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Background: Event Processing
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Background: Event Processing (cont.)

"There are various kinds of applications whose base functionality is extended with certain kind of

event processing:
= Runtime verification techniques check the events that occur in software against the formally specified
properties of the software, and detect the failures.
= Self-adaptive software systems monitor environmental changes, analyze them, and adapt themselves
accordingly.
= Traffic monitoring software systems receive traffic flow information from the sensors that are
embedded in roads, and reason about traffic flow in the roads.

=\We face the following challenges:
= Modular definition of event processing logics.
= Composition of event processing logics with base modules.
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Language Requirements

"Event representation: Events are the core abstractions in event processing applications, which
may be provided by different kinds of producers.

=A language must provide suitable means to
= Define the events of interest

= Detect their occurrence
= Select them from event streams
" Provide them to event processing agents and event consumers

=If a language falls short in these matters, programmers may be obliged to provide workaround
code in the implementations, which may increase the complexity of the programs.



Language Requirements (cont.)

*Event-based modularization of concerns
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Language Requirements (cont.)

Loose coupling to
event processing
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Problems with OO Languages

"In object-oriented (O0) languages, objects are means to modularize the concerns of interest.

"Objects communicate with each other via message passing (e.g. method invocation, events).

sTechniques such as polymorphism along with various design patterns can be adopted to achieve
loose coupling in the implementations.
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Problems with OO Languages (cont.)
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Problems with OO Languages (cont.)

- observer
e RN notify(int...)
complexEP/subject ' 7

collectEvents(...) S~ o-
statefulProcessing(...)

Multiple
implementations of the

-
——— - i
- -~

yad I S observer pattern must
observer observer observer be provided to
notify(int...) notify(String...) notify(Object...) implement a hierarchy
of event processors
t _ A A
" invokes .6n -7
1 - - -__———" ——————————
Vo -7
(Pe
| 4
subject

registerObservers()
unregisterObservers()
notifyObservers()




Problems with OO Languages (cont.)
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Problems with AO Languages (cont.)

“Due to the crosscu public aspect monitoring { consider adopting
aSpeCt'Oriented (A‘ boolean |SOpen,

"In AO languages:
= Join points are me

pointcut readFile() : call (* File.read());

= Pointcut designat pointcut openFile() : call (* File.open());

= Advice codeisan bef . - - . |
= |[n many AO langu efore () : openFile() {isOpen = true;}

code. before () : readFile() {
if (iIsOpen == false)
throw new MyFileException(“Error”);

designators and advice




Problems with AO Languages (cont.)

"Event representation: the set of supported events is defined by the join point model of the
adopted AO language.

= Some AO languages such as Aspect) and Compose* support a fixed join point model.

* If desired events are not defined in the join point model, workaround mappings must be provided. ; this
may increase the
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Problems with AO Languages (cont.
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Problems with AO Languages (cont.)
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Problems with AO Languages (cont.)

"Event-based composition: such a composition can be achieved through eTTTTTITTmm e mmom oo .~
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Dedicated Languages

=Several different dedicated languages are introduced for event stream processing, examples are
Esper and EPL of Oracle.

* They have a dedicated focus on the event processing logics, with no support for modularization and
composition of concerns.

"There are numerous DSLs introduced in the literature, 30+ only for the domain of RV.

" The advanced RV DSLs adopt an AO language (such as Aspect)) as their base languages. Hence, they
suffer from the same limitations as the AO languages.

=There are many languages and language extensions with a dedicated support for event
processing:
" Event-delegate mechanism of C#, Ptolemy, Eventlava, EventCJ, ...
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Event Composition Model

____________________

T - / Event Module R
/ Event Module ' @ | !
1 1 ,’ : R 1
e - ! . 1 ‘ : | Provided Interface ]~\:
; Event Module \ ! [ Provided Interface ]— : \ : A |
1
| : | i i Y A Reactor I
: | Provided Interface F4sz-"~ > Event >~ ! | Reactor J : N i A N
| S - \ 1
l 1 LT > Event - T ] N \ [ Required Interface J,"
1 \ 1 . ] ~
! [ Reactor ] L o Eem > © \ [ Required Interface ] ; S N AT
1 ) ’ ~ i - - - - = ===
! N ! ’ \\:¢; _____ - ;..A. _________ - S—---cT - --
1 - S eemm -
'\ [ Required Interface ] S T -
\\ ____________________ R4 P -
AN // -
’\ \: : S~ //
/ e T /7
\ ~~ ==~ ~— .
| Moy Te - I~ ) Objects and
\ = y aspects can be
Event stream (Eé'm N Event2 > C Event3 O ﬁﬁm ~~~~~~~~~ @h e represented as
(’J\} h _Event3 > K_\\\B < _Eventn O event modules
Event stream Event 1 Event 2 Event 3 Event 4 Event n
Event stream —— C Fvent1 > < Event2 > CRamis < Fama < _Eventn >




Outline

Background on Event Processing '

Language Requirements

Problems in Existing Languages

Event Composition Model

I

The EventReactor Language




The EventReactor Language

=*The EventReactor language implements the concepts introduced by Event Composition Model.
" |t offers dedicated languages to define event types and events.

