
Mapping Context-Dependent
Requirements to Event-Based
Context-Oriented Programs for
Modularity
Tetsuo Kamina (UTokyo)
Tomoyuki Aotani (Tokyo Tech)
Hidehiko Masuhara (Tokyo Tech)

Purpose
Methodology for context-aware systems
from requirements to implementation

Context-dependent behavior
well-studied in implementation
identification of contexts and behavioral
variations is not trivial

Requirements model and systematic implementation
using event-based COP language EventCJ

Context-awareness
Capability of a system to behave w.r.t.
surrounding contexts (outdoors, indoors)

Multiple parts of behavior simultaneously
change at runtime

Map：City map，Floor plan
Positioning：GPS, RFID

Context-awareness
Capability of a system to behave w.r.t.
surrounding contexts (outdoors, indoors)

Multiple parts of behavior simultaneously
change at runtime

Map：City map，Floor plan
Positioning：GPS, RFID

Outdoors

Context-awareness
Capability of a system to behave w.r.t.
surrounding contexts (outdoors, indoors)

Multiple parts of behavior simultaneously
change at runtime

Map：City map，Floor plan
Positioning：GPS, RFID

Indoors

modularization of context dep. behavior: layer
disciplined activation of layers

Context-Oriented Programming
(COP)[Hirschfeld08]

display() getPos()

call getPos()

Outdoors

Indoors

Display Positioning

call display()

display() getPos()

Display Positioning

Display Positioning
display() getPos()

Layer

modularization of context dep. behavior: layer
disciplined activation of layers

Context-Oriented Programming
(COP)[Hirschfeld08]

display() getPos()

call getPos()

Outdoors

Indoors

Display Positioning

call display()

with(Outdoors) {
 ...
}

display() getPos()

Display Positioning

Display Positioning
display() getPos()

override

Layer

modularization of context dep. behavior: layer
disciplined activation of layers

Context-Oriented Programming
(COP)[Hirschfeld08]

display() getPos()

call getPos()

Outdoors

Indoors

Display Positioning

call display()

with(Indoors) {
 ...
}

display() getPos()

Display Positioning

Display Positioning
display() getPos()

override

Layer

We need to identify:

Variations of behavior that should be
implemented using a layer

Context that changes behavior
A layer assumes a context

Timing when contexts/layers change

Outdoors is active when the situation is outdoors
Layer Context

We need to identify:

Variations of behavior that should be
implemented using a layer

Context that changes behavior
A layer assumes a context

Timing when contexts/layers change

Outdoors is active when the situation is outdoors
Layer Context

Do we really know them?

Questions

When to use layers?
the ways (layers, design patterns, if) affect
modularity

What are contexts?
Can a layer always assume only one single context?
How relations b/w contexts and layers are defined?

How can precisely specify when context changes?

Questions

When to use layers?
the ways (layers, design patterns, if) affect
modularity

What are contexts?
Can a layer always assume only one single context?
How relations b/w contexts and layers are defined?

How can precisely specify when context changes?

Methodology is required

Overview of methodology
Identifying contexts and context-
dependent use cases

Identifying layers by grouping use cases

Identifying events that trigger context
changes

description of
behavior

contexts

context-dependent
use cases

outdoors indoors

city map

outdoors

...

outdoors

...

outdoors

Layer

indoors outdoors

when GPS value
becomes ...

Example use cases

• If the user is outdoors, it displays a city map using
GPS based positioning

• If the user is indoors, it displays a floor plan using
Wi-Fi based positioning

• If the floor plan is not available, it displays a city map

• If no positioning is available, it displays a static map
and showing an alert message

Pedestrian Navigation System:

Identifying contexts
We identify contexts from behavior
Documents describing system-to-be (e.g.
use cases)
Prototypes

Conditions are candidates for contexts
•If the use is outdoors, the system displays a city map
•If the use is indoors, the system displays a floor plan
•If the floor plan is not available, the system displays a city map
•If no positioning is available, the system displays a static map

※conditions affecting a number of parts
 (e.g., external environmental conditions)

Identifying contexts
We identify contexts from behavior
Documents describing system-to-be (e.g.
use cases)
Prototypes

Conditions are candidates for contexts
•If the use is outdoors, the system displays a city map
•If the use is indoors, the system displays a floor plan
•If the floor plan is not available, the system displays a city map
•If no positioning is available, the system displays a static map

candidates
※conditions affecting a number of parts
 (e.g., external environmental conditions)

Defining contexts
We define a context in terms of variables
outdoors/indoors situations are merged

A context is a specific setting of value to a
variable (a Boolean term)

name value

situation outdoors, indoors
floorPlan available, unavailable

positioning available, unavailable

e.g. situation=outdoors

Context-dependent use cases
Defining context-dependent use cases
a specialization of use case applicable in
specific contexts
Annotated with proposition of contexts

using a map

using a city
map

using a
floor plan using a

static mapsituation=outdoors ∨
floorPlan=unavailable

situation=indoors ∨
floorPlan=available

positioning=unavailable

showing
alert

positioning=unavailable

<<include>>

Identifying layers
Layer: a set of use cases with the same
proposition

* a use case scattering over multiple
 objects may also be identified as a layer
 (cf. Jacobson, 2005)

using a map

using a city
map

using a
floor plan using a

static mapsituation=outdoors ∨
floorPlan=unavailable

situation=indoors ∨
floorPlan=available

positioning=unavailable

showing
alert

positioning=unavailable

<<include>>

Identifying layers
Layer: a set of use cases with the same
proposition

* a use case scattering over multiple
 objects may also be identified as a layer
 (cf. Jacobson, 2005)

layer

using a map

using a city
map

using a
floor plan using a

static mapsituation=outdoors ∨
floorPlan=unavailable

situation=indoors ∨
floorPlan=available

positioning=unavailable

showing
alert

positioning=unavailable

<<include>>

To identify events...

