
Enabling Cross-Technology Mobile Applications with
Network-Aware References

Kevin Pinte, Dries Harnie?, and Theo D’Hondt

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{kpinte,dharnie,tjdhondt}@vub.ac.be

Abstract. Mobile devices, such as smart phones, have become ubiquitous. This
evolution has given rise to a vast ecosystem of mobile applications. Typically
these applications only use a small subset of the networking technologies at their
disposal. Building applications that use multiple networking technologies simul-
taneously or exploit knowledge about the available connections is a laborious
task. Programmers must manually keep track of the connectivity state and du-
plicate communication code per connection type. This paper presents network-
aware references, a distributed object-oriented programming abstraction that eases
multi-networking for mobile applications and allows programmers to react to
changes in the connectivity of different networks around them. We show how
network-aware references are implemented and evaluate how well they switch
between technologies.

Keywords: Network-awareness, mobile applications, multi-networking, distributed
programming, Bluetooth, Wi-Fi

1 Introduction

In the recent years we have seen a boom in the market of mobile devices such as smart
phones and tablets: they have become powerful enough to complement existing comput-
ers as internet devices. This evolution has proliferated all kinds of mobile applications
for various tasks people need to do on the move. Pervasive social applications [1, 2]
are a good example of mobile applications: they allow people to interact with their so-
cial network no matter where, even at social events themselves. Another example are
peer-to-peer ad hoc multiplayer games as found on Nintendo’s handheld DS console.

Next to the performance increase, mobile devices have also gained the ability to
communicate using several different networking technologies: for example, an iPhone
can communicate with other devices using short-range Bluetooth, medium-range Wi-Fi
and long-range 3G technologies. More recently, devices such as the Samsung Nexus S
have been released with the extremely short-range Near Field Communication (NFC)
technology built-in.

Mobile applications typically exploit contextual information (e.g. location, proxim-
ity to other users, ...) to better anticipate the needs of users. Network awareness is an

? Funded by the Prospective Research For Brussels program of IWOIB-IRSIB.

2 Kevin Pinte, Dries Harnie, Theo D’Hondt

integral part of context-awareness [3, 4]. Mobile applications can benefit from being
network-aware since mobile devices are constantly on the move and their networking
hardware allows them to “sense” devices and access points in the environment. Addi-
tionally, mobile applications often need to adapt the content they present to the user to
the characteristics of the network connection that is currently being used [5].

We illustrate why network awareness is relevant for mobile applications by intro-
ducing a representative pervasive social application called Pixee that allows users to
share and follow each other’s picture libraries. The Pixee application gathers library
information from nearby devices using Bluetooth and offers to follow other users if a
library matches the user’s profile.

The scenario goes as follows: on the way home from work, Alice and Bob, both
Pixee users, happen to be in the same metro car and thus in Bluetooth range. Since they
both like pictures of cats, Alice’s picture library matches Bob’s interests. When Bob ar-
rives home, he opens the Pixee application and it presents him with a selection of picture
libraries, including Alice’s library. Bob accepts Pixee’s suggestion and starts following
Alice’s picture library. Whenever Alice takes a new picture it is automatically uploaded
to Bob. As Alice isn’t home yet, Pixee uses her 3G connection to share pictures. In order
to optimize for the networking technology used, Pixee resizes pictures before sharing
them over 3G. When Bob rides on the metro to work the next day the Pixee application
alerts him that Alice is nearby so they can meet in person and chat later. As long as their
phones are in Bluetooth range, their phones will exchange high-resolution pictures.

Currently, various high-level middleware solutions exist that enable network aware-
ness [5, 6]. Such solutions use network information to enforce quality of service
(QoS): they adapt the application’s network usage to optimize for the available band-
width. However, such solutions do not support using multiple network links simultane-
ously; instead they choose one primary network link and use the other network links
only as backup links. In the networking domain there is low-level support for multi-
networking [7, 8]: they allow applications to connect to other devices using different
networking technologies simultaneously, and switch seamlessly between these tech-
nologies as needed. Applications that use these multi-networking technologies are fully
communication-agnostic: all communication is performed in an opaque way. As such,
they do not allow the programmer to react to changes in the individual network links
they encapsulate, making network awareness hard. Our goal is to provide mobile appli-
cation programmers with a hybrid solution that allows programs to be network-aware
while supporting multiple networking technologies simultaneously.