It offers APIs to publish events from Java and non-Java programs.

It makes use of the Prolog language to select primitive events of interest based on event attributes.

It offers constructs to define event modules.

It offers dedicated operators to compose event modules.
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Specification of Event Types

Application-specific ‘
event types can be

defined. |

An event type is a data
structure, defining a set
of attributes.

|

=

eventtype Purchase extends EventType{
dynamiccontext:

-~ long customerlD;

long productiD;
}
eventtype FrequentPurchase extends Purchase{
dynamiccontext:

Purchase inner;

long frequency;
}
eventtype OrdinaryPurchase extends Purchase{...}
eventtype MaxPurchase extends Purchase{...}

There can be inheritance
relation among event

types




Publishing Events

| Purchase event = new Purchase ();
event.dynamiccontext.customerlD = 1;
event.dynamiccontext.productID = 10;
EventReactor.publish(event);

To publish an event
from a Java program, it
must be instantiated, Dedicated API for

and its dynamic publishing an event
attributes must be
initialized.

R ——



Specification of Event Modules
(EventReactor 1.0)

eventpackage example{
selectors | Prolog is used to query
p_event = {E | hasEventType (E, ‘Purchase’)}; events.
r_event = {E | hasEventType (E, ‘Reserve’)}; |

c_event = {E | hasEventType (E, ‘Cancel’)};
eventmodules
CountEvents := {p_event, r_event, c_event} <- Counter -> {};
FilterEvents := {p_event} <- Filtering -> {OrdinaryPurchase o_event, FrequentPurchase f _event};

constraints

precede (CountEvents, FilterEvents); DSLs are used to
} provide the

functionality of event
modules




Specification of Event Modules
(EventReactor 1.1)

eventmodule CountEvents{ Event modules have
requires{ Purchase p_event; Reserve r_event; Cancel c_event;} event-based required

provides{} and provided
reactor{ interfaces, which refer
if (Shopping.computeElapsedTime()< 20){ to event types.

if (o_event) p_counter++;
else if (r_event) r_counter++;
else if (c_event) c_counter++;

} The functionality to process

else{ required events and to publish
Shopping.log(p_counter, r_counter, c_counter); events can be expressed in
Shopping.reset(p_counter, r_counter, c_counter); Java.

}

}

variables{ long p_counter, r_counter, c_counter;}




Specification of Event Modules
(EventReactor 1.1)

Events may be
eventmodule FilterEvents{ processed by more
requires{ Purchase p_event;}

than one event
provides{ OrdinaryPurchase o_event; FrequentPurc - —adle.
reactor{

frequency = Shopping.getPurchaseFrequency(p_event, 10);
if (frequency > 30){

f _event.inner = p_event;

f _event.frequency = frequency;

publish f_event;}

else{

o_event.inner = p_event; publish o_event;}

}

variables{ long frequency;}




Specification of Event Modules
(EventReactor 1.1)

eventmodule ComputeMax{
requires{ Purchase p_event;}
provides{ MaxPurchase mp_event;}
reactor{
if (Shopping.computeElapsedTime()< 20){
maxpurchase = Shopping.max(p_event.amount, maxpurchase);}
else{ mp_event.max = maxpurchase; publish mp_event;

}

variables{ long maxpurchase;}
}
eventmodule Loginfo{

requires{ MaxPurchase event;}

provides{}

reactor{ Shopping.log(event.max);}

}




Specification of Compositions
(EventReactor 1.1)

To utilize event
modules, they must be
instantiated.

1

composition {
CountEvents ce;
FilterEvents fe; |
ComputeMax cpmaxOrdinary;
ComputeMax cpmaxFrequent;
Loginfo [i;

Multiple instances of
an event module can
be defined.

bind (fe.o_event, cpomaxOrdinary.p_event);
bind (fe.f_event, comaxFrequent.p_event);
bind (comaxOrdinary.mp_event, li.event);
bind (cpmaxFrequent.mp_event, li.event);

Explicit binding of
event modules to each
other is supported.
precede (ce, fe); Implicit binding based
) on event types is also

supported.




Conclusions

=Event-based composition, in principle, can help to achieve loose coupling among modules.
= However, to achieve an effective event-based composition, we require event-based modularization.

=Event Composition Model can be regarded as a base model for developing AO and/or event-

processing languages:
= Unlike current AO languages, EventReactor is open-ended with new (domain-specific) event types and events,
as well as DSLs to express the functionality of event modules.
* These facilitate representing domain-specific concerns in their DSL, without the need for designing an AO DSL

from scratch.
= Composition of event modules with each other is a means to compose the concerns that are implemented in

different DSLs

*In the context of the HAEC (Highly Adaptive Energy-efficient Computing) project:
= EventReactor is being applied to self-energy-adaptive software systems.
= Event modules are adopted to model the architecture of self-energy-adaptive software systems.

R ——
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