Cha-Q Info Brochure

January 2015

CHANGE-CENTRIC
QUALITY ASSURANCE

Changes as first-class citizens during software development

Quality software has long been
synonymous with software
“without bugs”. Today, however,
quality software has come to mean
“easy to adapt” because of the
constant pressure to change.
Software teams seek for a delicate
balance between two opposing
forces: striving for reliability and
striving for agility. In the former,
teams optimize for perfection; in
the latter they optimize for ease of
change.

The ANSYMO (University of
Antwerp) and SOFT (University
of Brussels) research groups are
investigating ways to reduce this
tension between reliability and
agility. Together, we seek to make
changes the primary unit of
analysis during quality assurance
and as such we expect to speed up
the release process without
sacrificing the safety net of quality
assurance.

http://soft.vub.ac.be/chaqg/

Universiteit
Antwerpen

Vrije
Universiteit
Brussel

\]

2
85 g —
ast§§ g Analyzmggg
3 2D
= 5 Doow
2 %n“. 5
2 bug reIong PTG EE,
: Re eatmg Ik e tTANSFOrmations
traceability meta Change -Centric 8 = .
IoggmguFUture qtg = “;,’f %TraCIrlg";J
'..: < -,,_: S £
$ gefix s ¢ Eigs s
E a

The following are examples of the problems that we address:

* Monitoring the test process. Determine the impact of changes on both the
test and production code, to persuade team members to increase test
activities. Demonstrate that the test process itself meets quality guidelines
(e.g., every bug fix is covered by a regression test).

* Deciding what to re-test. Instead of running all tests for a given release, run
only those tests that are potentially affected by a given change. This allows
for instant feedback on the changes that cause tests to fail, saving valuable
time in identifying the precise location of a bug.

* Monitoring the bug database. Verify whether anomalies occur in the bug
database (e.g., wrong severity, assigned to wrong product or component).
Assure that all severe bugs have been fixed before a release.

* Deciding bug assignment. Once bugs have been reported, determine who is
the best person in the team to handle the request. Use historical
information to reliably estimate the time it will take to fix the bug.

* Monitoring code changes. Monitor changes as they are made in the editor or
as they are committed to the version repository. Use documented
traceability links and past co-change information to recommend related
code that should be changed accordingly (e.g., XML configuration files).

* Automating code changes. Release a new API version with patches that
automatically update all existing client code, reducing the number of API
versions in the field. Replay code changes that were successful for a given
branch on a variant branch, reducing manual branch synchronization.

http://soft.vub.ac.be/chaq/
http://soft.vub.ac.be/chaq/

Cha-Q Info Brochure January 2015

Research on Analyzing Changes

Representing software and its changes Sowered by

The quality assurance tools investigated by Cha-Q share a common representation of various C hC] - Q ,
software entities (e.g., source code, tests, bug records). This change-centric representation is the

first to offer information about a) their state in a

particular snapshot of the software, b) the entire |Hicmanesisen & O corsoe - °
. . 3 @Y @&
history of their past states, and ¢) the changes | °
v cme Corporation
. . » (2) Mon Jan 12 17:21:24 CET 2015
made in between any two successive states. ¥ von v 1217 225 e 2015
.. . 1) Predecessor: Mon Jan 12 17:22:32 CET 2015
Individual changes to an entity can be analyzed, > Al of type Gompilatonunit
» Al of type Reference
repeated and reverted —rendering them first- Piat s
L. . L » All of type Inheritance
class. We offer a change distiller to import existing > All of type Invocation
» All of type Reference
Java projects that have been versioned in a Git it
. ») Method target i 30057b @ 14 =[CH.ifa.draw.star
repository, and a Complementary fbﬂnge logger to v () Method south ¢77ccfc0-3360-47: @ 78feaas7-1015-40be-8b41-02d512ddc590 =[CH. fa.draw.util
» | numberOfAnnotationinstances (Mon Jan 12 17:21:24 CET 2015)
. : : » 7 cyclomaticComplexity (Mon Jan 12 17:21:24 CET 2015)
ContIHUOUSly update the resultlng representatlon L :fo:?nag:e;::::es(yMD:Jar\a':Z 17:21:24 CET 2015)
. > Overriden (Mon Jan 12 17:21:24 CET 2015)
as developers make changes in the IDE. The 1 docaredExcopion (Von dn 12 172124 CET 2018
. . . v incominglnvocations (Mon Jan 12 17:21:24 CET 2015)
Screenshot deplcts our ECllpSC plugln for v d2766161-6d64-4 ~[CH.ifa.draw.figures.ShortestDistanceConnector.findPoint(Ck
» ' next (Mon Jan 12 17:21:24 CET 2015)
. . . . > ndid: (Mon Jan 12 17:21:24 CET 2015)
navigating snapshots in a change-centric ¥ soucannenor (onJan 12 172124 GET 2015
representation.

