
Complex Event Processing with Event Modules

Somayeh Malakuti∗
Technical University of Dresden– Germany
somayeh.malakuti@tu-dresden.de

ABSTRACT
To effectively cope with the complexity of event processing
application, there is a need for dedicated modularization and
composition mechanisms for such applications. To this aim,
we define a set of requirements that must be fulfilled by a
language, and identify the shortcomings of a representative
set of current languages with respect to these requirements.
This paper discusses that event modules provide an inherent
support to achieve modularity and compose-ability in the
implementation of event processing applications. We explain
a new implementation of event modules, and illustrate its
suitability to fulfill the identified requirements.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages

General Terms
Languages, Design

Keywords
event-based modularization, event-based composition,
loose-coupling, separation of concerns

1. INTRODUCTION
There are various kinds of applications that deal with cer-

tain kind of event processing. Runtime verification tech-
niques [10], self-adaptive software systems [13] and traffic
monitoring systems are examples. In these applications, so-
called event processing agents are defined, which mediate
between event producers and event consumers, to perform
various operations on the event streams.

∗The author is partially supported by the German Research
Foundation (DFG) in the Collaborative Research Center 912
”Highly Adaptive Energy-Efficient Computing”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
REM’13, October 2013, Indianapolis, USA.
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Due to the multiplicity of event processing agents, event
producers and consumers, the implementation of event pro-
cessing applications can become complex. To effectively
cope with the complexity, we claim that the separation of
concerns and loose coupling among the concerns must be
fulfilled in the implementations. Advanced programming
languages offer various module abstractions and composi-
tion operators for these matters. To be able to evaluate
the suitability of these abstractions, we define a set of mod-
ularity and composition requirements for event processing
applications, and evaluate a representative set of languages
with respect to these requirements.

In [8, 9], we introduced event modules as novel linguis-
tic abstractions to modularly represent a group of correlated
events and the reactions to them. We introduced the Even-
tReactor language, which implements event modules. In
this paper, we explain that event modules can effectively
modularize the concerns that appear in event processing ap-
plications, and facilitate loose coupling in the compositions.
We introduce a new implementation of event modules, which
improves the compose-ability of event modules at instance
level, facilitates both implicit and explicit composition of
event modules, and improves the modularity of implemen-
tations by modularizing the event selection code.

This paper is organized as follows. Section 2 provides
background information about event processing applications;
Section 3 outlines a set of requirements for implementing
such applications; Section 4 evaluates a representative set of
languages; Section 5 discusses event modules and illustrates
their suitability in achieving modularity and loose coupling
in the implementation of event processing applications; and
Section 6 outlines the conclusions and future work.

2. BACKGROUND

2.1 Event Processing Applications
Nowadays, there are numerous applications that deal with

certain kind of event processing. Runtime verification tech-
niques [10], self-adaptive software systems [13], traffic mon-
itoring software systems are examples. Runtime verification
techniques check the events that occur in software against
the formally specified properties of the software, and detect
the failures. Self-adaptive software systems monitor envi-
ronmental changes, analyze them, and adapt themselves ac-
cordingly. Traffic monitoring software systems receive traf-
fic flow information from the sensors that are embedded in
roads, and reason about traffic flow in the roads.

����������	
���������	����������
����������������������������
������
����������	
���������
���� ����������	
���������
���� ����������	
���������
����

����	�����������	��	���������������
Figure 1: An example event processing application

At a high level of abstraction, there are four kinds of
entities that play a role in implementing event processing
applications [4]: events, event producers, event consumers
and event processing agents. An event is usually defined as
something that happens or is regarded as happening. As the
name implies, event producers and event consumers are the
entities that provide and receive events, respectively. Vari-
ous kinds of software and hardware entities can be regarded
as event producers and consumers. Event processing agents
are software entities that mediate between event producers
and event consumers to process the events. Event processing
agents may have a crosscutting nature [7]; they may collect
multiple events from one or more event producers and/or
other event processing agents.

Three kinds of event processing are distinguished [4]: a)
simple event processing, b) event stream processing, and c)
complex event processing, which respectively looks at a sin-
gle event, across multiple events, and across multiple event
streams that may come from various producers. The pro-
cessing may be stateful or stateless. In the former case,
the result of event processing is influenced by the history of
events; in the latter case, the result is only influenced by the
event being processed.

