
Complex Event Processing with Event Modules

SOMAYEH MALAKUTI

S O F T WAR E T ECHN OLO GY G RO U P

T ECHNICAL U N IVERSIT Y O F D R ESDEN , G ER MA NY

28.10 .2013

1

Outline

The EventReactor Language

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

Background on Event Processing

2

Event m

Background: Event Processing

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4

Event Processing AgentsEvent Processing Agents

Event nEvent nSW events
………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nHW events ………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEnvironmental events
………

EventEventEventEvent

Event Processing AgentsEvent Processing Agents

Event Processing AgentsEvent Processing Agents

3

EventEvent

Stateless or

Stateful logics

Single or stream

processing

Consumer

Producers

Background: Event Processing (cont.)
�There are various kinds of applications whose base functionality is extended with certain kind of
event processing:

� Runtime verification techniques check the events that occur in software against the formally specified
properties of the software, and detect the failures.

� Self-adaptive software systems monitor environmental changes, analyze them, and adapt themselves
accordingly.

� Traffic monitoring software systems receive traffic flow information from the sensors that are
embedded in roads, and reason about traffic flow in the roads.

�We face the following challenges:

� Modular definition of event processing logics.

� Composition of event processing logics with base modules.

4

Outline

The EventReactor Language

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

5

Language Requirements
�Event representation: Events are the core abstractions in event processing applications, which
may be provided by different kinds of producers.

�A language must provide suitable means to

� Define the events of interest

� Detect their occurrence

� Select them from event streams

� Provide them to event processing agents and event consumers

�If a language falls short in these matters, programmers may be obliged to provide workaround
code in the implementations, which may increase the complexity of the programs.

6

Language Requirements (cont.)

7

Event-base

required interface

Event-base

required interface

DSL/ GPL

Event-based

provided interface

Event-based

provided interface

Event processing agent

Event mEvent 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nSW events
………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nHW events ………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEnvironmental events
………

EventEvent

EventEvent

Event-base

required interface

Event-base

required interface

DSL/ GPLDSL/ GPL

Event-based

provided interface

Event-based

provided interface

Event processing agent

�Event-based modularization of concerns

EventEvent
Consumer

Producers

Language Requirements (cont.)

8

Event-base

required interface

Event-base

required interface

DSL/ GPL

Event-based

provided interface

Event-based

provided interface

Event processing agent

Event mEvent 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nSW events
………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nHW events ………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEnvironmental events
………

EventEvent

EventEvent

Event-base

required interface

Event-base

required interface

DSL/ GPLDSL/ GPL

Event-based

provided interface

Event-based

provided interface

Event processing agent

�Event-based composition of concerns

EventEvent

Loose coupling

to event types

Loose coupling to

event producers

Loose coupling to

event processing

agents

Loose coupling to

event consumers

Consumer

Producers

9

Outline

The EventReactor Language

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

Problems with OO Languages
�In object-oriented (OO) languages, objects are means to modularize the concerns of interest.

�Objects communicate with each other via message passing (e.g. method invocation, events).

�Techniques such as polymorphism along with various design patterns can be adopted to achieve
loose coupling in the implementations.

10

Problems with OO Languages (cont.)

subject

registerObservers()

unregisterObservers()

notifyObservers()

observer

notify(int…)

invokes on

Fixes the

supported event

Multiple

implementation of the

Observer pattern is

needed to support

multiple kinds of events

observer

notify(String…)

observer

notify(Object…)

Suitable for

simple event

processing

11

Problems with OO Languages (cont.)

subject

registerObservers()

unregisterObservers()

notifyObservers()

observer

notify(int…)

invokes on

To implement event

stream processing or

complex event

processing,

extra code must be

provided to collect

events from observersobserver

notify(String…)

observer

notify(Object…)

complexEP
collectEvents(…)

statefulProcessing(…)

12

Problems with OO Languages (cont.)

subject

registerObservers()

unregisterObservers()

notifyObservers()

observer

notify(int…)

invokes on

Multiple

implementations of the

observer pattern must

be provided to

implement a hierarchy

of event processors

observer

notify(String…)

observer

notify(Object…)

complexEP/subject
collectEvents(…)

statefulProcessing(…)

observer

notify(int…)

13

Problems with OO Languages (cont.)

subject

registerObservers()

unregisterObservers()

notifyObservers()

observer

notify(int…)

invokes on

If events must be

collected from multiple

sources, the invocations

to observers scatters

across multiple subjects. observer

notify(String…)

observer

notify(Object…)

complexEP/subject
collectEvents(…)

statefulProcessing(…)

observer

notify(int…)

14

subject

registerObservers()

unregisterObservers()

notifyObservers()

subject

registerObservers()

unregisterObservers()

notifyObservers()

Problems with AO Languages (cont.)
�Due to the crosscutting nature of event processing functionality, one may consider adopting
aspect-oriented (AO) languages.

