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1
Introduction

This document reports on CHA-Q project Deliverable 3.1: the definition of language for
specifying the subjects of a program transformation in an example-driven manner and its ef-
fects using first-class changes. The resulting program transformation language will facilitate
repeating changes within and across different variants of a software system.

Developers often encounter this need. For instance, after having repaired one of several
occurrences of a bug (i.e., semantic patching) or after having updated one of several clients
of an API to a functionally equivalent one (i.e., API evolution and migration). Manually
repeating such changes is not only laborious, but also error-prone.

1.1 Related Work

Specifying such changes as a generic source-to-source transformation enables automatic and
safe reproduction, but doing so using one of the existing transformation specification lan-
guages requires too much expertise in practice. In general, program transformation lan-
guages adopt a set of rewrite rules for specifying a program transformation. The left-hand
side (LHS) of such a rule identifies transformation subjects among the program’s source code
entities. The right-hand side (RHS) of the rule determines how the subjects have to be rewrit-
ten or changed by the transformations. Strategies determine the order in which these rules
have to be applied —which can also be specified separately in the more advanced systems.

Functional approaches Visser presents a comprehensive survey of mainly functional trans-
formation systems [1]. A great deal of them (e.g., Stratego [2] or ASF [3]) is based on
term rewriting: each rewrite rule replaces a term that matches the one on its left-hand
side by the term on its right-hand side.

Logic-based approaches Logic-based program transformation languages have also been pro-
posed. In general, the left-hand sides of their rewrite rules consist of logic formulas
over a fact base. The right-hand side specifies modifications to the fact base. The fact
base of GENTL [4] and JTRANSFORMER [5] corresponds to a program’s AST. This fa-
cilitates specifying the structural characteristics (i.e., instructions and their organisation)
of a transformation’s subjects through logic formulas.

TRANS [6] and path logic programming [7] operate upon the control flow graph (CFG)
of a program instead. They support specifying the control flow characteristics (i.e., the
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order in which instructions may be executed at run-time) of a transformation’s sub-
jects: through temporal logic formulas and through regular expressions over the paths
through the CFG respectively. The latter have also been incorporated in the ML-
Datalog hybrid JUNGL [8] for specifying refactorings of C#-programs. Finally, DEEP-
WEAVER [9] supports expressing data flow characteristics (i.e., the values instructions
may operate upon at run-time) explicitly through logic formulas over the results of a
data flow analysis —albeit only an intra-procedural one.

Template-based approaches Some logic-based approaches feature a Java-like surface syn-
tax for specifying structural characteristics. This partially addresses the shortcoming
that specifying a subject’s characteristics through logic formulas requires too much ex-
pertise. Among others, this is the case for JTL [10]. However, none but the simplest
JTL specifications resemble actual Java code. JTRANSFORMER [5] is an evolution of the
aforementioned GENTL that supports embedding actual code snippets within logic
formulas. However, only structural characteristics can be specified in this manner.

Patch-based approaches SMPL [11] combines the traditional left-hand side and right-hand
side of a rewrite rule into a single semantic patch. These extend the syntax of Unix
patches with meta-variables and operators to abstract over irrelevant code. This way,
a single patch can be applied correctly to similar source code files. They have been
applied successfully to evolve client code to newer versions of an API [12] and to sys-
tematically correct common bugs [13]. However, semantic patches do not support
coarser-grained changes that are commonly applied to object-oriented code. These
would require transformation rules of which the left-hand side is not limited to control
flow characteristics alone and of which the right-hand side supports a broader range
of code updates.

The above approaches illustrate two important shortcomings of the state of the art in
program transformation languages. First, they are tailored to specifying only one kind of
characteristics of a transformation’s subjects. Second, their use requires considerate exper-
tise. Finally, existing specification languages result in transformations that cannot be applied
in a change-aware manner. This is required when a program transformation has to be re-
peated on a system that is closely-related, but diverges from the one the transformation was
intended for.

1.2 Requirements for the CHA-Q Transformation Formalism

To overcome the shortcomings of the state of the art, our specification language has to satisfy
the following requirements:

R1: Adopt the CHA-Q meta-model for representing and applying changes. The
CHA-Q meta-model represents changes to software artefacts as first-class ob-
jects that can be analyzed, repeated and reverted (cf. Deliverable 2.1.a).
As such, a set of concrete be.ac.chaq.change.Change instances (i.e., a
be.ac.chaq.change.ChangeSet) can already serve as a program transformation
specification —albeit one that is restricted to predetermined change subjects.

A minimal requirement on the specification language is therefore to provide a means
to refer to existing changes in a CHA-Q model (e.g., distilled (cf. Deliverable 2.2.a) or
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recorded from the history of a software system (cf. Deliverable 2.2.b), and a means to
instantiate new changes for particular subjects. This will already enable developers to
create a transformation from a concrete set of changes.

By convention, we will refer to the part of a CHA-Q transformation specification that
determines what changes to perform as its right-hand side (RHS).