2.2 Illustrative Example
We make use of a simplified online shopping application

as an illustrative example. In this example, customers are
actual event producers who issue events to purchase, re-
serve or return products; salesmen are the target event con-
sumers who receive and handle the requests. As Figure 1
shows, there is a separate event stream for each costumer;
the number of customers and consequently the number of
event streams may change during the operation of the soft-
ware.

As depicted in the figure, we would like to define a set of
event processing agents to perform the following statistical
operations on the event streams. Here, the event processing
agent CountEvents records the number of purchase, reserve
and cancel requests in each 20 minutes. FilterEvents clas-
sifies the purchase requests into the ordinary and frequent
ones; if a customer issues the request to purchase a product
more than 30 times in 10 days, it is considered a frequent
request; otherwise, it is an ordinary one. The agents Com-
puteMax identify the maximum amount of purchase in the
last 20 minutes for each category of frequent and ordinary
requests. Finally, LogInfo records the information about the
maximum amount of ordinary and frequent purchases.

3. REQUIREMENTS
To be able to effectively cope with the complexity and to

increase the reusability and evolvability of event processing

applications, we claim that two issues must be taken into
account in the development of such applications: separation
of concerns [1] and loose coupling among the concerns [4].

Separation of concerns implies that the concerns that are
involved in a program must be identified and separated. In
event processing applications, various kinds of computations
may be performed on event streams, which may be regarded
as the concerns of interest, and must be separated from each
other and from the main application logic. Loose coupling
implies that there is no need for event producers and con-
sumers to be aware of each other; event producers must not
depend on the computations performed by event processing
agents and/or event consumers, and vice versa.

To be able to effectively separate the concerns that appear
in event processing applications, and to compose them with
each other such that they are loosely coupled, we claim that
the abstractions offered by a programming language must
fulfill the following requirements:

1. Event representation: Events are the core abstrac-
tions in event processing applications, which may be
provided by different kinds of producers. This means
that a language must provide suitable means to (a) de-
fine the events of interest, (b) detect their occurrence,
(c) select them from event streams, and (d) provide
them to event processing agents and event consumers.
If a language falls short in these matters, programmers
may be obliged to provide workaround code in the im-
plementations, which may increase the complexity of
the programs.

2. Event-based modularization: In the literature [2],
modules are defined as reusable software units with
well-defined required and provided interfaces, which
encapsulate their implementation. In event processing
applications, event producers, event processing agents
and event consumers communicate with each other via
events. To achieve a better separation of concerns, we
claim that the module abstractions of a language must
respect this characteristic of event processing applica-
tions, and facilitate the event-based modularization of
these concerns by fulfilling the following requirements:

(a) Referrable identity: To be able to refer to and
reuse modules, a language must facilitate defining
unique names for the modules and referring to the
modules via their unique names.

(b) Event-based required interface: It must be
facilitated to define the required interface of mod-
ules in terms of the events that must be recieved
from event streams and/or from other modules.

(c) Event-based provided interface: Language
must facilitate defining the provided interface of
modules in terms of the events that are produced
by them.

(d) Event processing function: The language must
offer suitable constructs to program various state-
less/stateful simple event processing, event stream
processing and complex event processing logics.

If a language falls short in supporting event-based mod-
ularization of concerns, programmers may be obliged

to provide workarounds using the available abstrac-
tions in the language; this may increase the complexity
of implementations and reduce their modularity.

3. Event-based composition: To achieve a better sep-
aration of concerns, modules must be composed with
each other at the interface level. Event-based modular-
ization of concerns implies that a language must also
offer suitable means to support event-based composi-
tion of the modules. We claim that a language must
fulfill the following requirements:

(a) Loose coupling to event types: During the
lifetime of an application, the kinds of the events
that must be processed by event processing agents
and event consumers may change. To increase the
reusability and evolvability of implementations,
module interfaces must not be tightly coupled to
the type of the events that they require or provide.
Tight coupling to event types may lead to the
redefinition of modules if the event types evolve.

