RAY: Integrating Rx and Async for
Direct-Style Reactive Streams

Philipp Haller, Typesafe
Heather Miller, EPFL

B

Typesafe ECOLE POLYTECHNIQUE

| FEDERALE DE LAUSANNE

Topic of this Talk

Integration of two well-known, widely-used
programming models

Goal: simplify programming with asynchronous
streams of observable events

Outline

Review Async and Rx Models

A Challenge Problem
RAY
The Paper

Conclusion

The Async Model

This work focuses on one recent proposal to simplify
asynchronous programming: the Async Model

The essence of the Async Model:

1. A way to spawn an asynchronous computation
(async), returning a (first-class) future

2. A way to suspend an asynchronous computation
(await) until a future is completed

Result: a direct-style API for non-blocking futures

Practical relevance: F#, C# 5.0, Scala 2.11

4

Example

Setting: Play Web Framework

Task: Given two web service requests, when both

are completed, return response with the results of
both:

val futureDOY: Future[Response] =
WS.url("http://api.day-of-year/today").get

val futureDayslLeft: Future[Response] =
WS.url("http://api.days-left/today").get

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

Example

Using plain Scala futures

futureDOY.flatMap { doyResponse =>
val dayOfYear = doyResponse.body
futureDaysLeft.map { daysLeftResponse =>
val daysLeft = daysLeftResponse.body
Ok("" + dayOfYear + ": " + daysLeft + " days left!")

}
¥

Example

Using plain Scala futures

futureDOY.flatMap { doyResponse =>
val dayOfYear = doyResponse.body
futureDaysLeft.map { daysLeftResponse =>
val daysLeft = daysLeftResponse.body
Ok("" + dayOfYear + ": " + daysLeft + " days left!")

}
}

Using Scala Async

val respFut = async {
val dayOfYear = await(futureDOY).body
val daysLeft = await(futureDayslLeft).body
Ok("" + dayOfYear + ": " + daysLeft + " days left!")

¥

Example

Using plain Scala futures

futureDOY.flatMap { doyResponse =>
val dayOfYear = doyResponse.body
futureDaysLeft.map { daysLeftResponse =>
val daysLeft = daysLeftResponse.body
Ok("" + dayOfYear + ": " + daysLeft + " days left!")

}
}

Using Scala Async 000"

val respFut = async { \e
val dayOfYear = await(futureDOY).boad 5\\J J
val daysLeft = await(futureDayslLeft) el \
Ok("" + dayOfYear + ": " + daysLeft + 0‘05 O’\ ’\\)\‘\)

¥

Reactive Extensions (Rx)

e Asynchronous event streams and push notifications:
a fundamental abstraction for web and mobile apps

e Typically, event streams have to be scalable, robust,
and composable

o Examples: Netflix, Twitter, ...
e Most popular framework: Reactive Extensions (Rx)

e Based on the duality of iterators and observers
(Meijer’12)

e (Cross-platform framework (RxJava, RxJS, ...)

e (Composition using higher-order functions
7

The Essence of Rx

trait Observable[T] {
def subscribe(obs: Observer[T]): Closable

trait Observer[T] {
def onNext(v: T): Unit
def onFailure(t: Throwable): Unit
def onDone(): Unit

Observer|T]: Interactions

trait Observer[T] {
def onNext(v: T): Unit

i R e LU L S LU def onFailure(t: Throwable): Unit

def onDone(): Unit

successful completion after n steps.

e ——

unsuccessful completion after i steps.

—_——_— — 9

infinite stream of values

—-———0—0—0)>

68 COMMUNICATIONS OF THE ACM | MAY 2012 | VOL.5 | NO.5

Erik Meijer: Your mouse is a database. CACM’12
9

The Real Power:
Combinators

flatMap

Combinators: Example

def textChanges(tf: | TextField):
Observable[String]

Observable[Array[String]]

textChanges(textField)
.flatMap(word => completions(word))
.subscribe(observeChanges(output))

Combinators: Example

def textChanges(tf: | TextField):
Observable[String]

Observable[Array[String]]

textChanges(textField)
.flatMap(word => completions(word))
.subscribe(observeChanges(output)) XO

Outline

Review Async and Rx Models

A Challenge Problem
RAY
The Paper

Conclusion

Challenge

Two input streams with the following values:
stream1: 7,1,0,2, 3,1, ...
stream?2: 0,7,0,4,6,5, ...

Task: Create a new output stream that
* yields, for each value of stream1, the sum of the previous 3
values of stream1,
e except if the sum is greater than some threshold in which
case the next value of stream?2 should be subtracted.

