7 DISTRIBUTED PROGRAMMING IN AMBIENTTALK WITH TUPLES:
TOTAM

Elisa Gonzalez Boix (email:egonzale@vub.ac.be, office:10F731)
Jorge Vallejos (email: jvallejoQvub.ac.be, office:10F724)

7 Distributed Programming in AmbientTalk with Tu-
ples: TOTAM

Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/. The lab session material is available at http://soft.vub.ac.
be/amop/teaching/dmpp

7.1 Idea

The purpose of this exercise is to get you more familiar with distributed programming
using a tuple space-based model. To this end, you will implement part of an ubiquitous
campus game called Flikken where users use their mobile devices to chase dangerous
(virtual) gangsters around the city. Players are organised in two teams which deter-
mines their role in the game. The policemen work together to shoot down dangerous
gangsters on the loose before they achieve their goal of earning 1 million euro by com-
mitting crimes. Players have a representation of all nearby team members on their
devices which allows them to keep track of their location (e.g. using GPS coordinates)
and to orient themselves in the city in order to coordinate their movements. For ex-
ample, proximate team members can send messages to each other in order to decide
on a group strategy to defeat the other team. Additionally, players can collect (vir-
tual) objects around the city (e.g. knives, explosives, guns, etc.), which can be used to
damage members of the opposite team and to commit crimes. In this session, we will
implement the following functionalities of Flikken:

1. Players can track the position of nearby team members on a map.

2. When a player does not update its position for a certain amount of time, its visual
representation on the map should be grayed out.

3. Players die when they step into a mine virtual object.

7.2 Implementing Flikken

We will implement these functionalities starting from the skeleton code shown below:

def makePlayer (username, team, userInterface := nil) ({
//stores the player current location
def location := [0,0];

// the interface for coordination with remote players
def tupleSpace := .. ;
// local interface with Java gUI.
def locallnterface := object: ({
def initialize() { //TODO };
def updatePlayerlLocation (newLocation){ //TODO };
Vi
// TODO: setup the binding with Java gui
locallnterface;

7 DISTRIBUTED PROGRAMMING IN AMBIENTTALK WITH TUPLES:
TOTAM 7.2 Implementing Flikken

makePlayer () takes as parameter the team and username of the player, and the
user interface of the application. The user interface is implemented by a Java AWT GUI
provided with the lab material which simulates the player movement around the VUB
campus.! The GUI displays the position of a given player at the VUB campus by means
of a dot. Each time the dot in the GUI gets moved, the updatePlayerLocation
method is called with the new position expressed as [X,y].

(a) Complete the implementation of the skeleton code so that players display on
their game GUI the nearby team members. Assume for now that tuples use the
default tuple propagation protocol.

Note: An inEuclideanDistance helper function is provided with the skele-
ton code to calculate when two locations expressed as [x, y] are within a certain
range.

(b) Adapt your implementation (if necessary) to pass the testAsyncTracking-
TeamP layers unit test that checks the functionality implemented in (a).

(c) Adapt your implementation to add the functionality number 2: when a player
does not update its position for a certain amount of time, its visual representation
should be grayed out.

(d) Add a unit test that checks the functionality added in (c). Make use of the dis-
connect: construct to simulate disconnections in your unit test.

Note: Some helper functions are provided with the skeleton code to easily set up
remote players and get the nearby members of a player’s team.

(e) Adapt your implementation to introduce a Mine virtual object which kills all
players stepping on it, i.e. his position is within the damaging range of the mine.
You can assume that throughout the campus some supporting devices are placed
to inform players about virtual objects by injecting the necessary tuples.

(f) Adapt the functionality of the Mine virtual object so that it only kills the firsz
player stepping on it.

(g) The default propagation protocol disseminates tuples to all connected players.
This can lead to network flooding, performance repercussions on mobile devices
and endanger privacy (since all devices can potentially access all information).
Adapt the propagation protocol of the tuples used in this application as follows:

(g.1) The information shared amongst team members (e.g their positions or mes-
sages with the agreed strategy) should not be accessed by the players of the
other team who could use it to their own advantage. Such information
should be sent only to team members.

The Java GUI files must be placed at at / 1absessions directory. Otherwise, update the Java package
name accordingly.

7 DISTRIBUTED PROGRAMMING IN AMBIENTTALK WITH TUPLES:
TOTAM 7.2 Implementing Flikken

(g.2) Adapt your implementation so that tuples targeting team members are only
spread to one-hop neighbours. In other words, tuples should be transmitted
only to connected devices at the time of the insertion (providing a similar
behaviour as default semantics of federated tuple space-based models).

