
What Do Package Dependencies Tell Us About Semantic Versioning?

Alexandre Decan
Software Engineering Lab

University of Mons (UMONS)
Mons, Belgium

alexandre.decan@umons.ac.be

Tom Mens
Software Engineering Lab

University of Mons (UMONS)
Mons, Belgium

tom.mens@umons.ac.be

Abstract—This presentation abstract reports on the research
results published in 2019 in IEEE Transactions on Software En-
gineering.1 The semantic versioning policy is commonly accepted
by open source package management systems to inform whether
new releases of software packages introduce possibly backward
incompatible changes. Maintainers depending on such packages
can use this information to avoid or reduce the risk of breaking
changes in their own packages by specifying version constraints
on their dependencies. Depending on the amount of control a
package maintainer desires to have over her package dependen-
cies, these constraints can range from very permissive to very
restrictive. The article empirically compared semantic versioning
compliance of four software packaging ecosystems, and studied
how this compliance evolves over time. We explored to what
extent ecosystem-specific characteristics or policies influence the
degree of compliance. We also proposed an evaluation based on
the “wisdom of the crowds” principle to help package maintainers
decide which type of version constraints they should impose on
their dependencies.

I. INTRODUCTION

Contemporary software development increasingly relies on
reusable software packages, stored in open source package
registries such as npm, Rubygems, Packagist and Cargo.
The dependency networks formed by the packages contained
in these registries form so-called packaging ecosystems.

Semantic versioning (semver) has been proposed as a
solution to the so-called dependency hell to which software
maintainers in such ecosystems are often confronted. Main-
tainers of software that depends on reusable packages need
to keep their dependencies up to date to be able to benefit
from bug and security fixes and new functionalities, but it
may require significant effort to upgrade these dependencies,
especially if changes are backward incompatible. Providers of
reusable packages need to regularly provide new releases with
extra functionalities, bug fixes and security fixes to keep their
“consumers” satisfied; while they should avoid introducing
breaking changes as this imposes a burden on those consumers.

semver partially addresses this challenge by introducing
a set of simple rules to assign version numbers to inform
developers about potentially breaking changes. Based on
this, packages can specify dependency constraints that al-
low automatic patch updates or minor updates for “trusted”
dependencies. However, since semver is just a policy, it

This research was carried out in the context of FRQ-FNRS collaborative
research project R.60.04.18.F SECOHealth and Excellence of Science project
30446992 SECO-ASSIST fi- nanced by FWO-Vlaanderen and F.R.S.-FNRS.

1https://doi.org/10.1109/TSE.2019.2918315

cannot be imposed, only embraced as an acceptable way to
express whether package releases introduce breaking changes.
Not respecting the policy can cause major problems due to
unexpected breaking changes in dependent packages.

The goal of the paper was to assess to what extent maintain-
ers in four packaging ecosystems (Cargo, npm, Packagist
and Rubygems) rely on the semver policy to define the
dependency constraints for the packages they maintain, and
to what extent semver can be assumed to be followed by
required packages. We analysed the dependency constraints
in the package dependency networks of the four ecosystems
over a five-year time period. Dependency constraints can be
either compliant to, more restrictive than, or more permissive
than what is suggested by the semver policy. We generally
observed that the proportion of compliant constraints increases
over time for all ecosystems, while ecosystem-specific no-
tations, characteristics, maturity and policy changes play an
important role in the degree of such compliance.

We observed that constraints in Rubygems are more
permissive than for the other ecosystems, suggesting that
Rubygems does not adhere to the semver specification. We
also observed that ecosystems tend to be more permissive
than semver for packages during initial development (i.e.,
releases with version 0.y.z), which assume patch updates to
be compliant, whereas the semver specification does not.
This is especially relevant for Cargo packages that rely
a lot on such initial development releases. For production
packages (i.e., releases 1.0.0 or above), the proportion of
compliant constraints is high (except for Rubygems) and
increasing for all ecosystems. Still, a significant proportion
of dependency constraints are too restrictive, preventing the
automatic adoption of minor releases and patches.

We assessed and confirmed that the “wisdom of the crowds”
principle can be used to allow to decide which type of
constraint to use for new dependencies to existing required
packages. If the large majority of dependencies to a given
required package “agree” on the constraint type they use,
this constraint type can be recommended for other packages
desiring to depend on the same required package.

These and related results can form the basis for a next
generation of semver-aware dependency management tools
that can be integrated into existing continuous integration
processes. As such, the difficult task for package maintainers
to keep their packages up to date will be alleviated.


