
Reverse Engineering
Architectural Feature Models

Mathieu Acher1, Anthony Cleve1, Philippe Collet3,
Philippe Merle2, Laurence Duchien2, and Philippe Lahire3

1 PReCISE Research Centre, University of Namur, Belgium
{mac, acl}@info.fundp.ac.be

2 INRIA Lille-Nord Europe, Univ. Lille 1 - CNRS UMR 8022, France
{philippe.merle,laurence.duchien}@inria.fr

3 Université de Nice Sophia Antipolis - I3S (CNRS UMR 6070), France
{collet,lahire}@i3s.unice.fr

Software product line (SPL) engineering aims at generating tailor-made soft-
ware variants for the needs of particular customers or environments. SPL princi-
ples and techniques are gaining more and more attention as a means of efficiently
producing and maintaining multiple similar software products, exploiting what
they have in common and managing what varies among them.

It is not always feasible to design and implement a complete mass customiza-
tion production line to support the full scope of products needed on the foresee-
able horizon. In many cases, SPL practitioners rather have to deal with (legacy)
software systems, that were not initially designed as SPLs. It is the case of FraS-
CAti, a large and highly configurable component and plugin based system, that
have constantly evolved over time and now offers a large number of variants,
with many configuration and extension points. The variability of such existing
and feature rich systems should be properly modeled and managed.

A first and essential step is to explicitly identify and represent the variabil-
ity of a system, including complex constraints between architectural elements.
We rely on feature models that are widely used to model the variability of an
SPL in terms of mandatory, optional and exclusive features as well as Boolean
constraints over the features [5]. Feature models characterize the scope [3] of
an SPL by specifying the set of combination of features (configurations) sup-
ported or not by an SPL. Reverse engineering the feature model of an existing
system is a challenging activity [4]. The architect knowledge is essential to iden-
tify features and to explicit interactions or constraints between them. But the
manual creation of feature models is both time-consuming and error-prone. On
a large scale, it is very difficult for an architect to guarantee that the resulting
feature model correctly represents the valid combination of features supported
by the software system. The scope defined by the feature model should not be
too large (otherwise some unsafe composition of the architectural elements are
authorized) or too narrow (otherwise it is a symptom of unused flexibility of the
architecture). Both automatic extraction from existing parts and the architect
knowledge should be ideally combined to achieve this goal.

We present a comprehensive, tool supported process for reverse engineer-
ing architectural feature models [1]. At the starting point of the process, an
intentional model of the variability – a feature model – is elaborated by the soft-
ware architect. As the software architect feature model may contain errors, we



2 Acher et al.

develop automated techniques to extract and combine different variability de-
scriptions of an architecture, namely a hierarchical software architecture model
and a plugin dependencies model. Then, the extracted feature model and the
software architect feature model are reconciled in order to reason about their dif-
ferences. Advanced editing techniques are incrementally applied to integrate the
software architect knowledge. The reverse engineering process is tool supported
and made possible by the combined use of FAMILIAR [2] operators (aggregate,
merge, slice, compare, etc.).

We illustrate the process when applied to a representative software system,
FraSCAti. Our experience in the context of FraSCAti shows that the automated
procedures produce both correct and useful results, thereby significantly reduc-
ing manual effort. First, the gap between the feature model extracted by the
procedure and the feature model elaborated by the software architect appears
to be manageable, due to an important similarity between the two feature mod-
els. However, it remains helpful to assist the software architect with automated
support, in particular, to establish correspondences between features of the two
feature models. The most time-consuming task was to reconcile the granularity
levels of both feature models. For this specific activity, tool supported, advanced
techniques, such as the safe removal of a feature, are not desirable but manda-
tory, since basic manual edits [5] of feature models are not sufficient. Second, the
extraction procedure recovers most of the variability expressed by the software
architect and encourages the software architect to correct his initial model. A
manual checking of the five variability decisions imposed by the software archi-
tect shows that the extraction is not faulty. It correctly reproduces the informa-
tion as described in the software artefacts of the project. Third, we learn that
the software architect knowledge is required i) to scope the SPL architecture
(e.g., by restricting the set of configurations of the extracted feature model),
especially when software artefacts do not correctly document the variability of
the system and ii) to control the accuracy of the automated procedure.

An open issue is to provide a mechanism and a systematic process to reuse
the software architect knowledge, for example, for another evolution of the ar-
chitectural feature model of FraSCAti.

References

1. Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle, Laurence Duchien,
and Philippe Lahire. Reverse engineering architectural feature models. In ECSA’11,
LNCS. Springer. material and experiments: https://nyx.unice.fr/projects/
familiar/wiki/ArchFm.

2. Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. In Symposium
on Applied Computing (SAC), pages 1333–1340, Taiwan, March. Programming Lan-
guages Track, ACM.

3. Isabel John and Michael Eisenbarth. A decade of scoping: a survey. In SPLC’09,
volume 446 of ICPS, pages 31–40. ACM, 2009.

4. S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering
feature models. In ICSE’11, pages 461–470. ACM, 2011.

5. T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In
ICSE’09, pages 254–264. IEEE, 2009.

https://nyx.unice.fr/projects/familiar/wiki/ArchFm
https://nyx.unice.fr/projects/familiar/wiki/ArchFm

	Reverse EngineeringArchitectural Feature Models