(b) Loose coupling to event producers, event
consumers and event processing agents:
During the lifetime of an application, the number
of event producers, event processing agents and
event consumers may change. This implies that a
language must facilitate the composition of these
at the interface level, such that the compositions
can flexibly cope with the absence or presence of
modules.

4. SHORTCOMINGS IN MODULARIZING
EVENT PROCESSING APPLICATIONS

Advanced programming languages offer various kinds of
module abstractions and composition operators to facilitate
separation and composition of concerns in implementations.
In this section, we briefly evaluate a representative set of
languages with respect to the requirements defined in Sec-
tion 3.

4.1 Object-Oriented (OO) Languages
OO languages offer objects as a means to achieve separa-

tion of concerns in the programs. Objects can communicate
with each other via explicit method invocation and/or an
event-based mechanism if possible in the adopted language.

4.1.1 Communication via Explicit Invocation
Let us focus on a possible implementation of event pro-

cessing applications in which individual event producers,
event processing agents and event consumers are defined as
individual objects. We may consider adopting various de-
sign patterns [5], such as the Observer pattern, to achieve
loose coupling among the objects.

In an Observer-based implementation of event processing
applications, event producers get the role of subject, and
event processing agents and/or event consumers get the role
of observer. Multiple observer objects may register for a
subject object, and are informed of the changes in the sub-
ject via an invocation to their so-called notify method. Such
an invocation can be regarded as the occurrence of an event,
and the arguments of the invocation can be regarded as the
attributes of the event.

With respect to the requirement event representation, in a
standard implementation of the Observer pattern, the type
of events that can be produced is fixed in the definition of ob-
server objects. Firstly, this creates a tight coupling between
event producers and event consumers, because the producers
are limited to provide the events specified by the consumers.
Secondly, to support new types of events, new implementa-
tions of the Observer pattern must be introduced, which
obviously complicates the implementations if large number
of event types must be supported.

With respect to the requirement event-based modulariza-
tion of concerns, the required interface of an observer ob-
ject is fixed to support one kind of event. This makes
the Observer-based implementation suitable for simple event
processing, in which an observer object implements the func-
tionality to process a single event. To implement stateless/s-
tateful complex event processing, one has to define extra
code to gather individual events from individual observer ob-
jects and to reason about the correlations among the events.
Such an implementation of complex event processing func-
tionality, however, scatters across multiple observer objects
and/or methods, which may lead to complex implementa-
tions.

To enable an observer object to produce events as its pro-
vided interface, a new implementation of the Observer pat-
tern must be provided in which the observer object gets the
role of subject. Depending on the number of events that must
be provided and the target recipient of the events, multiple
implementations of the Observer pattern may be needed,
which increases the complexity of the implementations fur-
ther.

With respect to the requirement event-based composition
of concerns, although observers and subjects are defined sep-
arately, there is an explicit tight coupling among them; an
observer can only process event streams that are produced
by the subjects to which it is bound. Consequently, if the
application requirements change such that the number of
subjects or observers changes, the binding must be rede-
fined. Changing the number of observers may also cause
redefinition of observers. For example, if two observers are
bound to a subject, it may be necessary to define the order
in which they must process events. To this aim, one may
adopt the Mediator pattern, which requires redefining the
observers to implement the Mediator pattern. Last but not
least, if an observer object must collect events from multiple
streams, multiple subjects must be defined as event produc-
ers. Consequently, the invocation to the observer object
scatters across multiple subject objects.

4.1.2 Communication via Events
Advanced OO languages usually offer an event-delegate

mechanism to facilitate implementation of event-based ap-
plications. This sections evaluates the event-delegate mecha-
nism of C#; nevertheless the discussions can be generalized
for the other event-delegate mechanisms that have similar
characteristics.

In the event-delegate mechanism of C#, new event types
and their attributes can be defined via special kinds of classes,
which extend class System.EventArgs. To bind producers to
consumers, C# provides a pointer-like mechanism named
as delegate, which is a type that references a method; any
method that matches the signature of a delegate can be ass-
igned to the delegate. This mechanism facilitates binding

various event consumers to an event producer. Events are
published by instantiating the corresponding event type, and
invoking the corresponding delegate.

