
Abstract: An Architecture Model for DSPL
Engineering

Edilton Lima dos Santos
Faculty of Computer Science
Namur University (UNamur)

Namur, Belgium
edilton.limados@unamur.be

Ivan do Carmo Machado
Dept. Computer Science.

Federal University of Bahia (UFBA)
Salvador, Brazil

ivan.machado@ufba.br

I. REFERENCE

This work was initially published as part of the 19th IEEE
International Conference on Information Reuse and Integration
(IRI 2018) in Salt Lake City, Utah, USA [1].

II. DSPL ARCHITECTURE MODEL

Dynamic Software Product Lines (DSPL) engineering en-
ables designing more dynamic software architectures and
building more adaptable software to handle autonomous
decision-making, according to varying conditions [2]. It also
emphasizes variability analysis and design at development
time and variability binding and reconfiguration at runtime
[3]. A DSPL strategy needs to answer two key questions: (i)
When to adapt? and (ii) How to adapt? [4].

In this work [1], we propose an architecture model for
DSPL engineering based on the MAPE-K model [5], capa-
ble of answering such key questions. Based on the MAPE-
K activities, the first question could be answered with the
support of the Monitoring and Analysis activities, and the
latter through the Planning and Execution ones [4]. Finally,
Knowledge provides the necessary data to support the system
reconfiguration process. The architecture model encompasses
a set of features, as follows: (i) DSPL Core, (ii) Feature Area,
and (iii) Context Sensors.

The DSPL Core is responsible for managing the Adaptation
Policies and Verification principles, defined for each feature.
The DSPL Core comprises the following features: (a) Listener
- It is responsible for gathering and processing environmental
context data that is relevant to the adaptation process by using
the Context Sensors; (b) Presentation Layer - It is responsible
for displaying data from the features that communicate with
the Context Sensors or other Features that compose the system,
according to the Change Plan; (c) Manager - It is responsible
for analyzing and planning the adaptations. To execute an
adaptation plan, the Manager uses the Downloader, Installer,
and Loader. These allow to adapt the running system and get
the desired behavior by activating/deactivating DSPL Features.
They also enable building context sensor data visualizations
in the Presentation Layer according to the active features;
(d) Loader - It is responsible for loading and unloading a

This research was partially funded by INES 2.0, CNPq grant 465614/2014-0
and FAPESB grants JCB0060/2016 and BOL2521/2016.

particular feature and its dependencies from the Feature Area,
as requested by the Manager; (e) Downloader - It downloads
every new feature, based on the new sensors connected to
the system or the installation of user features; (f) Installer
- It is responsible for installing new features in the Feature
Area. The Feature Area is responsible for storing features
and Knowledge. Knowledge contains Feature settings and
associated constraint policies, which are used by the Manager
to properly manage adaptations and reconfigurations. The
Context Sensors is composed of sensors whose purpose is to
get data from the environment and send them to the Listener.

To assess the proposed model, we implemented a DSPL
in the Smart Home Systems domain, using OSGi1 and the
MQTT2 communication broker. We aimed to understand when
and how the architecture could support the identification of a
given context and find the appropriate sequence of actions
and the mechanisms that enable the adaptation. We observed
the system’s capability of recognizing new contexts and pro-
moting the required adaptations. We also evaluated whether
the proposed hardware/software infrastructure was capable of
supporting the adaptation needs of each context.

III. CURRENT WORK

This work initiated the PhD research of the first author (who
started in September 2019) at the University of Namur. This
PhD research explores the links between MAPE-K models and
testability, e.g., how to adapt the test methodology and tools
to dynamically evolving features.

REFERENCES

[1] E. Santos and I. Machado, “Towards an architecture model for dynamic
software product lines engineering,” in IRI. IEEE, 2018, pp. 31–38.

[2] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey, “An
overview of dynamic software product line architectures and techniques:
Observations from research and industry,” JSS, vol. 91, pp. 3–23, 2014.

[3] L. Shen, X. Peng, J. Liu, and W. Zhao, “Towards feature-oriented
variability reconfiguration in dynamic software product lines,” in ICSR.
Springer, 2011, pp. 52–68.

[4] N. Bencomo, J. Lee, and S. Hallsteinsen, “How dynamic is your dynamic
software product line?” in Dynamic Software Product Lines Workshop,
2010.

[5] IBM, “An architectural blueprint for autonomic computing,” IBM White
Paper, vol. 31, pp. 1–6, 2006.

1Open Service Gateway Initiative - https://www.osgi.org/
2Message Queue Telemetry Transport - http://mqtt.org/


