Continuous Architecture Evaluation

Eric Bouwers and Joost Visser
Software Improvement Group, Amsterdam, The Netherlands
E-mail {e.bouwers, j.visser}@sig.eu

Most software systems start out with a designed architecture which documents the
important design decisions. These decisions include, but are not limited to, responsi-
bilities of each of the main components and the way in which the components interact.
Ideally, the implemented architecture of the system corresponds exactly with the de-
sign, only those components which are described are implemented and all components
interact through pre-defined communication channels. Unfortunately, in practice we
often see that the original design is not reflected in the implementation. Common de-
viations are more (or less) components, undefined dependencies between components
and components implementing unexpected functionality.

There are many reasons for these discrepancies to occur. For example, the choice
for a technology can lead to an unwanted implementation because the chosen technol-
ogy does not allow a particular construct. Deviation can also arise because of process-
related issues, for example because new functionality is added to the system without
taking into account the design. Lastly, it could simply be the case that there is an error
in the designed architecture.

In these situations the development team can decide to solve the issue by means
of a quick fix outside of the designed architecture to meet a deadline. Even though
everybody knows that this type of fixes should be temporarily, the priority of solving
these cosmetic’ issues is low. After all, the system is working correctly, so why change
something which is not broken?

The examples illustrate legitimate reasons for deviating from the designed architec-
ture. By involving both the development team as well as the architects in an evaluation
of the implemented architecture both the implementation and the design can evolve
together. Many methods are available for such evaluations, varying greatly in depth,
scope and required resources. The end-result of such evaluations are, amongst others,
an up-to-date overview of the implemented architecture and the corresponding design.

But when should such an evaluation take place? Depending on the amount of re-
sources required the evaluation can take place once or twice during a project, or period-
ically (for example every month). Unfortunately, in between the evaluations issues can
still arise, which still leads to deviations between the design and the implementation.
The later these deviations are discovered the more costly it is to fix them.

A solution to these problems is to continuously monitor important aspects of the
implemented architecture. This can be done automatically by the means of software
metrics. A basic metric, such as the number of components, is easy to calculate after
each change and can serve as a trigger to perform a quick manual evaluation to see
whether the change fits into the current design. If this is not the case a more detailed
evaluation can be performed, potentially leading to a full-scale architecture evaluation.

Basic metrics (number modules, number of connections) are easy to measure and
provide relevant information. However, just examining these two metrics does not



make it possible to detect all types of changes, for example when a single components
is implementing too much of the overall functionality.

In our current research project we are extending the set of available architecture
metrics by new metrics which are related to quality aspects as defined in ISO 9126.
More specifically, we have designed and validated two new metrics which quantify the
Analyzability and the Stability of an implemented software architecture.

The first metric we designed is called “Component Balance” [1]. This metric takes
into account the number of components as well as the relative sizes of the components.
Due to the combination of these two properties, both systems with a large number
of components (or just a few components) as well as systems in which one or two
components contain most of the functionality of the system receive a low score. We
validated this metric against the intuition and opinion of experts in the field of software
quality assessments by means of interviews and a case study. The overall result is a
metric which is easy to explain, can be measured automatically and can therefore be
used as a signaling mechanism for either light-weight or more involved architecture
evaluations.

The other concept we introduced is the “dependency profile” [2]. For this profile
each module (i.e. source-file or class) is placed inside one of four categories; hidden
inside a component, being part of the requires interface of a component, being part of
the provides interfaces of a component, or being part of both interfaces. The summation
of all sizes of the modules inside a category provides a system-level quantification of
the encapsulation of a software system. This metric has been validated by an empirical
experiment in which the changes which occurred to a system are correlated to the
values of each of the four categories. The main conclusions of the experiment is that
with more code encapsulated within the components of a system more of the changes
remain localized to a single component.

Both of the metrics have shown to be useful in isolation. We are taking the next
step by determining how these metrics can best be combined in order to reach a well-
balanced evaluation of an implemented architecture. In order to answer the question
when a more elaborate evaluation should take place we are planning to determine ap-
propriate thresholds for these two metrics. The combined results of these studies en-
sures that these metrics can be embedded within the services currently offered by the
Software Improvement Group.

References

[1] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying the analyzabil-
ity of software architectures. In Proceedings of the 9th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2011). IEEE Computer Society, 2011.

[2] E. Bouwers, A. van Deursen, and J. Visser. Quantifying the encapsulation of im-
plemented software architectures. Technical Report TUD-SERG-2011-031, Delft
Software Engineering Research Group, Delft University of Technology, 2011.