In this paper we focus on distributed object-oriented programming abstractions to
develop mobile applications that exploit network awareness, like Pixee. Distributed
object-oriented programming languages rely on the notion of remote object references
to communicate with objects residing on other devices. Currently, these references use
different, usually incompatible APIs for each networking technology. This leads to a
lot of duplication: multiple references to the same object can exist simultaneously, po-
tentially using different technologies. Programmers have to do manual bookkeeping to
keep track of these different references.

We propose a new programming abstraction, network-aware references, that ex-
tends the concept of remote object references to abstract over the different networking

Enabling Cross-Technology Mobile Applications with Network-Aware References 3

technologies used. In addition, we provide a high-level API that enables programmers
to react to changes in network links and also allows them to control the different net-
work technologies their applications use. The main contributions of this paper are:
1. We identify the challenges involved in developing network-aware programs (sec-

tion 2);
2. We introduce network-aware references that abstract over the networking technol-

ogy used (section 3);
3. We propose programmable network behaviors as a means for the programmer to

adapt communication to the changing network situation (section 4);
4. We show how network-aware references are implemented (section 5) and evaluate

their multi-networking aspects (section 6).

To conclude, we discuss existing approaches to network awareness and multi-
networking technology in section 7.

2 Challenges in programming network-aware applications

As mentioned in the introduction, current mobile devices support several networking
technologies. They exhibit different characteristics such as bandwidth, energy con-
sumption, communication range, etc. These differences occur not only between tech-
nologies, but they can also be found between networking technologies of the same kind.
For example, the free Wi-Fi network at an airport is restricted in bandwidth and usage
volume compared to a wireless network at home.

To facilitate the development of network-aware mobile applications, several chal-
lenges need to be overcome:

C1. Abstraction over networking technologies A programmer should not be con-
cerned with the low-level details of the networking technologies available. For ex-
ample, setting up a connection using Bluetooth is very different from a Wi-Fi con-
nection. Instead a unified interface to the different networking technologies should
be provided. Communication with this unified interface should take advantage of
all available network connections.

C2. Reactions upon network (un)availability The programmer should be able to de-
tect the appearance and disappearance of network connections and react upon these
events. Pixee’s friend list reflects the connectivity status of the users: when Bob
and Alice are connected via Bluetooth, Alice is notified that Bob is nearby so she
can invite him for a chat. Additionally, the programs must be resilient to disconnec-
tions. The Pixee application seamlessly switches from Bluetooth to 3G when Alice
leaves the metro.

C3. Dynamic adaptation of network behavior Although the low-level details of net-
working should be hidden from the programmer, he should retain high-level control
over the networking technology used. For example, Bob’s Pixee application resizes
pictures when Alice’s device is connected via a 3G link to limit the data transferred.
Mobile applications can then take advantage of the unique properties of each net-
working technology.

In the next section we introduce network-aware references: a programming abstraction
that tackles the above challenges.

4 Kevin Pinte, Dries Harnie, Theo D’Hondt

3 Network-aware references (NARs)

Before we introduce network-aware references, we describe terminology used in dis-
tributed object-oriented languages. These languages use proxy objects to locally repre-
sent objects residing on remote devices. Proxy objects implement the same interface as
the remote objects they represent, but they translate all method calls into remote method
calls. The combination of a proxy object and its network link is called a remote (object)
reference.

A program can acquire new remote references in three ways: 1) The remote object
can be discovered using a peer-to-peer service discovery mechanism; 2) When peer-
to-peer service discovery is not possible, clients can receive remote references from
a globally reachable registry; 3) A remote reference is created when a local object is
passed as an argument in a remote method call.

Network-aware references (NARs) abstract over the implementation details of dif-
ferent networking technologies and present a single reference to the programmer. A
NAR consists of multiple remote references to the same object, each using a different
network link. Every remote object is identified by a globally unique ID (GUID) based
on the device or VM it is hosted on and an object identifier within that device or VM.
When the application first discovers a new remote object, a NAR with a single refer-
ence is created. As additional references to the object are acquired, they are added to
the NAR. Figure 1 compares traditional remote references and NARs graphically.

remote
object

3G

remote

local

proxy object

remote
object

3G

local
object

network-
aware
reference

Fig. 1. A NAR encapsulates remote references to the same object.