‘ The Implementation of the Cha-Q Meta-Model: A Comprehensive, Change-Centric Software Representation
L Coen De Roover, Christophe Scholliers, Viviane Jonckers, Javier Pérez, Alessandro Murgia, Serge Demeyer
= Electronic Communication of the European Association of Software Science and Technology, Volume 65 (2014)

powered by

Cha-Q_

Towards monitoring changes and recommending related changes to be made

Non-trivial software systems are composed of a myriad of interlinked artefacts (classes, XML
files, requirements documents). Changes to a single artefact can have an unanticipated impact on
the rest of the system. Our change-centric software representation and its accompanying change logger enable tool
support for maintaining these links, by monitoring changes to their source and destination. The screenshot

shown here depicts an Eclipse plugin that warns

about changes that would invalidate references | @ Link view 52 AR e
from XML configuration files to web service [source Link status Target
implementations and vice versa. Its strength lies - Sdo-compare > testResourceWebService.getCompare(
= s-do-merge —-—=> test.ResourceWebService.getMergeUR...
in that it can be configured to monitor other links |, s-revert X->
. . . s-get-repos -X->
that are specific to one company or to a particular .= *9¢ 7P
I, s-get-workspace-name -X->

domain (e.g., links from functional requirements

to tests in safety-critical domains).

However, configuring our tool still requires explicit knowledge about which links need to be maintained. Often,
this knowledge remains implicit due to missing or outdated documentation. Techniques have been proposed to
reconstruct this knowledge from a snapshot of the system, but also from the system’s commit history. In a study
on two large open source projects, we found that the best results stem from the latter —provided that the
commit history is sufficiently large, and that individual commits carry meaningful messages.

Explaining why Methods Change Together
Angela Lozano, Carlos Noguera, Viviane Jonckers
— Proceedings of the 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM14)

Cha-Q Info Brochure January 2015

powered by

Cha-Q_

Example change analysis: maintenance of Selenium tests for web applications

Our change-centric software representation enables monitoring existing quality assurance
practices and processes. We investigated how developers maintain web applications and their
Selenium-based functional tests. Selenium is a popular solution for automating functional UI tests through
scripts that interact with a web browser and assert properties about the page it is rendering. However, small
changes in the web application can easily break existing test scripts. We confirmed this by studying the
development history of 6 large open source projects.

HINURRRTTE |~ S b LA

Depicted above are visualizations of the Git repositories of the X Wiki, OpenLMIS and Atlas projects. The X~
axis corresponds to individual commits from a repository. The Y-axis depicts the files that are changed in each
commit. Commits to test scripts reside at the bottom of each visualization. The visualizations show that
developers do maintain a relatively small number of test scripts, but not necessarily synchronously to the
application under test. In fact, we found that it takes on average about 11.23 non-test commits before a test
script is changed. We also found that test scripts survive at most three commits on average before being deleted
or changed beyond recognition. This indicates that they are changed drastically, possibly to keep up with user

interface changes.

Turning our attention to the actual changes that Project Total Locator ~ Command Demarcator Asserts
test scripts undergo, we used our change distiller | AUas 8068 90 3 104 3282
. XWiki 68665 115 154 24 1490
to compute all changes between successive | Tama 31821 95 89 43 36
versions of each test script. We then categorized = Zana 12959 497 119 0 !
. EEG/ERP 248 3 0 0 6
these changes according to the parts of a test | OpenLMIS 69792 2550 401 8 3454

script that they affect: expressions used to locate
DOM elements on a web page such as buttons (Locator), statements used to simulate interactions with a DOM
element such as clicking or entering text (Command), annotations used for demarcating individual tests
(Demarcator), and assertions about the properties of a DOM element (Asserz). The above table provides insights
into which parts of a test script are most prone to changes: Locators and Asserts. A closer inspection reveals that
these often contain “magic constants” such as the identifier of a DOM element or the expected value of one of
its properties. Our recommendations are therefore clear: magic constants should not only be avoided in the
application under test, but also in its test scripts.

