
3 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014

Elisa Gonzalez Boix
email:egonzale@vub.ac.be

office: 10F732

3 Concurrent Programming: The Internet Cafe

Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/. The lab session material is available at http://soft.vub.ac.
be/amop/teaching/dmpp

3.1 Idea
This exercise introduces AmbientTalk’s concurrent building blocks: actors and asyn-
chronous message passing. The idea is to implement an internet cafe, i.e a place where
customers can use a computer with access to internet. The internet cafe and customers
are going to be modeled as actors. The internet cafe consists of a computer room with
a limited number of computers. Each computer has an id that identifies its position
in the room. When customers ask for a computer they get back a computerId if there
is room in the computer room. If a customer hasn’t received a computerId within a
certain amount of time, the customer leaves the internet cafe.

3.2 Implementing the internet cafe
We will implement the internet cafe application starting from a skeleton code shown

below (included in the lab session material)

def MAX_COMPUTERS := 2;

def internetCafe(capacity := MAX_COMPUTERS) {
actor: { |capacity|

def computerRoom := ... //TODO

def getRoom(){ computerRoom };
};

};

def makeCustomer(name, internetCafe) {
//TODO

};

def sessionModule := object:{
def sessionTest(){

//TODO
};

};

An internet cafe is created by invoking a internetCafe function which returns
a far reference to an actor. The actor provides a method getRoom so that customers
can access the computer room. Customers are created by invoking makeCustomer
Use the above skeleton to incrementally grow the internet cafe as follows:

1

3 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014 3.2

a) Implement the data structure for computer room using a guarded object (found
in /at/lang/guards.at). Recall that a guard is a predicate which must be
evaluated to true in order to execute an asynchronous message sent to an object.

You will need to implement in the following methods on the computerRoom
object to manipulate the occupancy of the room:

getComputer adds a customer in the room and returns a computerId of the
position assigned to the customer. Remember that this method can only be
executed as long as there is space in the computer room.

freeComputer(computerId) releases the given position in the computer room.

b) Implement the makeCustomer function which returns a far reference to an
actor whose behaviour implements a askComputer and a leaveComputer
methods used to make a customer ask for a computer in the internet cafe, and
leave the assigned computer, respectively.

Recall: actors do not have access to the enclosing lexical scope!

c) Adapt your implementation to pass the testAsyncOneCustomer unit test.

Hint: the askComputer method should return a future which is resolved with
the customerId received from the computer room.

d) Extend your implementation so that customers leave the internet cafe when they
don’t receive a computerId within a certain amount of time (i.e. 10 seconds)
when they ask for a computer.

Hint: Take a look at @Due annotation in futures to put time boundaries to the
delivery of asynchronous messages.

e) Implement testAsyncFullOccupancywhich checks that the computer room
is full after customer and customer2 asked for a computer.

f) So far we assumed that customers receive by parameter the internet cafe to inter-
act with. So both actors live in the same virtual machine. Add the necessary code
to use the AmbientTalk’s network facilities to discover in the network an internet
cafe to interact with, i.e. turn your concurrent application into a distributed one.

You will need to adapt your implementation to add service discovery code so
that the internet cafe actor exports the services of the computer room. Once a
customer discovers an internet cafe service, it asks the cafe for a computer.

Recall: by default, AmbientTalk’s network access is shut down!

2