In a mobile setting, network links are very unstable. They disconnect and recon-
nect as people move in and out of wireless communication range of others [9]. With
traditional remote references (e.g. RMI [10]) remote method calls block and wait for a
response. Furthermore, network disconnections are signaled as exceptions. Thus, this
model is not suitable for mobile applications. We adopt the far reference model [11]
instead, for two reasons. First, far references allow only asynchronous communication.
A remote method call over a far reference immediately returns and the result, if any, can
be retrieved using an asynchronous callback. Second, a far reference tracks the status of

Enabling Cross-Technology Mobile Applications with Network-Aware References 5

the network link and can be in one of two states. It is either connected, in which it trans-
lates method calls in remote method calls. A far reference can also be disconnected,
which means that it buffers all messages that are sent through it in a so-called “mail-
box”. Immediately after reconnection a far reference will try to transmit all outstanding
messages in the mailbox to ensure no messages are lost.

Likewise, a NAR is disconnected when all of the underlying remote references are
disconnected. As long as a NAR is disconnected, all messages sent to it are buffered in
a unified mailbox. If one of the underlying remote references is reconnected or a new
reference is added to the NAR, it switches back to the connected state. Figure 2 illus-
trates this: the NAR on the left is connected, as it encapsulates one connected remote
reference using 3G and a disconnected remote reference using Bluetooth. The NAR on
the right is disconnected, as all encapsulated remote references are disconnected.

NAR

3G

NAR

3G

unified
mailbox

unified
mailbox

Fig. 2. Connection status of a NAR.

Whenever the programmer sends a message to a NAR, the system dispatches it to
a remote reference from the set of references encapsulated by the NAR. The default
behavior of a NAR nondeterministically selects a connected reference to transmit mes-
sages. Programmers can specify other behaviors by attaching a network behavior either
to the NAR, or to individual messages. This network behavior then becomes responsi-
ble for transmitting messages using any of the references from the NAR. Currently, we
offer a basic set of network behaviors that can for example limit message transmission
to a certain technology or prioritize one technology over another. Network behaviors
are further explained in subsection 4.2.

3.1 Communication Semantics

In this section we detail two properties of the communication semantics of NARs: they
guarantee that messages sent to an object are processed in the order they are sent, and
that messages are processed only once.

A NAR ensures the first property by serializing message sends through its unified
inbox. Messages are processed one by one, and a message is only processed if the re-
ceiver acknowledges the receipt of the previous one in the queue. Figure 3 shows what
happens if a message is sent to a NAR: first, it is added to the unified mailbox (1).
The NAR constantly tries to deliver the first message in its mailbox. When the mes-
sage eventually reaches the first position in the mailbox, it is removed from the queue

6 Kevin Pinte, Dries Harnie, Theo D’Hondt

and marked with a serial number unique to the NAR (2), then the network behavior
attached to the message selects a reference from the set of currently connected refer-
ences (3). The message is then transmitted to the receiver using that reference (4). If
an error occurs during the transmission or the network behavior does not choose a con-
nected reference the message is returned to the front of the unified mailbox and the
transmission is retried later (5).

unified mailbox

remote
object

NAR

local
object

(1)
(2)

(3)

(5)

(4)

3G

message

network
behavior

message
direction

Fig. 3. The network behavior selects a remote object reference.

The receiving remote object processes all messages in the right order based on the
serial number of the messages. In the case a message gets lost, messages with a higher
serial number are not processed until the missing message arrives.

The second guarantee that NARs offer is that a message is processed only once.
The default network behavior avoids message duplication by always selecting a single
reference to transmit a message. However, programmers can build network behaviors
that send duplicate messages intentionally, for example to ensure a critical message
arrives as soon as possible. When a duplicate message arrives, the receiver first checks
if it has already received a message with that serial number and ignores all duplicate
messages.

4 NARs from a Programmers’ Perspective

We have prototyped NARs in the distributed object-oriented programming language
AmbientTalk [11]. AmbientTalk is designed to work in mobile settings and has already
been used to build mobile applications such as a pervasive social application [12].

First, we show how to obtain a NAR. The following piece of AmbientTalk code
uses the whenever:discovered:1 language construct to install a handler that is
called whenever a Pixee user is discovered in the environment. The block closure that
is executed receives a NAR to the remote Pixee application as an argument in aUser.
The handler requests the remote Pixee user’s name, and adds the user to the buddy list.
The left-arrow operator (←) represents an explicit asynchronous message send, while
the dot operator is used for synchronous method invocation on local objects:

1 NARs follow the AmbientTalk conventions: when: constructs are deactivated after triggering
once, whereas whenever: constructs trigger every time.

Enabling Cross-Technology Mobile Applications with Network-Aware References 7

whenever: PixeeUser discovered: { |aUser|
when: aUser←getName() becomes: { |name|

GUI.addUser(aUser, name) } }

The asynchronous call to getName() immediately results in a future: a placeholder for
a future value. The when:becomes: construct then installs a handler that is executed
when the future is resolved with a return value.