R2: Provide intuitive means for specifying and constraining change subjects. Repeating
first-class changes on different (but closely-related) subjects requires a means to gen-
eralize a be.ac.chaq.change.Change to other model elements. A meta-variable
?subject, for instance, could be used to substitute for the change’s subject in a trans-
formation specification. This renders the RHS of the specification a succinct represen-
tation of multiple changes —one per concrete binding ?subject 7→modelelement
for the specification’s ?subject meta-variable.

Of course, these meta-variable bindings ought to be realized according to another
developer-provided specification that determines the CHA-Q model elements that are
subject to the transformation. We therefore require our specification language to pro-
vide a means to specify the structural (i.e., instructions and their organisation) and be-
havioural characteristics (i.e., the order in which instructions are executed at run-time
and the values instructions operate on) of a transformation’s subjects. By convention,
we will refer to this part of a transformation specification as its left-hand side (LHS).

One proven option for this means is having developers formulate constraints over the
subject meta-variable that are satisfied when the meta-variable is bound to the de-
sired model element. For instance, the following constraints1 could be used to re-
strict the meta-variable ?subject to a model element that features as the single ar-
gument to a be.ac.chaq.model.ast.java.MethodInvocation of a particular
be.ac.chaq.model.ast.java.MethodDeclaration named setAge:

1 invocation_has_argument(?inv, ?subject),
2 invocation_calls_method(?inv, ?method),
3 method_has_name(?method, "setAge")

Realizing the meta-variable’s binding then amounts to solving a constraint satisfac-
tion problem that ranges over all model elements —clearly something to be left to the
transformation system rather than the developer.

A more intuitive option for this means is having developers use the subject meta-
variable in a code template (i.e., a code snippet in which the meta-variable func-
tions as a cutout). For instance, the code template ?receiver.setAge(?subject)
could serve the same purpose as the aforementioned constraints. Realizing the meta-
variable’s binding then amounts to matching a template against model elements —
again something to be left to the transformation system.

R3: Enable change-aware transformation applications Assuming that we have an intuitive
specification of program transformations, the next challenge is applying such program
transformations in a change-aware manner. This is required when a program trans-
formation has to be repeated on a system that is closely-related, but diverges from the
one the transformation was intended for. The CHA-Q project is therefore to investigate

1We are using a Prolog-like notation for this hypothetical constraint language.
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techniques that enable applying a transformation such that the changes between the
systems are taken into account.

Deliverable 3.2.a will report on a technique for determining the impact of changes
on existing program transformations. Deliverable 3.2.b will report on tool support
for changing transformation specifications accordingly. While these deliverables are
only due in Q6 and Q12 respectively, the CHA-Q transformation language should not
preclude tool-supported changes to transformation specifications and where possible
already facilitate them.

1.3 Design of the CHA-Q Transformation Formalism

In this deliverable, we specify the CHAQEKO/X transformation specification language of
the CHA-Q project. This language will satisfy the above requirements as follows:

R1: Functional expressions involving CHA-Q changes as the RHS To satisfy requirement
R1 (Adopt the CHA-Q meta-model for representing and applying changes) we advocate
founding the CHA-Q specification formalism on a functional language with seamless
Java interoperability. Our motivation is two-fold. On the one hand, functional pro-
graming languages have proven themselves for transformation tasks (cf. Section 1.1).
Here, higher-order functions enable composing transformation specifications in a nat-
ural manner. On the other hand, our CHA-Q meta-model already defines an object-
oriented representation of software systems (cf. Deliverable 2.1.a) and has been imple-
mented in Java (cf. Deliverable 2.1.b).

Clojure represents the most promising functional programming language to explore as
the foundation for the CHA-Q specification formalism. First of all, it features the re-
quired interoperability with Java; methods can be invoked on Java objects from within
functional expressions. To illustrate, the following two-argument Clojure function
changes a CHA-Q AST node subject that represents a Java int literal (e.g., 5) into
a CHA-Q AST node that represents the corresponding Integer-creating expression
(e.g., new Integer(5)):

1 (defn change-int-to-integer [snapshot subject]
2 (let [creationChange
3 (EntityCreationChange. snapshot ClassInstanceCreation)
4 createdEntityPlaceHolder
5 (.getCreatedEntity creationChange)
6 argumentListChange
7 (AddElementToListPropertyChange.
8 snapshot
9 createdEntityPlaceHolder

10 "arguments"
11 subject)
12 replacementChange
13 (EntityReplacementChange. snapshot subject createdEntityPlaceHolder)]
14 (.perform creationChange)
15 (.perform argumentListChange)
16 (.perform replacementChange)))

Here, lines 2–3 instantiate a new change object creationChange by invoking the con-
structor of class be.ac.chaq.change.EntityCreationChange with the required
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arguments.2 The first argument corresponds to the snapshot in which the change
is to be performed. The second argument corresponds to the particular ASTNode
subclass of which the change object is to create an instance. Lines 4–5 retrieve a
placeholder createdEntityPlaceHolder for the entity that will be created once
the change is performed. To this end, they invoke method getCreatedEntity()
on the creationChange object.3 Lines 6–11 instantiate another change object
argumentListChange that is to add the int-representing subject to the list
of arguments to createdEntityPlaceHolder —thus creating an expression new
Integer(subject). Lines 12–13 instantiate a change object replacementChange
that will replace subject by createdEntityPlaceHolder in its own parent AST
node. Finally, lines 13-16 perform all created changes. This example illustrates instan-
tiating and performing first-class CHA-Q changes from within Clojure functions. Our
specification language will provide a library of similarly-defined functions that per-
form higher-level changes in terms of the corresponding low-level ones supported by
the CHA-Q meta-model.