�In AO languages:

� Join points are means to show state changes in base programs.

� Pointcut designators are means to select the joint points of interest.

� Advice code is a means to react to the selected join points.

� In many AO languages, aspect is a means to modularize a set of related pointcut designators and advice
code.

15

public aspect monitoring {

boolean isOpen;

pointcut readFile() : call (* File.read());

pointcut openFile() : call (* File.open());

before () : openFile() {isOpen = true;}

before () : readFile() {

if (isOpen == false)

throw new MyFileException(“Error”);

}

}

C

Event

C

Event

Java

Event

Java

Event

C

Event

C

Event

Java

Event

Java

Event

C

Event

C

Event

Problems with AO Languages (cont.)

Java

Event

Java

Event

Event processing aspect

SW events

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent n
HW events

………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEnvironmental events
………

16

�Event representation: the set of supported events is defined by the join point model of the
adopted AO language.

� Some AO languages such as AspectJ and Compose* support a fixed join point model.

� If desired events are not defined in the join point model, workaround mappings must be provided. ; this
may increase the

C

Event

C

Event

Java

Event

Java

Event

C

Event

C

Event

Java

Event

Java

Event

C

Event

C

Event

Problems with AO Languages (cont.)

Java

Event

Java

Event

Event processing aspect

(AspectJ)

SW events

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent n
HW events

………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEnvironmental events
………

Composition (?)
Event processing

functionality cannot

be modularized as

one aspect

Composition of

aspects programmed

in different languages

is still a challenge

Event processing aspect

(AspectC)

17

Problems with AO Languages (cont.)

18

Base

Object

Events Stream

Pointcut expressions

(required Interface)

Advice

(implementation)

Advice join points

(provided interface)

Aspect Module
�Event-based modularization of concerns:

� Limited expression power of pointcut designators is a known problem.

� There is a limited number of AO DSLs; they fall short in defining event processing
logics.

� AO languages have limited support to select the join points that are activated
within aspects.

Problems with AO Languages (cont.)
�Event-based composition: such a composition can be achieved through
join points and pointcut designators.

� In AspectJ-like languages, which support pointcut-based instantiation of
aspects, the presence of an aspect instance depends on the presence of the
base object to which the aspect instance is bound.

� Such a coupling does not exist in the languages that support explicit
construction and deployment of aspects; for example in CaesarJ and EOS.

� In these languages, however, an aspect is limited to process the events that are produced by the
objects on which it is deployed.

19

Base

Object

Events Stream

Pointcut expressions

(required Interface)

Advice

(implementation)

Advice join points

(provided interface)

Aspect Module

Binding is specified

by the instantiation

strategy of the

aspect module

Dedicated Languages
�Several different dedicated languages are introduced for event stream processing, examples are
Esper and EPL of Oracle.

� They have a dedicated focus on the event processing logics, with no support for modularization and
composition of concerns.

�There are numerous DSLs introduced in the literature, 30+ only for the domain of RV.

� The advanced RV DSLs adopt an AO language (such as AspectJ) as their base languages. Hence, they
suffer from the same limitations as the AO languages.

�There are many languages and language extensions with a dedicated support for event
processing:

� Event-delegate mechanism of C#, Ptolemy, EventJava, EventCJ, …

20

Outline

The EventReactor Language

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

21

Event Composition Model

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEvent stream
………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent n
Event stream

………

Event 1 Event 2Event 2 Event 3Event 3 Event 4Event 4 Event nEvent nEvent stream
………

EventEvent

EventEvent

EventEvent
Required Interface

ReactorReactor

Provided Interface

Event Module

Required Interface

Reactor

Provided Interface

Event Module

Required Interface

ReactorReactor

Provided Interface

Event Module

Event

Event

22

Objects and

aspects can be

represented as

event modules

23

Outline

The EventReactor Language

Background on Event Processing

Language Requirements

Problems in Existing Languages

Event Composition Model

The EventReactor Language
�The EventReactor language implements the concepts introduced by Event Composition Model.

� It offers dedicated languages to define event types and events.

� It offers APIs to publish events from Java and non-Java programs.

� It makes use of the Prolog language to select primitive events of interest based on event attributes.

� It offers constructs to define event modules.

� It offers dedicated operators to compose event modules.

24

Illustrative Example

25

CountEvents FilterEvents

ComputeMax for Ordinary

LogInfo

ComputeMax for Frequent

Event stream for

customer 1
Event stream for

customer 2
Event stream for

customer 3

Purchase request

Cancel request
Reserve request

Event processing agents

Event flow

Specification of Event Types

eventtype Purchase extends EventType{

dynamiccontext:

long customerID;

long productID;

}

eventtype FrequentPurchase extends Purchase{

dynamiccontext:

Purchase inner;

long frequency;

}

eventtype OrdinaryPurchase extends Purchase{...}

eventtype MaxPurchase extends Purchase{...}

Application-specific

defined.