In the remainder of this section we will show how programmers can respond to
changes in the network availability around them, adapt the network communication to
certain networking technologies, and implement their own network behaviors. We will
demonstrate how the Pixee application uses the API offered by NARs. The examples we
present here use AmbientTalk syntax, but NARs can be implemented in other distributed
object-oriented systems, like RMI [10].

4.1 Network Availability

As mentioned in the introduction, information about the available networks forms an
important source of context for mobile applications. A NAR can encapsulate several
remote references, so we offer a linksOf: primitive that returns a snapshot of the
state of these references to the programmer.

For example, Pixee allows users to explicitly share a picture with another user who
is close by, to highlight certain photos in their library. The user interface only allows
this if the other user is connected via Bluetooth:

if: (linksOf: aUser).contains(Bluetooth) then: {
GUI.showShareButtonFor(aUser) }

Pixee also shows that changes in the network connectivity of references play a big role,
as users move about and connectivity fluctuates. For example, Pixee’s friend list reflects
the connectivity of a user’s friends and updates it in real time. It uses the linksOf:
primitive above to draw the friend list initially and then updates the nearby status of
individual friends whenever their connectivity changes:

whenever: aFriend linkStatusChanged: { |change|
if: (change.link == Bluetooth) then: {

if: (change.isConnected) then: {
GUI.notifyFriendNearby(aFriend);

} else: {
GUI.notifyFriendLeaving(aFriend) } } }

The whenever:linkStatusChanged: function installs a handler that is called
whenever one of the references in a NAR disconnects or reconnects. It receives a change
object as an argument. This object contains the link of which the connection status
changed and the new status of the link.

We also provide two generalized handler functions that are triggered when a NAR
switches to a disconnected or a connected state, respectively. Programmers can react on
disconnections using a whenever:disconnected: handler. Likewise, program-
mers can use whenever:reconnected: to react on reconnections, which happen
whenever a new reference is added to a disconnected NAR or one of the existing refer-
ences it encapsulates is reconnected. The example below shows adding or removing a
user from the friend list in the user interface when this user reconnects or disconnects:

8 Kevin Pinte, Dries Harnie, Theo D’Hondt

whenever: aFriend disconnected: { GUI.hide(aFriend) };
whenever: aFriend reconnected: { GUI.show(aFriend) };

Together with the linksOf: primitive, these event handlers provide programmers
with information about the connectivity of the different references in their applications
and allow them to react on changes in network connectivity.

4.2 Network Behavior Adaptation

In order to allow programmers to steer communication towards certain networking tech-
nologies, we introduce network behaviors. Our implementation provides a number of
built-in network behaviors. Additionally, programmers can implement their own behav-
iors and override the default behavior attached to NARs using annotations.

The first network behavior is called Only: it restricts message transmission to a set
of network technologies. The example below ensures an explicitly shared picture is only
sent using Bluetooth:

aUser←sendPicture(aPicture)@Only(Bluetooth)

This message will only be sent using a Bluetooth connection: if there is no connected
Bluetooth reference to aUser the message is returned to the mailbox and message
processing for the aUser NAR will stop until a Bluetooth reference is connected.

The Prefer behavior allows programmers to order an arbitrary number of technolo-
gies in decreasing order of preference:

aFriend←sendPicture(aPicture)@Prefer(Bluetooth, WiFi)

The Prefer behavior here first tries to transmit the sendPicture message using a Blue-
tooth link; if this is not available it tries to use a Wi-Fi link. If a Wi-Fi link is also
unavailable, the Prefer behavior defers to the default behavior: this will either transmit
the message using other technologies, or buffer the message if the NAR is disconnected.

Programmers can override the default network behavior for the whole application
or just for a specific NAR using the following primitive functions:

setDefaultBehavior: aBehavior; // application-wide
setDefaultBehavior: aBehavior for: aReference; // for the given reference

This operation makes every message sent using the NAR use the aBehavior behav-
ior, unless programmers explicitly override this behavior by annotating messages with
another behavior.

Existing network-aware approaches have shown that working with properties in-
stead of explicit technologies is more versatile. For example, if a programmer wants
to send a big file using a “fast” network connection, he should be able to use a key-
word like Fast instead of listing every “fast” network connection explicitly. In order
to do this, we provide programmers with a set of categorization functions that select
networking technologies based on their properties.