Next to its support for seamless Java interoperability, another benefit of Clojure is its
support for managing the complexity that comes with concurrent manipulations of
CHA-Q models. Examples include actor-like agents as well as software transactional
memory. The need for concurrent manipulations of a CHA-Q model might arrive in
the future when multiple developers start analyzing and applying model changes at
the same time, but also when individual model manipulations need to be scaled up to
industrially-sized projects.

Finally, like most Lisp derivatives, Clojure features a read-eval-print loop on which
developers can evaluate and inspect the results of expressions in an interactive manner.
This naturally enables an exploratory specification style in which transformations are
refined and generalized incrementally.

R2: Constraints involving code templates as the LHS To satisfy requirement R2 (Provide
intuitive means for specifying and constraining change subjects), we propose to found the
left-hand side of the CHA-Q specification formalism on a seamless embedding of con-
straint logic programming within functional Clojure expressions. Such an embed-
ding already forms the foundation for our EKEKO [14] and EKEKO/X [15] libraries
that enable querying and manipulating an Eclipse workspace respectively. They have
proven themselves for answering program queries (e.g., “does this bug pattern occur in
my code?”), for analyzing project corpora (e.g., “how often does this API usage pattern
occur in this corpus?”), and for transforming programs (e.g., “change occurrences of this
pattern as follows”). All of these applications can be formulated as a constraint satisfac-
tion problem of which the solutions are processed by a functional expression.

The required embedding of constraint logic programming within functional program-
ming can be provided by the CORE.LOGIC4 port to Clojure of MINIKANREN [16]. The
following Clojure expression illustrates this embedding. Note that (for [<var>
<exp coll>] <body exp>) is the Clojure list comprehension built-in. It evaluates

2The (<NameOfClass>. <arg 1> ... <arg n>) syntax instantiates a Java class from within Clojure.
3The (.<nameOfMethod>. <receiver> <arg 1> ... <arg n>) syntax in Clojure is equivalent to

the <receiver>.<nameOfMethod>(<arg 1>, ..., <arg n>) syntax in Java.
4https://github.com/clojure/core.logic

https://github.com/clojure/core.logic
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<body exp> for every element <var> in the collection <exp coll>:

1 (for [subject
2 (run [?subject]
3 (fresh [?inv]
4 (methodinvocation-methoddeclaration ?inv ?method)
5 (has :name ?method "setAge")
6 (child :arguments ?inv ?inv ?subject)))]
7 (change-int-to-integer ?subject))

Lines 2–6 (i.e., <exp coll> of the list comprehension) roughly correspond to the logic
constraints from the previous section. They restrict the bindings for meta-variable
?subject to the argument of a setAge() invocation. Section 2.1.1 discusses how
the transformation system finds solution for these constraints. For now, it suffices to
understand that lines 2–6 evaluate to a collection of bindings for ?subject. Line 1
(i.e., <var> of the list comprehension) and line 7 (i.e., <exp coll> of the list com-
prehension) apply the change-int-to-integer function defined above to each
?subject7→subject binding found in this manner.

While constraint logic programming can be effective for restricting the subjects of a
transformation, it is far from intuitive. Our language is therefore required to support
code templates as a means to specify both structural (i.e., instructions and their organ-
isation) and behavioural (i.e., the order in which instructions are executed at run-time
and the values instructions operate on) characteristics of a transformations subjects.
As constraint logic programming already provides the foundation for the left-hand
side of the CHA-Q transformation language, we propose to embed code templates
within specifications as an additional kind of logic constraint. For instance, through
a logic constraint (match <ast> <template>) that is satisfied for every <ast>
from the program under transformation that matches the given code <template>.
Here, <template> is concrete syntax (e.g., a snippet of Java or Smalltalk code) in
which meta-variables substitute for unknowns. We have used similar embeddings in
the SOUL [17] and EKEKO/X [15] specification languages. Using a code template, our
transformation can be re-specified as follows:

1 (for [subject
2 (run [?subject]
3 (fresh [?inv ?receiver]
4 (match ?inv "?receiver.setAge(?subject)")))]
5 (change-int-to-integer ?subject)

Whether an AST node matches a code template depends on a particular matching strat-
egy. Sensible defaults have been shown to give rise to an intuitive example-driven
matching that is geared towards detecting implementation variants of a code tem-
plate [18]. To prevent unwarranted transformation applications, however, the CHA-Q
specification language requires a means for developers to exert more control over the
way templates are matched.

