Tuples on the Ambient (TOTAM)

Tuples

the best of two worlds:

federated tuple
space model

® guarantees atomicity
for in operation.

® reactions.

Tuple space model targeting mobile devices combining

replication
model

rd operation fully
decoupled in time.

scoped propagation

® antituples.

protocol.

79

Reactions on Tuples

def myTupleSpace := makeTupleSpace();

// a “hallo” message tuple from wolf.

def halloTuple := tuple: [Message, “wolf”, “hallo”];

// a template for message tuples from wolf.

def wolfTuples := tuple: [Message, “wolf”, var: “content];

// a template for any message tuples.
def msgTuples := tuple: [Message, var: “from, var: "content];

// add tuple to tuple space

myTupleSpace.inject: halloTuple;

// get a Message tuple

def aMessageTuple := myTupleSpace.rdp(msgTuples);

// get all Message tuples.
def messageTuples := myTupleSpace.rdg(msgTuples);

&Non-blocking operations

Tuples on the ambient

once and forever reactions by means of

when: and whenever: listeners ‘
Variables are bound

//read a Message tuplqz//////// K///////

myTupleSpace.whenever: msgTuples read:{

system.println(“Got message: “ + content + “ from: ” + fro
b
//remove all Message tuples from wolf
myTupleSpace.whenever: wolfTuples in:{

system.println(“Wolf says: “ + content);

};\

Returns object to cancel the subscription

Network facilities disabled by default!

myTupleSpace.goOnline();
myTupleSpace.inject: halloTuple;

def defaultPropagationProtocol() Carries the default
isolate: { :
//receiver-side protocol propagatlon prOtOCOI
def decideEnter(ts) { true };
def doAction(ts){};
def changeTupleContent(ts){self};
def decideStore(ts) {true},

//sender-side protocol
def inScope(senderDescriptor,receiverDescriptor){ tr‘ue’
def decideDie(ts){false};
s
s

82




Flikken

Scoped Tuples on the Ambient

Today’s assignment:

@ Each tuple space has a tuple space descriptor.

|. Players can track the
position of nearby team
members on a map.

@ Tuples are propagated to neighbours in the scope of the tuple.

2. When a player does not
update its position for a
certain amount of time, its
visual representation on the
map should be grayed out.

3. Players die when they step
into a mine virtual object.

Conditional Synchronization (CS) CS with Futures

® with Futures:

e Synchronization based on event or conditions by

def testAsyncOneCustomer(){ explicit future manipulation:
def future := when: customer<-haveComputer()@FutureMessage becomes:{
Ivall . .
<elf.assertEquals(val, 1); def [futur‘e? resolver] := makeFuture();
3 consumer<-give(future);
future; def val := /* calculate useful value */

g resolver.resolve(val);

resolver.ruin(exception);

* applying the becomes: block resolves future.

* applying the catch: block ruins future.

85 86