We provide three built-in categorization functions: we offer a categorization func-
tion Speed(x) which only selects network links that theoretically offer at least x Mbits of
bandwidth. The second categorization function is Secure, which selects network links

Enabling Cross-Technology Mobile Applications with Network-Aware References 9

that only do point-to-point communication or encrypt sent messages. Finally, cost can
also be a factor in deciding which network link to use: we provide a Free categorization
function that only selects network links that do not cost money to use. Currently these
properties are statically defined as attributes of the network links.

Programmers can create their own categorization functions by refining the built-in
ones described above. For example, they can define Fast as Speed(10). Additionally,
programmers can manually define new categorization functions based on the properties
of the network links.

Using categorization functions instead of explicit technologies has another advan-
tage: when a new networking technology becomes available, one only has to declare to
which categories that new technology belongs or create new categorization functions if
necessary. For example, a body area network (a very close-range wireless technology
for non-intrusive health monitoring [13]) could be deemed Fast and Secure, but could
also introduce a new category such as PhysicalContact.

4.3 Writing custom network behaviors

The network behaviors we have presented so far only influence the technology selec-
tion process. If we want to allow full network awareness, programmers also need to
be able to adapt the content of messages to the technology used to transmit them.
In our system, behaviors are represented by objects that expose a single method
transmit(connections, message). This method is invoked during step three
of the message sending process (when network technologies are chosen). This method
transmits the message(s) to the receiver and informs the NAR that the message can
be removed from the mailbox. The connections and message parameters of the
method are the current set of available network links in the NAR and the message being
sent, respectively.

In the scenario, Pixee resizes pictures before transmission if a Bluetooth link was
not available; programmers can implement this as follows:

1 def PictureResizer := extend: Prefer(Bluetooth, WiFi) with: {
2 def transmit(connections, message) {
3 def btLink := connections.find: { |x| x.link == Bluetooth };
4 if: (btLink != nil) then: {
5 message.arguments := message.arguments.map: { |arg|
6 if: (isPicture(arg)) then: { arg.resize() } else: { arg } };
7 superˆtransmit(connections, message) } } };

This behavior extends the Prefer behavior and first looks for Bluetooth links in the
network links managed by the aFriend NAR. If there are no Bluetooth links avail-
able, the behavior replaces pictures in the arguments list of the message with a resized
version (lines 5–6). Finally, the message (line 7) is transmitted by the inherited Prefer
behavior.

We also provide a behavior: construct to create a new behavior that inherits from
defaultBehavior. All transmit calls are delegated to the default behavior eventu-
ally, since it enforces the two properties we outlined in section 3 (message ordering and
no processing of duplicated messages).

10 Kevin Pinte, Dries Harnie, Theo D’Hondt

5 Implementation

In this section we will discuss the implementation of network-aware references. We will
first explain how the networking subsystem of AmbientTalk is structured and how this
is exposed to programmers in subsection 5.1. We will then show how network-aware
references are implemented on top of this in subsection 5.2

5.1 The AmbientTalk networking subsystem

Originally, the AmbientTalk VM was tightly coupled to its networking implementation,
limiting it to only one network interface using the TCP/IP protocol. This network inter-
face was represented by a single communication bus, which performs three duties for
AmbientTalk: a) discovering objects on devices that export them using the same tech-
nology; b) marshalling communication and ensuring message ordering; c) signaling
disconnections and reconnections.

We have decoupled the networking subsystem from the rest of the system, to allow
other networking technologies to be plugged in easily. AmbientTalk now maintains a
set of communication buses, one per network address (a network interface can respond
to multiple addresses). For example, a typical smart phone will have a Bluetooth com-
munication bus and a TCP/IP communication bus for the Wi-Fi interface.

The three duties of a communication bus influence the status of connected refer-
ences. For example, the TCP/IP communication bus uses heartbeat packets sent via
multicast UDP to determine the connectivity of other hosts. New devices are discov-
ered as soon as they send their first heartbeat, and disconnections are signaled when
either the heartbeat has been absent for a given amount of time or a communication
error occurs during message transmission. This is different from the Bluetooth com-
munication bus, where device discovery can take up to 12 seconds and is thus only
done intermittently. For the Bluetooth bus the leading cause of disconnections will be
communication errors signaled during message transmission.