Based on our experiences with EKEKO/X [15], we propose the syntax
[<template-component>]@[<directive-name1> ...<directive-namen>]
for overriding the default matching strategy for individual template components.
Here, each <directive-namei> will be imposed implicitly on future matches for
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<template-component>. Matching directives allow us to revisit the transformation
specification as follows:

1 (for [subject
2 (run [?subject]
3 (fresh [?inv ?receiver]
4 (match ?inv "[?receiver]@[relax-receiver].setAge(?subject)")))]
5 (change-int-to-integer ?subject)

Here, we have added an relax-receiver constraint that relaxes the default
matching strategy for method invocations. Indeed, the dot in the concrete syntax
”?receiver.setAge(?subject)” inherently disallows matches without a receiver.
The newly-added constraint ensures that an invocation setAge(5) with an implicit
this receiver will match our code template. Matching directives can also take ad-
ditional arguments using the notation (<directive-name> <arg1> ...<argn>).
Note that such directives receive the match for the component they are imposed on as
an implicit <arg0> argument.

Implementation-wise, a (match <ast> <template>) constraint can be expanded
at compile-time or at run-time into regular constraints on its first argument and on
the meta-variables in its code template. The expanded constraints determine whether
<ast> matches <template> according to the latter’s matching directives.

Finally, similar ideas can be applied to the right-hand side of a transformation
specification. For instance, by generating code for a code template on the RHS
using meta-variable bindings established by the LHS. Instead of matching di-
rectives, rewriting directives [<template-component>]@[<directive-name1>
...<directive-namen>] can be associated with the components of such a tem-
plate. Instead of being expanded into logic constraints, such a rewriting directive is ex-
panded into functional expressions that instantiate and apply the appropriate CHA-Q
change objects. Note that like matching directives, they can take additional arguments
using the notation (<directive-name> <arg1> ...<argn>). However, they re-
ceive newly generated code as an implicit <arg0> argument rather than a template
match.

A Clojure macro (chaqeko/x <LHS> <RHS>) renders our final specification suc-
cinct:

1 (chaqeko/x
2 [?receiver]@[relax-receiver].setAge(?subject)
3 =>
4 [new Integer(?subject)]@[(replace ?subject)])

This macro performs the changes specified by its second argument <RHS> to all sub-
jects that match its first argument <LHS>. To this end, it merely has to expand into a
for-expression with the appropriate meta-variable declarations.

R3: Operators for changing code templates To comply with requirement R3 (Enable change-
aware transformation applications), our language should define a representation of spec-
ifications that is easily analyzed and manipulated by external tools —in particular the
tool support envisioned for Deliverable 3.2.a (i.e., a tool for computing the impact that
code changes have on existing transformations) and for Deliverable 3.2.b (i.e., a tool
for changing the transformation accordingly).



12

The latter tool support will be based on a suite of operators. When applied to a code
template, the envisioned operators change the template such that it matches differ-
ent code entities. For instance, an operator (rename-method <template> <name>
<newname>) could change all occurrences of a method that has been renamed. Sim-
ilar operators could be used to introduce additional meta-variables in a specification.
This enables abstracting over the differences between the system a specification was in-
tended for and the system it is being applied to. Finally, an operator could also be used
to generalize the code template such that it matches more code entities, or to refine the
code template such that it matches less code entities. Given a suitable template rep-
resentation, this merely requires changing the matching strategies for the appropriate
template component. Note that the envisioned operators give rise to transformation
language of their own.



2
CHAQEKO/X: The Cha-Q Transformation Formalism

In the previous chapter, we specified several requirements for the CHA-Q transformation
language. We also motivated some initial choices in the design of CHAQEKO/X that ensure
these requirements are fulfilled. As in most approaches to program transformation, our
specifications consist of a left-hand side (LHS) and a right-hand side (RHS) component. The
left-hand side component identifies the subjects of the transformation, while the right-hand
side component defines how the identified subjects should be changed.

The design choices we discussed culminate in a (chaqeko/x <LHS> <RHS>) macro.
To recapitulate, the following CHAQEKO/X transformation changes the int argument of
setAge invocations into a corresponding Integer argument:

1 (chaqeko/x
2 [?receiver]@[relax-receiver].setAge(?subject)
3 =>
4 [new Integer(?subject)]@[(replace ?subject)])

Implementation-wise, the chaqekeko/x macro expands <RHS> into a functional expres-
sion and <LHS> into a constraint logic problem. The former applies first-class CHA-Q
changes to all solutions for the latter.

Note that we deliberately introduced our specification language from the ground up.
This is because it is important for the language to support the intermediate specifications
as well. Their constructs offer explicit control over transformation application strategies —
something that might be required for more involved use cases. In this chapter, we detail
those functional and constraint logic programming constructs.

2.1 Applicative Declarative Foundations

CHAQEKO/X owes its name to the EKEKO [14] and EKEKO/X [15] libraries for Clojure that
enable querying and manipulating an Eclipse workspace respectively. CHAQEKO/X brings
this style of meta-programming to instances of our CHA-Q meta-model (i.e., an object-
oriented representation of all of a system’s artefacts and their changes [19]).

