An industrial study on the differences between
pre-release and post-release bugs

Renaud Rwemalika, University of Luxembourg, renaud.rwemalika@uni.lu

Issues caused by software defects are a common source
of business failures and economic losses. According to the
Software Fail Watch of Tricentis in 2017, software bugs
resulted in $1.7 trillion of industrial revenue losses and, more
importantly, the number of bugs reported increased by 10
percent compared to 2016. These figures highlight the impor-
tance of a good understanding on the nature of software bugs
and their root causes. On another hand, source code analysis
techniques are typically developed and evaluated using some
bug instances, which should reflect specific characteristics and
assumptions around the targeted bugs. Thus, bug finding and
removal techniques, such as software testing, static analysis,
fault localization or program repair, are developed according
to the characteristics, nature and fixes of bug datasets such as
SIR, Defects4j and Bugs.jar. This is a good first step towards
developing feasible and effective techniques. However, our
perception, understanding and assessment of these techniques
is strongly connected to the characteristics of the bugs involved
in these datasets.

To understand the bug characteristics and their conse-
quences on software testing and debugging techniques, we
perform an extensive study on pre- and post-release bug
characteristics of our industrial partner, BGL BNP Paribas. We
focus on ‘critical’ systems, developed in Java. These systems
have been audited and tested using both unit and system (end-
to-end) test practices. Our aim is to understand the nature of
common kinds of real software issues by performing a fine-
grained analysis on the recorded bugs and their patches.

In contrast to the majority of previous research that is
based on Open Source projects, our study focuses on real
industrial systems where code development often differs in
architecture, process and people involved. We extract and
study both quantitatively, using source code metrics, and
qualitatively, observing code context and the properties of the
pre- and post-release bug patches. Our industrial partner has
established quality assurance teams and procedures, making
the distinction between pre- and post-release bugs meaningful.
As such, our analysis can help interpreting the feasibility
of existing methods/studies, judging the representativeness of
dataset used in previous work, help positioning and choosing
appropriate pre- or post-release bug data and increases the
general understanding of the industrial software issues.

Perhaps the most interesting result from our study is that
we find evidence that most of the bug patches we analyzed,

Work initially presented at 35th IEEE International Conference on Software
Maintenance and Evolution DOI: 10.1109/ICSME.2019.00019

especially the post-release ones, involve approximately 82% of
additions. This finding suggests that the related bugs fall in the
category of the so-called ‘omission’ bugs. This is particularly
important for software testing researchers since omission bugs
are a limitation of the widely used and researched code-based
software testing techniques (e.g., code coverage. As code-
based testing is driven by the existing code, targeting the
coverage of codebases, it is hard to reveal issues related to
code that is not there.

Another finding regards the scope of the changes required to
fix post-release bugs. While fixes requiring complex changes
that spread across multiple files exist, the majority of the
bugs are fixed locally (with changes applied to the same unit)
and in conditional statements. This is good news for testing
research and specifically unit testing, as it provides evidence
that unit testing could be adequate for targeting such post-
release bugs (bugs causes spread across different units being
harder to triggered by unit testing).

One last interesting finding we can mention regards the
existence of configuration bugs and the relative differences
between pre- and post-release bugs. We find that 45.97% and
66.69% of the pre- and post-release bugs require changes
on configuration files. We find that post-release bugs require
chunks of changes twice as big as pre-release ones and these
changes mainly involve control flow modifications (while the
pre-release ones involve interface changes). Regarding the
locations of fixes, we found that both pre- and post-release
locations are similar indicating that the difference are mainly
on the nature of bugs than in their location.

Our primary contribution is to raise the awareness of the
research community for the need to distinguish and control
between pre- and post-release bugs, and to present the results
of an industrial empirical study demonstrating significant
differences. The most important finding from this control study
is the evidence that almost all post-release bugs are ‘local’ and
the apparent existence of the so-called ‘omission’ bugs. These
findings suggesting that future research should focus on unit-
based (local) analysis techniques targeting this particular class
of bugs, which is, as we discussed, fundamentally different
from the rest bug types. Overall, more research is needed
in this important area to fully understand this fundamental
aspect of software bugs, and we certainly do not claim to
have completely answered all questions in this paper. We
do, however, believe that our findings significantly improve
the understanding of bugs nature, the structural differences
between pre- and post-release bugs, and the areas where source
code analysis techniques should focus on.

