
A Graphical DSL to Design Evolvable Citizen
Observatories*

Kennedy Kambona, Jesse Zaman, Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
{kkambona,jezaman,wdmeuter}@vub.ac.be

Abstract—Citizen observatories are community-based data-
gathering systems that utilize various technologies to process data
from citizen science campaigns. Building citizen science appli-
cations to support these observatories is a complex endeavour
as it requires knowledge of several software engineering tech-
niques: distribution for modelling client/server-side interaction,
programming paradigms to implement functionality in different
programming languages and to enforce reactive processing for
real-time monitoring and feedback, database technology for
storage and retrieval of information, etc. Many such systems are
touted as simple and lightweight, and are often intended for single
use but require a team of developers to construct – and therein
lies their contradiction. In this paper we present DISCOPAR,
a visual reactive programming language that allows specialists
and end-users alike to build evolvable and reusable citizen
observatories using a component-based approach. A DISCOPAR
program is conceived as a directed-acyclic graph that models the
flow of information from client mobile apps to the server-side
in a reactive manner. We motivate the evolvability features of
DISCOPAR by building five different citizen science applications
in conjunction with local citizen science groups in Flanders.

Index Terms—visual programming, DSL, citizen science

I. INTRODUCTION

Citizen observatories are distributed, community-based
data-gathering systems that employ various tools and tech-
nologies to collect, process and distribute collected data. The
reference architecture for these systems typically consists of
three main elements. The first element is a suite of client-side
applications that allow the upload of some form of data, e.g.,
images, GPS coordinates etc., from a data source to the server
infrastructure, which forms the second element. The server-
side logic contains processing elements that perform data
extraction, preprocessing and transformations to extract value
from the data. The server also stores the data for subsequent
processing or analyses. Lastly, a third element s consists of
a “dashboard” where key information is presented to the user
with control functions for visualising and analysing processed
data in various ways. For example, an app for multiple users to
count birds in a city will require uploads of individual counts,
locations and images, processing for aggregating the counts
and a visualisation for showing different counts in different
neighbourhoods.

This work is funded by the FLAMENCO project of the Flemish Institute
for Innovation by Science and Technology.

Building these types of systems is a complex endeavour, as
it requires knowledge ranging from distributed techniques for
programming client and server-side interaction, using multiple
programming languages, as well as knowledge of database
technologies. Furthermore, modern applications supported by
such systems have evolved from their delayed, static process-
ing demands to having more dynamic, reactive processing
for immediate feedback. For example, organisers can monitor
participation by users counting birds, in real time. This means
that the server-side logic should support some form of reactive
semantics in order to process received data instantly e.g.,
for delivering instantaneous feedback. Programming these
semantics further contributes to the complexity of developing
such applications.

Many such systems are touted as “low budget systems,”
and therein lies their contradiction. They are constructed for a
customer such as an institution (a company, municipality) or
a societal group (a local biking club, grassroots organisations)
with the intention of gathering data from users or citizens in
order to draw conclusions about a particular concern. They
often require a “small, lightweight application” in order to
accumulate and visualise some data for a particular situation.
This is an example of the “app paradox”, where these are often
single-use systems for which there is little budget but require
a team of developers to construct.

In this paper, we present DISCOPAR, a visual reactive
programming language that allows specialists and end-users
(i.e., non-ICT experts) alike to build reusable and evolvable
citizen observatories. A DISCOPAR program is conceived
as a directed-acyclic graph (DAG) that models the flow of
information from client mobile apps to the server-side, and
relays results to the mobile apps or the dashboard, in a
reactive manner. Evolution is at the core of the construction
process of DISCOPAR programs, because the concept of
developing them was conceived as a continuous co-creation
process between the users and the developers. We present the
DISCOPAR language and motivate its evolvability features by
building five different citizen science applications and enacting
their campaigns, in conjunction with local citizen science
groups and institutions in Flanders.