Application-specific

event types can be

defined.

There can be inheritance

relation among event

types

26

An event type is a data

of attributes.

An event type is a data

structure, defining a set

of attributes.

Publishing Events

Purchase event = new Purchase ();

event.dynamiccontext.customerID = 1;

event.dynamiccontext.productID = 10;

EventReactor.publish(event);

Dedicated API for

publishing an event

To publish an event

initialized.

To publish an event

from a Java program, it

must be instantiated,

and its dynamic

attributes must be

initialized.

27

Specification of Event Modules
(EventReactor 1.0)

eventpackage example{

selectors

p_event = {E | hasEventType (E, ‘Purchase’)};

r_event = {E | hasEventType (E, ‘Reserve’)};

c_event = {E | hasEventType (E, ‘Cancel’)};

eventmodules

CountEvents := {p_event, r_event, c_event} <- Counter -> {};

FilterEvents := {p_event} <- Filtering -> {OrdinaryPurchase o_event, FrequentPurchase f_event};

…

constraints

precede (CountEvents, FilterEvents);

}

Prolog is used to query

events.

28

DSLs are used to

provide the

functionality of event

modules

Specification of Event Modules
(EventReactor 1.1)

eventmodule CountEvents{

requires{ Purchase p_event; Reserve r_event; Cancel c_event;}

provides{}

reactor{

if (Shopping.computeElapsedTime()< 20){

if (p_event) p_counter++;

else if (r_event) r_counter++;

else if (c_event) c_counter++;

}

else{

Shopping.log(p_counter, r_counter, c_counter);

Shopping.reset(p_counter, r_counter, c_counter);

}

}

variables{ long p_counter, r_counter, c_counter;}

}

Event modules have

event-based required

and provided

interfaces, which refer

to event types.

29

The functionality to process

required events and to publish

events can be expressed in

Java.

Specification of Event Modules
(EventReactor 1.1)

eventmodule FilterEvents{

requires{ Purchase p_event;}

provides{ OrdinaryPurchase o_event; FrequentPurchase f_event;}

reactor{

frequency = Shopping.getPurchaseFrequency(p_event, 10);

if (frequency > 30){

f_event.inner = p_event;

f_event.frequency = frequency;

publish f_event;}

else{

o_event.inner = p_event; publish o_event;}

}

variables{ long frequency;}

}

Events may be

processed by more

than one event

module.

30

Specification of Event Modules
(EventReactor 1.1)

eventmodule ComputeMax{

requires{ Purchase p_event;}

provides{ MaxPurchase mp_event;}

reactor{

if (Shopping.computeElapsedTime()< 20){

maxpurchase = Shopping.max(p_event.amount, maxpurchase);}

else{ mp_event.max = maxpurchase; publish mp_event;

}

variables{ long maxpurchase;}

}

eventmodule LogInfo{

requires{ MaxPurchase event;}

provides{}

reactor{ Shopping.log(event.max);}

}

31

Specification of Compositions
(EventReactor 1.1)

32

composition {

CountEvents ce;

FilterEvents fe;

ComputeMax cpmaxOrdinary;

ComputeMax cpmaxFrequent;

LogInfo li;

bind (fe.o_event, cpmaxOrdinary.p_event);

bind (fe.f_event, cpmaxFrequent.p_event);

bind (cpmaxOrdinary.mp_event, li.event);

bind (cpmaxFrequent.mp_event, li.event);

precede (ce, fe);

}

To utilize event

modules, they must be

instantiated.

Multiple instances of

an event module can

be defined.

Explicit binding of

event modules to each

other is supported.

Implicit binding based

on event types is also

supported.

Conclusions
�Event-based composition, in principle, can help to achieve loose coupling among modules.
� However, to achieve an effective event-based composition, we require event-based modularization.

�Event Composition Model can be regarded as a base model for developing AO and/or event-
processing languages:
� Unlike current AO languages, EventReactor is open-ended with new (domain-specific) event types and events,

as well as DSLs to express the functionality of event modules.

� These facilitate representing domain-specific concerns in their DSL, without the need for designing an AO DSL
from scratch.

� Composition of event modules with each other is a means to compose the concerns that are implemented in
different DSLs

�In the context of the HAEC (Highly Adaptive Energy-efficient Computing) project:
� EventReactor is being applied to self-energy-adaptive software systems.

� Event modules are adopted to model the architecture of self-energy-adaptive software systems.

33

References

34

@ ACM SAC 2012

To appear in TAOSD ‘13
To appear in COB ‘13

