
Managing Runtime Evolution in Dynamic
Software Systems

Extended Abstract

Nicolás Cardozo1,2, Sebastán González1, Kim Mens1, and Theo D’Hondt2

1 ICTEAM Institute, Université catholique de Louvain
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium
2 Software Languages Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium

In the context of mobile and pervasive computing [7] contextual information
(like personalization, location, internal device’s state, and on-spot environmen-
tal information) is becoming central to application development. Current-day
systems are required to incorporate and react to contextual information, which
emphasizes the growing importance of runtime software evolution [3]. To ad-
dress this need, the context-oriented programming (COP) paradigm has been
proposed to provide the ability of writing programs that can adapt, correct, or
extend their behavior dynamically at runtime according to the surrounding ex-
ecution environment. Different COP languages have been defined as either new
languages or extensions of existing languages [1,4].

COP languages introduce different language abstractions that enable the
definition, dynamic (de)activation, and composition of contexts and context-
dependent behavior. Let us illustrate the idea by means of a particular COP
language, Subjective-C [5], although similar concepts can be found in most COP
languages. Contexts are defined as first-class program entities and are usually
given by assigning a semantic meaning to internal/external characteristics of the
environment (e.g., the GPS coordinates 50°51’0”N 4°21’0”E correspond to the
Brussels context), which is defined as @context(Brussels). Behavior is associ-
ated to a context by annotating partial method definitions with the correspond-
ing contexts for which the method is applicable as follows, @contexts Brussels

-(void) getCoordinates{...}. Such method definitions become available dy-
namically in the main application only if their context of definition is active.
Contexts can be activated and deactivated dynamically, using respectively the
@activate(Brussels) and @deactivate(Brussels) constructs.3

In the context of COP applications, activations and deactivations of con-
texts are assumed to happen concurrently and without warning, which may lead
to incoherences or inconsistencies with respect to the expected application be-
havior. To deal with this, different proposals have been made to manage the
definition and composition of dependencies between contexts [2,5]. Such propos-
als only provide models that constrain the dynamics of (de)activating a context,
according to the state of its related contexts. Nonetheless, in most cases, the

3 Activations and deactivations are triggered by a sensed change in the internal or
external information.



corresponding language abstractions or runtime support for the model is not
provided. Furthermore, the informal and high-level definition of such constraints
makes their verification difficult and computationally expensive especially in the
highly dynamic settings encountered in mobile and pervasive computing.

We propose to address the problem of consistency management in systems
that dynamically evolve at runtime, along two fronts. First, to cope with the
dynamic nature of COP systems, we propose a module for the precise definition
and management of interaction between context dependencies. We use the Petri
net [6] based formalisms for this. In addition to the advantages given by the
formal definition, the model also provides a first-hand view on the dynamics
and state of COP systems. Moreover, it serves as an underlying implementation
in our context management system, thus providing a lightweight verification
mechanism for the activation and deactivation of contexts.

Second, an static analysis module could be used to provide an upfront fine-
grained reasoning about consistency and validity properties of the application.
The introduced formalism of Petri nets already provides analysis and verifica-
tion mechanisms that could be used to, for example, find whether an application
may reach a conflicting configuration of active contexts. Alongside the analysis
tools provided by Petri nets, another verification module could identify possible
inconsistencies at the method level. Based on the static information for each
method (contexts in which it may be applicable, and methods which it may
call), an analysis can be performed to ensure that application behavior remains
consistent whenever methods are switched. For example, in a localization appli-
cation, detecting faulty message sends to getCoordinates on a GPS device, just
as the location context changes from GPS to Extrapolate, where the method
is not defined. This module thus gives meaningful feedback about potential er-
rors, and different possibilities on how to solve them for example, by creating a
dependency between the two contexts.

The modules proposed here constitute a clear step forward in the support
for runtime evolution of COP applications. We provide a lightweight runtime
system for managing dependencies between adaptations, and an upfront analysis
to identify possible runtime conflicts at a fine-grained level of granularity. Other
modules will be explore in the future, to widen the family of problems addressed.

References

1. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented programming:
an overview of ContextL. In: Proceedings of the Dynamic Languages Symposium.
pp. 1–10. ACM Press (Oct 2005), collocated with OOPSLA’05

2. Desmet, B., Vallejos, J., Costanza, P., De Meuter, W., D’Hondt, T.: Context-
oriented domain analysis. In: Modeling and Using Context. pp. 178–191. Lecture
Notes in Computer Science, Springer-Verlag (2007)

3. Gabriel, R.P., Goldman, R.: Conscientious software. In: Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. pp. 433–450. OOPSLA’06, ACM Press, New York, NY, USA (2006)



4. González Montesinos, S.: Programming in Ambience: Gearing up for dynamic adap-
tion to context. Ph.D. thesis, Université catholique de Louvain (October 2008)

5. Gonzlez, S., Cardozo, N., Mens, K., Cdiz, A., Libbrecht, J.C., Goffaux, J.:
Subjective-C: Bringing context to mobile platform programming. In: Proceedings
of the International Conference on Software Language Engineering. Lecture Notes
in Computer Science, vol. 6563, pp. 246–265. Springer-Verlag (2011)

6. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541 – 580 (April 1989)

7. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10–17 (Aug 2001)


	Managing Runtime Evolution in Dynamic Software Systems