For a threshold of 5, the output stream has the
following values:

output: 7,1, 8, 3, 5, 2, ...

|3

Solution using Rx

sum previous

ERVZIER

streaml.window(3).map(w => w.reduce(_ +))

val three

val withIndex = three.zipWithIndex

val big = withIndex.filter(. 1 >= 5).zip(stream2).map {
case ((1, i), r) => (1 - r, 1)

}

val output = withIndex.filter(. 1 < 5).merge(big)

Solution using Rx

sum previous

ERVZIER

val three streaml.window(3).map(w => w.reduce(_ +))

val withIndex = three.zipWithIndex

val big = withIndex.filter(. 1 >= 5).zip(stream2).map {
case ((1, i), r) => (1 - r, 1)

}

val output = withIndex.filter(. 1 < 5).merge(big)

Requires “window” and “merge” combinators!

The Problem

e Programming with reactive streams suffers from an
inversion of control

e Requires programming in CPS
e Example: writing stateful combinators is difficult

e Hard to use for programmers not comfortable with
higher-order functions

Outline

Review Async and Rx Models
A Challenge Problem

RAY

The Paper

Conclusion

RAY: The Idea

Integrate Rx and Async: get the best of both worlds

Introduce variant of async { } to create
observables instead of futures => rasync { }

Within rasync { }: enable awaiting events of
observables in direct-style

Creating observables means we need a way to yield
events from within rasync { }

RAY: Primitives

rasync[T] { } - create Observable[T]

awaitNextOrDone(obs) - awaits and returns
Some (next event of obs), or else if obs has

terminated returns None

yieldNext(evt) - yields next event of current
observable

RAY: First Example

val forwarder = rasync[Int] {
var next: Option[Int] = awaitNextOrDone(stream)
while (next.nonEmpty) {
yieldNext(next)
next = awaitNextOrDone(stream)

¥

Challenge: Recap

Two input streams with the following values:
stream1: 7,1,0,2, 3,1, ...
stream?2: 0,7,0,4,6,5, ...

Task: Create a new output stream that
* yields, for each value of stream1, the sum of the previous 3
values of stream1,
e except if the sum is greater than some threshold in which
case the next value of stream?2 should be subtracted.

For a threshold of 5, the output stream has the
following values:

output: 7,1, 8, 3, 5, 2, ...

20

Solution using RAY

val output = rasync[Int] {
var window = List(@, 0, ©0)
var evt = awaitNextOrDone(streaml)
while (evt.nonEmpty) {
window = window.tail :+ evt.get
val next = window.reduce(_ +) match {
case big if big > Threshold =>
awaitNextOrDone(stream2).map(x => big - Xx)
case small =>
Some(small)
}
yieldNext(next)
evt =
if (next.isEmpty) None else awaitNextOrDone(streaml)

21

Solution using RAY

val output = rasync[Int] {
var window = List(@, 0, ©0)
var evt = awaitNextOrDone(streaml)
while (evt.nonEmpty) {
window = window.tail :+ evt.get
val next = window.reduce(_ +) match {
case big if big > Threshold =>
awaitNextOrDone(stream2).map(x => big - Xx)
case small =>
Some(small) C
} jitiona
yieldNext(next) No add\“
evt =
if (next.isEmpty) None else awaitNextOrDone(streaml)

21

RAY: Summary

e (Generalize Async from futures to observables

e Enables more intuitively creating and composing
streams

e No need to use higher-order functions
e Direct-style API for awaiting stream events

e Programmers can leverage their experience with the
Async model

22

Outline

Review Async and Rx Models
A Challenge Problem
RAY

The Paper

Conclusion

23

The Paper

1. Implementation: extends the existing Async state
machine translation

e | everage new non-blocking “FlowPools” dataflow
collection (LCPC’12)

2. Operational semantics

e Extends operational semantics of C# Async
formalization (ECOOP’12)

¢ High-level semantics: reasoning independent of
low-level state machines

24

Conclusion

e RAY generalizes Async from futures to observables
e Enables more intuitively composing observables

e No need to use higher-order functions

e Direct-style API for awaiting observable events

e Programmers can leverage their experience with the
Async model

25

ANOTHER EXAMPLE

Va]_ date — ”””(\d-l_)/(\d-l_)”””.r

tasync {

awalt (futureDOY) .body match {

case date(month, day) => 1
Ok(s”It’s ${await(nameOfMonth(month.toInt))}!”){

case _ => |
NotFound(“Not a date, mate!”)

Hajler and Zaugg, Scala Async, ScalaDays’13

BACK TO USING FOR

fdef nameOfMonth(num Int) Future[Strlng]
fval date = 777 (\d+)/(\d+)”””.r

i for { doyResponse <- futureDOY
| dayOfYear = doyResponse.body
response <- dayOfYear match {
case date(month, day) =>
for (name <- nameOfMonth(month.toInt))
yleld Ok(s”It’s $name!”)
case _ =>
Future.successful (NotFound(“Not a...”))
J

|} yield response]

Hajler and Zaugg, Scala Async, ScalaDays’13

