
Jorge Vallejos, Peter Ebraert, Tom Van Cutsem, Stijn Mostinckx, Brecht Desmet, Theo D'Hondt
Programming Technology Laboratory - Vrije Universiteit Brussel - Belgium

A Role-Based Implementation of Context-Dependent Communications
Using Split Objects

Motivation: Context-Dependent Communications
in Pervasive Computing

[2] Split objects: a disciplined use of delegation within objects. Bardou, D., Dony, C.
 ECOOP '03. Darmstad, Germany.
[3] Ambient-Oriented Programming in AmbientTalk. Dedecker, J., Van Cutsem, T.,
Mostinckx, S., D'Hondt, T., De Meuter, W. ECOOP '06. Nantes, France.

http://prog.vub.ac.be/amop

Problem Statement

Context-aware applications should be based on composable parts
representing partial adaptations of behaviour.

Messages should include context information of the sender.

Context-aware applications should adapt to the context by
dynamically switching their behaviour.

Dynamic Behaviour Composition

Context Passing Mechanism

Dynamic Context Adaptation

A Two-Fold Solution Based on Roles Implementation: Context-dependent roles
in AmbientTalk

Sender's device

signal()
#family

#general

signal()

call(n)
signal()

signal()

#friends

signal()
#loud #discreet

#only-
vibrator

signal() signal()
#only-light

Receiver's device

Cell phone application as
a split object

Cell phone
application

as(#loud) signal()with(<loc:hospital>) signal()

Context-dependent
role selector

<loc:hospital> <loc:meeting-room>

Sender's device

signal()

#family

#general

signal()

call(n)
signal()

signal()

#friends

signal()

#loud #discreet

#only-
vibrator

signal() signal()
#only-light

Receiver's device

Context-aware
actor

Context-aware
actor

as(#loud) signal()

with(<loc:hospital>) signal()

Context-dependent
role selector

signal()

Context
reference

Inbox

[1] A Role-Based Implementation of Context-Dependent Communications Using
Split Objects. Vallejos, J., Ebraert, P., Desmet, B., RDL workshop, ECOOP ’06. Nantes, France.

Context may influence the communication
between entities of a system

I don't want to
be disturbed at the

meeting room but I do want to
receive any call from

the Hospital

Hospital

Discreet signal

Loud signal

 Caller
(message sender)

 Caller
(message sender)

 Callee
(message receiver)

Context-dependent behaviours as roles using
Split Objects [2].

Roles represent the different behaviours an application can adopt according
to the context.

Context-dependent role selector: Mapping context
information to a context-dependent role (rule-based engine).

AmbientTalk [3]: a prototype- and actor-based programming
language.

signal()

as(#loud) signal()

#family

#general

signal()

call(n)
signal()

Sender's device

signal()
#friends

signal()
#loud #discreet

#only-
vibrator

signal() signal()
#only-light

Receiver's device

Cell phone application as
a split object

Cell phone
application

Which role?

Hierarchically
structured behaviours

(behaviour composition)

Messages should specify
one or more roles

Both contexts
as input

Sender only
sends its context
(context passing)

A message
with a role(s)

as output

Sender's device Receiver's device

Context-aware
actor

Context-aware
actor

Context-dependent
role selector

Context
reference

Context
reference

Third device

Context-aware
actor

Context-dependent
role selector

A proxy that adds
the sender's context

to messages

Each actor with its
own role selector

Role selector called before
method execution

Context
query

Context
query

Context
query

Context
query

Ensuring context consistency

Context queried only
once and passed along

Roles in messages activate
a delegation chain

(behaviour adaptation)

R.2

R.3

R.1

R.2

R.3

R.1
The receiver's application is

influenced by its context
(e.g. location: meeting room)

Context-dependent adaptations
typically require partial changes

of behaviour

The sender's context also
influences the receiver's

application (e.g. location: Hospital)

Sender actor Context reference Role selector Receiver actor

as(#loud) signal()

with(<loc:hospital>) signal()

signal()

getContext()

getRole()

getContext()

signal()
with(<no-ctx-changes>) signal()

as(#loud) signal()

First
message

Second
message

(optimised)

Recalculation of the role
only when context changes