Our experiences with these libraries have influenced several choices in CHAQEKO/X’s
design. Most notably, we forego a transcription to logic facts for reifying model elements as
logic data. Such a transcription hampers perusing query solutions within tools. Instead, we
leave the reified version of a CHA-Q AST node as the AST node itself (i.e., an instance of

13
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be.ac.chaq.model.ast.java.ASTNode). Embedding our logic language within Clo-
jure, which offers excellent Java interoperability, enables this identity-based reification.

2.1.1 An Embedding of Constraint Logic Programming in Clojure

EKEKO, EKEKO/X and CHAQEKO/X share the CORE.LOGIC1 port to Clojure of MINIKAN-
REN [16] as their logic foundation. Queries can be launched from the Clojure read-eval-print
loop using the chaqeko special form. It takes a vector of logic variables, each denoted by a
starting question mark, followed by a sequence of logic goals:

1 (chaqeko [?x ?y]
2 (contains [1 2] ?x)
3 (contains [3 4] ?y))

Binary predicate contains/2, used in both goals, holds if its first argument is a col-
lection that contains the second argument. Solutions to a query consist of the different
bindings for its variables such that all logic goals succeed. Internally, the logic engine
performs an exploration of all possible results, using backtracking to yield the different
bindings for logic variables. The four solutions to the above query consist of bindings
[?x ?y] such that ?x is an element of vector [1 2] and ?y is an element of vector [3 4]:
([1 3] [1 4] [2 3] [2 4]).

Logic variables have to be introduced explicitly into each lexical scope. Above, the
chaqeko special form introduced two variables into the scope of its logic conditions. Addi-
tional variables can be introduced through the fresh special form:

1 (chaqeko [?x]
2 (differs ?x 4)
3 (fresh [?y]
4 (equals ?y ?x)
5 (contains [3 4] ?y)))

The above query has but one solution: ([3]). Indeed, 3 is the only binding for ?x such that
all goals succeed. The differs/2 goal on line 2 imposes a disequality constraint such that
any binding for ?x has to differ from 4. The equals/2 goal on line 4 requires ?x and the
newly introduced ?y to unify.

2.1.2 Reification of CHA-Q Models

CHAQEKO/X provides a library of predicates that can be used to query the information that
is maintained by the CHA-Q models. We limit our discussion to those predicates that reify
structural relations about and between CHA-Q AST nodes.2

Binary predicate (ast ?kind ?node), for instance, reifies the relation of all
AST nodes of a particular type. Here, ?kind is a Clojure keyword denot-
ing the capitalized, unqualified name of ?node’s class. Solutions to the query
(ekeko [?inv] (ast :MethodInvocation ?inv)) therefore comprise all method
invocations in the source code.

Ternary predicate (has ?propertyname ?node ?value) reifies the re-
lation between an AST node and the value of one of its properties. Here,

1https://github.com/clojure/core.logic
2Similar predicates reify the relations involving CHA-Q changes, commit messages, and issues.

https://github.com/clojure/core.logic
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?propertyname is a Clojure keyword denoting the decapitalized name of the property’s
be.ac.chaq.model.entity.EntityPropertyDescriptor (e.g., :modifiers). In
general, ?value is either another ASTNode or a wrapper for primitive values and collec-
tions. This wrapper ensures the relationality of the predicate. The following query will
therefore retrieve nodes that have null as the value for their :expression property (e.g.,
invocations with an implicit this receiver):

1 (ekeko [?node]
2 (fresh [?exp]
3 (nullvalue ?exp)
4 (has :expression ?node ?exp))

Finally, the child/3 predicate reifies the relation between an AST node and one of its im-
mediate AST node children. Solutions to the following query therefore consist of pairs of a
method invocation and one of its arguments:

1 (ekeko [?inv ?arg]
2 (ast :MethodInvocation ?inv)
3 (child :arguments ?inv ?arg))

Conceptually, the implementation of these lower-level predicates uses the aforemen-
tioned contains/2 over an AST node relation maintained by each CHA-Q model. Our
implementation of the higher-level predicates illustrates that CORE.LOGIC (cf. Section 2.1.1)
embeds logic programming within a functional language. Binary predicate child+/2, for
instance, can be implemented as a regular Clojure function that returns a logic goal:

1 (defn child+ [?node ?child]
2 (fresh [?keyw ?ch]
3 (child ?keyw ?node ?ch)
4 (conde [(equals ?ch ?child)]
5 [(child+ ?ch ?child)])))

Here, special form conde returns a goal that is the disjunction of one or more goals. Predi-
cate child+/2 therefore reifies the transitive closure of the child/2 relation.3

Next to facilitating the use of query results in tools and preventing queries from returning
stale results that no longer reflect the current state of the workspace, our identity-based
reification of AST nodes (cf. Section ??) also brings along some practical implementation
advantages. Many predicates call out to Java whenever this is more convenient than a purely
declarative implementation:

1 (defn ast-parent [?node ?parent]
2 (fresh [?kind]
3 (ast ?node ?ast)
4 (differs null ?parent)
5 (equals ?parent (.getParent ?node))))

Here, the last line ensures that ?parent unifies with the result of invoking method
ASTNode.getParent() on the binding for ?parent. The before-last line ensures that
the predicate fails for CompilationUnit instances which function as the root of the AST.

