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Abstract—Since the appearance of Albrechts pioneering work,
function points have attracted significant attention from the
industry. In their work, project managers can benchmark
function point counts obtained for their projects against large
publicly available datasets such as the ISBSG development &
enhancement repository release 11, containing function point
counts for more than 5000 projects. Unfortunately, larger amount
of functionality as reflected in the function points count does not
necessarily correspond to a more significant development effort.
In this paper we focus on a collection of ISBSG projects with a
similar amount of functionality and study the impact of different
project attributes on the development effort.

In our study we consider the ISBSG development & en-
hancement repository release 11, the largest publicly available
dataset with function point counts, containing data about
more than 5000 projects developed in a variety of different
countries using a variety of different design and development
techniques [1]. The ISBSG repository contains information
about 118 different project attributes, including its functional
size as well as organizational (e.g., scheduling, development
team size and its productivity), technical (e.g., architecture
and the main programming language), and problem-specific
attributes (e.g., business or application area). Data is provided
by the project owners themselves. Functional size is for most
of the projects measured by applying such methods as IFPUG
function points (3799 out of 5052 projects or 75.2%) [2], hence
we solely focus on the IFPUG projects.

For the IFPUG projects, the ISBSG repository contains
data on the development effort. First, we exclude projects
that report the effort figures only for some project phases.
Second, while some projects report on the recorded effort,
some other projects report on the estimated effort based, e.g.,
on the amount of functionality. To ensure validity of our study
we solely consider projects that report on the actual recorded
effort. Furthermore, we focus only projects that record the
effort in staff hours (as opposed, e.g., “productive time”) and
that only record time spent on software development, including
project management and project administration, but excluding
non-project specific supporting activities such as control and
audit or hardware support. Overall, excluding projects that
report the effort figures only for some project phases, that re-

port estimated rather than recorded effort, that report recorded
effort expressed in some other unit than staff hours, or that
include the effort dedicated to non-project specific supporting
activities, reduces the number of considered projects to 1661.

Finally, as the data in the ISBSG repository is provided
by the project owners themselves, it might become polluted
by imprecise or unreliable values. Therefore, ISBSG quality
reviewers assess the soundness of the data submitted. The
result of the assessment ranges from “A” to “D”, where “A”
indicates that the data “was assessed as being sound with
nothing being identified that might affect its integrity”, while
for “B” the data ‘“appears sound but some aspects might
have affected the data or count integrity”. Assessment “C”
indicates impossibility of assessment due to incompleteness
of the data provided, while little credibility should be given to
data assessed “D”. Restricting our attention to the “A”-projects
reduces the number of the eligible projects to 84, while 1609
projects remain if both “A”- and “B”-projects are considered.
Hereafter we consider both “A”- and “B”-projects.

As mentioned, for o1
each project the ISBSG
repository contains
information  about 118
different project attributes
including the summary
work effort, functional
size (measured using the
so called unadjusted and
adjusted function points
counts), as well as organizational, technical and problem-
specific attributes. We prefer adjusted function points count to
unadjusted function points count (cf. [3]), and consider the
following project attributes: primary programming language,
language type, organization type, intended market, year of
project, development type, platform, and architecture.

Plotting the summary work effort against the adjusted
function points count reveals presence of four outliers, projects
containing more than 5000 function points. Moreover smaller
projects up to 500 function points cover the entire range of
work effort. The log-scale plot recommended in [4] shows a
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clear linear relation between the summary work effort (SWE)
and the adjusted function points count (AFP). Using linear
regression we obtain the following model:

log(SWE) = 2.92717 + 0.84617 * log(AFP)

The fitted linear model is adequate: F'-statistic equals 2003 on
1 and 1607 degrees of freedom with the corresponding p-value
not exceeding 2.2 x 10716, and p-values both for the intercept
and for the coefficient do not exceed 2.2 x 10716 as well.
We would like to
get a better insight
into the distribution
of the residuals, i.e.,
we would like to ex-
plain their diversity
by investigating to o
what extent they can
be explained using ‘ o
one of the remain- ; ; ‘ | |
ing project attributes
such as the primary
programming language or the intended market. We carry
out the explanation step by means of econometric inequality
indices, recently applied in the context of software engineer-
ing [5]. Due to the nature of residuals, the chosen inequality
index should be applicable to negative as well as positive
values. Moreover, to calculate the explanation percentage [6],
the index should be decomposable, i.e., representable as
Ihetween (@) 4 [ithin(G) = [ for any partition G into mutually
exclusive and completely exhaustive groups. From all the
inequality indices studied in [7], there is only one that satisfies
the requirements of decomposability and applicability to the
negative numbers, namely the Kolm index [8]. Explanation
percentages are shown in the column “With NA” below.

residuals
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Project attribute With NA | Without NA

N = 1609 N =151
Primary programming language 16.11 25.37
Organization type 18.36 17.59
Year of project 541 10.88
Development platform 5.05 543
Architecture 3.35 8.68
Intended market 1.57 4.61
Language type 1.28 245
Development type 0.07 0.05

The table data clearly indicates that such attributes as the
primary programming language, the organization type, and the
year of the project explain a higher share of the inequality
in the residual values than language type, intended market or
development type. Language type is a type of the programming
language, e.g., 3GL, 4GL or an Application Generator. Since
many primary programming languages belong to one language
type, and one programming language can belong solely to
one language type, the language type induces a more coarse
grained partition of the projects considered. Therefore, the
explanation value of the language type is lower than that of the

primary programming language [5]. High explanation values
related to the organization type are caused by association of
different organization types to the same project, e.g., “Whole-
sale & Retail Trade” and “Financial, Property & Business
Services”. Since explanation provided by the inequality indices
is applicable solely to mutually exclusive decompositions, we
had to introduce a very fine-grained partitioning, including a
group containing only projects associated with both “Whole-
sale & Retail Trade” and “Financial, Property & Business Ser-
vices”. Extending inequality indices to non-mutually exclusive
groups is considered as future work. The high explanation
percentage obtained for the year of the project corroborates
the earlier findings of [3] that stress the importance of the
project age in effort estimation.

One of the main issues arising when analyzing the ISBSG
data, recognized already in [4], is related to presence of
missing values. Indeed, since the ISBSG data is based on
self-reporting, many project aspects are not being reported.
In particular, this would mean that that all projects with
unreported value for, e.g., development type, would be put
together in the same group. To evaluate the impact of missing
values on the explanation percentages we have eliminated all
the projects having a missing value in at least one of the project
attributes considered, and recalculated the Kolm indices based
on the remaining 151 projects. These values are present in the
“Without NA” column. Overall, the explanation percentages
are higher, which may be explained by the decrease in the
number of projects, and, therefore, by a more fine grained
partition induced by the same project attributes. We see that
the primary programming language, the organization type, and
the year of the project still provide high explanation values.

To conclude, in this paper we have applied econometric
inequality indices to study how different project attributes
can explain diversity of the residuals of the logarithm of the
summary work effort with respect to the logarithm of the
adjusted function points, i.e., how different project attributes
can explain why projects with similar amount of functionality
require different development effort.
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