
2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014

email: egonzale@vub.ac.be
office: 10F732

2 First steps in Android
Lab session material at http://soft.vub.ac.be/amop/teaching/dmpp and
Pointcarre. More info on Android available at developer.android.com and
android-developers.blogspot.com

2.1 Idea
The aim of this session is to get you familiar with the Android development environ-
ment. In particular, you will learn the Android basics such as working with Activities
and intents, creating GUIs from xml by inflating them, working with AsyncTasks for
enabling proper use of UI thread, etc. To do so, you will implement an Android version
of the so popular memory skill game called Simon. The game consists of an Android
device lighting up one or more buttons in a random order, after which a player must
reproduce that order by pressing the buttons.

2.2 Implementing Simon
We implement Simon starting from a skeleton code in the Simon Android project that
you need to import from the lab session material. As shown in Figure 1(a), Simon
is an electronic device really popular in the 80’s that had four colored buttons, each
producing a particular sound when pressed by the player or activated by the device it-
self. When you run the Simon project, your device shows the main Activity (called
SimonActivity.java in the project) with 4 buttons similarly to the original Si-
mon device as shown in Figure 1(b).

Figure 1: (a) The 80’s Simon device (b) Main screen of Android Simon

A round in the game consists of the Android device lighting up one or more buttons
in a random order, after which a player must reproduce that order by pressing the

1



2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014 2.2

buttons. In the first round in the game, the Android device lights up one button, after
which the player must press the button lighted up. At each round, the number of buttons
lighted up increases, and as such, the number of buttons for the player to be pressed
increases. In the Android project, the number of buttons to be pressed as the game
progresses is implemented by the Sequence.java class. A Sequence keeps a
vector of colors (representing the buttons to light up and then press), and an index
indicating the progress of the player while reproducing the order given by Simon. At
each round, the application extends the sequence with a new random color.

When you launch the provided Android Simon project with the skeleton code, the
SimonActivity.java shows the main screen as shown in Figure 1(b), but Simon
does not light up any sequence of colors; in other words, the Sequence is not played.
Use the given skeleton code to incrementally grow the application as follows:

(a) Let’s make Simon to play a sequence by completing the implementation of play
method in the Sequence.java class. Note that in order to enable proper
use of the UI thread, the play method spawns an AsyncTask and overrides
the doInBackground tasks that looks over the current sequence and ask the
UI thread to highlight each button and put it back to normal. To this end, the
SimonActivity implements the SimonGUI interface which consists of a
highlightButton and normalButton methods.

(b) Once Simon plays the sequence, it waits for the player to reproduce the se-
quence. Each time the player presses a button, the butttonPressed method
in the SimonActivity.java class is called. As you can see in the skele-
ton code, the method first checks if the button pressed matches with the color in
the sequence that Simon lighted up. When the player reaches the end of the se-
quence without making an error, the application launches a ResultActivity
as shown in Figure 2 (a).

(b1) Complete the code of buttonPressed method so that the application
shows the ResultActivity when the player makes an error as shown
in Figure 2(b).

(b2) In order for Simon to show your ResultActivity activities, you first
need to complete the GUI layout for this activity in the activity re-
sult.xml file found under /res/layout folder in the Simon project,
and then complete the onCreatemethod of the ResultActivity.java
class to inflate such xml with the correct message string and level reached
by the player.

(c) Congratulations, you have a basic Simon running! Let’s have some extra fun ;).
Add an option menu item where the player can chose the difficulty level similar
to the original Simon which offered 4 difficulty levels. For example, in Simon
the Rewind level asked you to repeat the sequence backwards.

(d) Let’s pimp Simon! Add some tones when Simon plays the Sequence and/or
some vibration effect when a button is pressed by the player.

2



2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014 2.2

Figure 2: (a) Activity shown when giving correct sequence (b) Activity shown when
an error is made

(e) Let’s go a step further! Add an option menu item for displaying the highest
scores. To this end, add first a login activity in which the player can identify
him/herself, so that you can show name of the user and highest score reached.

(f) Please rotate your screen and check that the game state is properly maintained.
Check online information about how to do so using the onSaveInstanceState
method.

3


