Complex Event Processing with Event Modules

SOMAYEH MALAKUTI
SOFTWARE TECHNOLOGY GROUP
TECHNICAL UNIVERSITY OF DRESDEN, GERMANY
28.10.2013

__]

Outline

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

The EventReactor Language

Background: Event Processing

A \ ;- Consumer
. L
Stateless or S ::_—:_—a---—-->i Event Processing Agents
Stateful logics - /,z’ R Rttt CEETEEEEEEEE ! \‘
= ; ememe |
! |
¢ < Event < Event > | ,
' - 1 I !
S~ N -]] /
7
Single or stream ™\ > __________ Yoo .t Lo N 1' ,- ¢
. v _ . ,
processing Event Processing Agents | i Event Processing Agents | I
N = ——— % ____________ II | ;& ___________ /l I "
- \ , - ~ N 1 I
\ I
SW events :“(E’vem @Jm ﬁﬁm .l """"" Fvent m m
T~ |
CoReml o Bem2 o Eemd o memd e entn
Producers HW events
\
 Fuentl > C Fvent2 > Fventd > ¢ Fuentd > e _Eventn

Environmental events

Background: Event Processing (cont.)

"There are various kinds of applications whose base functionality is extended with certain kind of

event processing:
= Runtime verification techniques check the events that occur in software against the formally specified
properties of the software, and detect the failures.
= Self-adaptive software systems monitor environmental changes, analyze them, and adapt themselves
accordingly.
= Traffic monitoring software systems receive traffic flow information from the sensors that are
embedded in roads, and reason about traffic flow in the roads.

=\We face the following challenges:
= Modular definition of event processing logics.
= Composition of event processing logics with base modules.

Outline

Background on Event Processing '

1

Language Requirements

Problems in Existing Languages

Event Composition Model

The EventReactor Language

Language Requirements

"Event representation: Events are the core abstractions in event processing applications, which
may be provided by different kinds of producers.

=A language must provide suitable means to
= Define the events of interest

= Detect their occurrence
= Select them from event streams
" Provide them to event processing agents and event consumers

=If a language falls short in these matters, programmers may be obliged to provide workaround
code in the implementations, which may increase the complexity of the programs.

Language Requirements (cont.)

*Event-based modularization of concerns

Event processing agenf‘

-

/ Event processing agent ¢ Consumer

[Event-based }
provided interface

-

é

==
-~

Event-based

Drovidele\interface \

-
- r

DSL/ GPL]
2\

[
[
| [Event-base]

\

\

R Event-base
reqwredﬁlnterface S/ _-="" | required interface |,

l DSL/ GPL)

I
1
1
1
1
1
1
I
\ 1
1
1
1
1
1
1

e _2
L S WP

\
Producers HW events W

\
Environmental events —C— Fvent1l > C Fvent2 > Fventd > Fuentd o < Fventn >

Language Requirements (cont.)

Loose coupling to
event processing
agents

L N e

Event processing agent’ / Event processing agent <> Consumer

“Event-based composition of concerns

4
4
’

-

‘

==

i [E\'/ent-l.:)ased i i [Event-based },"
Loose coupling | pro"'ded,r'“terface " > Event -\ ! | provided interface | !
to event types ! | vl :
| DSL/TGIPL J i Vi bsy/eeL
Loose coupling to : Event-base i =\ i
event producers L !) Event-base ! Loose coupling to
reql.“red |nterface ,,/ - _-—" ' required interface /I event consumers

g
A | e
SW events R \CEeT> CFEi> CRemi> R R
1 ‘\
\
Producers HW events @%M

\
Environmental events —C— Event1 > < Fvent2 > Fyent3 > Fuentd b < Eventn >

Outline

Background on Event Processing '

Language Requirements

L

Problems in Existing Languages

Event Composition Model

The EventReactor Language

Problems with OO Languages

"In object-oriented (O0) languages, objects are means to modularize the concerns of interest.

