
Test Amplification on Dynamic Typed Languages
A Case Study on Pharo Smalltalk

Henrique Rocha
Universiteit Antwerpen

Antwerp, Belgium
henrique.rocha@uantwerpen.be

Mehrdad Abdi
Universiteit Antwerpen

Antwerp, Belgium
mehrdad.abdi@uantwerpen.be

The importance of software testing is well-known in both
academia and industry. Good testing practices can detect issues
earlier on and avoid failures. Moreover, improper testing is
shown to have a negative effect on software quality. In 2018,
the estimated costs related to poor software quality in the US
was approximately $2.84 trillion [Kra18].

Although most developers would agree that tests are im-
portant, it is not difficult to find subpar test cases on any
system. Most often, manually written test cases only cover
default scenarios. However, even substandard handwritten tests
contain some implicit expert knowledge on the artifact being
tested. Such implicit knowledge is a valuable resource that can
be explored to create better test cases.

In test amplification, we use manually written tests as seeds
to automatically extend existing test cases or generate new
ones that improve a testing quality metric (e.g., mutation score,
code coverage) [DVPY+19]. Therefore, the implicit expertise
on the handwritten test is amplified to cover more situations
that improve the overall quality of the test suite.

Existing test amplification tools (e.g., DSpot) focus on
statically typed languages like Java [BARM15]. The static
type system provides additional information that facilitates
the amplification process. For example, it is possible to know
that a function parameter inside a test case is an integer and,
therefore, only generate integer values for it. In dynamically
typed languages, such information is not available making the
amplification task more challenging.

In our previous paper [ARD19], we showed that it is feasible
to perform test amplification on a dynamically typed language,
more specifically, Pharo Smalltalk. We created a tool called
Small-Amp as a proof-of-concept. We also applied Small-
Amp in a simple application to better understand the amplified
tests. The lessons we learned helped guide the improvements
necessary for the tool. Now we are extending the work done
on the first paper to include a quantitative study on real
applications and a qualitative study on real developers to assess
the quality of the amplified tests. For instance, in Roassal3 (a
visualization engine for Pharo), the original test cases had a
mutation score of 14%, i.e., from all the generated mutants the
original tests killed only 14% of them. We used Small-Amp on
Roassal3 and the amplified test cases increased the mutation
score to 58%. Moreover, we contacted a project manager for
the Roassal3 and he confirmed that the amplified tests are

indeed readable and cover more scenarios than the original
ones.

For the presentation, we are going to explain the process
used for test amplification in Pharo Smalltalk, a dynamically
typed language, and show examples of the amplified tests
on the first version of Small-Amp and now with all the
improvements. We are also going to discuss the new qualitative
and quantitative studies to show that we can perform test
amplification on real systems.

REFERENCES

[ARD19] Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Test
amplification in the pharo smalltalk ecosystem. In Proceedings
of the 14th Edition of the International Workshop on Smalltalk
Technologies, IWST ’19, pages 1–7, 2019.

[BARM15] Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, and
Martin Monperrus. Dspot: Test amplification for automatic
assessment of computational diversity. CoRR, abs/1503.05807,
2015. Available at http://arxiv.org/abs/1503.05807.

[DVPY+19] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy
Zaidman, Martin Monperrus, and Benoit Baudry. A snowballing
literature study on test amplification. Journal of Systems and
Software, 157:110398, 2019.

[Kra18] Herb Krasner. The cost of poor quality software in the us:
A 2018 report. Technical report, Consortium for IT Software
Quality (CISQ), 2018. Available at http://www.it-cisq.org/
the-cost-of-poor-quality-software-in-the-us-a-2018-report.