We need to decompose context into more
specific states of the machine (sensors)
State changes are identified as events

Contexts are abstract in use cases

Decomposing contexts
Detailed specification consists of sensors
(GPS, Wi-Fi) and external entities (floor plan)
Some contexts depend on multiple sensors

context detailed context specification
situation=outdoors GPS=over the criterion value
situation=indoors GPS=under the criterion value
floorPlan=available The floor plan service exists
floorPlan=unavailable The floor plan service does not exist
positioning=available GPS=on or Wi-Fi=connected
positioning=unavailable GPS=off and Wi-Fi=disconnected

Identifying events
Specifying how/when the status of detailed
context specification changes

event how when
StrongGPS GPS=under the criterion the GPS signal value

→ GPS=over the criterion becomes over XXX
GPSEvent GPS=off → GPS=on the GPS device is

becoming on
WifiEvent Wi-Fi=disconnected the Wi-Fi device is

→ Wi-Fi=connected connected ...

We have obtained so far..

We have obtained so far..

using a city
map

layers/context-dep. use cases
representing context-dep. behavior

We have obtained so far..

situation=outdoors floorPlan=unavailable

using a city
map
OR

layers/context-dep. use cases
representing context-dep. behavior

context changing layer activation

We have obtained so far..

situation=outdoors floorPlan=unavailable

GPS=over criterion

event: StrongGPS

using a city
map

GPS=under criterion

OR

layers/context-dep. use cases
representing context-dep. behavior

context changing layer activation

events changing contexts

Translating to implementation

situation=outdoors floorPlan=unavailable

GPS=over criterion

event: StrongGPS

using a city
map

GPS=under criterion

OR

Translating specifications to corresponding
constructs in EventCJ[Kamina11]

Translating to implementation

situation=outdoors floorPlan=unavailable

GPS=over criterion

event: StrongGPS

using a city
map

GPS=under criterion

OR

Translating specifications to corresponding
constructs in EventCJ[Kamina11]

layer CityMap
 when Outdoors || !FPExists
 { .. }

layers are directly mapped

contexts are encoded
in composite layers

Translating to implementation

situation=outdoors floorPlan=unavailable

GPS=over criterion

event: StrongGPS

using a city
map

GPS=under criterion

OR

Translating specifications to corresponding
constructs in EventCJ[Kamina11]

layer CityMap
 when Outdoors || !FPExists
 { .. }

event GPSEvent ...
transition StrongGPS:
 !Outdoors ? -> Outdoors;

layers are directly mapped

contexts are encoded
in composite layers

events are encoded in
layer transition rules

EventCJ: event-based layer
transition

Layer switching is triggered by events

Layer switching is specified by rules

event GPSEvent(Navigation n)
 :after call(void *.onStatusChanged())
 && target(n) && if(GPS.isAvailable())
 :sendTo(n);

✦ Specifying when to generate events using
AspectJ-like pointcut language

transition GPSEvent: !GPSon ? -> GPSon

GPSon
GPSEvent

GPSDisabled

EventCJ: composite layers
[Kamina13]

Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !WifiConnected {
 /* static map functions */
}

GPSon
GPSEvent

GPSDisabled
WifiConnected

WifiEvent

WifiDisabled

StaticMap is inactive

EventCJ: composite layers
[Kamina13]

Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !WifiConnected {
 /* static map functions */
}

GPSon
GPSEvent

GPSDisabled
WifiConnected

WifiEvent

WifiDisabled

StaticMap is active

EventCJ: composite layers
[Kamina13]

Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !WifiConnected {
 /* static map functions */
}

GPSon
GPSEvent

GPSDisabled
WifiConnected

WifiEvent

WifiDisabled

StaticMap is inactive

Discussion

Systematic identification of context-related
requirements
Use cases: useful tool to find contexts
Identification of layers
Stepwise elicitation of events

Translation preserves separation of concerns

More sophisticated case studies are in paper
Conference guide system
Program editor

Related work

Jacobson's AOSD (2005)
Use case driven methodology
A use case scattering multiple classes is
implemented by an aspect
Mapping "extension points" in use cases to
pointcuts in AspectJ
Dynamic deployment of behavior is not discussed

Requirements engineering[Salifu07, Sutcliffe06, Lapouchnian09]

Focusing only on requirements variability
Lacks viewpoint of detailed context specification
Lacks viewpoint of modular implementation

Conclusions

Use case driven methodology for developing
context-aware systems

Organizing requirements specifications
Identifying contexts from behavior
Classifying variations of behavior
Identification of layers in use cases
Stepwise elicitation of details of contexts

Systematic implementation preserving SoC