"Objects communicate with each other via message passing (e.g. method invocation, events).

sTechniques such as polymorphism along with various design patterns can be adopted to achieve
loose coupling in the implementations.

Multiple
implementation of the
Observer pattern is
needed to support
multiple kinds of events

Problems with ges (cont.)

Fixes the
supported event

Suitable for
simple event

processing .
observer observer observer
notify(int...) notify(String...) notify(Object...)
x 7 7
\\ . | //
N invokes lon Pt
TTTes ~ I Rl -
\\ 1 //
\lz
1
subject

registerObservers()
unregisterObservers()
notifyObservers()

R ——

Problems with OO Languages (cont.)

To implement event

stream processing or

complex event
processing,

complexEP
collectEvents(...)

statefulProcessing(...)

P ~
R - : S~ - extra code must be
e - ! h ~ provided to collect
observer observer observer events from observers
notify(int...) notify(String...) notify(Object...)
x 7 7
\\ . | //
N invokes lon Pt
TTTes ~ I -~ -
\\ 1 //
I/
1
subject

registerObservers()
unregisterObservers()
notifyObservers()

Problems with OO Languages (cont.)

- observer
e RN notify(int...)
complexEP/subject ' 7

collectEvents(...) S~ o-
statefulProcessing(...)

Multiple
implementations of the

-
——— - i
- -~

yad I S observer pattern must
observer observer observer be provided to
notify(int...) notify(String...) notify(Object...) implement a hierarchy
of event processors
t _ A A
" invokes .6n -7
1 - - -__———" ——————————
Vo -7
(Pe
| 4
subject

registerObservers()
unregisterObservers()
notifyObservers()

Problems with OO Languages (cont.)

L observer
- AN notify(int...)
complexEP/subject '\ |
collectEvents(...) S -7 If events must be
statefulProcessing(...) collected from multiple
P - 'I S~ - sources, the invocations
yad I R to observers scatters
observer observer observer across multiple subjects.
notify(int...) notify(String...) notify(Object...)
- A A
\ ~~s - dovokes ,On\ Sse N
- T ‘:::3::'_‘ B O Pl P
V- SN TSN
o~ NV RN
|4 1 1
subject subject subject
registerObservers() registerObservers() registerObservers()
unregisterObservers() unregisterObservers() unregisterObservers()
notifyObservers() notifyObservers() notifyObservers()

Problems with AO Languages (cont.)

“Due to the crosscu public aspect monitoring { consider adopting
aSpeCt'Oriented (A‘ boolean |SOpen,

"In AO languages:
= Join points are me

pointcut readFile() : call (* File.read());

= Pointcut designat pointcut openFile() : call (* File.open());

= Advice codeisan bef . - - . |
= |[n many AO langu efore () : openFile() {isOpen = true;}

code. before () : readFile() {
if (iIsOpen == false)
throw new MyFileException(“Error”);

designators and advice

Problems with AO Languages (cont.)

"Event representation: the set of supported events is defined by the join point model of the
adopted AO language.

= Some AO languages such as Aspect) and Compose* support a fixed join point model.

* If desired events are not defined in the join point model, workaround mappings must be provided. ; this
may increase the

HW events Eventl > < Event2 > C Event3 O C FEyentd > - < Eventn O
Environmental events (Ee_ntﬁ @ (E’v;th m4 """"" [Event n D

Problems with AO Languages (cont.

Composition of
aspects programmed
in different languages
is still a challenge

[Composition (?)]

Event processing
functionality cannot
be modularized as
one aspect

SW events
HW events < Eventl > < Event2 > C Event3 O C Fyentd O < Eventn O
Environmental events < Eventl > ¢ Fvent2 > C Fvent3 O ¢ Fuentd O e < Eventn O

Problems with AO Languages (cont.)

