
Code Decay Triangulation using Metrics, Experts’ Opinion and Defect Counts 
Juan Fernández-Ramil David Reed 

Computing Dept. The Open University, UK IT Division of a UK Government Department 
j.f.ramil@open.ac.uk ydj_reed@yahoo.co.uk 

10th edition of the BElgian-NEtherlands software eVOLution seminar BENEVOL, 
Brussels, 8-9 Sept 2011 http://soft.vub.ac.be/benevol2011/ 

Motivation 
In contrast to physically engineered artefacts, software does not deteriorate through use. Code 
quality, however, may decay (i.e. deteriorate) through the process of software evolution (a.k.a. 
maintenance). Such decay may have negative human, technical and economic consequences. For 
example, software maintainers may find that the code is becoming excessively complex. 
Evolution may become more time consuming and difficult than it should. Other stakeholders may 
not receive the functional improvements they are waiting for in time. Unexpected side-effects 
may emerge when new changes are implemented. Defect fixing may get harder. And so on... 

The problem of code decay (a.k.a. code aging, excessive complexity, ‘spaghetti’ code) has been 
identified and discussed a long time ago [e.g., Lehman 1974, Parnas 1994]. There are many code 
decay empirical studies in the literature [e.g. Eick et al 2001]. There are, at least, three different 
ways of trying to assess the level of code decay in a particular system: direct measuring of the 
code through software metrics, surveying experts’ opinion about code quality and using indirect 
measures (e.g. process related measures such as defect counts). It isn’t known whether these three 
different ways will converge to the same insights when applied to a particular system. 

In this extended abstract, we briefly report the findings of a case study in which software metrics, 
a developers’ questionnaire and defect counts were compared and used in an attempt to rank the 
software’s components with respect to their level of decay. We aimed at achieving a greater 
clarity on the ‘details’ of how to measure code decay in a particular context. We also wanted to 
provide the organisation owing the software with a ranked list of components which could be use 
to prioritise any refactoring or replacement efforts. 

The Case Study 
The software used as a case study was a proprietary business critical information system. The 
system handled an important database which is used nationally by many stakeholders. Any errors 
in the system and in the database may have serious legal and financial implications. The system 
was initially implemented in 2004 following the PRINCE2 methodology and using mainly 
Borland Delphi, a variant of Object Pascal. At the time of the study the system had evolved for 
four years, with 19 releases. At the most recent release the system consisted of approximately 
225,000 lines of Delphi code including comments. Further details can be found in [Reed 2009]. 

Data Collection 
The study involved the collection of three types of data: code metrics, defect counts and expert 
opinion. The code metrics included McCabe complexity, coupling (CBO), afferent and efferent 
coupling and lack of cohesion (LCOM2). The expert opinions were gathered via a specially 
designed questionnaire. The number of reported defects was obtained from the documentation 
and manually assigned to each of the subsystems. 

The metric data was visualised by plotting point values (average values) per release and box-plots 
(i.e. abstracted views of the distributions) for the first and most recent releases. From the box-
plots, the tail length and the tail volume was calculated for each of the 11 subsystems. Changes in 
metrics values were measured relative to the first release rather than in absolute terms. A first 
version of the questionnaire was generated and sent to a small number of experts who could give 
comments on it. The questionnaire was then revised based on their feedback and then sent to the 
real developers. It was answered by 10 out of 12 developers. In order to normalise defect counts 
by the size of the system, the cumulative number of defects was divided by the current size of the 
system in number of lines of code. 



Main Results 
The three types of data provided some evidence that could be interpreted as decay being present. 
However, the convergence was not complete. For example, the average McCabe complexity 
increased slightly from 2.96 to 3.08 (4.1%) during the 4 years of evolution. Tail volumes 
increased for complexity, CBO and afferent coupling, showing evidence of code decay. 
Surprisingly, tail volumes decreased for efferent coupling and LCOM2, showing improvement 
rather than decay. Six developers said that the system has become more complex; three 
developers indicated that the complexity has stayed the same and one developer said that the 
system has become less complex. Cumulative defect values (normalised by size) showed a 
positive slope (increasing trend) from month 22. 

Seven ranking pairs (based on point values, tail length, tail volume, questionnaire and defects) for 
the 11 subsystems were compared using Kendall’s and Spearman’s rank correlation measures. 
The results ranged widely from positive correlations (e.g. Spearman’s Rho value of 0.7 for the 
pair ‘point values – defects’ to negative correlations (e.g. Kendall’s Tau value of -0.4 for the pair 
‘tail volume – questionnaire’). 

Despite the evidence showing, overall, that the code has decayed, it was found that different types 
of measurement may lead to different results. Code decay is multi-dimensional. Careful 
examination is needed to interpret which measures are more meaningful in a given context. In 
general, expert opinion seems to be the most reliable source of information, followed by code 
metrics (at distribution level) and finally defect counts. Defect counts can vary widely due to, for 
example, changes in the testing effort, without necessarily indicating code decay. Within code 
metrics, the analysis based on distributions (box-plots) was found to be more insightful than point 
values (averages). The latter generally ‘compress’ the tail of the distribution where the most 
complex code elements reside and in this way may hide the parts of the code where the actual 
code decay is actually happening. 

Conclusion 
Code decay symptoms are not easy to triangulate, that is, to confirm (or not) through different 
types of measurement whether the code has suffered from quality deterioration. In this case study 
an initial approach based on code metrics, questionnaire and defect counts showed mixed results. 
For example, some metrics showed deterioration while others showed improvement. Moreover, 
subsystem decay rankings of possible decay based on different types of information are not 
always leading to the same results. Despite all this, the methodological approach used in this case 
study could be used by a software organisation to start an internal discussion and reflection on the 
evolutionary ‘trajectory’ of the system and on the possible measures to improve code’s quality 
where it is most needed. How to apply code decay measurement approaches in a given context or 
project is not immediately clear and needs experimentation. All this, makes code decay detection 
a difficult problem for practitioners and an interesting area of research which combines the 
software evolution and the software measurement topics. 

References 
[Eick et al 2001] S.G. Eick et al, Does Code Decay? Assessing the Evidence from Change Management 
Data, IEEE TSE, 27(1), pp. 1-12 , 2001. 
 
[Lehman 1974] M.M. Lehman, Programs, Cities and Students – Limits to Growth?, Inaugural lecture, 
Imperial College of Science, Technology, London, 14th May 1974 
 
[Parnas 1994] D.L. Parnas, Software Aging, Proc 16th ICSE, Sorrento Italy, pp 279-287 
 
[Reed 2009] D. Reed, Code Decay – Examining Evidence from Expert Subjective Assessment and Metrics, 
M801 Master’s Dissertation, Computing Dept., The Open University, Milton Keynes, U.K., March 2009. 


