
5 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS - WPO

email: egonzale@vub.ac.be
office: 10F736

5 Distributed Programming in Android: weScribble
Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/.
The lab session material is available at pointcarre andhttp://soft.vub.ac.be/
amop/teaching/dmpp

5.1 Idea
The purpose of this exercise is to get you familiarized with distributed programming
in AmbientTalk and its symbiosis with Java. To this end we will implement the we-
Scribble application, a simple collaborative finger painting application 1. The idea is
to draw with one finger on a canvas. When other people running weScribble come into
communication range, they can simultaneously draw on the canvas which is virtually
shared between the different participants. Each user has its own color which can be
changed at will. If the drawing sucks, just reset the canvas, and let the fun start again.

5.2 Implementing weScribble
We will implement weScribble starting from the skeleton code shown below (available
in the session project under assets/atlib/demo/weScribble/weScribble.at) :

def makeWeScribble(myUserId := /.at.support.util.randomNumberBetween(0, 125)) {

def otherPainters; // stores remote painters.
def otherPaths; // stores the paths of remote users

//interface for android gui.
def localInterface := object: {
//TODO

};
//interface for remote painters.
def remoteInterface := object: {
//TODO
}; //end-remoteInterface

def goOnline() {
// setup peer-to-peer service discovery
};
goOnline();
log("Hallo Android!");

};
self;

makeWeScribble is called by the main activity (WeScribble.java) after launch-
ing AmbientTalk. It takes as parameter the user identifier. To keep the exercise simple,
users are identified with a random number. makeWeScribble consists of the local

1A demo of the weScribble application is available at http://www.youtube.com/watch?v=
k0HYqRCxtHc

1

5 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS - WPO

interface to communicate with the activity for GUI purposes, and the remote interface
to communicate with other remote painters. Use the above skeleton to incrementally
implement weScribble as follows:

(a) Complete the skeleton code to provide the following basic functionality:

(a1) Complete the goOnline() method to be able to discover other painters
in the network. As in the demo, assume that all painters have an empty
canvas when they start collaboratively drawing.

(a2) When a user draws on his canvas, his path should be also drawn in the
canvas of other remote painters.

(a3) If a user changes the color by means of the Color option menu, from then
on, both the local and remote canvas will display his drawings with the new
color.

(a4) If a user resets the drawing by means of the Reset option menu, all remote
canvas should be also erased.

The edu.vub.at.weScribble.interfaces package contains three in-
terfaces defining the necessary methods for the interactions between the Android
GUI and the AmbientTalk application.

(b) Adapt your implementation so that the application displays the drawings made
by a remote painter before the user joined the drawing session.

(c) Adapt your implementation to gray out drawing of remote peers which discon-
nect from the network.

In order to easily test your code, you can use Network Off/On option is pro-
vided in the option menu. When the user first tabs on the option, the disconnect()
method is called on the AmbientTalk object implementing the local interface.
When the user tabs again the option, the reconnect() method is called, the
next time the disconnect() method is called, and so on.

First, you will need to uncomment the two last methods in the ATWeScribble
interface and lines 212-220 in WeScribble.java. Then, adapt your local
interface object to implement the necessary code to simulate network disconnec-
tions from your application.

(d) If you get here, it is time for fun! Try to have the largest collaborative drawing
with your classmates. You may need to adapt your remote interface so that your
weScribble application can talk to your neigbhour weScribble implementation.

2