"Event-based modularization of concerns: A ;F;é'ci"\;lg&&[é """ ~
= Limited expression power of pointcut designators is a known problem. ’ '

~

= There is a limited number of AO DSLs; they fall short in defining event processing Advice join points '
logics. | (provided interface) | |

= AO languages have limited support to select the join points that are activated » Ad/\[\ice .
within aspects. . . :
L (implementation) i

! 1 :

e N

: Pointcut expressions !

‘\\ (required Interface) h

\

ST T

[EventsStream |

Problems with AO Languages (cont.)

"Event-based composition: such a composition can be achieved through eTTTTTITTmm e mmom oo .~
.. . . . / Aspect Module .
join points and pointcut designators.

~

" |n AspectJ-like languages, which support pointcut-based instantiation of Advice join points -
aspects, the presence of an aspect instance depends on the presence of the ! (provided interface) |
base object to which the aspect instance is bound. . A :

1 .) :

= Such a coupling does not exist in the languages that support explicit _ Advice . :
construction and deployment of aspects; for example in CaesarJ) and EOS. AN ('mp|em/‘;”tat'°"))

* In these languages, however, an aspect is limited to process the events that are produced by the e]) ™ i
objects on which it is deployed. :‘ Pointcut expressions !

\| (required Interface) h

\

ST T

[EventsStream |

Binding is specified
by the instantiation
strategy of the
aspect module

Dedicated Languages

=Several different dedicated languages are introduced for event stream processing, examples are
Esper and EPL of Oracle.

* They have a dedicated focus on the event processing logics, with no support for modularization and
composition of concerns.

"There are numerous DSLs introduced in the literature, 30+ only for the domain of RV.

" The advanced RV DSLs adopt an AO language (such as Aspect)) as their base languages. Hence, they
suffer from the same limitations as the AO languages.

=There are many languages and language extensions with a dedicated support for event
processing:
" Event-delegate mechanism of C#, Ptolemy, Eventlava, EventCJ, ...

Outline

Background on Event Processing '

Language Requirements

Problems in Existing Languages

IL

Event Composition Model

The EventReactor Language

Event Composition Model

T - / Event Module R
/ Event Module ' @ | !
1 1 ,’ : R 1
e - ! . 1 ‘ : | Provided Interface]~\:
; Event Module \ ! [Provided Interface]— : \ : A |
1
| : | i i Y A Reactor I
: | Provided Interface F4sz-"~ > Event >~ ! | Reactor J : N i A N
| S - \ 1
l 1 LT > Event - T] N \ [Required Interface J,"
1 \ 1 .] ~
! [Reactor] L o Eem > © \ [Required Interface] ; S N AT
1) ’ ~ i - - - - = ===
! N ! ’ \\:¢; _____ - ;..A. _________ - S—---cT - --
1 - S eemm -
'\ [Required Interface] S T -
\\ ____________________ R4 P -
AN // -
’\ \: : S~ //
/ e T /7
\ ~~ ==~ ~— .
| Moy Te - I~) Objects and
\ = y aspects can be
Event stream (Eé'm N Event2 > C Event3 O ﬁﬁm ~~~~~~~~~ @h e represented as
(’J\} h _Event3 > K_\\\B < _Eventn O event modules
Event stream Event 1 Event 2 Event 3 Event 4 Event n
Event stream —— C Fvent1 > < Event2 > CRamis < Fama < _Eventn >

Outline

Background on Event Processing '

Language Requirements

Problems in Existing Languages

Event Composition Model

I

The EventReactor Language

The EventReactor Language

=*The EventReactor language implements the concepts introduced by Event Composition Model.
" |t offers dedicated languages to define event types and events.

It offers APIs to publish events from Java and non-Java programs.

It makes use of the Prolog language to select primitive events of interest based on event attributes.

It offers constructs to define event modules.