3Note that an idiomatic Prolog definition would consist of two rules that define the same predicate: one for
the base case and one for the recursive case, thus creating an implicit choice point.
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2.2 Code Templates for Specifying Transformation Subjects

Section 1.3 introduced code templates as a more intuitive means for specifying the sub-
jects of a transformation. Within CHAQEKO/X, these take the form of a logic constraint
(match <ast> <template>) that is satisfied for every <ast> from the program that
matches the given code <template>. Solutions to the following query therefore consist
of all return null; statements from the program under transformation:

1 (chaqeko [?s]
2 (match ?s "return null;"))

Meta-variables can be used within a code template to substitute for unknowns. Solu-
tions to the following query are therefore pairs of a return statement and its expression
component:

1 (chaqeko [?s ?e]
2 (match ?s "return ?e;"))

Of course, bindings are also realized for the meta-variables within a code template (e.g.,
[?s 7→return null; ?e7→null] is included among the solutions to the query).

Finally, matching directives <directive-name> or (<directive-name>
<arg1> ...<argn) can be associated with individual components of a
template using a [<template-component>]@[<matching-directive1>
...<matching-directiven>] syntax. The relax-expression directive, for in-
stance, ensures that the following template also matches return; statements —leaving?e
unbound:

1 (chaqeko [?s ?e]
2 (match ?s "[return ?e;]@[relax-expression]"))

Without this directive, the concrete syntax of the code template would disallow such
matches. The same effect could also be achieved using a disjunction of the two concrete
syntax cases:

1 (chaqeko [?s ?e]
2 (conde [(match ?s "return ?e;")]
3 [(match ?s "return;")]))

Note that all directives receive a placeholder for future matches of the template compo-
nent as an implicit <arg0> argument. Implementation-wise, this placeholder is an internal
meta-variable that substitutes for the match —hinting at the fact that matching directives are
names of logic constraints.

The following is a preliminary list of matching directives that CHAQEKO/X ought to
support. It is based on our experiences with the embeddings of code templates in SOUL [17]
and EKEKO/X [15]. We will revisit and possibly expand this list in our report on the proto-
type implementation of CHAQEKO/X (Deliverable D3.2.a).

Matching directives for equality and disequality

• Matching directive equals/1 corresponds to the logic constraint equals/2 dis-
cussed in Section 2.1.1. Used within a logic query, it imposes a unification constraint
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between its arguments. Used within a code template, it imposes this constraint be-
tween its explicit and implicit argument (i.e., the match for the component it is associ-
ated with). Solutions to the following query therefore consist of bindings [?s 7→return
?a + ?b; ?e7→?a + ?b;]:

1 (chaqeko [?s ?e]
2 (fresh [?a ?b]
3 (match ?s "return [?a + ?b]@[(equals ?e)];")))

The equals/2 directive enables retrieving the match for a template component (e.g.,
?e) that is already constrained by concrete syntax (e.g., ?a + ?b).

• Matching directive differs/1 corresponds to the logic constraint differs/2 dis-
cussed in Section 2.1.1. It imposes a disequality constraint between its arguments,
meaning that both should never unify. It is often convenient for ruling out duplicates
among a transformation’s subjects.

Matching directives involving containment

• Matching directive parent/1 corresponds to the ast-parent/2 logic constraint
from Section 2.1.1. It ensures that the parent node of its implicit match argument is
its explicit argument. The following query uses this directive to retrieve the statement
in which an assignment expression resides:

1 (chaqeko [?s ?e]
2 (fresh [?lhs = ?rhs]
3 (match ?e "[?lhs = ?rhs]@[(parent ?s)]")))

A related zero-argument parent/0 directive is the default (and therefore hidden)
matching directive for all template components: given an AST node Np of a program,
a template component Nt, and Pt as the parent of Nt; Np matches Nt if there exists Pp

where Pp matches Pt, and Np is a child of Pp.

• Matching directive parent+/1 is the transitive closure variant of the above
parent/1. As such, it ensures that the component it is associated with has its ex-
plicitly specified argument as an ancestor.

More interestingly, the related zero-argument parent+/0 directive can be used to
specify that the match for a template component can reside at an arbitrary depth within
the match for its parent template component.

• Zero-argument matching directives contains/0, contains-lexical/0 and
contains-flow/0 are in a sense dual to the aforementioned ones as they are meant
to be associated with “parent” template components such as method declaration and
class declaration templates.

The contains/0 directive imposes a containment constraint between the match for a
template component and the matches for its children. Solutions to the following query
therefore consist of any pair of statements from a method():
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1 (chaqeko [?s1 ?s2}]
2 (fresh [?m]
3 (match ?m
4 "[public void method() {
5 ?s1
6 ?s2
7 }]@[contains]")))

Note that the imposed containment constraint implies that ?m may contain additional
statements for which no counterpart exists in the template. Furthermore, a pair of
bindings [?s17→s1 ?s2 7→s2] does not entail that s1 precedes s2 in method(). Where
this is desirable, matching directive contains-lexical/0 can be used instead. Sim-
ilarly, contains-flow/0 only allows bindings [?s17→s1 ?s2 7→s2] such that s1may
be executed before s2 (i.e., there should be path in the control flow graph of method()
between them).