: Prevalence and Maintenance of Automated Functional Tests for Web Applications
A Laurent Christophe, Reinout Stevens, Coen De Roover and Wolfgang De Meuter
Proceedings of the 30th International Conference on Software Maintenance and Evolution (ICSMe14)

Cha-Q Info Brochure January 2015

what fields to change

@EntityProperty(value=?annoType.cla: private [EntityIdentifier]@[

Research on Automating Changes

.. =

Advanced search-and-replace

powered by [EntityIdentifier<?annoType>]@[]

Cha-Q

. . |}l Overview | | || LHS Change Subjects | -,# RHS Change Actions
changes to source code. For mstance, to repair

Developers often perform repetitive

. . Ekeko Qu Resull 2‘3
duplicate occurrences of a bug or to update all clients = %™

of a library to a newer version. Manually performing

o
Mark Results .
such changes is laborious and error-prone. Structural fle|d3 about to be changed

search-and-replace, as seen in Intelli], is the state of TN coumrs oo
the art in tool support. It lets developers automate e — R
changes using search and replacement templates of | 2 aiiumoraryialse.ypsas s intydenttor souns: S
code. Unfortunately, code that deviates the littlest = ok e Ll : e

a i ion.class) private

from the search templates will not be found and

hence not be replaced. The Cha-Q project is taking
L. . //Before changes:
this idea to the next level: a powerful, but user-friendly program @EntityProperty (value = [SIRPIENANE. class)
private EntityIdentifier label;
//After changes:
QEntityProperty (value = SimpleName.class)

Shown on the right are repetitive changes that stem from our own Private Entityldentifier<SimpleName> label;

transformation tool that is decidedly template-driven.

commit history. All fields of type Entityldentifier carrying an

@EntityProperty annotation had to receive their annotation’s value as a type parameter. The screenshot depicts
the search and replacement templates that automate these changes for 266 different fields dispersed throughout
97 files. The replacement template, after the => arrow; is instantiated for each match for the search template
before the arrow. Next to wildcards ... and placeholder variables ?annotype and ?fieldtype (substituting for field
names, types and annotation values), directives such as equals and replace within each template further control
what code has to be changed and how. The prototype already lends itself to API evolution scenarios. For
instance, a scenario in which three deprecated method calls need to be replaced by a single call to a new method

throughout all client code —while accounting for changes in exception handling and intermediate return values.

The Ekeko/X Program Transformation Tool
Coen De Roover and Katsuro Inoue

— Proceedings of 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM14)

Case Study: Predicting Bug Fixing Time

Software teams keep track of issues with systems such as Jira or Bugzilla. o 1 1 i ==
However, such systems may play a more pro-active role than merely ‘ L
managing the workflow within the team. In particular, one might ° \

ResolutionTime [hours]

estimate the time to resolve an issue based on the resolution time of
similar issues in the past. Good estimation on the time to fix is crucial for | ‘ ‘ .
improving customer satisfaction and project planning. | § § _—

In the Cha-Q project we have developed a prototype tool for estimating ol n =
the issue resolution time. Using the historical data reported in the issue :
tracking system (e.g. component, priority), we estimate the likelihood
that an issue will be fixed within a certain amount of time. Moreover, we
analyze how these estimations vary depending on the information inside the
reported issue. The figure to the right shows a box-plot with the estimates depending on the
priority. Priority 1 issues (most urgent) are indeed handled faster than others. This may come in
handy for demonstrating that service level agreements are met.

Prioity="5" (248)

Prioity="1" (621
Prionity="a" (528) |

Priority="2" (2187

powered by

Cha-Q_

The data shown here is based on a sample of the bug database of one of the Cha-Q partners. In the coming
months we will replicate this experiment on other bug databases to assess the quality of the estimates during
SCRUM sprints.

0

Cha-Q Info Brochure

January 2015

Case Study: Assessing Test Quality

I

The red line shows the mutation coverage in % for
every class sorted from most to least. The vertical blue
bars show the branch coverage.