It offers dedicated operators to compose event modules.

llustrative Example

LogInfo

P

ComputeMax for Ordinary

ComputeMax for Frequent

R/—/

CountEvents

FilterEvents

K\m

Event stream for
customer 1

Event stream for
customer 2

Event stream for
customer 3

® purchase request
Cancel request
Reserve request

[lEvent processing agents

— Event flow

Specification of Event Types

Application-specific ‘
event types can be

defined. |

An event type is a data
structure, defining a set
of attributes.

|

=

eventtype Purchase extends EventType{
dynamiccontext:

-~ long customerlD;

long productiD;
}
eventtype FrequentPurchase extends Purchase{
dynamiccontext:

Purchase inner;

long frequency;
}
eventtype OrdinaryPurchase extends Purchase{...}
eventtype MaxPurchase extends Purchase{...}

There can be inheritance
relation among event

types

Publishing Events

| Purchase event = new Purchase ();
event.dynamiccontext.customerlD = 1;
event.dynamiccontext.productID = 10;
EventReactor.publish(event);

To publish an event
from a Java program, it
must be instantiated, Dedicated API for

and its dynamic publishing an event
attributes must be
initialized.

R ——

Specification of Event Modules
(EventReactor 1.0)

eventpackage example{
selectors | Prolog is used to query
p_event = {E | hasEventType (E, ‘Purchase’)}; events.
r_event = {E | hasEventType (E, ‘Reserve’)}; |

c_event = {E | hasEventType (E, ‘Cancel’)};
eventmodules
CountEvents := {p_event, r_event, c_event} <- Counter -> {};
FilterEvents := {p_event} <- Filtering -> {OrdinaryPurchase o_event, FrequentPurchase f _event};

constraints

precede (CountEvents, FilterEvents); DSLs are used to
} provide the

functionality of event
modules

Specification of Event Modules
(EventReactor 1.1)

eventmodule CountEvents{ Event modules have
requires{ Purchase p_event; Reserve r_event; Cancel c_event;} event-based required

provides{} and provided
reactor{ interfaces, which refer
if (Shopping.computeElapsedTime()< 20){ to event types.

if (o_event) p_counter++;
else if (r_event) r_counter++;
else if (c_event) c_counter++;

} The functionality to process

else{ required events and to publish
Shopping.log(p_counter, r_counter, c_counter); events can be expressed in
Shopping.reset(p_counter, r_counter, c_counter); Java.

}

}

variables{ long p_counter, r_counter, c_counter;}

Specification of Event Modules
(EventReactor 1.1)

Events may be
eventmodule FilterEvents{ processed by more
requires{ Purchase p_event;}

than one event
provides{ OrdinaryPurchase o_event; FrequentPurc - —adle.
reactor{

frequency = Shopping.getPurchaseFrequency(p_event, 10);
if (frequency > 30){

f _event.inner = p_event;

f _event.frequency = frequency;

publish f_event;}

else{

o_event.inner = p_event; publish o_event;}

}

variables{ long frequency;}

Specification of Event Modules
(EventReactor 1.1)

eventmodule ComputeMax{
requires{ Purchase p_event;}
provides{ MaxPurchase mp_event;}
reactor{
if (Shopping.computeElapsedTime()< 20){
maxpurchase = Shopping.max(p_event.amount, maxpurchase);}
else{ mp_event.max = maxpurchase; publish mp_event;

}

variables{ long maxpurchase;}
}
eventmodule Loginfo{

requires{ MaxPurchase event;}

provides{}

reactor{ Shopping.log(event.max);}

}

Specification of Compositions
(EventReactor 1.1)

To utilize event
modules, they must be
instantiated.

1

composition {
CountEvents ce;
FilterEvents fe; |
ComputeMax cpmaxOrdinary;
ComputeMax cpmaxFrequent;
Loginfo [i;

Multiple instances of
an event module can
be defined.

bind (fe.o_event, cpomaxOrdinary.p_event);
bind (fe.f_event, comaxFrequent.p_event);
bind (comaxOrdinary.mp_event, li.event);
bind (cpmaxFrequent.mp_event, li.event);

Explicit binding of
event modules to each
other is supported.
precede (ce, fe); Implicit binding based
) on event types is also

supported.