Implementing event-based applications using such event-
delegate mechanisms comes with certain shortcomings. With
respect to the requirement event representation, although
new kinds of event types can be programmed, they are lim-
ited to the ones that are published from within C# pro-
grams. However, as we studied in [8, 9] for the domain of
runtime verification, the kinds of events that appear in event
processing applications cannot be limited to one program-
ming language. Supporting language-specific events obliges
programmers to provide workarounds to map the desired
events to the ones supported in C#, which may complicate
the code and reduce modularity of implementations [8, 9].

With respect to the requirement event-based modulariza-
tion of concerns, an event producer can be modularized
via a class that defines events along with necessary dele-
gates, and publishes events. An event consumer or an event
processing agent can be implemented as a class that de-
fines a method whose signature matches the desired dele-
gate; this method implements the functionality to process
the event. This means that the event-delegate mechanism
of C# provides a natural support for implementing simple
event processing applications, in which each event consumer
method handles a single event. Implementing stateless/s-
tateful complex event processing functionality leads to the
same problems explained for the Observer-based implemen-
tation. With respect to the requirement event-based com-
position of concerns, as for the Observer-based implementa-
tion, there is an explicit tight binding between event con-
sumers and event producers; this leads to the same problem
explained in the previous subsection.

4.2 Aspect-Oriented (AO) Languages
Due to the crosscutting nature of event processing agents,

one may consider adopting AO languages for their modular-
ization. In an AO implementation of event processing appli-
cations, join points can be regarded as events; base objects
in which join points are activated can be regarded as event
producers. Aspects can be regarded as means to modularly
represent event consumers and/or event processing agents.
Here, the pointcut designators are means to select the events
of interest; hence, they define the required interface of as-
pect module. Advice provides the functionality to process
the events. The provided interface of an aspect module is
formed around the set of join points that are designatable
in the aspect module.

With respect to the requirement event representation, the
set of supported events is defined by the join point model
of the adopted AO language. Some AO languages such as
AspectJ and Compose* support a fixed join point model.
If desired events are not defined in the join point model,
workaround mappings must be provided; this may increase
the complexity and decrease the modularity of implementa-
tions. There are various proposals to support programmable
join point models [6, 14], which are mainly limited to Java as
the base language. As we studied in [8, 9], supporting a sin-
gle base language may also reduce the modularity of imple-
mentations when events are published from various sources,
for example multi-language base software.

With respect to the requirement event-based modulariza-
tion of concerns, pointcut designators provide an inherent

support to select the events of interest. The possibility to
select the events of interest, which may occur in various
streams, is influenced by the expression power of the point-
cut designators and the instantiation strategy of the adopted
language. If the expression power of pointcut designators is
limited, one has to provide workaround code in advice code
to express desired event selection semantics. Consequently,
the specification of module interfaces gets tangled with the
implementation of the module, which complicates the im-
plementation.

In AspectJ-like languages, aspects can be instantiated ei-
ther as singleton or per-object(s); both impose limitations
for implementing event processing applications. In the latter
case, only the event stream that is produced by the objects
to which an aspect instance is bound can be processed by
the aspect instance; therefore, the implementations cannot
cope with the dynamic changes in the number of event pro-
ducers. In the former case, workaround must be provided
to implement stateful event processing in which state infor-
mation must be maintained based on individual or a certain
group of event producers.

The stateless/stateful complex event processing can be
implemented via advice code. Some languages [15] also offer
history-based pointcut designators for this matter. How-
ever, the expression power of these pointcuts is limited by
the adopted formalism. As it is extensively studied in the
domain of runtime verification, different kinds of formalism
with different expression power are usually needed for dif-
ferent kinds of stateful complex event processing.

The possibility to define the provided interface of aspects
is restricted by the expression power of the language to de-
fine and select the join points that are activated within the
advice code. AspectJ, for example, provides the pointcut
designator adviceexecution for this matter. However, be-
cause advices are not named, it is not possible to distinguish
between the advice in which the join points of interest are
activated. Consequently, workaround methods must be pro-
vided to map the desired join points to method invocations
and/or executions. Such workarounds cause the specifica-
tion of module interfaces gets tangled with the implementa-
tion of the module, which complicates the implementations.
Some languages such as EOS [12] unify the notion of as-
pects and objects; consequently, it is possible to select the
join points of aspects in a similar way as objects.