Semantic matching directives With the exception of contains-flow/0,
all of the above directives concern information maintained by the
be.ac.chaq.model.ast.java.ASTNode hierarchy of our CHA-Q meta-
model. The following matching directives concern information maintained by the
be.ac.chaq.model.famix.SourcedEntity hierarchy (i.e., those derived from the
original FAMIX model) instead:

• Matching directive qualified-name/1 can be associated with named entities in tem-
plate components such as type references, type declarations, variable references, vari-
able declarations, and method declarations. It takes as its sole explicitly specified argu-
ment a string that corresponds to the fully qualified name of the match for the template
component it is associated with. Solutions to the following query would therefore con-
sist of both fully and unqualified references to the type java.lang.Integer within
a local variable declaration.

1 (chaqeko [?typeref]
2 (fresh [?var ?localvardeclaration]
3 (match ?localvardeclaration
4 "[?typeref]@[(qualified-name ’java.lang.Integer’)] ?var;")))

The related relax-name/0 directive, in contrast, allows unqualified references in a
match to a type that is fully qualified in the template:

1 (chaqeko [?localvardeclaration]
2 (fresh [?var]
3 (match ?localvardeclaration "[java.lang.Integer]@[relax-name] ?var;")))

Likewise, the relax-type/1 directive allows matches to use a subtype of the type
that is specified in the template —expect for method return types. To respect contra-
variance, relax-type/1 allows super types rather than subtypes for method return
types.

• Matching directives may-alias/1 and must-alias/1 associate aliasing constraints
between two expressions. These constraints are satisfied when the expressions may or
must evaluate to the same value at run-time according to a dataflow analysis.
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As such an analysis is often expensive to compute, we also offer directives
references/1 and declares/1 that impose constraints between a variable (or
type) declaration and a reference to the variable (or type) they declare. The related
matching directives invokes/1 and invokedby/1 impose constraints between a
method invocation (or its name) and one of the method declarations (or their names)
they might invoke at run-time.

The following query illustrates how the all of these matching directives can be combined.
Its solutions consist of getter methods for java.util.LinkedList subtypes:

1 (chaqeko [?getter]
2 (fresh [?field ?classname ?typedeclaration ?type ?varref]
3 (match ?typedeclaration
4 "[public class ?classname {
5 private [java.util.LinkedList]@[relax-name relax-type (equals ?t)] ?field;

6 public [?type]@[(relax-type ?t)] ?getter() {
7 return ?varref@[(references ?field)];
8 }
9 }]@[contains]")))

At this point, one might argue that specifying our code templates is far from intuitive.
We therefore advocate finding sensible default matching directives for each kind of template
component. Such defaults have been shown to result in an example-driven specification
style that enables detecting implementation variants of an exemplified code snippet [18].
However, we conjecture that the control offered by CHAQEKO/X over template matching
will be required for the more involved program transformation problems. After all, a de-
fault matching strategy that results in unwanted matches for a transformation’s subjects will
result in erroneous changes.

2.3 Code Templates for Specifying Transformation Effects

Having detailed the left-hand side of CHAQEKO/X transformation specifications, we now
turn our attention to the right-hand side; i.e., the side that specifies how each identified
transformation subject is to be rewritten.

As explained in Section 1.3, code templates within constraint logic problems lend them-
selves for specifying the subjects of a transformation. Embedding constraint logic program-
ming within functional programming naturally enables rewriting subjects identified in this
manner using functional expressions that invoke our CHA-Q change API. Clojure’s inter-
operability with Java enables us to provide functions to remove (remove), insert (add) and
replace (replace) AST nodes. A function change-property) should enable changing
the values of their properties. Here, properties can be denoted using the Clojure keywords
from the has/3 predicate (cf. Section 2.1.2). These functions merely have to instantiate and
subsequently perform CHA-Q changes for each transformation subject.

However, we advocate delaying and grouping those changes in a
be.ac.chaq.change.ChangeSet. Delaying changes enables development tools to
simulate their eventual effect. For instance, to have end-users select the most appropriate
code transformation from several possible ones. Implementation-wise, each function can
extend the current change set for the compilation unit (i.e., the root of the AST) in which a
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A larger example: New Change Application
converting from a list to a keyed collection 

public class Department {	
	 private String name;	 	 	 	 	 	
	 private LinkedList<Room> rooms;	 	 	 	 	
	 private Room wroom;		 	 	 	 	
	 private SPriorityQueue waitingroom;	 	
	 private LinkedList<Device> equipment;	 	 	
	 	
	 public Department(String n) {	
	 	 name = n;	
	 	 rooms = new LinkedList<Room>();	
	 	 wroom = new Room(0);	
	 	 waitingroom = new SPriorityQueue();	
	 	 equipment = new LinkedList<Device>();	
	 }	
	 	
