
After All, is Reuse a Security Bottleneck?
Daniel Feitosa

Data Research Centre
University of Groningen

Leeuwarden, Netherlands
d.feitosa@gmail.com

There are many reasons to reuse, from a simple wish of
mitigating effort to goals such as improving quality [1]. To
avoid reinventing the wheel, reuse in software development is
getting easier by the day. Together with associated practices,
build systems such as maven and sbt, and centralized
package managers such as npm and pip, play a role in
making reuse widely adopted and advocated by practitioners
and researchers alike. However, we are also every so often
reminded of the potential risks associated with reuse, in
particular regarding security. For example, Heartbleed was a
severe security vulnerability in OpenSSL that affected 66%
of the active web sites around 2014.1 More recently, a known
vulnerability in a third-party Java library that Equifax reused,2

led to the stealing of private information of more than 147
million American citizens.

In this context, there is a recurring question of whether
systematic reuse is to blame for such incidents. Should de-
velopment teams strive for reinventing the wheel in order
to mitigate security risks? This presentation will attempt to
discuss and shed further light on the matter. For that, the
content of the talk is based on the reporting of an empirical
study recently published on the proceedings of ICSR ’19 [2],
as well as its extension, which has been recently submitted to
a special issue of the Journal of Systems and Software [3].

The reported case studies aimed at exploring and discussing
the relationship between software reuse and the number of
security vulnerabilities in open source projects. In particular,
we examined the distribution of vulnerabilities among the
code created by a development team (i.e., native code) and
code reused from third-party dependencies. The first study
considered 301 projects from the Reaper database [4] and
focused on potential vulnerabilities detected through static
analysis, while the second study considered 1 244 projects
from the GitHub Activity Data database3, and focused not
only on potential but also on disclosed vulnerabilities reported
publicly. The datasets of the two separate studies are available
on Zenodo,4 and the toolkit and guidelines to reproduce their
creation and analysis processes are available on GitHub5.

The results suggest that larger projects (in size) are related
with an increased amount of potential vulnerabilities in both

1https://news.netcraft.com/archives/2014/04/02
2https://www.equifaxsecurity2017.com/
3https://console.cloud.google.com/marketplace/details/github/github-repos
4http://doi.org/10.5281/zenodo.2566054
5https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

native and reused code. Furthermore, although native code
appears to have a higher vulnerability density, the data does
not provide strong evidence to support the hypothesis. These
findings place a heavier weight on the development team, as
it is responsible for verifying the maturity of reused code
and trade off in-house expertise to write the components from
scratch with the attached reuse risks.

The aforementioned scenario is worrisome as developers are
oftentimes unaware of the security risks introduced by reused
code, as found by Kula et al. [5], and the number of disclosed
vulnerabilities in open source libraries is increasing at con-
cerning rates6. Moreover, identifying the best opportunities for
reuse is also not trivial, as we observed that the use frequency
of a dependency is not correlated to its level of security.
However, on a positive note, our results also suggest that
potential vulnerabilities can be indicators of whether actual
vulnerabilities may reside in the code.

Altogether, progress on the state of the art and practice in
reuse reduced its effort, while the open source culture led
to a boom of reusable components. From a certain point,
reuse may have become so trivial that security risks may be
unconsciously neglected at times. Going forward, there is a
growing need for advancements in both research and practice
to further: (a) mitigate the risk and fear of updating outdated
dependencies, (b) automate and integrate warning systems for
vulnerable dependencies, and (c) investigate vulnerabilities at
a lower level of granularity, allowing tracking of low-level
artefacts (e.g., classes or procedures) involved in the reuse of
vulnerable code.

REFERENCES

[1] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, and N. Nada,
“Strategies for software reuse: a principal component analysis of reuse
practices,” IEEE Trans. Softw. Eng., vol. 29, no. 9, pp. 825–837, Sep.
2003.

[2] A. Gkortzis, D. Feitosa, and D. Spinellis, “A double-edged sword?
software reuse and potential security vulnerabilities,” in Reuse in the Big
Data Era, X. Peng, A. Ampatzoglou, and T. Bhowmik, Eds. Cham:
Springer International Publishing, 2019, pp. 187–203.

[3] ——, “Software reuse cuts both ways: An empirical analysis of its
relationship with security vulnerabilities,” 2019, (submitted).

[4] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[5] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, Feb. 2018.

6https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-
over-two-years/

https://news.netcraft.com/archives/2014/04/02
https://www.equifaxsecurity2017.com/
https://console.cloud.google.com/marketplace/details/github/github-repos
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/

	References