With respect to the requirement event-based composition,
such a composition can be achieved through join points and
pointcut designators. In AspectJ-like languages, which sup-
port pointcut-based instantiation of aspects, the presence
of an aspect instance depends on the presence of the base
object to which the aspect instance is bound. Such a cou-
pling does not exist in the languages that support explicit
construction and deployment of aspects; for example in Cae-
sarJ [11] and EOS [12]. In these languages, however, an as-
pect is limited to process the events that are produced by
the objects on which it is deployed. One may provide code
to dynamically deploy/undeploy aspects to cope with dy-
namic changes in the number of event producers; such code,
however, scatters across and tangles with other concerns.

4.3 Stream-Processing Languages
Several different dedicated languages are introduced for

event stream processing [4]. In this section, we evaluate
Esper [3] as a representative of such languages. Esper is a

component for complex event processing, which is available
for Java. Complex event patterns, for example based on
logical and temporal event correlation, can be expressed in
an extension of SQL.

With respect to the requirement event-representation, the
Esper language provides extensive support to define various
kinds of events. For example, events can be defined as plain
Java objects, XML, object-array, nested objects and hier-
archical maps of objects. With respect to the requirement
event-based modularization of concerns, a module is a plain
text file in which the event processing queries are defined.
Such queries are primitive statements in the Esper language,
which are not represented as module abstractions. There-
fore, the modularization requirements presented in Section 3
are not fulfilled. With respect to the requirement event-
based composition of concerns, since there is no notion of
modules, interface-level composition is not supported too.
Instead, the composition is supported at the level of SQL
queries to combine multiple queries with each other.

5. EVENT MODULES
In [8, 9] we introduced Event Composition Model, which

offers a set of novel linguistic abstractions to effectively mod-
ularize and compose the concerns that typically appear in
runtime verification techniques. In this section, we explain
how these abstractions fulfill the requirements outlined in
Section 3, and are consequently suitable to achieve mod-
ularity and loose coupling in the implementation of event
processing applications.

As Figure 2 shows, at a high level of abstraction, Event
Composition Model regards the execution environment as a
set of events that may form a stream, and event modules.
An event represents a state change of interest in the environ-
ment. Events are typed entities; an event type defines a
set of attributes for the events. Two sets of attributes are
supported: static and dynamic. The former includes the
set of attributes whose values do not change and are known
at the time an event is defined in the system. The latter
defines the set of attributes whose values are known when
an event is published during the execution of software.

�����������	
��������	����������	
���
��������	
�� �����������	
��������	����������	
���

��������	
��

��������	����

�����������	
��������	����������	
���
��������	
��

Figure 2: Event modules

An event module is a means to modularize a group of
related events and the reactions to them. An event module
is identifiable and referable by its unique name. It has a
required interface, an implementation that is termed as
reactor, and a provided interface.

The required interface of an event module specifies the
set of events of interest to which the event module must
react; the interface is activated when an event of interest

occurs. The provided interface of an event module defines
the set of events that are published by the event module to
the environment. The implementation of an event module
provides the functionality to process the events specified in
the required interface of the event module, and to publish
the events specified in the provided interface of the event
module. The events provided by an event module can be
selected further by other event modules; this facilitates the
composition of event modules with each other.

In [8, 9], we introduced an early version of the Even-
tReactor language, which implements Event Composition
Model. The early version of EventReactor has three limita-
tions. First, the instances of event modules are not acces-
sible by their unique identity; this limits programming the
instance-level composition of event modules with each other.
Second, only implicit binding of event modules to each other
is supported, which may lead to unnecessary runtime over-
head. Third, the event selection is performed through a set
of Prolog queries, which is not modularized. In this paper,
we discuss a new implementation of event modules in the
EventReactor language. Due to the space limit, we illus-
trate this via an implementation of our illustrative example
and explain how the requirements outlined in Section 3 are
fulfilled.