Branch coverage vs. mutation coverage

For adequate testing, software teams need tests which maximize
the likelihood of exposing a defect. Traditionally the adequacy of
a test suite is assessed using test coverage, revealing which
statements in the code base are poorly tested. Monitoring the
test coverage is a recommended practice, but only provides an
initial approximation. Additional measures are necessary to
ensure that the test suite is effective in exposing defects.

Mutation testing is the next logical step. A mutation test
deliberately injects one defect into the base code, creating a so-
called mutant. When running the test suite, at least one test
should fail, in which case the test suite is said to kill the mutant.
Doing this for a series of mutants, the ratio between the number
of killed mutants versus the total number of mutants injected is a
measure for the adequacy of the test suite.

A student internship within Agfa HealthCare NV investigated
the effectiveness of mutation testing for unit testing. A case
study on a critical component 38K lines of Java code) confirmed
that its unit test suite is quite strong. In particular the mutation
tests confirmed that the black box test killed all mutants,

something which could not be inferred from the branch coverage. Nevertheless (as can be seen in the figure)
some classes could benefit from additional unit tests.

Mutation Analysis: An Industrial Experience Report.

Ali Parsai. Promoter: Prof. Serge Demeyer.

é Masters thesis; January 2015. Computer Science, University of Antwerp.

Case Study: Deciding What to Retest

Unit testing is an established practice within agile software
development. In many projects, roughly half of the entire code base
consists of unit tests. Unfortunately, running all the tests easily takes
several hours, hence developers are less inclined to run the test suite
after each and every change. Thus, software is vulnerable for extended
periods of time as the production code evolves, but the test code does
not (immediately) follow.

Test-selection addresses this issue, by deducing the subset of (unit)
tests that need to be re-executed given a series of changes to the
production code. Upon commit, the test selection tool needs only a
few minutes to assess whether the changes are safe; the complete test
suite is executed during the nightly build.

An experiment with a code base owned by ‘“Agentschap Wegen en
Verkeer” demonstrated that test-selection might work in practice. We
analyzed the complete history of a small project (56K lines of Java code
spanning 14 months of development) retroactively running the
complete test-suite for every commit in the version control system. We
discovered a few failing test-runs and showed that the test-selection
tool would have identified the culprits.

Change-based test selection in the presence of developer tests.
Quinten Soetens, Serge Demeyer, and Andy Zaidman.

Size of Reduced Test Suite

W 75% < x <= 100%

H50% < x <= 75%
125% < x <= 50%

H0% < x <=25%

Failing Tests in Reduced Test Suite

H Al failing tests found
B Not all failing tests found

Proceedings of 13th European Conference on Software Maintenance and Reengineering (CSMR13)

Cha-Q Info Brochure

We need you !

‘We are halfway into the project; the basic tool infrastructure is
in place and has been validated on open-source projects. In the
next two years (2015 — 2016) we intend to test the tools under
realistic circumstances. That's why we need your help.

We seek software teams interested in state-of-the-art tooling.
In particular, those teams that

* Adopt agile practices
(continuous integration, continuous delivery).

* Employ a version control system (SVN, GitHub).
* Track the issues (Bugzilla, JIRA).

* Monitor software quality
(unit tests, static analysis, security vulnerabilities).

* Release often (at least internally).

We offer a seat in our industrial steering board.

* Meetings twice a year (Antwerp or Brussels);
discuss with likeminded people.

* Roadmap for future software engineering tools.

* Opportunities for student internships
(e.g., see "Case Study: Assessing Test Quality” on p.5).

* Participation in Experiments
(e.g., see "Case Study: Deciding What to Retest” on p.5).

* Possibilities for follow-up research projects.

Tool demonstration

January 2015

How to join ?

Contact Prof. Serge Demeyer
(serge.demeyer@uantwerpen.be
— 03/265.39.08) or Prof. Coen De
Roover (cderoove@vub.ac.be -
02/629.34.92).

e Participation in the steering
board is free of charge.

® You send us a letter of intent,
detailing what is most attractive to
you.

® You commit to attend one
meeting per year.

Current members

BARCE®

Visibly yours

TPVISICON

MediaGeniX

® inventivedesiqr

the output innovators

To learn more about what we achieved over the last two years, come to our tool

demonstration:

Tuesday, February 24th — 13:00 till 17:30
Campus Middelheim, Universiteit Antwerpen

Details (program, location, registration) at http://soft.vub.ac.be/cha

http://soft.vub.ac.be/chaq/
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be
http://soft.vub.ac.be/chaq/