Each communication bus is also associated with a network link object, which pro-
grammers can use to interact with that specific network interface. Each network link
can be used to enable or disable its communication bus and set up discovery handlers.
For example, discovering objects exclusively on the Bluetooth network link:

whenever: Service on: Bluetooth discovered: { |ref|
system.println("Discovered: " + ref);
whenever: ref disconnected: {

system.println("Disconnected: " + ref); } }

Here Bluetooth is bound to the Bluetooth network link object. This snippet sets up a
discovery handler that is invoked whenever an object with the nominal type Service
is discovered using the Bluetooth communication bus. This discovery handler is then
called with a far reference as parameter, which is a local proxy for the remote object.
The far reference is associated with the network link that created it, the object it refer-
ences and the VM this object resides on.
The programmer can also publish an object on a specific network link:

export: anObject as: Service on: Bluetooth;

Enabling Cross-Technology Mobile Applications with Network-Aware References 11

In the interest of backwards compatibility, the discovery and publish constructs
found in AmbientTalk (when:discovered:, whenever:discovered: and
export:as:) invoke their network-aware counterparts on all available network links.
The disconnection and reconnection handlers (like above) operate on pre-existing ref-
erences so programmers do not need to specify network links.

At this stage there is only one technology per far reference, so messages sent to a
far reference can only travel along a single path. This entails that discovering the same
service using two different network technologies will result in two far references, as
described in section 3.

5.2 The architecture of network-aware references

With these modifications to the networking subsystem, AmbientTalk can communicate
using different technologies but suffers from the challenges we identified in section 2.
Our implementation of network-aware references tackles these challenges as follows:

C1. Abstraction over networking technologies The previous subsection already
outlined how the networking subsystem in AmbientTalk can abstract over the com-
munication technology used. However, references are still created per technology.
When programmers import the NAR module, it replaces the built-in discovery op-
erations as follows. When the programmer issues a whenever:discovered:
statement it is translated into several whenever:on:discovered: statements,
one per network link. When one of the discovery statements are triggered, they
first check if a NAR for the discovered object already exists. If so, the reference
is added to the NAR and the user-supplied discovery block is not triggered.
Any whenever:linkStatusChanged: handlers registered on the NAR are
triggered.
If no NAR exists, a new NAR is created which contains just that reference. Finally,
the NAR is added to a table with the GUID of the discovered object as key.

C2. Reactions upon network availability As part of the discovery process, the NARs
module also installs disconnection and reconnection handlers. Whenever the
networking subsystem detects that a reference has disconnected or subsequently
reconnected, it signals this change to the NAR. The NAR in turn signals the
whenever:linkStatusChanged: message. If the last reference in a NAR
becomes disconnected, the NAR as a whole becomes disconnected and triggers
all installed disconnection handlers. Vice versa, if one of the references in a dis-
connected NAR reconnects, the NAR is reconnected and all installed reconnection
handlers are triggered. After reconnection, a NAR retries transmission of messages
in the queue.

C3. Dynamic adaptation of network behavior As we explained earlier, NARs allow
programmers to specify the network behavior of their communication. Every mes-
sage submitted to a NAR is put into a message queue, which are processed one
by one. If the network behavior of the first message in the queue is not amenable
to transmission the queue is blocked and no messages are transmitted (e.g. if a

12 Kevin Pinte, Dries Harnie, Theo D’Hondt

message has a Only annotation and the desired network link is not online). Trans-
mission of the message queue is retried whenever a new reference is added to a
NAR or an already-added reference comes back online.

6 Evaluation

In this section we demonstrate the behavior of network-aware references in the face
of partial disconnections. As mentioned in the introduction, mobile devices nowadays
can communicate using more than one wireless communication technology and the
system should always pick the “best” interface. If this interface disconnects due to a
communication error or the other party moving out of range, the system should switch
to a different technology. No communication should be lost during this switch and the
handover time (the time where no data is sent) should be kept to a minimum.

The scenario we test is inspired by the “mobile connectivity” scenario in [14]: two
smart phones that discover each other in the environment. One phone runs a receiver
service, the other phone runs a sender. At time step t0 the sender starts sending mes-
sages to the receiver at a pace of 10 messages per second. At time step t1 the Wi-Fi
connectivity is temporarily interrupted and at time step t2 Wi-Fi connectivity is re-
stored. This timeline is illustrated at the top of Figure 4.

First, we reconstruct the original scenario from [14] where the sender only sends
messages to the receiver using Wi-Fi technology. We use the Only network behavior so
that the ping message is only transmitted over a Wi-Fi link:

when: MobileConnectivityReceiver discovered: { |receiver|
whenever: millisec(100) elapsed: {
receiver←ping()@Only(WiFi); } }

When the Wi-Fi link becomes disconnected at t1 all messages being sent are buffered
at the sender. At t2 connectivity is resumed, and the accumulated messages are flushed
to the receiver. This behavior is illustrated in the middle graph of Figure 4. The spike in
the timeline only happens 1.5 seconds (on average) after t2 because the devices wait for
heartbeats, as explained in the previous section. For Bluetooth links this reconnection
process takes upwards of 15 seconds (on average), depending on the number of devices
in communication range.