5.1 Event Representation
Event Composition Model does not fix the set of sup-

ported event types, attributes and events. To comply with
this characteristic, EventReactor offers dedicated constructs
to programmers to define new kinds of application and/or
domain-specific event types, attributes and events. An event
type is a data structure defining a set of attributes; there can
be inheritance relation among event types.

1 eventtype Purchase extends EventType{
2 dynamiccontext:
3 long customerID;
4 long productID;
5 }
6 eventtype FrequentPurchase extends Purchase{
7 dynamiccontext:
8 Purchase inner;
9 long frequency;

10 }
11 eventtype OrdinaryPurchase extends Purchase{...}
12 eventtype MaxPurchase extends Purchase{...}

Listing 1: Specification of event types

EventType is the super type for the user-defined event
types. To implement our illustrative example, we define the
event types depicted in Listing 1. Purchase inherits from
EventType and defines the attributes customerID and pro-

ductID. Since the value of these attributes are not known
until an event of this type is published, the attributes are
defined as dynamic. FrequentPurchase and OrdinaryPur-

chase are two specializations of Purchase, which are used to
distinguish between different kinds of purchases. These two
event types define the attribute inner to keep a reference
to the event that represents the original purchase request.
The event type FrequentPurchase also defines the attribute
frequency to keep the information about the frequency of
purchase requests. MaxPurchase is another specialization,
which is used to show the maximum amount of purchase in
the 20 minutes. Due to the space limit, we do not show the
specification of these event types.

Events can be published from software implemented in
multiple languages, in the same way as explained in [8, 9].
To publish an event, it is necessary to initialize its dynamic

attributes and inform the runtime environment of EventRe-
actor of the event. EventReactor offers two APIs for this
matter. In the first one, the information about the event is
provided as a comma-separated list of attributes and their
values. This API is useful if event producers are not Java
programs. The second API is useful if the events are pub-
lished from a Java program. To utilize this API, EventRe-
actor generates Java classes from the specification of event
types. One must define instances of the event types in a
similar way as pure Java objects, initialize their dynamic
attributes and publish the event by invoking the API. Due
to the space limit, we do not represent the event publishing
code.

5.2 Event-Based Modularization of Concerns
As Figure 2 shows, individual event processing agents

and/or event consumers can be modularized as individual
event modules. Event modules fulfill the modularity require-
ments outlined in Section 3; they are referrable via their
unique names, have event-based interfaces, and can express
stateless/stateful event processing logics via their reactors.

1 eventmodule CountEvents{
2 requires{ Purchase p event; Reserve r event; Cancel c event;}
3 provides{}
4 reactor{ if (Shopping.computeElapsedTime()< 20){
5 if (p event) p counter++;
6 else if (r event) r counter++;
7 else if (c event) c counter++;
8 }
9 else{

10 Shopping.log(p counter, r counter, c counter);
11 Shopping.reset(p counter, r counter, c counter);
12 }
13 }
14 variables{ long p counter, r counter, c counter;}
15 }
16 eventmodule FilterEvents{
17 requires{ Purchase p event;}
18 provides{ OrdinaryPurchase o event; FrequentPurchase f event;}
19 reactor{
20 frequency = Shopping.getPurchaseFrequency(p event, 10);
21 if (frequency > 30){
22 f event.inner = p event;
23 f event.frequency = frequency;
24 publish f event;}
25 else{
26 o event.inner = p event; publish o event;}
27 }
28 variables{ long frequency;}
29 }
30 eventmodule ComputeMax{
31 requires{ Purchase p event;}
32 provides{ MaxPurchase mp event;}
33 reactor{
34 if (Shopping.computeElapsedTime()< 20){
35 maxpurchase = Shopping.max(p event.amount, maxpurchase);}
36 else{ mp event.max = maxpurchase; publish mp event;}
37 }
38 variables{ long maxpurchase;}
39 }
40 eventmodule LogInfo{
41 requires{ MaxPurchase event;}
42 provides{}
43 reactor{ Shopping.log(event.max);}
44 }

Listing 2: Modularizing event processing agents

Listing 2 shows an excerpt of the event modules that mod-
ularize the event processing agents of our running exam-
ple. The event module CountEvents implements the state-
ful functionality to count the number of events, which repre-
sent the requests to purchase a product, reserve a product or
cancel a purchase, within the last 20 minutes. CountEvents

receives these events via its required interface; the event
module does not provide any event. Within this event mod-
ule, three counter variables are defined, which are updated
by the reactor part whenever there is an event in the corre-
sponding interface. The value of these counters are printed
and restarted each 20 minutes. We provide the helper Java
class Shopping, which implements the necessary statistical

functions. For the sake of brevity, we do not show the im-
plementation of this class.

