Test Case Propagation in Related Applications

John Businge
University of Antwerp, Antwerp, Belgium

Software is becoming increasingly complex and at the same
time increasingly safety critical (for example in domains of
robotics, autonomous systems such as cars, data-processing
software, Android apps). To tackle these challenges, developers
need to reuse code and collaborate effectively. Social coding
platforms such as GitHub have substantially improved the
situation on both the code reuse and collaboration, providing a
huge bazaar of software and parts of software that can be reused;
this is known as forking [1], and supported by the various
facilities in those platforms like pull requests [2]. Despite
the large-scale software reuse through forking, developers are
not yet supported with automated techniques that can support
the maintenance of these applications. Between two forked
applications, GitHub only reveals number of commits a a
clone is behind the other original (i.e., new commits that have
not been synced). Detailed information of the updates, e.g.,
bug fixes and test cases and new features have to be manually
identified by the developer using basic tools like in-built GitHub
diff tool and adapted for propagation.

Illustrative example: Given a family of forked applications,
suppose a critical bug is found in one of the applications, then
fixed by one of the developers. Other developers reusing the
clone might not know about it; even if they know, they need to
manually propagate and adapt the test case as well as the code
covered by the test case. Ideally, a technique could support
developers by notifying them about test cases that can be
adapted (e.g., checking whether the reused code can still be
tested by the test case, if not, suggesting to what extent the
test case can be reused and whether it needs to be adapted and
how), and then automatically adapting and propagating them,
perhaps interactively with the developer.

In our previous study, we conducted an exploratory study
on variant-management practices in the Android app ecosys-
tem [3]. We focused on apps that are available in the official
app store, Google Play, and that host their source code on
GitHub. In the carefully selected data, a total of 88 Android
application families were collected. In the study, we made some
considerable observations relating to artifact interdependency
awareness. Relating to code sharing, the study made the
following observations: 1) Applications do not often propagate
code from one variant to another. Only a few mainline—fork
variant pairs (38% of 127 original-fork application pairs) in
the app families we studied performed code propagation. 2)
Only 11% of the 127 original-fork variant pairs performed code
propagation by pull requests and about 37% of the projects
performed code propagation by cherry-picking of the commits.
The findings of my study reveal that, after the fork date, only

a few variants in the application families share changes to
existing artifacts or new artifacts. This could be attributed
to the difficulty developers face when searching for changes
made in the variants that could be of interest to them. This
implies that, despite the potential for it, there is limited code
sharing/propagation between Android app families.

In the study I plan to carry out the following tasks:

1) Identifying application families: First, I will mine mainline
applications (not forks) that have been forked many times
and are actively maintained. Thereafter, I will mine the
corresponding forks of the mainline application that are
relatively maintained but do miss some important updates
from the mainline like bug-fixes and their test cases.
Test case and mutant extraction: 1 will develop tools
to identify a changed test case (added/modified) in one
variant an application. After having identified the test
cases, I will employ both dynamic and static slicing
techniques to identify test-to-code-traceability—employed
by Rompaey et al. [4], Qusef et al. [S].

Test case and the mutants adaptation for propagation:
Here I will develop tools that will adapt the extracted test
case and its mutants for propagation in the target variant.
The main aim is to identify the mappings between name
spaces in the source and target variant, while ensuring that
the propagation carries over all the desired functionality
and avoids any side-effects of regression testing. I will
employ genetic programming techniques focusing on
software testing as the primary driver of correctness [6].

2

~

3

~

REFERENCES

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in 2013 17th European Conference on Software Maintenance and
Reengineering, 2013, pp. 25-34.

[2] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in

github: Transparency and collaboration in an open software repository,”

in Proceedings of the ACM 2012 Conference on Computer Supported

Cooperative Work, ser. CSCW 12, 2012, pp. 1277-1286.

J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-

based variability management in the android ecosystem,” in 2018 IEEE

International Conference on Software Maintenance and Evolution, ICSME

2018, Madrid, Spain, September 23-29, 2018, 2018, pp. 625-634.

[4] B. V. Rompaey and S. Demeyer, “Establishing traceability links between

unit test cases and units under test,” in 2009 13th European Conference

on Software Maintenance and Reengineering, 2009, pp. 209-218.

A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “Recovering

test-to-code traceability using slicing and textual analysis,” J. Syst. Softw.,

vol. 88, no. C, pp. 147-168, Feb. 2014.

[6] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015, 2015, pp.
257-269.

3

—

[5

—



	References

