program cannot ad-
vance in the current reaction chain. However, emitting ex-
pressions should resume in the ongoing reaction, once their
lower stack indexes are restored (see rule emit). Therefore,
we define another relation to pop the stack if the program
becomes blocked:

〈S, p〉 −−→
n
〈S′, p′〉

〈S, p〉 ===⇒
n
〈S′, p′〉

isBlocked(n, s : S, p)

〈s : S, p〉 ===⇒
n
〈S, p〉

To describe a reaction chain in Céu, i.e., how a program
behaves in reaction to a single external event, we use the
reflexive transitive closure of this relation. Finally, the com-
plete execution of a program is a series of “invocations” of
reaction chains, incrementing the sequence number:

〈[η, e1], p〉 ∗
===⇒

1
〈[], p′〉

〈[η, e2], p′〉 ∗
===⇒

2
〈[], p′′〉

...

5. RELATED WORK AND CONCLUSION
With respect to control-based languages for embedded sys-
tems, a number of synchronous alternatives to low-level event-
driven systems have appeared [8, 9, 10, 1]. Protothreads [8]
offer predictable and lightweight multi-threading with shared-
memory concurrency, but lack thread composition and abor-
tion (as described in Section 2.2). OSM [10] provides paral-
lel synchronous state machines with support for composition
and abortion. However, although machines can share mem-
ory, the execution order for side-effect operations among
them is non-deterministic. Other related synchronous lan-
guages [9, 1] also rely on a deterministic scheduler for safe
memory sharing, but do not differ from Esterel regarding
event handling and thread composition.

Functional Reactive Programming (FRP) adapts functional
languages to the reactive dataflow style [17]. In particular,
Flask [11] shows that dataflow languages can also target
constrained systems. Dataflow in Céu is limited to static
relationships only, and is less abstract in comparison to FRP.

As a descendant of Esterel, Céu achieves a high degree of

reliability for constrained embedded systems, while also em-
bracing practical aspects, such as supporting shared-memory
concurrency. Céu introduces a stack-based execution policy
for internal events, expanding its expressiveness for describ-
ing exceptions and dataflow programming. As far as we
know, Céu is the first language to reconcile the control and
dataflow reactive styles.
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