	 public void addRoom(Room room) {	
	 	 rooms.addFirst(room);	
	 }	!
	 public void removeRoom(Room room) {	
	 	 rooms.remove(room);	
	 }	!
	 public Room findRoom(Number id) {	
	 	 for (int i = 0; i < getNoOfRooms(); i++) {	
	 	 	 Room room = (Room) rooms.get(i);	
	 	 	 if (room.getId() == id) return room;	
	 	 }	
	 	 return null;	
	 }	
}

public class Department {	
	 private String name;	 	 	 	 	 	
	 private HashMap<Number, Room> rooms;	
	 private Room wroom;		 	 	 	 	 	
	 private SPriorityQueue waitingroom;	 	 	
	 private LinkedList<Device> equipment;	 	 	 	
	 	
	 public Department(String n) {	
	 	 name = n;	
	 	 rooms = new HashMap<Number, Room>();	
	 	 wroom = new Room(0);	
	 	 waitingroom = new SPriorityQueue();	
	 	 equipment = new LinkedList<Device>();	
	 }	
	 	
	 public void addRoom(Room room) {	
	 	 rooms.put(room.getId(), room);	
	 }	
	 public void removeRoom(Room room) {	
	 	 rooms.remove(room.getId());	
	 }	!
	 public Room findRoom(Number id) {	
	 	 return (Room) rooms.get(id);	
	 }	
}	

Figure 2.1: Example changes to be repeated by a CHAQEKO/X transformation.

node resides or create a new one if none is present. After all changes have been recorded,
they can be applied by calling a function apply-and-reset-rewrites.

Moreover, as discussed in Section 1.3 R2, our ideas concerning templates for match-
ing code can be transposed to templates for generating code. Instead of match-
ing directives, rewriting directives [<template-component>]@[<directive-name1>
...<directive-namen>] can be associated with the components of such a template. Each
rewriting directive can be expanded into a functional expression that invokes the CHA-Q
change API.

To link both sides of a specification together, we proposed a (chaqeko/x <LHS>
<RHS>) macro. This macro is to perform the changes specified by its second argument
<RHS> to all subjects that match its first argument <LHS>. For instance, by expanding into
the appropriate Clojure for-expression. At the same time, this macro can automate declar-
ing meta-variables.

The following transformation specification illustrates the resulting CHAQEKO/X lan-
guage on a bigger example:
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1 (chaqeko/x

2 [public class ?class {
3 [[private LinkedList<?type> ?list;]@[(equals ?fielddeclaration)]

4 [public ?constructor() {
5 [[?listref2]@[(refers ?list)]=new LinkedList<?type>();]@(equals ?init)
6 }]@[contains]
7

8 [public void ?add(?type ?param1) {
9 [?listref3]@(refers ?list).addFirst([?arg3]@(refers ?param1));

10 }]@(equals ?insert)
11

12 [public ?type4 ?find(?argType ?param5) {
13 [[?el]@(expression-type ?type).?getKey()]@(parent+)
14 }]@(equals ?lookup)]
15 }]@[contains]

16 =>

17 [private HashMap<?argType,?type> ?list;]@(replace ?fielddeclaration)

18 [?listref2=new HashMap<?argType,?type>();]@(replace ?init)

19 [public void ?add(?type ?arg1) {
20 ?listref3.put(?param1.?getKey(),?param1());
21 }]@(replace ?insert)

22 [public ?type4 ?find(?argType ?param5) {
23 return (?type4)?list2.get(?param5);
24 }]@(replace ?lookup)

25 )

The transformation repeats changes similar to the ones depicted in Figure 2.1. They
convert a field of type list into a keyed collection. Lines 3–6 and 17–18 convert the
?fielddeclaration and its associated initialization statement ?init in the constructor
of ?class. Note how type parameters are provided for the new HashMap instance. Lines
8–10 and 19–21 convert method ?add from using List<Value>.addFirst(Value) to
using HashMap<Key,Value>.put(Key, Value). To this end, line 13 retrieves the type
of and the method that can be used to compute a value’s key.
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3
Conclusion

We have introduced CHAQEKO/X as the transformation specification formalism of the
CHA-Q project. As in most approaches to program transformation, our specifications consist
of a left-hand side (LHS) and a right-hand side (RHS) component. The left-hand side com-
ponent identifies the subjects of the transformation, while the right-hand side component
defines how the identified subjects should be rewritten.

CHAQEKO/X is a template-based transformation language. On the LHS of a transfor-
mation, code templates function as a means to specify the structural (i.e., instructions and
their organisation) and behavioural characteristics (i.e., the order in which instructions are
executed at run-time and the values instructions operate on) of the stransformations sub-
jects. We owe this specification style to the SOUL meta-programming language [17, 18], but
innovate by offering a suite of operators that can be applied to a template to change the way
it is matched —thus paving the way for future operator-based tool support for applying
transformations in a change-aware manner (cf. Deliverable 3.2.b). On the RHS of a trans-
formation, code templates function as convenient short-hand for functional expressions that
instantiate and perform first-class CHA-Q changes on the transformation’s subjects.
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