The event module FilterEvents implements the stateful
functionality to separate the purchase events into ordinary
and frequent ones. For this matter, it receives an event of
the type Purchase in its required interface, and provides the
events o_event and f_event of the types OrdinaryPurchase
and FrequentPurchase, respectively. The reactor part com-
putes the frequency of the shopping for each customer in
the last 10 days. If this is above the threshold, the event
f_event is published; otherwise, the event o_event is pub-
lished. Before publishing these events, necessary values are
assigned to their attributes.

The event module ComputeMax implements the stateful
functionality to compute the maximum amount of ordinary
and frequent purchases in the last 20 minutes. To be able
to reuse this event module for both ordinary and frequent
purchases, the required interface of this event module re-
ceives an event of the type Purchase, which is the super type
of OrdinaryPurchase and FrequentPurchase. An event of
the type MaxPurchase, which keeps the maximum amount
of purchase in its attribute max, is published by this event
module. The event module LogInfo implements the state-
less functionality to log the maximum amount of purchase.

5.3 Event-Based Composition of Concerns
To utilize event modules, they must be instantiated and

their interfaces must be bound to the desired events. To
achieve loose coupling in the compositions, the new version
of EventReactor facilitates a) explicit instantiation of event
modules so that instance-level composition of event modules
with event streams can be achieved; b) separating composi-
tion specifications from the specification of event modules;
c) implicit and explicit binding of events to the interfaces
of event modules; and d) polymorphic binding of events to
interfaces.

In the implicit binding, whenever an event is published
to the runtime environment of EventReactor, the event is
bound to the required interfaces of event modules, whose
type matches the type of the event. In the explicit binding,
programmers specify the bindings between the required in-
terfaces and provided interfaces of event modules. Implicit
binding creates looser coupling among event modules, and
among event modules and event producers; the absence or
presence of an event producer does not influence the event
modules. Implicit binding may come with the price of extra
runtime overhead. Therefore, when needed, explicit binding
can be adopted. The explicit binding offered by EventRe-
actor can still lead to some degree of loose coupling, be-
cause the interfaces of event modules are event-based and
the binding takes place at the interface level separately from
the event modules.

In both implicit and explicit bindings, the type of events
is polymorphically checked against the types of required in-
terfaces; this facilitates keeping interfaces loosely coupled to
specific event types. In both kinds of binding, since the re-
quired interface of event modules can be bound to multiple
events that may come from multiple sources, the event mod-
ules can effectively modularize crosscutting event processing
logics.

Listing 3 shows an excerpt of the composition code that
is provided for our example. Here, we define one instance
of CountEvents, FilterEvents and LogInfo. To separately

compute the maximum amount of purchase for ordinary and
frequent purchases, two instances of the event module Com-

puteMax are defined. Considering Figure 1, the event mod-
ules CountEvents and FilterEvents are the first event pro-
cessing agents in the chain, which receive the events directly
from the event streams. To achieve loose coupling between
the event modules and the event producers, we leave the
required interfaces of ce and fe unbound, so that EventRe-
actor performs implicit binding based on the type of the
published events. Lines 8–9 show an example of polymor-
phic explicit binding, in which the provided interfaces of fe
are bound to the required interface p_event of cpmaxOrdi-

nary and cpmaxFrequent, respectively. Lines 10–11 show
the binding to the required interface event of li, so that
logging can be performed when the specified events are pro-
vided by cpmaxOrdinary and cpmaxFrequent.

If an event is processed by multiple event modules, the
processing order can be specified via the operator precede.
In our example, since the events of the type Purchase are
processed by both ce and fe, we specify that ce must process
the events first.