Our second implementation demonstrates the multi-networking facilities of NARs
and will make use of both Wi-Fi and Bluetooth links to send messages. We define the
“best” interface by annotating the ping message with the Prefer network behavior:

when: MobileConnectivityReceiver discovered: { |receiver|
whenever: millisec(100) elapsed: {
receiver←ping()@Prefer(WiFi, Bluetooth); } }

Before the Wi-Fi connectivity is interrupted, the behavior of the ping message will
select the Wi-Fi link over the Bluetooth link to send the message. At time step t1 the
behavior can no longer select the Wi-Fi link and it selects the Bluetooth link instead.
The bottom graph in Figure 4 shows how the Wi-Fi→Bluetooth handover occurs almost
instantly. When the Wi-Fi link reconnects, the behavior will again prefer it over the
Bluetooth link, explaining the handover at the 16–17 second mark. As before, the time

Enabling Cross-Technology Mobile Applications with Network-Aware References 13

5 10 15 20

10
20
30
40
50
60
70
80

00

m
e
s
s
a
g
e
s

time (seconds)

5 10 15 20

10
20
30
40
50
60
70
80

00

m
e
s
s
a
g
e
s

time (seconds)

Bluetooth
Wi-Fi

t1 t2 timet0

r
e
c
e
i
v
e
d

r
e
c
e
i
v
e
d

Wi-Fi only

Wi-Fi +Bluetooth

Fig. 4. Mobile connectivity scenario (top); benchmarks: only Wi-Fi (mid), Wi-Fi & BT (bottom)

gap between reestablishing Wi-Fi connectivity and the Bluetooth→Wi-Fi handover is
due to the discovery and reconnection process. Note that message transmission is not
interrupted at any point during this experiment.

7 Related work

In this section we discuss how network-aware references fit into the state of the art.
Traditionally, network-aware applications are defined as “applications that adapt to net-
work conditions in an application specific way” [6]. This has led to frameworks for
maintaining quality of service (QoS) in media streams [5], where image or sound qual-
ity is reduced if the available bandwidth decreases. These are usually implemented in a
framework or middleware and require the programmer to set up policies, giving up ex-
plicit control. Current network-aware applications assume network links are stable and
treat network failures as an exceptional case. This makes them unsuitable for a mobile
situation where pervasive social applications are deployed.

A number of network protocols have been proposed that enable multi-networking
at a low level, like SCTP, mSCTP, SIGMA, TraSH and Mobile IP(v6) [7, 8]. However,
these approaches focus on the problem of ensuring devices are always reachable at a

14 Kevin Pinte, Dries Harnie, Theo D’Hondt

certain address and maintaining existing network connections when a mobile device
migrates to a different access point (horizontal handover). Some technologies support
transitions between different networking technologies (vertical handover), but they as-
sume these transitions are short-lived, so they limit themselves to ensuring no data is
lost during a transition. In contrast, NARs accept that there may be multiple connections
at once, which can break at any time. NARs still ensure that all communication arrives,
but cannot offer time guarantees: a message with the Only behavior attached will only
be sent when a Bluetooth connection is available. This may depend on user mobility.

In [15] a policy-based architecture is proposed that manages several different routes
to another device. They use policies to select appropriate network interfaces and set
priorities between interfaces if several policies apply. However, their approach is not
suitable for a mobile setting as their system immediately returns an error if there are no
matching interfaces at the moment a packet is sent. In contrast, NARs buffer communi-
cation until a connection is re-established. Furthermore, their policies currently operate
at the system level instead of the application level, so all applications on the system
have to agree on the same set of policies.

Haggle [16] is an architecture that enables seamless network connectivity for de-
vices in dynamic mobile environments. It abstracts over different network transport
bindings and protocols so that applications become communication agnostic. Haggle
is a central component in the mobile device that selects and switches network links as
needed. In contrast to using NARs, programmers have no control over communication
within a single application and cannot adapt its behavior to changes in the network
context.

8 Conclusion and future work

In this paper we have introduced network-aware references (NARs): a programming ab-
straction that encapsulates several references to remote objects over different network-
ing technologies and keeps track of the state of the network links involved. Network-
aware references tackle the three challenges for programming network-aware applica-
tions we listed earlier: abstraction over networking technologies, reacting to changes in
the network availability, and dynamically adapting network behavior. We have demon-
strated how network-aware references can be used to build mobile applications using a
representative pervasive social picture-sharing application called Pixee.

