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Problem Statement

Context-aware applications should be based on composable parts 
representing partial adaptations of behaviour.

Messages should include context information of the sender.

Context-aware applications should adapt to the context by 
dynamically switching their behaviour.

Dynamic Behaviour Composition

Context Passing Mechanism

Dynamic Context Adaptation

A Two-Fold Solution Based on Roles Implementation: Context-dependent roles
in AmbientTalk
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Context may influence the communication 
between entities of a system
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Context-dependent behaviours as roles using 
Split Objects [2].

Roles represent the different behaviours an application can adopt according
to the context.

Context-dependent role selector:  Mapping context 
information to a context-dependent role (rule-based engine).

AmbientTalk [3]: a prototype- and actor-based programming 
language.
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The receiver's application is 
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Context-dependent adaptations 
typically require partial changes 

of behaviour
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