1 composition {
2 CountEvents ce;
3 FilterEvents fe;
4 ComputeMax cpmaxOrdinary;
5 ComputeMax cpmaxFrequent;
6 LogInfo li;
7
8 bind (fe.o event, cpmaxOrdinary.p event);
9 bind (fe.f event, cpmaxFrequent.p event);

10 bind (cpmaxOrdinary.mp event, li.event);
11 bind (cpmaxFrequent.mp event, li.event);
12
13 precede (ce, fe);
14 }

Listing 3: Composing event modules

Assume for example that at runtime, events of the type
Purchase are published. EventReactor matches each event
against the required interfaces of the instantiated event mod-
ules. In our example, the event matches the required inter-
face p_event of ce, fe, cpmaxOrdinary and cpmaxFrequent.
Since the interfaces of the latter two event modules are ex-
plicitly bound, EventReactor only binds the event to the
interface p_event of ce and fe. As it is specified, ce must
process the event first; after this event module finishes the
event processing, fe starts the event processing. The chain
of event processing continues according to the specified ex-
plicit bindings among the event modules.

6. CONCLUSION AND FUTURE WORK
We discussed that to be able to effectively cope with the

complexity of event processing applications, separation of
concerns and loose coupling among the concerns must be
achieved in the implementations. Event-based composition
is known to facilitate loose coupling in compositions. We il-
lustrated that an effective event-based composition requires
an event-based modularization of concerns in which mod-
ules interfaces are defined in terms of events. We defined a
set of language requirements for event-based modularization
and composition of concerns, and explained that the current
languages significantly fall short to fulfill the requirements.
A new implementation of event modules in the EventReac-
tor language was explained and its suitability to separate
the concerns and compose them with each other in a loose
manner was illustrated.

There are several languages that provide dedicated fea-
tures for event processing, and there is a need for a compar-

ison framework to evaluate them with respect to modularity
and compose-ability of implementations. This paper took
an initial step towards this. As future work, we would like
to extend our set of language requirements, for example to
include parallelism, and would like to extend our evaluation
with a larger set of languages.

Various kinds of architectural patterns (e.g. pipe and fil-
ter and blackboard) can be adopted for event processing
applications. As future work, we would like to evaluate the
suitability of event modules for implementing such patterns.
We would also like to formally specify the semantics of event
modules in processing events.

Acknowledgments
The author would like to thank Prof. Mehmet Aksit and
Prof. Shmuel Katz for the discussions on the earlier drafts
of this paper.

7. REFERENCES
[1] M. Akşit. Separation and Composition of Concerns.

ACM Computing Surveys, 28, 1996.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Addison-Wesley
Professional, 2002.

[3] Esper. http://esper.codehaus.org/.

[4] O. Etzion and P. Niblett. Event Processing in Action.
Manning, 2010.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1994.

[6] K. Hoffman and P. Eugster. Cooperative
Aspect-Oriented Programming. Sci. Comput.
Program., 74:333–354, March 2009.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP’ 97.
Springer-Verlag.

[8] S. Malakuti and M. Aksit. Evolution of Composition
Filters to Event Composition. In SAC’ 12. ACM Press.

[9] S. Malakuti and M. Aksit. Event Modules:
Modularizing Domain-Specific Crosscutting RV
Concerns. In TAOSD (to appear), LNCS. 2013.

[10] S. Malakuti, C. Bockisch, and M. Aksit. Applying the
Composition Filter Model for Runtime Verification of
Multiple-Language Software. In ISSRE ’09, 2009.

[11] M. Mezini and K. Ostermann. Conquering Aspects
with Caesar. In AOSD’ 03. ACM Press.

[12] H. Rajan and K. Sullivan. Eos: Instance-Level Aspects
for Integrated System Design. In ESEC/FSE-11, 2003.

[13] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[14] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner.
Types and Modularity for Implicit Invocation with
Implicit Announcement. ACM Trans. Softw. Eng.
Methodol., 20:1:1–1:43, July 2010.

[15] W. Vanderperren, D. Suvée, M. A. Cibrán, and
B. De Fraine. Stateful Aspects in JAsCo. In Software
Composition. LNCS, 2005.