We are currently exploring different types of network behaviors and how they inter-
act with NARs as they are defined here. For example, a behavior that limits retransmis-
sion of messages, or a behavior that spreads parts of a message across different links.
Secondly, we would like to make the information offered to our system, like speed,
communication range, pricing, etc. more dynamic. An application using Wi-Fi could
then automatically switch to a different technology as the user enters an airport where
wireless is not free to use. Additionally, we intend to allow these parameters to vary
per reference rather than per network link (e.g. the signal strength for a reference over
Bluetooth). Finally, in the search for related work we discovered heterogenous rout-
ing: transmitting packets in peer-to-peer networks where not all nodes speak the same
protocol. We are currently investigating if NARs can be adapted for this.

Enabling Cross-Technology Mobile Applications with Network-Aware References 15

References

[1] S. Ben Mokhtar and L. Capra, “From pervasive to social computing: Algorithms and de-
ployments,” in ACM Inter. Conf. on Pervasive Services (ICPS), 2009.

[2] A. Meshhadi, S. Ben Mokhtar, and L. Capra, “Habit: Leveraging human mobility and social
network for efficient content dissemination in manets,” in IEEE Inter. Symp. on a World of
Wireless, Mobile and Multimedia Networks, 2009.

[3] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in First Work-
shop on Mobile Computing Systems and Applications, pp. 85–90, 1994.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, “Towards a
better understanding of context and context-awareness,” in 1st Intl. Symp. on Handheld and
Ubiquitous Computing (HUC), (London, UK), pp. 304–307, Springer-Verlag, 1999.

[5] J. Bolliger and T. Gross, “A framework-based approach to the development of network-
aware applications,” IEEE transactions on Software Engineering, vol. 24, no. 5, 1998.

[6] N. Miller and P. Steenkiste, “Collecting network status information for network-aware ap-
plications,” in IEEE INFOCOM, vol. 2, pp. 641–650, Citeseer, 2000.

[7] S. Fu, M. Atiquzzaman, L. Ma, and Y. Lee, “Signaling cost and performance of SIGMA:
A seamless handover scheme for data networks,” Wireless Communications and Mobile
Computing, vol. 5, no. 7, pp. 825–845, 2005.

[8] W. Xing, H. Karl, A. Wolisz, and H. Müller, “M-SCTP: Design and prototypical imple-
mentation of an end-to-end mobility concept,” in Proc. 5th Intl. Workshop The Internet
Challenge: Technology and Applications, Berlin, Germany, Citeseer, 2002.

[9] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter, “Ambient-
Oriented Programming,” in OOPSLA ’05: Companion of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, ACM
Press, 2005.

[10] T. Downing, Java RMI: remote method invocation. IDG Books Worldwide, Inc. Foster
City, CA, USA, 1998.

[11] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter, “Am-
bienttalk: object-oriented event-driven programming in mobile ad hoc networks,” in Inter.
Conf. of the Chilean Computer Science Society (SCCC), pp. 3–12, IEEE Computer Society,
2007.

[12] E. Gonzalez Boix, A. Lombide Carreton, C. Scholliers, T. Van Cutsem, W. De Meuter, and
T. D’Hondt, “Flocks: Enabling dynamic group interactions in mobile social networking ap-
plications,” in SAC 2011: the 26th Symposium On Applied Computing – Mobile Computing
and Applications track (to appear), 2011.

[13] E. Jovanov, A. Milenkovic, C. Otto, and P. De Groen, “A wireless body area network of
intelligent motion sensors for computer assisted physical rehabilitation,” Journal of Neuro-
Engineering and Rehabilitation, vol. 2, no. 1, p. 6, 2005.

[14] J. Collins and R. Bagrodia, “Programming in mobile ad hoc networks,” in 4th Annual In-
ternational Conference on Wireless Internet (WICON ’08), pp. 1–9, 2008.

[15] J. Ylitalo, T. Jokikyyny, T. Kauppinen, A. Tuominen, and J. Laine, “Dynamic network in-
terface selection in multihomed mobile hosts,” in Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 2003, Published by the IEEE Computer So-
ciety, 2003.

[16] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel, M. H. Lim, and E. Up-
ton, “Haggle: seamless networking for mobile applications,” in UbiComp ’07: Proc. of the
9th international conference on Ubiquitous computing, (Berlin, Heidelberg), pp. 391–408,
Springer-Verlag, 2007.