Conclusions

=Event-based composition, in principle, can help to achieve loose coupling among modules.
= However, to achieve an effective event-based composition, we require event-based modularization.

=Event Composition Model can be regarded as a base model for developing AO and/or event-

processing languages:
= Unlike current AO languages, EventReactor is open-ended with new (domain-specific) event types and events,
as well as DSLs to express the functionality of event modules.
* These facilitate representing domain-specific concerns in their DSL, without the need for designing an AO DSL

from scratch.
= Composition of event modules with each other is a means to compose the concerns that are implemented in

different DSLs

*In the context of the HAEC (Highly Adaptive Energy-efficient Computing) project:
= EventReactor is being applied to self-energy-adaptive software systems.
= Event modules are adopted to model the architecture of self-energy-adaptive software systems.

R ——

b4

Event Composition Model:

Achieving Naturalness In Runtime Enforcement

i
g
3
H
E
z
g

References LSO

Evolution of Composition Filters to Event Composition

Somayeh Malakuti and Mehmet Aksit
Software Engineering group, University of Twente, 7500 AE Enschede, the Netherlands
{s.malakuti,m.aksit}@ewi.utwente.nl

§
)

© Somayeh Malakuti Khah Olun Abadi, 2011
‘The Software Engineering group,
Facul t Mathematic

acul
University of Twente,
| Enschede, The Netheriands.

Somayeh Malakuti Khah O]

| 1SBN: 978-90-365-32464

ABSTRACT 1. INTRODUCTION

Various different aspect-oriented (AO) languages are intro-
duced in the literature, and naturally are evolved due to the
research activities and the experiences gained in applying
them to various domains. Achieving modularity, compos-
ability and abstractness in the implementation of crosscut-
ting concerns are typical requirements that these languages
aim to fulfill; g
fers per langu
what are the

the limitations. papel claborates o e ALIONS
af the enrrent. A lananaces hv means af rmntime enforee-

Various different aspect-oriented (AO) languages are in-
troduced in the literature [7, 1, 10, 3, 12, 2|, and naturally
are evolved due to the rrennrah antivitine and tha avna

ences gained in applying
ing modularity, composa
plementation of crosscut
hat AO language
ke languages offe
so that the mod
rators to compos
am. Some AO 1
S at the higher lev
rating unnecessarv imole

Event-Based Modularization of Reactive Systems

Somayeh Malakuti and Mehmet Aksit

Software Engineering Group
Faculty of Electrical Engineering. Mathematics and Computer Science
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
{s.malakuti. m.aksit} @ewi.utwente.nl

Abstract. There is a large number of complex software systems that have reac-
tive behavior. As for any other software system, reactive systems are subject to
evolution demands. This paper defines a set requirements that must be fulfilled
so that reuse of reactive software systems can be increased. Detailed analysis of a
G antataalanauaaaarnaalathatahe se requirements are not completely
s and as such reuse of reactive sys-
e Event Composition Model and
e, which fulfill the requirements.
ventReactor language in creating

To appear in COB ‘13

Event Modules

Modularizing Domain-Specific Crosscutting RV Concerns

Somayeh Malakuti' and Mehmet Alksit?

L Software Technology group, Technical University of Dresden, Germany
somayeh.malakuti@tu-dresden.de
2 Software Engineering group, University of Twente, the Netherlands
m.aksit@utwente.nl

Abstract. Runtime verification (RV) facilitates detecting the failures of
software during its execution. Due to the complexity of RV techniques,
there is an increasing interest in achieving abstractness, modularity and
compose-abhility in their implementations by means of dedicated linguis-
icmechaniom his paper defines o decion space toovaluate the existing
es, and identifies

pear in TAOSD 113 ages with respect

languages, this

eeed o A t OTI IS

